National Library of Energy BETA

Sample records for transport membrane development

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  3. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  4. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect (OSTI)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  5. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  7. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  8. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1998-08-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through July 1999.

  9. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-07-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  10. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  11. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-03-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

  12. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  13. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

  14. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-02-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

  15. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-01-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  16. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-11-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

  17. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system���¢��������the Super Boiler���¢��������for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today���¢��������s typical firetube boilers.

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  19. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  20. Membrane Transport Chloride Transport Across Vesicle and Cell

    E-Print Network [OSTI]

    Smith, Bradley D.

    Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects of biological activity. Indeed, chloride transporters have direct medical potential as treatments for cystic

  1. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  2. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  3. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  4. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  5. Fluid transport by active elastic membranes

    E-Print Network [OSTI]

    Arthur A. Evans; Eric Lauga

    2013-02-10

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape, and the resulting fluid motion, result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  6. Transport diffusion of liquid water and methanol through membranes...

    Office of Scientific and Technical Information (OSTI)

    Transport diffusion of liquid water and methanol through membranes Citation Details In-Document Search Title: Transport diffusion of liquid water and methanol through membranes The...

  7. Liners for ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  8. Effective Potential Energy Expression for Membrane Transport

    E-Print Network [OSTI]

    Robert W. Finkel

    2007-02-11

    All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.

  9. Development of experimental methods to measure osmosis-driven water flux and molecular transport across nanoporous graphene membranes

    E-Print Network [OSTI]

    Jang, Doojoon

    2015-01-01

    Graphene, an atomically thin planar lattice of sp2 bonded carbon atoms with high strength and impermeability, has drawn attention as a promising next generation high flux separation membrane. Molecular dynamics simulations ...

  10. Ion transport through cell membrane channels

    E-Print Network [OSTI]

    Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

    2007-06-05

    We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

  11. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells....

  12. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Membrane Protein AmtB Transports Ammonia Print Wednesday, 25 May 2005 00:00 Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass...

  13. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  14. Structures for Three Membrane Transport Proteins Yield Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate...

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  16. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  17. Transport Phenomena in Polymer Electrolyte Membranes II. Binary Friction Membrane Model

    E-Print Network [OSTI]

    Struchtrup, Henning

    Transport Phenomena in Polymer Electrolyte Membranes II. Binary Friction Membrane Model J. Fimrite by the need for improved and more gen- eral models to represent transport phenomena within polymer elec dynamic models required for fundamental simulation of in situ processes that are difficult to ob- serve

  18. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephen; Frank E. Anderson; Shandra Ratnasamy; Jon P. Wagner; Clive Brereton

    2004-01-30

    The objective of this project is to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites with hydrogen permeable alloys. The primary technical challenge in achieving the goals of this project will be to optimize membrane composition to enable practical hydrogen separation rates and chemical stability. Other key aspects of this developing technology include catalysis, ceramic processing methods, and separation unit design operating under high pressure. To achieve these technical goals, Eltron Research Inc. has organized a consortium consisting of CoorsTek, Sued Chemie, Inc. (SCI), Argonne National Laboratory (ANL), and NORAM. Hydrogen permeation rates in excess of 50 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were routinely achieved under less than optimal experimental conditions using a range of membrane compositions. Factors that limit the maximum permeation attainable were determined to be mass transport resistance of H{sub 2} to and from the membrane surface, as well as surface contamination. Mass transport resistance was partially overcome by increasing the feed and sweep gas flow rates to greater than five liters per minute. Under these experimental conditions, H2 permeation rates in excess of 350 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were attained. These results are presented in this report, in addition to progress with cermets, thin film fabrication, catalyst development, and H{sub 2} separation unit scale up.

  19. Membranes for nanometer-scale mass fast transport

    DOE Patents [OSTI]

    Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  20. Recent developments in proton exchange membranes for fuel cells

    SciTech Connect (OSTI)

    Devanathan, Ramaswami

    2008-07-23

    Proton exchange membranes (PEMs) that operate at temperatures above 120 °C are needed to avoid catalyst poisoning, speed up electrochemical reactions, simplify the design and reduce the cost of fuel cells. This review summarizes developments in PEMs over the last five years. In order to design new membranes for elevated temperature operation, one must understand the chemistry, morphology and dynamics of protons and small molecules in existing membranes. The integration of experiments with modeling and simulation can shed light on the hierarchical structure of the membrane and dynamical processes associated with molecular transport. Based on such a fundamental understanding, membranes can be modified by controlling the polymer chemistry and architecture or adding inorganic fillers that can retain water under low relative humidity conditions. In addition, the development of anhydrous membranes based on phosphoric acid doped polymers, ionic liquid-infused polymer gels and solid acids can enable fuel cell operation above 150 °C. Considerable work remains to be done to identify proton transport mechanisms in novel membranes and evaluate membrane durability under real world operating conditions.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  2. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  3. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    SciTech Connect (OSTI)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  4. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  5. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  6. Molecular Structure and Transport Dynamics in Perfluoro Sulfonyl Imide Membranes

    SciTech Connect (OSTI)

    Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel

    2011-05-25

    We report a detailed and comprehensive analysis of the nanostructure, transport dynamics of water and hydronium and water percolation in hydrated perfluoro sulfonyl imides (PFSI), a polymer considered for proton transport in PEM fuel cells, using classical molecular dynamics simulations. The dynamical changes are related to the changes in the membrane nanostructure. Water network percolation threshold, the level at which a consistent spanning water network starts to develop in the membrane, lies between hydration level (?) 6 and 7. The higher acidity of the sulfonyl imide acid group of PFSI compared to Nafion reported in our earlier ab initio study, translates into more free hydronium ions at low hydration levels. Nevertheless, the calculated diffusion coefficients of the H3O+ ions and H2O molecules as a function the hydration level were observed to be almost the same as that of Nafion, indicating similar conductivity and consistent with the experimental observations. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture

    E-Print Network [OSTI]

    Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

    2013-01-01

    The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

  8. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  9. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  10. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  11. PHYSICAL REVIEW E 84, 031924 (2011) Fluid transport by active elastic membranes

    E-Print Network [OSTI]

    Lauga, Eric

    2011-01-01

    PHYSICAL REVIEW E 84, 031924 (2011) Fluid transport by active elastic membranes Arthur A. Evans1, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-04-30

    During this quarter long term and high pressure hydrogen separation experiments were performed on Eltron's composite layered membranes. Membranes were tested at 400 C and a 300 psig feed stream with 40% hydrogen for up to 400 continuous hours. In addition membranes were tested up to 1000 psig as demonstration of the ability for this technology to meet DOE goals. Progress was made in the development of new hydrogen separation cermets containing high permeability metals. A sulfur tolerant catalyst deposition technique was optimized and engineering work on mechanical and process & control reports was continued.

  13. Solvation and Ionic Transport in Polymer Electrolyte Membranes

    SciTech Connect (OSTI)

    Zawodzinski, T.A., Jr.; Paddison, S.J.; Reagor, D.; Pratt, L.R.

    1999-06-03

    We developed a general theoretical framework to study the problem of proton solvation and transport in Nafion{reg_sign} and related materials.

  14. Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles

    E-Print Network [OSTI]

    Fayer, Michael D.

    Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles D channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series by its use as a proton conducting membrane in fuel cells. Nafion membranes in fuel cells allow protons

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

    2001-04-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

  16. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-01-31

    During this quarter of the no cost extension a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase was prepared for sealing and permeability testing. Several different types of seals were developed and tested. In addition membrane surface stability was characterized.

  17. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  18. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-04-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates in excess of 400 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was characterized by repeated thermal and pressure cycling. The effect of cermet grain size on permeation was determined. Finally, progress is summarized on thin film cermet fabrication, catalyst development, and H{sub 2} separation unit scale up.

  19. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-01-30

    Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

  20. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  1. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  2. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    SciTech Connect (OSTI)

    MURAD, SOHAIL; JAMESON, CYNTHIA J

    2013-10-22

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  3. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

  4. Development of energy efficient membrane distillation systems

    E-Print Network [OSTI]

    Summers, Edward K

    2013-01-01

    Membrane distillation (MD) has shown potential as a means of desalination and water purification. As a thermally driven membrane technology which runs at relatively low pressure, which can withstand high salinity feed ...

  5. Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework

    E-Print Network [OSTI]

    Struchtrup, Henning

    and optimization of fuel cells in a design and development environment. Kreuer et al.19 recently presented of ongoing efforts to develop more comprehensive compu- tational fuel cell model14-18 that allow analysis of the fundamental transport mechanisms. In the context of multidimensional fuel cell modeling, practical

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  7. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    E-Print Network [OSTI]

    Hoarfrost, Megan Lane

    2012-01-01

    membranes containing ionic liquid could be designed to take advantage of the interesting gas separation

  8. Transport coefficients of D1-D5-P system and the membrane paradigm

    E-Print Network [OSTI]

    Yuya Sasai

    2012-01-12

    I discuss a correspondence between string theory and the black hole membrane paradigm in the context of the D1-D5-P system. By using the Kubo formula, I calculate transport coefficients of the effective string model induced by two kinds of minimal scalars. Then, I show that these transport coefficients exactly agree with the corresponding membrane transport coefficients of a five-dimensional near-extremal black hole with three charges.

  9. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  10. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the hydrophobic bilayer, while NH3 is not. Passage of uncharged NH3 would not result in a net change of protons across the membrane nor would it change the membrane potential, thus...

  11. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  13. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

  14. Membrane Development for Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become a main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range, and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion{reg_sign} as the preferred membrane material is responsible for {approx}11% of the overall cost of a 1 MW/8 MWh system. Therefore in recent years two main membrane-related research threads have emerged: (a) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and (b) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic science issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  15. Aquaporins comprise a family of water-transporting membrane proteins. All aquaporins are efficient water transporters, while

    E-Print Network [OSTI]

    de Groot, Bert

    . Further insights, particularly with respect to the dynamics of water permeation and the filter mechanism509 Aquaporins comprise a family of water-transporting membrane proteins. All aquaporins are efficient water transporters, while sustaining strict selectivity, even against protons, thereby maintaining

  16. Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur hydrogen efficiently on a large scale.1 This process has the advantage over traditional i.e., coal gasifica

  17. Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion

    E-Print Network [OSTI]

    Apo, Daniel Jolomi

    2012-01-01

    Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

  18. Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes

    E-Print Network [OSTI]

    O’Hern, Sean C.

    We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice ...

  19. Systems-level design of ion transport membrane oxy-combustion power plants

    E-Print Network [OSTI]

    Mancini, Nicholas D. (Nicholas David)

    2011-01-01

    Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

  20. Water Transport in Polymer Electrolyte Membrane Electrolyzers Used to Recycle Anhydrous HCl

    E-Print Network [OSTI]

    Weidner, John W.

    Water Transport in Polymer Electrolyte Membrane Electrolyzers Used to Recycle Anhydrous HCl I is car- ried out in an electrolyzer similar to a H2-O2 polymer electrolyte membrane PEM fuel cell. The DuPont electrolyzer contains flow channels and gas diffusion backings on the anode and the cathode. The flow channels

  1. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    E-Print Network [OSTI]

    Kienitz, Brian

    2010-01-01

    electrolyte fuel cells (PEFC) are an attractive alternativeproton-exchange membrane in a PEFC must serve many functionsenough to operate under harsh PEFC conditions for thousands

  2. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  3. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-01-28

    During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

  4. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

    2004-10-21

    During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

  5. Fluctuation-Driven Molecular Transport Through an Asymmetric Membrane Channel Ioan Kosztin1

    E-Print Network [OSTI]

    Kosztin, Ioan

    asymmetry in the presence of nonequilibrium fluctuations, fueled by the cell's metabolism as observed integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell molecules across the membrane down a free energy gradient. Active transport- ers conduct molecules along

  6. Development of Advanced Membranes Technology Platform for Hydrocarbon Separations

    SciTech Connect (OSTI)

    Kalthod, Dr Dilip

    2010-03-01

    Virtually all natural gas is dehydrated during its production, transmission and storage, mostly by absorption processes. Membranes offer many potential advantages over absorption, including smaller footprints, lighter-weight packages, packaging flexibility, minimal electrical power duty, amenability to expansion due to system modularity, reduced maintenance costs, reduced emissions of heavy hydrocarbons, no liquid waste streams, and amenability to unmanned operation. The latter is particularly valuable because new natural gas sources are generally located in remote onshore and offshore sites. Most commercially-available membranes for natural gas upgrading involve high capital costs, high methane loss and performance degradation from operational upsets – all of which are barriers to their widespread adoption by the industry. The original focus of the project was to develop and demonstrate robust, high-performance membranes for natural gas dehydration. The first task completed was a user needs-and-wants study to 1) clarify the expectations of system fabricators and end users of the new separations equipment, and 2) establish the required technical and commercial targets for the membrane products. Following this, membrane system modeling and membrane development in the lab proceeded in parallel. Membrane module diameter and length, as well as and the fiber outer and inner fiber diameter, were optimized from a mathematical model that accounts for the relevant fluid dynamics and permeation phenomena. Module design was evaluated in the context of overall system design, capital costs and energy consumption, including the process scheme (particularly sweep generation), feed pretreatment, system layout, and process control. This study provided targets for membrane permeation coefficients and membrane geometry in a commercial offering that would be competitive with absorption systems. A commercially-available polymer with good tensile strength and chemical resistance was selected for membrane development. A novel dope composition and spinning process were developed, which provide a new approach to controlling membrane porosity and wall and skin morphology. A hollow-fiber membrane with an external dense “skin” was produced that has a high water vapor permeation coefficient and selectivity, durability when in operation at 1000 psig and 70°C, and the ability to withstand aromatic and aliphatic hydrocarbon vapors for an extended period. The fiber meets the technical requirements for a commercial product offering in gas dehydration. It can be readily manufactured with some changes in process equipment and process conditions, and is an excellent candidate for scale-up to full-size membrane modules.

  7. Water transport in fuel cell membranes measured by laser interferometry

    E-Print Network [OSTI]

    Kim, Jungik, 1973-

    2009-01-01

    (cont.) The coefficients of electro-osmotic drag were found to increase with the increasing water content, which indicates that the Grotthuss mechanism of proton transfer is not active in the membranes with low water ...

  8. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-07-29

    During this quarter catalyst stability studies were performed on Eltron's composite layered membranes. In addition, permeation experiments were performed to determine the effect of crystallographic orientation on membrane performance. Sintering conditions were optimized for preparation of new cermets containing high permeability metals. Theoretical calculations were performed to determine potential sulfur tolerant catalysts. Finally, work was continued on mechanical and process & control documentation for a hydrogen separation unit.

  9. Si Nanopores Development for External Control of Transport of Biomolecules

    SciTech Connect (OSTI)

    Ileri, N; Tringe, J; Letant, S; Palozoglu, A; Stroeve, P; Faller, R

    2008-06-13

    Nazar Ileri has been involved in an independent, multidisciplinary effort to create a new class of molecular sieves for proteins and viruses. Her experimental work has been performed concurrently at two campuses, LLNL and UC Davis, while theoretical components have been largely accomplished at UC Davis. As will be described, the devices she is creating have great potential to improve very significantly the efficiency and selectivity of molecular transport over what is presently available from state-of-the-art membranes. Our biotechnology training program is based on an integrated study of the transport of biomolecules through conically-shaped, nanoporous silicon membranes. The overall objective of this effort is to demonstrate an efficient, highly selective membrane technology that is manufacturable for macroscopic areas and can be employed in sensing, diagnostic and biomedical applications. Our specific aims are to (1) fabricate and characterize the physical characteristics of the membranes, (2) to demonstrate their utility for molecular transport and separation, and (3) to develop models that will facilitate understanding of these devices as well as improved performance of the next generation of devices. We have proposed that the conical pores have superior performance characteristics compared to other porous filters. To study this hypothesis, complementary approaches from different disciplines, such as membrane synthesis, experiment, and molecular simulation need to be combined. This provides an ideal training environment for a future leader in biotechnology. Hence, for this study, Nazar Ileri has started to carry out a full range of experimental and theoretical investigations under our guidance. First, she has begun fabrication of filters with conical/pyramidal pores. She characterized the pores by AFM and SEM, and analyzed the images using wavelets and other mathematical tools. She has also started to conduct biomolecule transport experiments to compare the efficiency of fabricated filters vs. state-of-the-art commercial polycarbonate track-etched (PCTE) membranes. Finally, she has performed preliminary molecular calculations to investigate the operating principles of such systems and she has obtained results which she will present at the international 'Nanostructured materials, membrane modeling and simulation' workshop in Greece.

  10. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures to hydrogen separation membranes or other equipment for development and demonstration.

  11. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operations pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian

  12. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    E-Print Network [OSTI]

    Kienitz, Brian

    2010-01-01

    1993, "The Contact Angle  between Water and the Surface of Desorption, and Transport of Water in  Polymer Electrolyte Vaporization?Exchange Model  for Water Sorption and Flux in 

  13. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-SummerHow is the DataHow the Membrane

  14. Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Bioenergetics and mechanical actuation analysis with membrane transport experiments for use considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active

  15. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    SciTech Connect (OSTI)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  16. Megacities : sustainability, transport, and economic development

    E-Print Network [OSTI]

    Tobias, Justin Charles, 1980-

    2005-01-01

    The connections between sustainability, transport, and economic development are and will remain essential in the governance of cities. Sustainability concepts include valuing and preserving the earth's resources so that ...

  17. Development of palladium composite membranes for hydrogen separation

    SciTech Connect (OSTI)

    Paglieri, S. N. (Stephen N.); Birdsell, S. A. (Stephen A.); Snow, R. C. (Ronny C.); Smith, F. M. (Frank M.); Tewell, C. R. (Craig R.)

    2004-01-01

    Two types of palladium composite membrane were investigated for hydrogen separation. A palladium alloy membrane was prepared by electroless plating a layer of palladium ({approx}20 {micro}m) and then copper onto a commercially available porous (nominal 0.2 {micro}m pores) {alpha}-alumina substrate. The resulting multilayer metal film was annealed at 355 C for several days to promote metallic interdiffusion and alloy formation. During the heat treatment, a maximum hydrogen flux of 0.15 mol (STP)/m{sup 2} {center_dot} s was observed at 355 C and a pressure drop ({Delta}P) across the membrane of 6.8 atm. The H{sub 2}/Ar ideal separation factor was 68 at these conditions, however, the separation factor decreased upon thermal cycling. The other type of membrane fabricated was a palladium coated vanadium-copper alloy foil where the main advantage is the reduction in palladium film coating thickness to 100 nm per side. New methods are being developed for welding the thin foil into modules for testing. The hydrogen flux through a pinhole-free, 75 {micro}m thick Pd/VCu{sub 1.1}/Pd (atomic %) composite membrane was 0.66 mol (STP)/m{sup 2} {center_dot} at 350 C and {Delta}P = 3.5 atm compared to 0.44 mol (STP)/m{sup 2} {center_dot} s for a 71 {micro}m thick Pd/VCu{sub 10}/Pd membrane. Vanadium alloy composition was checked using Auger electron spectroscopy (AES).

  18. Quantitative description of ion transport via plasma membrane of yeast and small cells

    E-Print Network [OSTI]

    Vadim Volkov

    2012-12-18

    Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

  19. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOE Patents [OSTI]

    Liu, Wei

    2014-05-06

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  20. Transport coefficients, membrane couplings and universality at extremality

    E-Print Network [OSTI]

    Miguel F. Paulos

    2009-11-20

    We present an efficient method for computing the zero frequency limit of transport coefficients in strongly coupled field theories described holographically by higher derivative gravity theories. Hydrodynamic parameters such as shear viscosity and conductivity can be obtained by computing residues of poles of the off-shell lagrangian density. We clarify in which sense these coefficients can be thought of as effective couplings at the horizon, and present analytic, Wald-like formulae for the shear viscosity and conductivity in a large class of general higher derivative lagrangians. We show how to apply our methods to systems at zero temperature but finite chemical potential. Our results imply that such theories satisfy $\\eta/s=1/4\\pi$ universally in the Einstein-Maxwell sector. Likewise, the zero frequency limit of the real part of the conductivity for such systems is shown to be universally zero, and we conjecture that higher derivative corrections in this sector do not modify this result to all orders in perturbation theory.

  1. High Temperature Polymer Membrane Development at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  2. Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels

    E-Print Network [OSTI]

    Kandlikar, Satish

    (GDL) interface is needed in modelling the performance of a proton exchange membrane fuel cell (PEMFC representative case of a PEMFC air flow channel. The results show that the droplets significantly increase Sh of a proton exchange membrane fuel cell (PEMFC) is an active area of research. The O2 transport loss becomes

  3. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect (OSTI)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  4. Mechanism of Proton Transport in Proton Exchange Membranes: Insights from Computer Simulation

    SciTech Connect (OSTI)

    Gregory A. Voth

    2010-11-30

    The solvation and transport of hydrated protons in proton exchange membranes (PEMs) such as NafionTM will be described using a novel multi-state reactive molecular dynamics (MD) approach, combined with large scale MD simulation to help probe various PEM morphological models. The multi-state MD methodology allows for the treatment of explicit (Grotthuss) proton shuttling and charge defect delocalization which, in turn, can strongly influence the properties of the hydrated protons in various aqueous and complex environments. A significant extension of the methodology to treat highly acidic (low pH) environments such as the hydrophilic domains of a PEM will be presented. Recent results for proton solvation and transport in NafionTM will be described which reveal the significant role of Grotthuss shuttling and charge defect delocalization on the excess proton solvation structures and transport properties. The role of PEM hydration level and morphology on these properties will also be described.

  5. EFFICIENT OXYGEN SEPARATION MEMBRANE

    E-Print Network [OSTI]

    Mucina, Ladislav

    EFFICIENT OXYGEN SEPARATION MEMBRANE Summary of technology Oxygen can be separated from air using a uniquely structured ceramic ion transport membrane for oxygen separation thatshowsremarkablyhighflux © Curtin University 2013 Gas diffusion in conventional membrane Gas diffusion in new membrane New membrane

  6. Transport Test Problems for Hybrid Methods Development

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2011-12-28

    This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

  7. Fuel Cells for Transportation - Research and Development: Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

  8. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect (OSTI)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  9. Ideal Desalination through Graphyne-4 Membrane: Nanopores for Quantized Water Transport

    E-Print Network [OSTI]

    Chongqin Zhu; Hui Li; Xiao Cheng Zeng; Sheng Meng

    2013-06-30

    Graphyne-4 sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13L/cm2/day/MPa, about 10 times higher than the state-of-the-art nanoporous graphene reported previously (Nano Lett.s 2012, 12, 3602-3608). In addition, the membrane entails very low energy consumption for producing 1m3 of fresh water, i.e., 3.6e-3 kWh/m3, three orders of magnitude less than the prevailing commercial membranes based on reverse osmosis. Water flow rate across the graphyne-4 sheet exhibits intriguing nonlinear dependence on the pore size owing to the quantized nature of water flow at the nanoscale. Such novel transport behavior has important implications to the design of highly effective and efficient desalination membranes.

  10. Ohio State Develops Breakthrough Membranes for Carbon Capture...

    Energy Savers [EERE]

    manager Jos Figueroa, the hybrid membrane "is a breakthrough that could potentially lower costs associated with clean coal technologies." So, thanks to the efforts of a group...

  11. Ion Sorption, Diffusion and Transport in Polymer Membranes J. Kamcev, N. Yan, E.S. Jang, M. Galizia, D. R. Paul, and B. D. Freeman

    E-Print Network [OSTI]

    Turro, Nicholas J.

    fellows performing fundamental research in gas and liquid separations using polymer membranes and barrier separation membrane materials, such as new materials for water/ion separation, hydrogen separation, naturalIon Sorption, Diffusion and Transport in Polymer Membranes J. Kamcev, N. Yan, E.S. Jang, M. Galizia

  12. A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)

    Broader source: Energy.gov [DOE]

    Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

  13. Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers

    SciTech Connect (OSTI)

    Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

    2011-07-01

    There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

  14. Membrane separation systems---A research and development needs assessment

    SciTech Connect (OSTI)

    Baker, R.W. ); Cussler, E.L. . Dept. of Chemical Engineering and Materials Science); Eykamp, W. ); Koros, W.J. ); Riley, R.L. ); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-04-01

    Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

  15. TRANSPORTATION NODES, REAL ESTATE AND URBAN DEVELOPMENT The Metamorphosis Project

    E-Print Network [OSTI]

    Tufto, Jarle

    1 TRANSPORTATION NODES, REAL ESTATE AND URBAN DEVELOPMENT The Metamorphosis Project Norwegian POTENTIALS FOR PROJECT- AND URBAN DEVELOPMENT AT TRANSPORTATION NODES · TO QUICKLY DEVELOP AN ARCHITECTURAL? · DEVELOP AN URBAN AND ARCHITECTURAL CONCEPT AND PROGRAM · DESIGN AND PRESENT THE PROJECT #12;6 PHOENICIAN

  16. Transport and Removal Mechanisms of Trace Organic Pollutants by Nanofiltration and Reverse Osmosis Membranes

    E-Print Network [OSTI]

    Wang, Jinwen

    2014-01-01

    solutions up to seawater salinity, Desalination, 184 (2005)Composite Seawater Reverse-Osmosis Membrane, Desalination,

  17. Transport and Removal Mechanisms of Trace Organic Pollutants by Nanofiltration and Reverse Osmosis Membranes

    E-Print Network [OSTI]

    Wang, Jinwen

    2014-01-01

    treatment technologies are needed. Membrane processes are now the primary separation technology used in wastewater

  18. Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis

    E-Print Network [OSTI]

    Modestino, Miguel Antonio

    2013-01-01

    for artificial photosynthesis systems ..6Artificial Photosynthesis up process of artificial photosynthesis membranes and open

  19. Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes?

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Dupuis, Michel

    2012-08-28

    We present a detailed analysis of the nanostructure of short side chain (SSC) perfluorosulfonic acid membrane and its effect on H{sub 2}O network percolation, H{sub 3}O{sup +} and H{sub 2}O diffusion, and mean residence times of H{sub 3}O{sup +} and H{sub 2}O near SO{sub 3}{sup -} groups based on molecular dynamics simulations. We studied a range of hydration levels ({lambda}) at temperatures of 300 and 360 K, and compare the results to our previous findings in the benchmark Nafion membrane at 300 K. The water channel diameter is about 20% larger in Nafion, while the extent of SO3- clustering is more in SSC membrane. The calculated channel diameter is in excellent agreement with the recently proposed cylindrical water channel model of these membranes. The H{sub 2}O network percolation occurs at comparable hydration levels, and the diffusion coefficients of H{sub 2}O and H{sub 3}O{sup +} are similar in SSC and Nafion membranes. Raising the temperature of the SSC membrane from 300 to 360 K provides a much bigger increase in proton vehicular diffusion coefficient (by a factor of about 4) than changing the side chain length. H3O+ ions are found to exchange more frequently with SO{sub 3}{sup -} partners at the higher temperature. Our key findings are that (a) the hydrophobic-hydrophilic separation in the two membranes is surprisingly similar; (b) at all hydration levels studied, the longer side chain of Nafion is bent and is effectively equivalent to a short side chain in terms of extension into the water domain; and (c) proton transport along the centre of the channel is improbable and vehicular proton transport occurs between SO{sub 3}{sup -} groups. The simulations are validated by good agreement with corresponding experimental values for the simulated membrane density and diffusion coefficients of H{sub 2}O.

  20. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  1. Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method

    E-Print Network [OSTI]

    Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

    2014-01-01

    High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

  2. Guidelines and Toolkits for Urban Transport Development in Medium...

    Open Energy Info (EERE)

    Guidelines and Toolkits for Urban Transport Development in Medium Sized Cities in India Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines and Toolkits for Urban...

  3. Smart membranes for nitrate removal, water purification, and selective ion transportation

    DOE Patents [OSTI]

    Wilson, William D. (Pleasanton, CA); Schaldach, Charlene M. (Pleasanton, CA); Bourcier, William L. (Livermore, CA); Paul, Phillip H. (Livermore, CA)

    2009-12-15

    A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

  4. Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis

    E-Print Network [OSTI]

    Modestino, Miguel Antonio

    2013-01-01

    M. A. ; Pivovar, B. S. Fuel Cells 2005, 5, (2), 213-229.exchange membrane for fuel cells. University of California,exchange membrane for fuel cells. University of California,

  5. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  6. Promoting Public Transportation for Sustainable Development

    E-Print Network [OSTI]

    Mauzerall, Denise

    ). India's CO2 emissions account for only 2-4% of the world's total but are important to address because for transportation (Tiwari, 2003). Although per capita CO2 emissions in India are below a quarter of the world. One is the effect of vehicle carbon dioxide, CO2, emissions on climate change and the second stems

  7. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    SciTech Connect (OSTI)

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  8. Development of dense-phase pneumatic transport of coal

    SciTech Connect (OSTI)

    Horisaka, S.; Ikemiya, H.; Kajiwara, T. [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan)

    1996-12-31

    Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

  9. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect (OSTI)

    NONE

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  10. Asian Development Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport Jump to: navigation,

  11. Sustainable Transport Development for Accra: Critiquing Ideologies and Unraveling Priorities 

    E-Print Network [OSTI]

    Anyetei-Anum, Dzifa

    2012-11-01

    is ensuring sustainable development of urban public transportation, through, among other things, good governance. The document, however, is built within the contextual frameworks of Ghana’s Poverty Strategy Papers, which espouse decentralization and economic...

  12. Development of a 4096 Element MEMS Continuous Membrane Deformable Mirror for High Contrast

    E-Print Network [OSTI]

    Bifano, Thomas

    Development of a 4096 Element MEMS Continuous Membrane Deformable Mirror for High Contrast star. This surface micromachined MEMS deformable mirror will have an active aperture of 25.2mm developed for commercially available 1024 and 140 element MEMS deformable mirrors to achieve unprecedented

  13. Spatially resolved in situ measurements of the transport of organic molecules in a polycrystalline nanoporous membrane

    E-Print Network [OSTI]

    Nair, Sankar

    of photoacoustic signal generation from a heterogeneous membrane, allows extraction of concentration profiles and converted into a thermoacoustic signal originating from a cumulative region of the sample down to a certain

  14. The effect of adjacent layers like biofilms on mass transport through nanofiltration membranes

    E-Print Network [OSTI]

    Bothe, Dieter

    , which is always present on the membrane surface in crossflow filtration processes, as well as a feed to high tangential flow velocities in crossflow filtrations, the size of this biofilm is limited to values

  15. Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell 

    E-Print Network [OSTI]

    Park, Yong Hun

    2009-05-15

    Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which...

  16. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect (OSTI)

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  17. Modelling of morphology and proton transport in PFSA membranes James A. Elliotta

    E-Print Network [OSTI]

    Elliott, James

    mechanisms and the need to examine the chemical and physical processes at several distinct time and length with which to guide the process of designing novel membrane materials for fuel cell applications synthesized by the Dow Chemical Company,6­8 but more recently by Solvay- Solexis9­11 as Hyflons ) continue

  18. Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    27 August 1999; accepted 30 August 1999 Abstract Gas permeability coefficients were obtained for CO2 properties has resulted in a variety of applications for high throughput membrane materials and low and He gases at room temperature in a semicrystalline ethylene/ethylene­propylene/ ethylene (E

  19. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter...

  20. Development of Biomimetic Membranes for Near Zero PC Power Plant Emissions

    SciTech Connect (OSTI)

    Michael Trachtenberg; Robert Cowan; David Smith; Ira Sider

    2009-07-31

    The first objective of this project was to develop, evaluate and compare two different CO2 separation (capture) systems. The second was to carry the preferred solution to pre-pilot development and testing. To achieve these objectives we undertook several infrastructure enabling elements: (1) development of a preferred catalyst coupled with its immobilization onto a microporous polymer membrane, (2) design and development of a microporous membrane-based, contained liquid membrane permeator and a membrane-based absorber/desorber apparatus, (3) development of a resin-wafer electrodialytic absorber/desorber apparatus, (4) development and demonstration of a pre-treatment process to condition the feed gas stream, (5) and development of computer modeling of the components and of the integrated system. The first technology was an enzyme catalyzed, membrane supported, contained liquid membrane apparatus whose gas capture was pressure/vacuum and temperature driven. A first embodiment was as a permeator, i.e. a combined absorber/desorber in a single housing. The second embodiment was as discrete absorber and desorber units. The second technology was an enzyme catalyzed, ion exchange resin wafer electrodialytically-based separation. For each of these technologies the objective was to design, manufacture, test and demonstrate the apparatus, first in the laboratory and then at pre-pilot scale, and to run it for sufficient time at the pre-pilot scale to demonstrate stability even in the face of upset. Tests would include several ranks of coal, which had been appropriately pre-treated to remove NOx, SOx and particles, to a pre-determined acceptance level, as a basis for demonstrating efficient CO{sub 2} capture. The pre-pilot tests would be run at the Energy and Environmental Research Center (EERC) in North Dakota. A larger scale test (400m{sup 2} test unit) would later be run also at EERC. An economic goal was to compare the cost of CO{sub 2} capture by each of these methods with values obtained when using MEA (monoethanolamine) as a baseline case. Other metrics included capital and operating expense, parasitic loss and cost of electricity. A final goal was to carry out an initial examination of market forces to understand what barriers to entry for installation of CO{sub 2} capture equipment might exist and their relative importance.

  1. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  2. Environmental development plan for transportation programs: FY80 update

    SciTech Connect (OSTI)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

  3. Structures and Transport Properties of Hydrated Water-Soluble Dendrimer-Grafted Polymer Membranes for Application to Polymer Electrolyte Membrane Fuel Cells

    E-Print Network [OSTI]

    Goddard III, William A.

    for application to polymer electrolyte membrane fuel cells (PEMFC). Using full-atomistic molecular dynamics materials for polymer electrolyte membrane fuel cells (PEMFC).1-6 This has led to a number of new materials or above). Recently, we proposed a strategy for improving the perfor- mance of PEMFC by utilizing

  4. Transportation Electrification Load Development For A Renewable Future Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Mai, T.; Kintner-Meyer, M.

    2010-12-01

    The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

  5. Multistage CSR microbunching gain development in transport or recirculation arcs

    E-Print Network [OSTI]

    Tsai, Cheng-Ying; Li, Rui; Tennant, Chris

    2015-01-01

    Coherent synchrotron radiation (CSR) induced microbunching instability has been one of the most challenging issues in the design of modern accelerators. A linear Vlasov solver has been developed [1] and applied to investigate the physical processes of microbunching gain amplification for several example lattices [2]. In this paper, by further extending the concept of stage gain as proposed by Huang and Kim [3], we develop a method to characterize the microbunching development in terms of stage orders that allow the quantitative comparison of optics impacts on microbunching gain for different lattices. We find that the microbunching instability in our demonstrated arcs has a distinguishing feature of multistage amplification (e.g, up to 6th stage amplification for our example transport arcs, in contrast to two-stage amplification for a typical 4-dipole bunch compressor chicane). We also try to connect lattice optics pattern with the obtained stage gain functions by a physical interpretation. This Vlasov analys...

  6. Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis

    E-Print Network [OSTI]

    Modestino, Miguel Antonio

    2013-01-01

    for developing high efficiency solar-fuel generators. Thisapproximately 10% solar-fuel efficiency) and is to a largeutilized to create high efficiency solar-fuel devices. This

  7. Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis

    E-Print Network [OSTI]

    Modestino, Miguel Antonio

    2013-01-01

    and an outlook to the realization of integrated solar-fuelOUTLOOK The development of scalable, robust and cost-effective solar

  8. VOLUME 80, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 18 MAY 1998 Spontaneous Onset of Coherence and Energy Storage by Membrane Transporters

    E-Print Network [OSTI]

    Derényi, Imre

    of Coherence and Energy Storage by Membrane Transporters in an RLC Electric Circuit Imre Derényi and R. Dean equilibrium the energy flow can be reversed, i.e., power can flow from the downhill transport process that oscillating or fluctuating electric fields can drive thermodynami- cally uphill transport of ions catalyzed

  9. The geography of strategy : an exploration of alternative frameworks for transportation infrastructure strategy development

    E-Print Network [OSTI]

    Dunn, Travis P

    2010-01-01

    This thesis introduces the notion of a strategy development framework for transportation infrastructure systems. A strategy development framework has several dimensions: the organizations that own.infrastructure, the ...

  10. Synthesis and Characterization of Proton-Conducting Oxides as Hydrogen Transport Membranes

    E-Print Network [OSTI]

    Iglesia, Enrique

    conductors are being developed for oxygen purification and for coupling with steam reforming reactions out reactions with unfavorable thermodynamics. H2 removal during catalytic methane pyrolysis [4] and during steam reforming [5] has been recently suggested in order to increase achievable CH4 conversions

  11. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    SciTech Connect (OSTI)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.] [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  12. Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the High Temperature Membrane Working Group Meeting (HTMWG) held October 10, 2007 in Washington, D.C.

  13. Developing an institutional strategy for transporting defense transuranic waste materials

    SciTech Connect (OSTI)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.

  14. Operation of staged membrane oxidation reactor systems

    DOE Patents [OSTI]

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  15. Recent palladium membrane reactor development at the tritium systems test assembly

    SciTech Connect (OSTI)

    Scott, W.R.; Birdsell, S.A.; Wilhelm, R.C. [Los Alamos National Lab., NM (United States)

    1995-10-01

    The palladium membrane reactor (PMR) is being investigated as a means for recovering hydrogen isotopes (including tritium) from compounds such as water and methane. Previous work with protiated water and methane showed that this device can be used to obtain high hydrogen recovery efficiencies using a single processing pass and with essentially no waste production. With these successful proof-of-principle results completed, recent work has focused on PMR development. This included studies of various geometries and testing with tritium. The results, which are reported here, have led to a better understanding of the PMR and will lead to the ultimate goal of building a production PMR and putting it into practical tritium processing service. 3 refs., 5 figs., 1 tab.

  16. Temperature-Dependent Simulations of Dry Gas Transport in the Electrodes of Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Membrane Fuel Cells M. J. Kermani1 J. M. Stockie2 mkermani@unb.ca stockie@unb.ca 1 Post Doctoral Fellow the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically. The di usion to achieve this goal is via proton exchange mem- brane (PEM) fuel cells, which in principle combine oxygen

  17. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    SciTech Connect (OSTI)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.

  18. Development of a Transportable, 1065-Compliant Emissions Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportable, 1065-Compliant Emissions Measurement System CFR 1065 test procedures for heavy-heavy duty engines for the 2010 model year and later require laboratory upgrades to...

  19. Development/Plasticity/Repair Glycine Transporter-1 Inhibition Promotes Striatal Axon

    E-Print Network [OSTI]

    Sulzer, David

    Development/Plasticity/Repair Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via injections of the toxin 6-hydroxydopamine. We used apharmacologicalapproachtoenhance

  20. Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field

    E-Print Network [OSTI]

    Goddard III, William A.

    ABSTRACT: A broad class of important materials, such as carbon molecular sieves, silicon carbide (Si of preceramic polymers. Examples include carbon molecular sieves, silicon carbide (SiC), silicon nitride (Si3N4Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field

  1. Selective transport of copper(I, II), cadmium(II), and zinc(II) ions through a supported liquid membrane containing bathocuproine, neocuproine, or bathophenanthroline

    SciTech Connect (OSTI)

    Saito, Takashi )

    1994-06-01

    Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2[prime]-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1, 10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthroline (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu[sup +,2+], Zn[sup 2+], Cd[sup 2+] [much gt] Pb[sup 2+], Co[sup 2+]. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu[sup +] ions was higher than those of Cd[sup 2+] and Zn[sup 2+] ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu[sup 2+] ion decreased whereas that of the Cd[sup 2+] ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species. 18 refs., 9 figs.

  2. Recent palladium membrane reactor development at the tritium systems test assembly

    SciTech Connect (OSTI)

    Willms, R.S.; Birdsell, S.A.; Wilhelm, R.C.

    1995-07-01

    The palladium membrane reactor (PMR) is proving to be a simple and effective means for recovering hydrogen isotopes from fusion fuel impurities such as methane and water. This device directly combines two techniques which have long been utilized for hydrogen processing, namely catalytic shift reactions and palladium/silver permeators. A proof-of-principle (PMR) has been constructed and tested at the Tritium Systems Test Assembly of Los Alamos National Laboratory. The first tests with this device showed that is was effective for the proposed purpose. Initial work concluded that a nickel catalyst was an appropriate choice for use in a PMR. More detailed testing of the PMR with such a catalyst was performed and reported in other works. It was shown that a nickel catalyst-packed PMR did, indeed, recover hydrogen from water and methane with efficiencies approaching 100% in a single processing pass. These experiments were conducted over an extended period of time and no failure or need for regeneration was encountered. These positive results have prompted further PMR development. Topics addressed include alternate PMR geometries and initial testing of the PMR with tritium. These are the subjects of this paper.

  3. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect (OSTI)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  4. Development of Metal-Organic Framework Thin Films and Membranes for Low-Energy Gas Separation 

    E-Print Network [OSTI]

    McCarthy, Michael

    2011-08-08

    facile control over pore size and physical properties, making MOFs attractive materials for application in gas-separating membranes. A wealth of reports exist discussing the synthesis of MOF structures, however relatively few reports exist discussing MOF...

  5. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  6. Evaluation of Test Methods for Permeability (Transport) and Development of Performance Guidelines for Durability

    E-Print Network [OSTI]

    control #12;Project ScopeProject Scope Phase I Literature Review of Concrete Permeability (Transport) Test Procedures and Models that Link Tests with Performance Phase II Evaluate Promising Concrete PermeabilityEvaluation of Test Methods for Permeability (Transport) and Development of Performance Guidelines

  7. Development of membranes for hydrogen separation: Pd-coated V-10Pd

    SciTech Connect (OSTI)

    Paglieri, Stephen N [Los Alamos National Laboratory; Wermer, Joseph R [Los Alamos National Laboratory; Buxbaum, Robert E [REB RESEARCH AND CONSULTING; Ciocco, Michael V [NETL; Howard, Bret H [NETL; Morreale, Bryan D [NETL

    2009-01-01

    Numerous Group IVB and VB alloys were prepared and tested as potential membrane materials but most of these materials were brittle or exhibited cracking during hydrogen exposure. One of the more ductile alloys, V-10Pd (at. %), was fabricated into a thin (107-{micro}m thick) composite membrane coated with 100 nm of Pd on each side. The material was tested for hydrogen permeability, resistance to hydrogen embrittlement, and long term hydrogen flux stability. The hydrogen permeability, {phi}, of the V-10Pd membrane was 3.86 x 10{sup -8} mol H{sub 2} m{sup -1} s{sup -1} Pa{sup -0.5} (avg. of three different samples) at 400 C, which is slightly higher than the permeability of Pd-23Ag at that temperature. A 1400 h hydrogen flux test at 400 C demonstrated that the rate of metallic interdiffusion was slow between the V-10Pd foil and the 100-nm-thick Pd coating on the surface. However, at the end of testing the membrane cracked at 118 C because of hydrogen embrittlement.

  8. Journal of Membrane Science 281 (2006) 7087 Forward osmosis: Principles, applications, and recent developments

    E-Print Network [OSTI]

    2006-01-01

    areas of forward osmosis research include pressure-retarded osmosis for generation of electricity fromJournal of Membrane Science 281 (2006) 70­87 Review Forward osmosis: Principles, applications the state-of-the-art of the physical principles and applications of forward osmosis as well

  9. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  10. Institute for Transportation & Development Policy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAndInformationInstalledTransportation

  11. Conceptual Design Phase of Project on Design and Development of Airships for Transportation of Goods

    E-Print Network [OSTI]

    Ramu, Palaniappan

    Conceptual Design Phase of Project on Design and Development of Airships for Transportation Team 2 Literature Review 3 Requirements Capture 4 Discussions with Airship Manufacturers 5 Identification of Vendors and Resource Agencies 6 Regulations related to airship design, manufacture

  12. Research Positionsfor Development of Novel Green Air Conditioning and Refrigeration Systems for Transportation Vehicles

    E-Print Network [OSTI]

    Bahrami, Majid

    in refrigeration and heat pump systems, HVAC, porous media development/characterization, transport phenomena of compact and lightweight heat exchangers for evaporator and condenser; v) Development of heatdriven storage for service vehicles; vii) Development of sustainable hybrid A/C systems featuring desiccant

  13. Understanding the Relationship between Osmotic Membrane Structure and Separation Performance

    E-Print Network [OSTI]

    Wong, Mavis C.Y.

    2014-01-01

    Review of Transport through Osmotic Membranes. , J. Membr.and solution chemistry on osmotic structure and performance.relationship between osmotic membrane structure, chemistry,

  14. Membrane Separations Research 

    E-Print Network [OSTI]

    Fair, J. R.

    1992-01-01

    been dominated by light gas separations and water purification. During this pioneering period, equipment containing the membrane suIfaces has been developed to a point where failures are minimal and the membranes themselves are sufficiently rugged... of separation technology, especially in the area of gas recovery and purification. The field has grown quite large and the literature is voluminous. There is now a North American Membrane Society and there has been for some years the Journal of Membrane...

  15. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  16. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  17. Computational and experimental study of nanoporous membranes for water desalination and decontamination.

    SciTech Connect (OSTI)

    Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

    2008-11-01

    Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

  18. Carrier-mediated transport of actinide ions using supported liquid membranes containing TODGA as the carrier extractant

    SciTech Connect (OSTI)

    Panja, S.; Dakshinamoorthy, A.; Munshi, S.K.; Dey, P.K.; Mohapatra, P.K.; Manchanda, V.K.

    2008-07-01

    The transport behavior of Pu{sup 3+} under varying reducing conditions was investigated from a feed containing 3.0 M HNO{sub 3} into a receiver phase containing 0.1 M HNO{sub 3} using TODGA (N,N,N',N' - tetraoctyl-diglycolamide) as the carrier ligand. A mixture of 0.2 M hydroxyl ammonium nitrate and 0.2 M hydrazinium nitrate (used in the feed as the reducing agent) has been found to be effective for quantitative (>99%) transport of the trivalent Pu in about 3 h. Transport of trivalent plutonium in 3 h (>99%) was higher as compared to that of the tetravalent plutonium (94%), though their D values followed an opposite trend. The permeability coefficient (P) of Pu{sup 3+} was (4.63 {+-} 0.26) x 10{sup -3} cm/s as compared to (2.10 {+-} 0.14) x 10{sup -3} cm/s for Pu{sup 4+} and (3.67 {+-} 0.06) x 10{sup -3} cm/s Am{sup 3+}. P values of trivalent actinide ions such as Am{sup 3+}, Pu{sup 3+}, and Cm{sup 3+} are compared with their distribution data. (authors)

  19. Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications

    SciTech Connect (OSTI)

    Vogel, John A.

    2008-09-03

    The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies. Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPI’s Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.

  20. Ninth International Workshop on Plant Membrane Biology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  1. Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational Study

    E-Print Network [OSTI]

    Geerts, Bart

    Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational an isolated, heated mountain are presented. The data were collected around the Santa Catalina Mountains congestus to cumulonimbus development over the mountain. Flights in the boundary layer around the mountain

  2. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  3. The research cluster Membranes for Energy and Sustainable Processes (or in full Membrane Materials Science

    E-Print Network [OSTI]

    Twente, Universiteit

    transport through polymer membranes to identify structure-properties relations and on the application and optimization of the transport of ions through these membranes. Figure 4: Coal fired power plant (Borssele and permeation) through polymer membranes to identify structure-properties relations and on the application

  4. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect (OSTI)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  5. Hydrogen separation membranes annual report for FY 2006.

    SciTech Connect (OSTI)

    Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

    2007-02-05

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

  6. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  7. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect (OSTI)

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  8. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2012-07-10

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  9. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  10. Development of a container for the transportation and storage of plutonium bearing materials

    SciTech Connect (OSTI)

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations.

  11. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  12. Development and Application of A Membrane-Based Thermodenuder for Measurement of Volatile Particles Emitted by A Jet Turbine Engine

    SciTech Connect (OSTI)

    Cheng, Mengdawn

    2010-01-01

    Measurement of volatile particles emitted by modern jet engines is a daunting task. Besides the complexity in sampling jet aircraft exhaust, the main difficulty lies at how to faithfully capture the phase-partition dynamics of volatile particles as they travel downstream from the engine exhaust nozzle. As a result, the physico-chemical properties of the exhaust are also transformed. We have developed a sampling instrument that aims at enabling study of the phase-partition dynamics. The objective of this research project was to design and evaluate a new thermodenuder for performing phase separation of the engine-emitted volatile particles. The backbone of the new thermodenuder is a thin metallic membrane. The membrane enables extraction of molecules that can be thermally desorbed from the condensed particulate phases and collected for subsequent chemical analysis. Toward realization of the technique in the future field aircraft emissions measurement we tested this new thermo-denuding device using laboratory-generated particles that were made of non-volatile or semi-volatile chemicals. The particle penetration efficiency, a measure of the device performance, of this thermodenuder was found to be better than 99%. Results obtained from the tests executed at a number of operating temperature conditions show reasonably good thermal separation. We have scheduled to apply this new device to characterize emissions from a T63 turboshaft engine in the spring of 2010 and are expecting to show the engine results at the conference. The test results based on the laboratory-generated particles were encouraging for the intended application. With excellent particle transmission efficiency and an ability to simultaneously measure the composition in the gas and particle phases of the engine particles, we believe the new technology will make a great contribution to measurement research of engine emissions.

  13. STRUCTURAL REQUIREMENTS OF ORGANIC ANION TRANSPORTING POLYPEPTIDE MEDIATED TRANSPORT

    E-Print Network [OSTI]

    Weaver, Yi Miao

    2010-04-12

    The organic anion transporting polypeptides (human: OATP; other: Oatp) form a mammalian transporter superfamily that mediates the transport of structurally unrelated compounds across the cell membrane. Members in this superfamily participate...

  14. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  15. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  16. Sand transport and deposition in horizontal multiphase trunklines of subsea satellite developments

    SciTech Connect (OSTI)

    Oudeman, P. )

    1993-11-01

    Gravel packing is unattractive as a way to protect against the effects of sand production in subsea wells because it involves additional completion costs, loss of productivity, and difficulties in subsequent recompletion/well servicing operations. On the other hand, omitting gravel packs means that subsea developments must be designed and operated so that they can tolerate sand production. An experimental study was carried out on sand transport and deposition in multiphase flow in modeled subsea flowlines to address the problem and sand collection in horizontal trunklines, which could lead to reduced line throughput, pigging problems, enhanced pipe-bottom erosion, or even blockage. This study led to the definition of a new model for sand transport in multiphase flow, which was used to establish the risk of sand deposition in trunklines connecting a subsea development to nearby production platform.

  17. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOE Patents [OSTI]

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  18. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect (OSTI)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  19. ADVANCED MATERIALS Membranes for Clean Water

    E-Print Network [OSTI]

    ADVANCED MATERIALS Membranes for Clean Water Objective This project provides measurement solutions that probe the surface and internal structure of polymer membranes used in water purification, and correlate that structure to the transport of water and other species through the membrane. Our methods are focused

  20. OXYGEN TRANSPORT MEMBRANE (OTM) AIDED

    E-Print Network [OSTI]

    · Benefits to California · Overall Technology Assessment · Appendices o Appendix A: Final Report (under · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Environmentally

  1. Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment

    SciTech Connect (OSTI)

    Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

    2014-03-31

    This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

  2. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

  3. Final Report - Membranes and MEA's for Dry, Hot Operating Conditions

    SciTech Connect (OSTI)

    Hamrock, Steven J.

    2011-06-30

    The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20���ºC to 120���ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20���ºC to 120���ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA�¢����s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20���ºC to 120���ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA�¢����s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

  4. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  5. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  6. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  7. Direct-hydrogen-fueled proton-exchange-membrane (PEM) fuel cell system for transportation applications. Quarterly technical progress report No. 4, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Oei, D.

    1995-08-03

    This is the fourth Technical Progress Report for DOE Contract No. DE-AC02-94CE50389 awarded to Ford Motor Company on July 1, 1994. The overall objective of this contract is to advance the Proton-Exchange-Membrane (PEM) fuel cell technology for automotive applications. Specifically, the objectives resulting from this contract are to: (1) Develop and demonstrate on a laboratory propulsion system within 2-1/2 years a fully functional PEM Fuel Cell Power System (including fuel cell peripherals, peak power augmentation and controls). This propulsion system will achieve, or will be shown to have the growth potential to achieve, the weights, volumes, and production costs which are competitive with those same attributes of equivalently performing internal combustion engine propulsion systems; (2) Select and demonstrate a baseline onboard hydrogen storage method with acceptable weight, volume, cost, and safety features and analyze future alternatives; and (3) Analyze the hydrogen infrastructure components to ensure that hydrogen can be safely supplied to vehicles at geographically widespread convenient sites and at prices which are less than current gasoline prices per vehicle-mile; (4) Identify any future R&D needs for a fully integrated vehicle and for achieving the system cost and performance goals.

  8. Hydrogen separation membranes annual report for FY 2010.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.

    2011-03-14

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

  9. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  10. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, Bruce M. (Bend, OR)

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  11. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  12. Ceramic membranes having macroscopic channels

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Peterson, Reid A. (Madison, WI)

    1996-01-01

    Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.

  13. Development of a particle injection system for impurity transport study in KSTAR

    SciTech Connect (OSTI)

    Lee, H. Y.; Hong, Joohwan; Lee, Seung Hun; Jang, Siwon; Jang, Juhyeok; Jeon, Taemin; Park, Jae Sun; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea and Fusion Plasma Transport Research Center, Daejeon 305-701 (Korea, Republic of); Hong, Suk-Ho [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2014-11-15

    A solid particle injection system is developed for KSTAR. The system has a compact size, compatibility with a strong magnetic field and high vacuum environment, and the capability to inject a small amount of solid particles with a narrow injection angle. The target flight-distance of 10 cm has been achieved with a particle loss rate of less than 10%. Solid impurity particles such as tungsten and carbon will be injected by this system at the midplane in KSTAR. The impurity transport feature will be studied with a soft X-ray array, a vacuum ultra-violet diagnostic, and Stand Alone Non-Corona code.

  14. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect (OSTI)

    Martin, David (University of Florida, Gainesville, FL)

    2005-11-01

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  15. A unified model of electroporation and molecular transport

    E-Print Network [OSTI]

    Smith, Kyle Christopher

    2011-01-01

    Biological membranes form transient, conductive pores in response to elevated transmembrane voltage, a phenomenon termed electroporation. These pores facilitate electrical and molecular transport across cell membranes that ...

  16. Microprobes aluminosilicate ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (2114 Chadbourne Ave., Madison, WI 53705); Sheng, Guangyao (45 N. Orchard St., Madison, WI 53715)

    1993-01-01

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  17. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  18. Scalability of the Air Transportation System and Development of Multi-Airport Systems: A Worldwide Perspective

    E-Print Network [OSTI]

    Bonnefoy, Philippe

    With the growing demand for air transportation and the limited ability to increase capacity at some key points in the air transportation system, there are concerns that in the future the system will not scale to meet demand. ...

  19. Scalability of the air transportation system and development of multi-airport systems : a worldwide perspective

    E-Print Network [OSTI]

    Bonnefoy, Philippe A

    2008-01-01

    With the growing demand for air transportation and the limited ability to increase capacity at some key points in the air transportation system, there are concerns that in the future the system will not scale to meet demand. ...

  20. Introduction: Transportation Planning as an Integral Part of Urban Development: The Emerging Paradigm

    E-Print Network [OSTI]

    Deakin, Elizabeth A.

    2008-01-01

    effectively with metropolitan flood risk could increase asare already located on high-risk flood- transport modes are

  1. Status of experimental data base development relevant to space radiation transport and protection

    E-Print Network [OSTI]

    Heilbronn, Lawrence H.; Guetersloh, Stephen; Zeitlin, Cary; Miller, Jack

    2004-01-01

    in regards to radiation protection. Thus far, analysis hasto space radiation transport and protection L. Heilbronn, S.

  2. Isabella Inzoli Coupled transports of heat

    E-Print Network [OSTI]

    Kjelstrup, Signe

    about the transport of gas and heat across a membrane and to shed light on the coupling effects between.g. for catalytic cracking and for separation processes. The dynamic behaviour of the molecules entering a membrane transport of gas and heat into and across a silicalite membrane. These simulations allow to follow the time

  3. Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies

    SciTech Connect (OSTI)

    Li, Bo [Los Alamos National Laboratory; Kim, Yu Seung [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wilson, Mahlon S [Los Alamos National Laboratory; Welch, Cynthia [Los Alamos National Laboratory; Fenton, James [FLORIDA SOLAR ENERGY CENTER

    2010-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

  4. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  5. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

  6. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    SciTech Connect (OSTI)

    Spudich, John L

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for {alpha}?-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the world’s oceans. Specific aims are: (1) To develop a highefficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  7. Macroscopic Modeling of Polymer-Electrolyte Membranes

    SciTech Connect (OSTI)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  8. Gas Separations using Ceramic Membranes

    SciTech Connect (OSTI)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  9. Axionic Membranes

    E-Print Network [OSTI]

    A. Aurilia; E. Spallucci

    1992-04-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramond gauge potential $\\b(x)$ and the ring by a closed string. The interaction between the $\\b$-field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the H-J theory of electromagnetic strings.

  10. Hydrogen separation membranes annual report for FY 2009.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E.; Lu, Y.; Emerson, J. E.; Park, C. Y.; Lee, T. H.; Picciolo, J. J.; Energy Systems

    2010-04-16

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2009.

  11. Hydrogen separation membranes annual report for FY 2008.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2009-03-17

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

  12. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

  13. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  14. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  15. Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system 

    E-Print Network [OSTI]

    Rasmussen, John C.

    2009-05-15

    method and integral transport theory are used to model the numerical apertures of fiber optic sources and detectors. The accuracy of the RTE solver was validated against diffusion and Monte Carlo predictions and experimental data. The comparisons were...

  16. Tire Development for Effective Transportation and Utilization of Used Tires, CRADA 01-N044, Final Report

    SciTech Connect (OSTI)

    Susan M. Maley

    2004-03-31

    Scrap tires represent a significant disposal and recycling challenge for the United States. Over 280 million tires are generated on an annual basis, and several states have large stockpiles or abandoned tire piles that are slated for remediation. While most states have programs to address the accumulation and generation of scrap tires, most of these states struggle with creating and sustaining recycling or beneficial end use markets. One of the major issues with market development has been the costs associated with transporting and processing the tires into material for recycling or disposal. According to a report by the Rubber Manufactures Association tire-derived fuel (TDF) represents the largest market for scrap tires, and approximately 115 million tires were consumed in 2001 as TDF (U.S. Scrap Tire Markets, 2001, December 2002, www.rma.org/scraptires). This market is supported primarily by cement kilns, followed by various industries including companies that operate utility and industrial boilers. However the use of TDF has not increased and the amount of TDF used by boiler operators has declined. The work completed through this cooperative research and development agreement (CRADA) has shown the potential of a mobile tire shredding unit to economically produce TDF and to provide an alterative low cost fuel to suitable coal-fired power systems. This novel system addresses the economic barriers by processing the tires at the retailer, thereby eliminating the costs associated with hauling whole tires. The equipment incorporated into the design allow for small 1-inch chunks of TDF to be produced in a timely fashion. The TDF can then be co-fired with coal in suitable combustion systems, such as a fluidized bed. Proper use of TDF has been shown to boost efficiency and reduce emissions from power generation systems, which is beneficial to coal utilization in existing power plants. Since the original scope of work outlined in the CRADA could not be completed because of lack of progress by the CRADA members, the agreement was not extended beyond February 2004. The work completed included the detailed design of the mobile unit, a general economic analysis of the operating the system, and outreach activities.

  17. Transport processes in directional solidification and their effects on microstructure development

    SciTech Connect (OSTI)

    Mazumder, Prantik

    1999-11-08

    The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructure and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection {r_arrow} transient mono-periodic {r_arrow} transient bi-periodic {r_arrow} transient quasi-periodic {r_arrow} transient intermittent oscillation-relaxation {r_arrow} stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.

  18. Gas phase fractionation method using porous ceramic membrane

    DOE Patents [OSTI]

    Peterson, Reid A. (Madison, WI); Hill, Jr., Charles G. (Madison, WI); Anderson, Marc A. (Madison, WI)

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  19. Sustainable Development and Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2001-01-01

    Wimsatt, Alma. “Sustainable Development and Internationaland Ecologically Sustainable Development: How Will We KnowFoster, John Bellamy. “Sustainable Development of What? ”

  20. Sustainable Development & Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2001-01-01

    Wimsatt, Alma. “Sustainable Development and Internationaland Ecologically Sustainable Development: How Will We KnowFoster, John Bellamy. “Sustainable Development of What? ”

  1. ECO-LOGICAL: AN ECOSYSTEM APPROACH TO DEVELOPING TRANSPORTATION INFRASTRUCTURE PROJECTS IN A CHANGING ENVIRONMENT

    E-Print Network [OSTI]

    Bacher-Gresock, Bethaney; Schwarzer, Julianne Siegel

    2009-01-01

    Office of Project Development and Environmental Review, 1200planning and project development. By creating and usingin the planning and project development processes enhances

  2. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect (OSTI)

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2014-09-30

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 oC and 600 oC) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  3. Interagency cooperation in the development of a cost-effective transportation and disposal solution for vitrified radium bearing material

    SciTech Connect (OSTI)

    Smith, M.L.; Nixon, D.A.; Stone, T.J.; Tope, W.G.; Vogel, R.A.; Allen, R.B.; Schofield, W.D.

    1996-02-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3 waste, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, shielding requirements, packaging, and transportation alternatives was completed to identify the safest, most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-resonably-achievable principles, and material handling costs were factored into the recommended approach. Through cooperative work between the U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT), the vitrified K-65 and Silo 3 radioactive material will be classified consistent with the regulations promulgated by DOT in the September 28, 1995 Federal Register. These new regulations adopt International Atomic Energy Agency language to promote a consistent approach for the transportation and management of radioactive material between the international community and the DOT. Use of the new regulations allows classification of the vitrified radioactive material from the Fernald silos under the designation of low specific activity-II and allows the development of a container that is optimized to maximize payload while minimizing internal void space, external surface radiation levels, and external volume. This approach minimizes the required number of containers and shipments, and the related transportation and disposal costs.

  4. Advanced Membrane Technology for Hydrocarbon Separations

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop and demonstrate a membrane technology for superior, robust, low-cost natural gas dehydration.

  5. Computational and experimental platform for understanding and optimizing water flux and salt rejection in nanoporous membranes.

    SciTech Connect (OSTI)

    Rempe, Susan B.

    2010-09-01

    Affordable clean water is both a global and a national security issue as lack of it can cause death, disease, and international tension. Furthermore, efficient water filtration reduces the demand for energy, another national issue. The best current solution to clean water lies in reverse osmosis (RO) membranes that remove salts from water with applied pressure, but widely used polymeric membrane technology is energy intensive and produces water depleted in useful electrolytes. Furthermore incremental improvements, based on engineering solutions rather than new materials, have yielded only modest gains in performance over the last 25 years. We have pursued a creative and innovative new approach to membrane design and development for cheap desalination membranes by approaching the problem at the molecular level of pore design. Our inspiration comes from natural biological channels, which permit faster water transport than current reverse osmosis membranes and selectively pass healthy ions. Aiming for an order-of-magnitude improvement over mature polymer technology carries significant inherent risks. The success of our fundamental research effort lies in our exploiting, extending, and integrating recent advances by our team in theory, modeling, nano-fabrication and platform development. A combined theoretical and experimental platform has been developed to understand the interplay between water flux and ion rejection in precisely-defined nano-channels. Our innovative functionalization of solid state nanoporous membranes with organic protein-mimetic polymers achieves 3-fold improvement in water flux over commercial RO membranes and has yielded a pending patent and industrial interest. Our success has generated useful contributions to energy storage, nanoscience, and membrane technology research and development important for national health and prosperity.

  6. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  7. Controlling the mechanical and transport properties of layer-by-layer films and electrospun mat composite membranes for fuel cell applications

    E-Print Network [OSTI]

    Liu, David ShinRen

    2014-01-01

    There is an ever increasing need for clean, portable energy devices, such as fuel cells and high energy batteries to replace or reduce the world's dependence on fossil fuels. The continued development of thin-film solid ...

  8. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    SciTech Connect (OSTI)

    Kostin, Mikhail [FRIB, MSU] [FRIB, MSU; Mokhov, Nikolai [FNAL] [FNAL; Niita, Koji [RIST, Japan] [RIST, Japan

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  9. LARGE REAL ESTATE DEVELOPMENTS, SPATIAL UNCERTAINTY, AND INTEGRATED LAND USE AND TRANSPORTATION MODELING

    E-Print Network [OSTI]

    Clay, Michael J; Johnston, Robert A.

    2008-01-01

    LARGE REAL ESTATE DEVELOPMENTS, SPATIAL UNCERTAINTY, ANDfor than others)? Large real estate construction projectsneed to model large real estate developments, several types

  10. Surface selective membranes for carbon dioxide separation

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  11. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  12. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  13. Quantifying the Diffusion of a Fluid through Membranes by Remote Detection MRI

    E-Print Network [OSTI]

    Telkki, Ville-Veikko; Hilty, Christian; Garcia, Sandra; Harel, Elad; Pines, Alexander

    2008-01-01

    membrane diffusion and transport in intact systems of technological importance, such as fuel cells and gas separationgas separation (3), or metabolism (4). Present methods for the characterization of diffusion across membranes

  14. LEDSGP/Transportation Toolkit/Key Actions/Develop Alternative Scenarios |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformation Actions(Redirected from Transportation Toolkit/KeyOpen

  15. Emergency evacuation/transportation plan update: Traffic model development and evaluation of early closure procedures. Final report

    SciTech Connect (OSTI)

    1993-10-28

    Prolonged delays in traffic experienced by Laboratory personnel during a recent early dismissal in inclement weather, coupled with reconstruction efforts along NM 502 east of the White Rock Wye for the next 1 to 2 years, has prompted Los Alamos National Laboratory (LANL) to re-evaluate and improve the present transportation plan and its integration with contingency plans maintained in other organizations. Facilities planners and emergency operations staff need to evaluate the transportation system`s capability to inefficiently and safely evacuate LANL under different low-level emergency conditions. A variety of potential procedures governing the release of employees from the different technical areas (TAs) requires evaluation, perhaps with regard to multiple emergency-condition scenarios, with one or more optimal procedures ultimately presented for adoption by Lab Management. The work undertaken in this project will hopefully lay a foundation for an on-going, progressive transportation system analysis capability. It utilizes microscale simulation techniques to affirm, reassess and validate the Laboratory`s Early Dismissal/Closure/Delayed Opening Plan. The Laboratory is required by Federal guidelines, and compelled by prudent practice and conscientious regard for the welfare of employees and nearby residents, to maintain plans and operating procedures for evacuation if the need arises. The tools developed during this process can be used outside of contingency planning. It is anticipated that the traffic models developed will allow site planners to evaluate changes to the traffic network which could better serve the normal traffic levels. Changes in roadway configuration, control strategies (signalization and signing), response strategies to traffic accidents, and patterns of demand can be modelled using the analysis tools developed during this project. Such scenarios typically are important considerations in master planning and facilities programming.

  16. Social change and cycling as a form of sustainable transportation : the behavior-policy interaction in a medium-sized developing city

    E-Print Network [OSTI]

    Teich, Tegin L. (Tegin Leigh)

    2008-01-01

    In developing countries, growth frequently parallels increasing motorization rates, and visions of mobility are often centered on the private automobile as the most flexible form of personal transportation and a symbol of ...

  17. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  18. Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell

    E-Print Network [OSTI]

    Victoria, University of

    Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell by Torsten or other means, without permission of the author. #12;Supervisor: Dr. N. Djilali Abstract Fuel cells-isothermal computational model of a proton exchange membrane fuel cell (PEMFC). The model was developed to improve

  19. Microcomposite Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  20. Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks

    SciTech Connect (OSTI)

    Hong, Sung Tae; Weil, K. Scott; Choi, Jung-Pyung; Bae, In-Tae; Pan, Jwo

    2010-05-01

    Niobium (Nb)-clad 304L stainless steel (SS) manufactured by cold rolling is currently under consideration for use as a bipolar plate material in polymer electrolyte membrane fuel cell (PEMFC) stacks. To make the fabrication of bipolar plates using the Nb-clad SS feasible, annealing may be necessary for the Nb-clad SS to reduce the springback induced by cold rolling. However, the annealing can develop an interfacial layer between the Nb cladding and the SS core and the interfacial layer plays a key role in the failure of the Nb-clad SS as reported earlier [JPS our work]. In this investigation, the Nb-clad SS specimens in as-rolled condition were annealed at different combinations of temperature and time. Based on the results of scanning electron microscope (SEM) analysis, an annealing process map for the Nb-clad SS was obtained. The results of SEM analysis and Transmission Electron Microscope (TEM) analysis also suggest that different interfacial layers occurred based on the given annealing conditions.

  1. Elastic moderation of intrinsically applied tension in lipid membranes

    E-Print Network [OSTI]

    Michael A. Lomholt; Bastien Loubet; John H. Ipsen

    2010-10-20

    Tension in lipid membranes is often controlled externally, by pulling on the boundary of the membrane or changing osmotic pressure across a curved membrane. But modifications of the tension can also be induced in an internal fashion, for instance as a byproduct of changing a membranes electric potential or, as observed experimentally, by activity of membrane proteins. Here we develop a theory which demonstrate how such internal contributions to the tension are moderated through elastic stretching of the membrane when the membrane is initially in a low tension floppy state.

  2. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  3. Preparation and characterization of composite membrane for high temperature gas separation

    SciTech Connect (OSTI)

    Ilias, S.; King, F.G.

    1998-03-26

    A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

  4. Development on inelastic analysis acceptance criteria for radioactive material transportation packages

    SciTech Connect (OSTI)

    Ammerman, D.J.; Ludwigsen, J.S.

    1995-12-31

    The response of radioactive material transportation packages to mechanical accident loadings can be more accurately characterized by non-linear dynamic analysis than by the ``Equivalent dynamic`` static elastic analysis typically used in the design of these packages. This more accurate characterization of the response can lead to improved package safety and design efficiency. For non-linear dynamic analysis to become the preferred method of package design analysis, an acceptance criterion must be established that achieves an equivalent level of safety as the currently used criterion defined in NRC Regulatory Guide 7.6 (NRC 1978). Sandia National Laboratories has been conducting a study of possible acceptance criteria to meet this requirement. In this paper non-linear dynamic analysis acceptance criteria based on stress, strain, and strain-energy-density will be discussed. An example package design will be compared for each of the design criteria, including the approach of NRC Regulatory Guide 7.6.

  5. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect (OSTI)

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

  6. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  7. Development and evaluation of measurement devices used to support testing of radioactive material transportation packages

    SciTech Connect (OSTI)

    Uncapher, W. L.; Ammerman, D. J.; Stenberg, D.R.; Bronowski, D. R.; Arviso, M.

    1992-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of instrumentation measurement data. Sandia National Laboratories (SNL) has an ongoing program to develop and evaluate measurement devices to support testing of radioactive material packages. Measurement devices developed in support of this activity include evaluation channels, ruggedly constructed linear variable differential transformers, and piezoresistive accelerometers with enhanced measurement capabilities. In addition to developing measurement devices, a method has been derived to evaluate accelerometers and strain gages for measurement repeatability, ruggedness, and manufacturers' calibration data under both laboratory and field conditions. The developed measurement devices and evaluation technique will be discussed and the results of the evaluation will be presented.

  8. Composite sensor membrane

    DOE Patents [OSTI]

    Majumdar, Arun (Orinda, CA); Satyanarayana, Srinath (Berkeley, CA); Yue, Min (Albany, CA)

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  9. Active membrane having uniform physico-chemically functionalized ion channels

    DOE Patents [OSTI]

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  10. Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane

    E-Print Network [OSTI]

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation selectivity of ~30. The gas transport and separation properties of CMS membrane are membrane thickness thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

  11. 3D assembly and actuation of nanopatterned membranes using nanomagnets

    E-Print Network [OSTI]

    Nichol, Anthony John

    2011-01-01

    A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

  12. Hollow-Fiber Membrane Compressed Air Drying System

    Broader source: Energy.gov [DOE]

    With the support of a NICE3 grant, a new hollow-fiber membrane for dehydrating gases has been developed by Air Products and Chemicals, Inc. The membrane has 5 times higher water vapor permeation...

  13. Process for manufacture of semipermeable silicon nitride membranes

    DOE Patents [OSTI]

    Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober

    2003-12-09

    A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.

  14. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  15. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    SciTech Connect (OSTI)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Sustainable Transportation Solutions for UBC Athletics & Recreation

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Sustainable IMPACT CONSIDERATIONS 5 2.4 ENVIRONMENTAL IMPACT CONSIDERATIONS 5 2.5 SOCIAL IMPACT CONSIDERATIONS 6 2.6 JURISDICTIONS 6 2.7 EFFECTS 7 3.0 SUSTAINABLE

  17. Development of specialized electronic bibliographic databases for deep ocean hydrocarbon production and transportation 

    E-Print Network [OSTI]

    Mahendran, Joseph Anthony

    1992-01-01

    information in a manageable form. The developed specialized bibliographic databases contain information located under different headings and present the information under those particular headings chronologically. Subjects include oil spills of various... origins; geological hazards; naturally occurring hydrocarbon seeps; fates and effects of oil spills; major results of pertinent engineering, physical, chemical, ecological, geophysical studies, and satellite oceanographic research. A microcomputer...

  18. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect (OSTI)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the hydrophilic chain elements of the polymer, will yield highly conductive materials with excellent mech

  19. Role of Water States on Water Uptake and Proton Transport in Nafion using Molecular Simulations and Bimodal Network

    E-Print Network [OSTI]

    Hwang, Gi Suk

    2013-01-01

    of novel sulfonated polyimides from 2,2’-bis(4-aminophenoxy)structure of sul- fonated polyimide membranes on transport

  20. Alkaline membrane fuel cells with in-situ cross-linked ionomers Yongjun Leng a

    E-Print Network [OSTI]

    optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologiesAlkaline membrane fuel cells with in-situ cross-linked ionomers Yongjun Leng a , Lizhu Wang b membrane fuel cell (AMFC) in-situ cross-linking ionomer net water transport coefficient A B S T R A C

  1. Indirect determination of zeta potential at high ionic strength: Specific application to semipermeable polymeric membranes

    E-Print Network [OSTI]

    reserved. 1. Introduction Membranes are rapidly becoming the leading separation method in a broad range and gas industry [6,12,29,30]. The fouling propensity of RO, NF, and FO membranes and mass transport to semipermeable polymeric membranes Bryan D. Coday a , Thomas Luxbacher b , Amy E. Childress c , Nohemi Almaraz

  2. Composite zeolite membranes

    DOE Patents [OSTI]

    Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  3. Supported inorganic membranes

    DOE Patents [OSTI]

    Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  4. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  5. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  6. Carbon Molecular Sieve Membrane as Reactor/Separator

    E-Print Network [OSTI]

    Methane Reforming SMR HTS-WGS 320 to 470ºC Ferrochrome LTS-WGS 180 to 270ºC Cu/Zn-based Separation stability (physical & chemical), Heat transfer, Large scale defect free membrane, Steam effect on hydrogen, not the membrane material development. · Our CMS membranes demonstrate excellent chemical and material stability

  7. Cadmium sulfide membranes

    DOE Patents [OSTI]

    Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  8. Development of Na/sup +/-dependent hexose transport in cultured renal epithelial cells (LLC-PK/sub 1/)

    SciTech Connect (OSTI)

    Weiss, E.R.; Amsler, K.; Dawson, W.D.; Cook, J.S.

    1984-01-01

    A number of factors were explored to analyze how they interact to yield the increasing transport capacity in differentiating cell populations. These factors include the number of functional transporters in the population, the distribution of these transporters among the individual cells, the Na/sup +/ chemical gradient, the transmembrane potential, the pathways and activities of these pathways for efflux of glucoside, and cell-cell coupling between accumulating and non-accumulating cells. 35 references, 9 figures, 2 tables. (ACR)

  9. Exploring transport and phase behavior in nanoporous carbon materials

    E-Print Network [OSTI]

    Shimizu, Steven (Steven Franklin Esau)

    2015-01-01

    Understanding transport and phase behavior in nanopores has a substantial impact on applications involving membrane fabrication, single-molecule detection, oil reservoir modeling, and drug delivery. While transport and ...

  10. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  11. EFFECT OF COMPRESSION ON CONDUCTIVITY AND MORPHOLOGY OF PFSA MEMBRANES

    SciTech Connect (OSTI)

    Kusoglu, Ahmet; Weber, Adam; Jiang, Ruichin; Gittleman, Craig

    2011-07-20

    Polymer-Electrolyte-Fuel-Cells (PEFCs) are promising candidates for powering vehicles and portable devices using renewable-energy sources. The core of a PEFC is the solid electrolyte membrane that conducts protons from anode to cathode, where water is generated. The conductivity of the membrane, however, depends on the water content of the membrane, which is strongly related to the cell operating conditions. The membrane and other cell components are typically compressed to minimize various contact resistances. Moreover, the swelling of a somewhat constrained membrane in the cell due to the humidity changes generates additional compressive stresses in the membrane. These external stresses are balanced by the internal swelling pressure of the membrane and change the swelling equilibrium. It was shown using a fuel-cell setup that compression could reduce the water content of the membrane or alter the cell resistance. Nevertheless, the effect of compression on the membrane’s transport properties is yet to be understood, as well as its implications in the structure-functions relationships of the membrane. We previously studied, both experimentally and theoretically, how compression affects the water content of the membrane.6 However, more information is required the gain a fundamental understanding of the compression effects. In this talk, we present the results of our investigation on the in-situ conductivity of the membrane as a function of humidity and cell compression pressure. Moreover, to better understand the morphology of compressed membrane, small-angle X-ray-scattering (SAXS) experiments were performed. The conductivity data is then analyzed by investigating the size of the water domains of the compressed membrane determined from the SAXS measurements.

  12. CO? Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2011-09-30

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO?, the development of retrofit, post-combustion CO? capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO? from plant flue gas with 95% captured CO? purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO?-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO?, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO? over N? and CO? permeance greater than 300 gas permeation units (GPU) targeted; - Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO? permeance than current commercial polycarbonate membranes; - Development and fabrication of membrane hollow fibers and modules from candidate polymers; - Development of a CO? capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and - Techno-economic evaluation of the "best" integrated CO? capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO? capture with 95% captured CO? purity.

  13. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  14. Historical Transportation Development

    E-Print Network [OSTI]

    Garrison, William L.

    2003-01-01

    flight in France using airships dates from 1903, and in thattime and again as airships and planes broke speed andflying boats and rigid airships competed with passenger

  15. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  16. HYBRID SULFUR ELECTROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY07 FIRST QUARTER REPORT

    SciTech Connect (OSTI)

    Summers, W

    2006-12-20

    The proof of concept of SO2 electrolysis for the hybrid sulfur (HyS) process is the second priority research target of the DOE Nuclear Hydrogen Initiative's thermochemical program for FY07. The proof of concept of the liquid-phase option must be demonstrated at the single cell level for an extended run times (>100 hours). The rate of development of HyS will depend on the identification of a promising membrane or an alternative means for controlling sulfur formation. Once successful long-duration operation has been demonstrated, SRNL will develop a multi-cell stack that can be connected to the H2SO4 decomposer being developed by SNL for the S-I ILS for a Hybrid Sulfur Integrated Laboratory-Scale Experiment during FY 2008. During the first quarter of FY07, SRNL continued the component development and membrane development activities with the goal of identifying and characterizing improved electrodes, electrocatalysts, membranes and MEA configurations which could then be tested at larger scale in the SDE test facility. A modified glass cell was fabricated to allow measurements of sulfur dioxide (SO2) transport across membrane samples at elevated temperatures (up to 70 C). This testing also includes evaluating SO2 transport in different sulfuric acid concentrations (30-70 wt%). A new potentiostat/frequency analyzer was installed for determining ionic conductivity of membranes. This instrument enhances our capabilities to characterize membrane, electrocatalyst and MEA properties and performance. Continuing work from FY06, evaluations were preformed on various commercial and experimental membranes and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated polyetherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity.

  17. Alternate Fuel Cell Membranes at the University of Southern Mississipp...

    Broader source: Energy.gov (indexed) [DOE]

    of Southern Mississippi studied structure-property relationships in order to develop fuel cell membranes capable of operating at high temperatures. As fuel cells must be able...

  18. PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Workshop Summary Report Manufacturing Barriers to High Temperature PEM Commercialization Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation)...

  19. Microfluidic Technology Platforms for Synthesizing, Labeling and Measuring the Kinetics of Transport and Biochemical Reactions for Developing Molecular Imaging Probes

    SciTech Connect (OSTI)

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies for radiochemistry (macro to micro levels), biochemistry and biology to imaging principles, tracer kinetics, pharmacokinetics and biochemical assays. New generations of radiochemists will be immersed in the biochemistry and biology for which their labeled probes are being developed for assays of these processes. In this program engineers and radio-chemists integrate the principles of microfluidics and radiolabeling along with proper system design and chemistry rule sets to yield Synthesizers enabling biological and pharmaceutical scientists to develop diverse arrays of probes to pursue their interests. This progression would allow also radiochemists to focus on the further evolution of rapid, high yield synthetic reactions with new enabling technologies, rather than everyday production of radiotracers that should be done by technologists. The invention of integrated circuits in electronics established a platform technology that allowed an evolution of ideas and applications far beyond what could have been imagined at the beginning. Rather than provide a technology for the solution to a single problem, it is hoped that microfluidic radiochemistry will be an enabling platform technology for others to solve many problems. As part of this objective, another program goal is to commercialize the technologies that come from this work so that they can be provided to others who wish to use it.

  20. Logistical and transportation infrastructure in Asia : potential for growth and development to support increasing trade with Europe

    E-Print Network [OSTI]

    Deonás, Nikolaos, 1978-

    2004-01-01

    This thesis examines the implications of the rapid growth in demand for trade between Europe and Asia for the existing transportation network and logistical infrastructure. In general terms, technologies need to improve ...

  1. Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries

    E-Print Network [OSTI]

    Kumar, Vimal, S.M. Massachusetts Institute of Technology

    2009-01-01

    Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

  2. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  3. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  4. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  5. Strategic Plan for Coordinating Rural Intelligent Transportation System (ITS) Transit Development in the Great Smoky Mountains National Park

    SciTech Connect (OSTI)

    Truett, L.F.

    2002-12-19

    The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popularity of the Smokies and the fact that the primary mode of transportation within the park is the personal vehicle have resulted in congestion, damage to the environment, impacts on safety, and a degraded visitor experience. Access to some of the Smokies historical, cultural, and recreational attractions via a mass transit system could alleviate many of the transportation issues. Although quite a few organizations are proponents of a mass transit system for the Smokies, there is a lack of coordination among all parties. In addition, many local residents are not completely comfortable with the idea of transit in the Smokies. This document provides a brief overview of the current transportation needs and limitations in the Great Smoky Mountains National Park, identifies agencies and groups with particular interests in the Smokies, and offers insights into the benefits of using Intelligent Transportation Systems (ITS) technologies in the Smokies. Recommendations for the use of rural ITS transit to solve two major transportation issues are presented.

  6. Transport optimization in stellaratorsa... H. E. Mynickb

    E-Print Network [OSTI]

    Mynick, Harry E.

    Transport optimization in stellaratorsa... H. E. Mynickb Plasma Physics Laboratory, Princeton transport in stellarators is presented. A primary deficiency of stellarators has been elevated transport this difficulty, developing a range of techniques for reducing transport, both neoclassical and, more recently

  7. Siloxane-grafted membranes

    DOE Patents [OSTI]

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  8. Membrane Technology Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page - Air Products & Chemicals, Inc. Chicago 24 July 2012 Modules & Vessels Membranes System Design: Pretreatment & Controls Three Critical Areas So Much Work Performance ...

  9. Anion exchange membrane

    DOE Patents [OSTI]

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  10. Advancing the technology base for high-temperature membranes

    SciTech Connect (OSTI)

    Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

  11. Sustainable Transport

    E-Print Network [OSTI]

    Webber, Melvin

    2006-01-01

    THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

  12. Expert systems in transportation

    SciTech Connect (OSTI)

    O'Leary, K.P.

    1988-01-01

    The 5 papers in the report deal with the following areas: Knowledge representation and software selection for expert-systems design; Expert-system architecture for retaining-wall design; Development of expert-systems technology in the California Department of Transportation; Development of an expert system to assist in the interactive graphic transit system design process; Expert systems development for contingency transportation planing.

  13. Deciphering the Mechanism of E. coli tat Protein Transport: Kinetic Substeps and Cargo Properties 

    E-Print Network [OSTI]

    Whitaker, Neal William 1982-

    2012-12-03

    The Escherichia coli twin-arginine translocation (Tat) system transports fully folded and assembled proteins across the inner membrane into the periplasmic space. The E. coli Tat machinery minimally consists of three integral membrane proteins: TatA...

  14. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  15. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect (OSTI)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  16. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect (OSTI)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  17. Polymide gas separation membranes

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  18. Microporous alumina ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Sheng, Guangyao (Madison, WI)

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  19. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  20. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  1. Microporous alumina ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  2. Multicomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model and molecular dynamics simulations

    E-Print Network [OSTI]

    Adler, Joan

    online 27 January 2011) The transport of gas mixtures through molecular-sieve membranes such as narrow The transport of gas mixtures through molecular-sieve membranes and catalysts has been a subject of intensive inMulticomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model

  3. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect (OSTI)

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  4. MembraneScienceandTechnologyatUTwente MembraneNewsTwente

    E-Print Network [OSTI]

    Twente, Universiteit

    for water treatment, e.g. water purification, desalination, membrane bioreactors and waste water treatment purification - Drinking water prod. - Membrane bioreactors - Waste water treatment - Desalination Energy - Gas

  5. Composite metal membranes for hydrogen separation applications

    SciTech Connect (OSTI)

    Moss, T.S.; Dye, R.C.

    1997-06-01

    A novel multilayer metal membrane has been developed that can be used for the separation of hydrogen from feed streams with near perfect selectivity. The membrane is comprised of very thin layers of fully dense palladium film deposited on both sides of a thin Group V metal foil, ion-milled prior to sputtering of the palladium. Palladium loading are kept low using the thin film deposition technology: 0.0012 grams of palladium per square centimeter of membrane is typically used, although thinner coatings have been employed. This membrane operates at temperatures on the order of 300 C and is capable of high rates of hydrogen flow. Flows are dependent on the pressure differential applied to the membrane, but flows of 105 sccm/cm{sup 2} and higher are regularly observed with differentials below one atmosphere. Long term testing of the membrane for a period in excess of 775 hours under constant conditions showed stable flows and an 85% hydrogen recovery efficiency. A system has been successfully applied to the hydrogen handling system of a proton exchange membrane fuel cell and was tested using a pseudo-reformate feed stream without any degradation in performance.

  6. Membrane projection lithography

    SciTech Connect (OSTI)

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  7. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    E-Print Network [OSTI]

    Bazylak, A; Markicevic, B; Sinton, D; Djilali, N

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in contrast to continuum or molecular dynamics modelling that require extensive computational resources. However, the challenge in studying the GDL with pore network modelling lies in defining the network parameters that accurately describe the porous media as well as the conditions of fluid invasion that represent realistic transport processes. In this work, we discuss the first stage of developing and validating a GDL-representative pore network model. We begin with a two-dimensional pore network model with a single mobile pha...

  8. The Dynamics of Platinum Precipitation in an Ion Exchange Membrane

    E-Print Network [OSTI]

    Burlatsky, S F; Atrazhev, V V; Dmitriev, D V; Kuzminyh, N Y; Erikhman, N S

    2013-01-01

    Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper...

  9. Composition variation and underdamped mechanics near membrane proteins and coats

    E-Print Network [OSTI]

    S. Alex Rautu; George Rowlands; Matthew S. Turner

    2015-02-14

    We study the effect of membrane proteins on the shape, composition and thermodynamic stability of the surrounding membrane. When the coupling between membrane composition and curvature is strong enough the nearby composition and shape both undergo a transition from over-damped to under-damped spatial variation, well before the membrane becomes unstable in the bulk. This transition is associated with a change in the sign of the thermodynamic energy and hence has the unusual features that it can favour the early stages of coat assembly necessary for vesiculation (budding), while suppressing the activity of mechanosensitive membrane channels and transporters. Our results also suggest an approach to obtain physical parameters that are otherwise difficult to measure.

  10. Original article Flat ceramic membranes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with tubular ceramic membranes André GRANGEON, Philippe LESCOCHE* TAMI Industries, ZA les Laurons, 26110 Nyons membranes. The orig- inal intellectual concept is protected by two international patents. Strategically

  11. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Across Membranes Print Wednesday, 26 October 2005 00:00 Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette...

  12. Nanoengineered membrane electrode assembly interface

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  13. UZ Colloid Transport Model

    SciTech Connect (OSTI)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  14. Supported Molten Metal Membranes for Hydrogen Separation

    SciTech Connect (OSTI)

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and permeation process in these molten metal membranes. For this, a comprehensive microkinetic model was developed for hydrogen permeation in dense metal membranes, and tested against data for Pd membrane over a broad range of temperatures.3 It is planned to obtain theoretical and experimental estimates of the parameters to corroborate the model against mental results for SMMM.

  15. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  16. Membrane Technology for Produced Water in Lea County

    SciTech Connect (OSTI)

    Cecilia Nelson; Ashok Ghosh

    2011-06-30

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also proven to generate higher water flux, based on the series of experiments conducted. Laboratory tests at NMT demonstrated that an unprecedented water flux of 1300 l/m2/hr (where typical flux is on the order of 0-3 l/m{sup 2}/hr) can be achieved from a properly designed membrane module. The patent pending NMT system, which was designed and developed at NMT was successful in reducing the possibility for concentration polarization and thereby increasing the permeate water flux, while still maintaining a high salt rejection rate of 96% or greater. For feed solutions having a dissolved contaminant concentration greater than 10,000 ppm, preliminary economic analysis demonstrates that a well-designed FO process will outperform an RO process. Most produced water generated in SENM has TDS higher than 10,000 ppm. Therefore, it is logical to use FO to desalinate the water. Since the issues associated with concentration polarization has only recently been solved by our mechanically enhanced membrane module, the level of system maturity is not at the same level as that for RO. Our efforts going forward will be directed at taking the technology to a higher level of system maturity. With the superior cost effectiveness for FO, it is imperative that this technology reach a point that is competitive with RO in order to meet the expanding need for water for industries in SENM. NMT seeks to demonstrate the greater cost effectiveness by proving the process through a scaled up model. To ensure success, NMT feels it is important to demonstrate this technology in a larger system, (~ 100,000 GPD), before venturing to the commercial scale. This will build confidence in the process with the commercial sector. In addition, it will be possible to develop some of the operational processes around renewable energy sources for the scaled up model. This will further lower the operating costs and enhance the environmentally clean aspect of the process.

  17. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  18. Novel membrane technology for green ethylene production.

    SciTech Connect (OSTI)

    Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L.

    2008-01-01

    Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

  19. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  20. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  1. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  2. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  3. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    SciTech Connect (OSTI)

    Roberts, Michael J.; Souleimanova, Razima

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from NETL showed Pd80Cu20 with the highest flux, therefore it was chosen as the initial and eventually, final candidate membrane. The criteria for choice were high hydrogen flux, long-term stability, and H2S tolerance. Results from SCHOTT using glass membranes showed a maximum of 0.25 SCFH/ft2, that is an order of magnitude better than the ceramic membrane but still two orders of magnitude lower than the metallic membrane. A membrane module was designed to be tested with an actual biomass gasifier. Some parts of the module were ordered but the work was stopped when a no go decision was made by the DOE.

  4. Salinity tolerance in plants: attempts to manipulate ion transport

    E-Print Network [OSTI]

    Vadim Volkov

    2014-11-06

    Ion transport is the major determining factor of salinity tolerance in plants. A simple scheme of a plant cell with ion fluxes provides basic understanding of ion transport and the corresponding changes of ion concentrations under salinity. The review describes in detail basic principles of ion transport for a plant cell, introduces set of transporters essential for sodium and potassium uptake and efflux, analyses driving forces of ion transport and compares ion fluxes measured by several techniques. Study of differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes offers knowledge for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion transport. Several attempts to overexpress or knockout ion transporters for changing salinity tolerance are described. Future perspectives are questioned with more attention given to potential candidate ion channels and transporters for altered expression. The potential direction of increasing salinity tolerance by modifying ion channels and transporters is discussed and questioned. An alternative approach from synthetic biology is to modify the existing membrane transport proteins or create new ones with desired properties for transforming agricultural crops. The approach had not been widely used earlier and leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis.

  5. Gas Separation Using Membranes 

    E-Print Network [OSTI]

    Koros, W. J.; Paul, D. R.

    1984-01-01

    Commercial membrane-based gas separator systems based upon high-flux, asymmetric polysulfone hollow fibers were first introduced in 1977 by Monsanto. These systems were packaged in compact modules containing large amounts of permeation surface area...

  6. Fuel cell membrane humidification

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  7. Orbifolding the Membrane Action

    E-Print Network [OSTI]

    Seiji Terashima; Futoshi Yagi

    2008-12-08

    We study a simple class of orbifolds of the N=6 Chern-Simons Matter theory proposed by Aharony, Bergman, Jafferis and Maldacena. They are considered as a world volume theory of membranes probing C^4/ (Z_k x Z_n) and include a new membrane theory with N=4 supersymmetries. We find that the moduli spaces of them are consistent with the fact that they probe C^4/ (Z_k x Z_n).

  8. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  9. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  10. Composite membranes for fluid separations

    DOE Patents [OSTI]

    Blume, Ingo (Hengelo, NL); Peinemann, Klaus-Viktor (Reinbek, DE); Pinnau, Ingo (Austin, TX); Wijmans, Johannes G. (Menlo Park, CA)

    1991-01-01

    A method for designing and making composite membranes having a microporous support membrane coated with a permselective layer. The method involves calculating the minimum thickness of the permselective layer such that the selectivity of the composite membrane is close to the intrinsic selectivity of the permselective layer. The invention also provides high performance membranes with optimized properties.

  11. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  12. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Hryn, John N. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL)

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  13. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    transportation vehicle manufacturing results are developedBERKELEY Vehicle Manufacturing Futures in TransportationAugust 2011 Vehicle Manufacturing Futures in Transportation

  14. High temperature CO2 perm-selective membranes offer potential for uses in various processes for CO2 separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase

    E-Print Network [OSTI]

    separation. Recently, efforts are reported on fabrication of dense ceramic-carbonate dual-phase membranes on transport mechanism demonstrates that gas transport for ceramic- carbonate dual-phase membrane is rate and Characterization of Thin Ceramic-Carbonate Dual-Phase Membranes for Carbon Dioxide Separation Bo Lu Advisor: Jerry

  15. Novel Metallic Membranes for Hydrogen Separation

    SciTech Connect (OSTI)

    Dogan, Omer

    2011-02-27

    To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

  16. Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane

    E-Print Network [OSTI]

    Pham, Van Sang

    We present a systematic, multiscale, fully detailed numerical modeling for dynamics of fluid flow and ion transport covering Ohmic, limiting, and overlimiting current regimes in conductance of ion-selective membrane. By ...

  17. Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes

    E-Print Network [OSTI]

    Cuffe, John

    Knowledge of the mean-free-path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide ...

  18. Influence of Ibuprofen on Phospholipid Membranes

    E-Print Network [OSTI]

    Jaksch, Sebastian; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Nickel, Bert

    2014-01-01

    Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Add...

  19. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  20. CO2-selective, Hybrid Membranes by Silation of Alumina

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.

    2007-09-01

    Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

  1. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    SciTech Connect (OSTI)

    Ciora, Richard J; Liu, Paul KT

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  2. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOE Patents [OSTI]

    Fujimoto, Cy H. (Albuquerque, NM); Hibbs, Michael (Albuquerque, NM); Ambrosini, Andrea (Albuquerque, NM)

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  3. Graphene as a Prototype Crystalline Membrane

    E-Print Network [OSTI]

    Mikhail I. Katsnelson; Annalisa Fasolino

    2013-02-07

    The understanding of the structural and thermal properties of membranes, low-dimensional flexible systems in a space of higher dimension, is pursued in many fields from string theory to chemistry and biology. The case of a two-dimensional (2D) membrane in three dimensions is the relevant one for dealing with real materials. Traditionally, membranes are primarily discussed in the context of biological membranes and soft matter in general. The complexity of these systems hindered a realistic description of their interatomic structures based on a truly microscopic approach. Therefore, theories of membranes were developed mostly within phenomenological models. From the point of view of statistical mechanics, membranes at finite temperature are systems governed by interacting long-range fluctuations. Graphene, the first truly two-dimensional system consisting of just one layer of carbon atoms, provides a model system for the development of a microscopic description of membranes. In this Account, we review key results in the microscopic theory of structural and thermal properties of graphene and compare them with the predictions of phenomenological theories. The two approaches are in good agreement for the various scaling properties of correlation functions of atomic displacements. However, some other properties, such as the temperature dependence of the bending rigidity, cannot be understood based on phenomenological approaches. We also consider graphene at very high temperature and compare the results with existing models for two-dimensional melting. The melting of graphene presents a different scenario, and we describe that process as the decomposition of the graphene layer into entangled carbon chains.

  4. Implicit Solvent Simulations of Peptide Interactions With Anionic Lipid Membranes

    E-Print Network [OSTI]

    Lazaridis, Themis

    Department of Chemistry, City College of New York/CUNY, New York, New York ABSTRACT A recently developed to a membrane.9,10 That would be possible with a method that provides the free energy of alternative-screened elec- trostatic interactions of a solute with negatively charged membrane lipids. The new model

  5. Radio-Frequency Rectification on Membrane Bound Pores

    E-Print Network [OSTI]

    Sujatha Ramachandran; Robert H. Blick; Daniel W. van der Weide

    2007-09-12

    We present measurements on direct radio-frequency pumping of ion channels and pores bound in bilipid membranes. We make use of newly developed microcoaxes, which allow delivering the high frequency signal in close proximity to the membrane bound proteins and ion channels. We find rectification of the radio-frequency signal, which is used to pump ions through the channels and pores.

  6. Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming 

    E-Print Network [OSTI]

    Kuncharam, Bhanu Vardhan

    2013-11-26

    -gas-shift catalytic membrane reactor, and (2) a multi-layer design for bioethanol reforming. A two-dimensional model is developed to describe reaction and diffusion in the catalytic membrane coupled with plug-flow equations in the retentate and permeate volumes using...

  7. Development of Alternate Soil Clean-Up Goals for Hanford Waste Sites Using Fate and Transport Modeling

    SciTech Connect (OSTI)

    Hoover, J.D. [Fluor Hanford, Inc. (United States); McMahon, W.J. [CH2M Hill Hanford Group (United States); Leary, K.D. [DOE/RL (United States)

    2008-07-01

    Remedial Action Goals (RAGs) for soil contaminant levels that are protective of groundwater have been determined for the Removal/Treatment/Disposal (RTD) sites at the 200-UW-1 Operable Unit on the Hanford Site. The RAG values were determined using a methodology involving the back-calculation of soil contaminant levels protective of groundwater (i.e., resulting groundwater concentrations are {<=} MCLs) in conjunction with the fate and transport modeling as a risk-based alternative to the currently prescribed use of background or detection limit default values. This methodology is important for waste management activities at the Hanford Site because it provides risk-based metrics and a technical basis for determining the levels of contamination 'left in place' in the Hanford Site vadose zone that are protective of human health and the environment. The methodology and the use of fate and transport modeling described here comply with federal guidelines for the use of environmental models. This approach is also consistent with one of several allowable methods identified in State guidelines for deriving soil concentrations for ground water protection. Federal and state guidelines recommend the use of site-specific information and data in risk-based assessments of risk and/or protectiveness. The site-specific characteristics of the Hanford Site, which include consideration of the semi-arid climate, an unsaturated zone thickness of over 80 m (262 feet), and associated/other site features and processes, are integral for the risk-based assessments associated with the protection of groundwater pathway. This methodology yields soil cleanup values (RAGs) for the 200-UW-1 OU waste sites selected for the removal/treatment/disposal (RTD) remedy. These proposed RAGs for uranium, nitrate, and technetium-99 are derived from soil concentrations calculated not to cause contamination of groundwater at levels that exceed the ground water MCLs, and are 40 to 200 times greater than currently prescribed default values. The proposed RAG soil concentration values derive from the results of the fate and transport modeling for a reference volume of contaminated soil extending to a depth of 15 feet, and also for a depth extending from 15 feet to 30 feet. The site-specific parameters for the 200-UW-1 OU RTD waste sites used to calculate the proposed RAG values, and the fate and transport modeling are also described. The assessment of uncertainties, assumptions, and model limitations indicate that the model is capable of adequately representing the Hanford vadose zone system and that the estimated soil cleanup levels are conservatively biased toward over-estimation of groundwater impacts. The risk-based metrics provided by this methodology can potentially greatly reduce the amount of excavation needed at the hundreds of RTD waste sites, and also have significant implications for deeper vadose zone applications. These implications include an improved technical basis for remedy selection, decisions, characterization, and stakeholder communication and cost savings in the range of hundreds of millions of dollars. (authors)

  8. The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

    E-Print Network [OSTI]

    S. Schiller; A. Görlitz; A. Nevsky; S. Alighanbari; S. Vasilyev; C. Abou-Jaoudeh; G. Mura; T. Franzen; U. Sterr; S. Falke; Ch. Lisdat; E. Rasel; A. Kulosa; S. Bize; J. Lodewyck; G. M. Tino; N. Poli; M. Schioppo; K. Bongs; Y. Singh; P. Gill; G. Barwood; Y. Ovchinnikov; J. Stuhler; W. Kaenders; C. Braxmaier; R. Holzwarth; A. Donati; S. Lecomte; D. Calonico; F. Levi

    2012-06-17

    The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1\\times10^-15 at 1 s integration time and relative inaccuracy below 5\\times10^-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In this paper we present the project and the results achieved during the first year.

  9. Think positively : the structural basis of cation-binding and coupling of the multidrug and toxic-compound Extrusion (MATE) transporter family

    E-Print Network [OSTI]

    He, Xiao

    2010-01-01

    plant homolog Nt- JAT1 transporting secondary metaboliteSecondary transport as an efficient membrane transport mechanism for plant secondary metabolites.of secondary metabolites. Curr. Opin. Plant Biol. 8, 301-

  10. Membranes and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr.

    E-Print Network [OSTI]

    University Cleveland, Ohio #12;2 Freezing Fuel Cells: Impact on MEAS Below 0oC ·Transport processesMembranes and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed

  11. Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes

    E-Print Network [OSTI]

    1 Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes Stefanie Wolf1 transport in Si nanomeshes. Phonons are treated semiclassically as particles of specific energy and velocity, ii) the roughness amplitude of the pore surfaces on the thermal conductivity of the nanomeshes. We

  12. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  13. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  14. Supported microporous ceramic membranes

    DOE Patents [OSTI]

    Webster, Elizabeth (Madison, WI); Anderson, Marc (Madison, WI)

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  15. Membrane fluctuations around inclusions

    E-Print Network [OSTI]

    Christian D. Santangelo; Oded Farago

    2004-01-15

    The free energy of inserting a protein into a membrane is determined by considering the variation in the spectrum of thermal fluctuations in response to the presence of a rigid inclusion. Both numerically and through a simple analytical approximation, we find that the primary effect of fluctuations is to reduce the effective surface tension, hampering the insertion at low surface tension. Our results, which should also be relevant for membrane pores, suggest (in contrast to classical nucleation theory) that a finite surface tension is necessary to facilitate the opening of a pore.

  16. Supported microporous ceramic membranes

    DOE Patents [OSTI]

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  17. Membranes Improve Insulation Efficiency 

    E-Print Network [OSTI]

    Bullock, C. A.

    1986-01-01

    °F Temp. Under One White Membrane 74°F 74°F 73°F 88°F Temp. Inside Box 77°F 78°F 85" F 94" F test and the reason is speculated to be the same as test number 1. Legend: 1 Outside Air Temperature 2 One Clear 2 Mil. Membrane 3 One... suspended in their normal place. These data are plotted on Figure 8. In all cases, the function was a straight line and all points plotted on the line (A-E). Function (F) on Figure 8 is the calculated heat loss through the simulator walls and bottom...

  18. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  19. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  20. Membranes with Rotating Motors Peter Lenz,1

    E-Print Network [OSTI]

    Jülicher, Frank

    . These functions are medi- ated by specific proteins, which consume and convert energy. Thus, from a statistical, a theoretical nonequilibrium statistical physics approach has been developed to describe the shapes and fluctuations of membranes containing active pumps [2]. Experiments have been carried out which have confirmed

  1. New membranes could speed the biofuels conversion process and reduce cost

    SciTech Connect (OSTI)

    Hu, Michael

    2014-07-23

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  2. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema (OSTI)

    Hu, Michael

    2014-08-06

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  3. Understanding and applying the concept of sustainable development to transportation planning and decision-making in the U.S.

    E-Print Network [OSTI]

    Hall, Ralph P., 1975-

    2006-01-01

    This research demonstrates that sustainable development is a multidimensional concept that should be approached in a transdisciplinary manner. Its objective has been to synthesize and integrate disparate and currently ...

  4. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E. [U.S. Environmental Protection Agency, Washington D.C. (United States); Snipes, R.L. [Oak Ridge National Laboratory, TN (United States); Guskov, V.; Makarchuk, T. [Special Mechanical Engineering Design Bureau (KBSM), St. Petersburg (Russian Federation)

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuel from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed

  5. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  6. Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

    SciTech Connect (OSTI)

    Mays, Jimmy W.

    2011-03-07

    The goal of this research project was to create and develop fuel cell membranes having high proton conductivity at high temperatures and high chemical and mechanical durability. Poly(1,3-cyclohexadiene) (PCHD) is of interest as an alternative polymer electrolyte membrane (PEM) material due to its ring-like structure which is expected to impart superior mechanical and thermal properties, and due to the fact that PCHD can readily be incorporated into a range of homopolymer and copolymer structures. PCHD can be aromatized, sulfonated, or fluorinated, allowing for tuning of key performance structure and properties. These factors include good proton transport, hydrophilicity, permeability (including fuel gas impermeability), good mechanical properties, morphology, thermal stability, crystallinity, and cost. The basic building block, 1,3-cyclohexadiene, is a hydrocarbon monomer that could be inexpensively produced on a commercial scale (pricing typical of other hydrocarbon monomers). Optimal material properties will result in novel low cost PEM membranes engineered for high conductivity at elevated temperatures and low relative humidities, as well as good performance and durability. The primary objectives of this project were: (1) To design, synthesize and characterize new non-Nafion PEM materials that conduct protons at low (25-50%) RH and at temperatures ranging from room temperature to 120 C; and (2) To achieve these objectives, a range of homopolymer and copolymer materials incorporating poly(cyclohexadiene) (PCHD) will be synthesized, derivatized, and characterized. These two objectives have been achieved. Sulfonated and crosslinked PCHD homopolymer membranes exhibit proton conductivities similar to Nafion in the mid-RH range, are superior to Nafion at higher RH, but are poorer than Nafion at RH < 50%. Thus to further improve proton conductivity, particularly at low RH, poly(ethylene glycol) (PEG) was incorporated into the membrane by blending and by copolymerization. Conductivity measurements at 120 C over RH ranging from 20 to 100% using the BekkTech protocol showed much improved proton conductivities. Conductivities for the best of these new membranes exceed the DOE Year 3 milestone of 100 mS/cm at 50% RH at 120 C. Further optimization of these very promising low cost membranes could be pursued in the future.

  7. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  8. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  9. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  10. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  11. Investigating transport through sub-nanometer zeolites pores

    E-Print Network [OSTI]

    Humplik, Thomas

    2014-01-01

    Membrane-based reverse osmosis (RO), which accounts for over 40% of the current worldwide desalination capacity, is limited by the solution-diffusion mode of water transport through a tortuous polymeric active layer. ...

  12. Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate

    E-Print Network [OSTI]

    Smith, Bradley D.

    Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate Membranes.7,8 This report describes plasticized cellulose triacetate mem- branes that incorporate a large involved plasticized films that are homogeneous mixtures of cellulose triacetate (CTA), plasticizer (e

  13. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-20

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore »halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.« less

  14. Hollow-fiber gas-membrane process for removal of NH{sub 3} from solution of NH{sub 3} and CO{sub 2}

    SciTech Connect (OSTI)

    Qin, Y.; Cabral, J.M.S.; Wang, S.

    1996-07-01

    A hollow-fiber supported gas membrane process for the separation of NH{sub 3} from aqueous solutions containing both NH{sub 3} and CO{sub 2} was investigated theoretically and experimentally. A lumen laminar flow and radial diffusion model was applied to calculate the membrane wall transfer coefficient from the data stripping a single volatile component, NH{sub 3} or CO{sub 2}, from their individual aqueous solutions. Influence of the type of membranes and operating conditions on mass-transfer rate were discussed, especially the influence of the membrane transfer coefficient on the film mass-transfer coefficient in the lumen. Appropriate configurations of the hollow-fiber modules for stripping of a single component were analyzed to optimize mass transfer. To predict the stripping of NH{sub 3} from a solution containing NH{sub 3} and CO{sub 2}, a mathematical model incorporating local chemical equilibria and Nernst-Planck diffusion was developed to describe the mass transport. The models described the experimental data fairly well. The experimental results showed that the supported gas membrane process can be used to remove NH{sub 3} effectively from aqueous media containing NH{sub 3} and CO{sub 2}.

  15. Automotive Perspective on Membrane Evaluation

    Broader source: Energy.gov [DOE]

    Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

  16. THE JOURNAL OF CHEMICAL PHYSICS 134, 044908 (2011) Multicomponent ballistic transport in narrow single wall carbon

    E-Print Network [OSTI]

    Adler, Joan

    2011-01-01

    online 27 January 2011) The transport of gas mixtures through molecular-sieve membranes such as narrow The transport of gas mixtures through molecular-sieve membranes and catalysts has been a subject of intensive in single wall carbon nanotubes: Analytic model and molecular dynamics simulations T. Mutat,1 J. Adler,1,a

  17. Recycling of used perfluorosulfonic acid membranes

    DOE Patents [OSTI]

    Grot, Stephen (Middletown, DE); Grot, Walther (Chadds Ford, PA)

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  18. Developing the Fuels of the Future Road transport accounts for 21% of the CO2 emissions of the UK

    E-Print Network [OSTI]

    ·Vast majority of vehicles are powered by hydrocarbon fuels ·Situation unlikely to change soon. Hydrogen required to develop new fuels, reducing NOx, CO2, unburned hydrocarbons and particulates. All new secondary. This allows measurement of the effects of exhaust gas recirculation (EGR), a strategy used to reduce NOx

  19. Robust Polymer Composite Membranes for Hydrogen Separation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

  20. Membrane Protein Crystallization in Lipidic Mesophases. Hosting...

    Office of Scientific and Technical Information (OSTI)

    CATIONS; CRYSTALLIZATION; CRYSTALLOGRAPHY; CRYSTALS; HOST; LIPIDS; MEMBRANE PROTEINS; MEMBRANES; NUCLEAR MAGNETIC RESONANCE; PEPTIDES; RANGE; SHAPE; SIZE Word Cloud More...

  1. Non-Tracial Free Transport and Applications

    E-Print Network [OSTI]

    Nelson, Brent Andrew

    2015-01-01

    tracial transport . . . . . . . . . . . . . . . . . . . .the transport element . . . . . . . . . . . . . .Free Transport . . . . . . . . . . . .

  2. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  3. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  4. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J. (Chicago, IL); Sears, Devin N. (Spruce Grove, CA); Smith, Luis J. (Natick, MA); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  5. CENTRIFUGAL MEMBRANE FILTRATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface....

  6. membrane-fuelcell-energy | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Project No.: DE-FE0007634 FuelCell Energy, Inc. has developed a novel system concept for the separation of...

  7. Instrumentation for multiaxial mechanical testing of inhomogeneous elastic membranes

    E-Print Network [OSTI]

    Herrmann, Ariel Marc

    2006-01-01

    This thesis presents the design, development, and construction of an instrument for biaxial mechanical testing of inhomogeneous elastic membranes. The instrument incorporates an arrangement of linear motion stages for ...

  8. Interferometric tomography of fuel cells for monitoring membrane water content

    E-Print Network [OSTI]

    Waller, Laura

    We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered ...

  9. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  10. Gas separations using ceramic membranes. Final report, September 1988--February 1993

    SciTech Connect (OSTI)

    Lin, C.L.; Wu, J.C.S.; Gallaher, G.R.; Smith, G.W.; Flowers, D.L.; Gerdes, T.E.; Liu, P.K.T.

    1993-02-01

    This study covers a comprehensive evaluation of existing ceramic membranes for high temperature gas separations. Methodology has been established for microporous characterization stability and gas separation efficiency. A mathematical model was developed to predict gas separations with existing membranes. Silica and zeolitic modifications of existing membranes were pursued to enhance its separation efficiency. Some of which demonstrate unique separations properties. Use of the dense-silica membranes for hydrogen enrichment was identified as a promising candidate for future development. In addition, the decomposition of trace ammonia contaminant via a catalytic membrane reactor appears feasible. A further economic analysis is required to assess its commercial viability.

  11. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  12. Membranes on an Orbifold

    E-Print Network [OSTI]

    Neil Lambert; David Tong

    2008-04-15

    We harvest clues to aid with the interpretation of the recently discovered N=8 supersymmetric Chern-Simons theory with SO(4) gauge symmetry. The theory is argued to describe two membranes moving in the orbifold R8/Z2. At level k=1 and k=2, the classical moduli space M coincides with the infra-red moduli space of SO(4) and SO(5) super Yang-Mills theory respectively. For higher Chern-Simons level, the moduli space is a quotient of M. At a generic point in the moduli space, the massive spectrum is proportional to the area of the triangle formed by the two membranes and the orbifold fixed point.

  13. Pearling instability of membrane tubes driven by curved proteins and actin polymerization

    E-Print Network [OSTI]

    Urška Jeler?i?; Nir S. Gov

    2014-09-26

    Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilisation through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization they may recruit. The pearling instability can furthermore serve as the initiation for fission of the tube into vesicles. We find that adsorbed proteins are more likely to stabilise the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in-vivo and in-vitro experiments.

  14. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane

    DOE Patents [OSTI]

    Thoma, Steven G. (Albuquerque, NM); Nenoff, Tina M. (Albuquerque, NM)

    2006-10-10

    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  15. The State of Water in Proton Conducting Membranes

    SciTech Connect (OSTI)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  16. Molecular simulations of MEMS and membrane coatings (PECASE).

    SciTech Connect (OSTI)

    Javaid, Asad (Texas A& M University, College Station, TX); Aydogmus, Turkan (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

    2004-03-01

    The goal of this Laboratory Directed Research & Development (LDRD) effort was to design, synthesize, and evaluate organic-inorganic nanocomposite membranes for solubility-based separations, such as the removal of higher hydrocarbons from air streams, using experiment and theory. We synthesized membranes by depositing alkylchlorosilanes on the nanoporous surfaces of alumina substrates, using techniques from the self-assembled monolayer literature to control the microstructure. We measured the permeability of these membranes to different gas species, in order to evaluate their performance in solubility-based separations. Membrane design goals were met by manipulating the pore size, alkyl group size, and alkyl surface density. We employed molecular dynamics simulation to gain further understanding of the relationship between membrane microstructure and separation performance.

  17. The State of Water in Proton Conducting Membranes

    SciTech Connect (OSTI)

    Allcock, Harry R., Benesi, Alan, Macdonald, Digby, D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 -May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  18. Molecular Aspects of Transport in Thin Films of Controlled Architecture

    SciTech Connect (OSTI)

    Paul W. Bohn

    2009-04-16

    Our laboratory focuses on developing spatially localized chemistries which can produce structures of controlled architecture on the supermolecular length scale -- structures which allow us to control the motion of molecular species with high spatial resolution, ultimately on nanometer length scales. Specifically, nanocapillary array membranes (NCAMs) contain an array of nanometer diameter pores connecting vertically separated microfluidic channels. NCAMs can manipulate samples with sub-femtoliter characteristic volumes and attomole sample amounts and are opening the field of chemical analysis of mass-limited samples, because they are capable of digital control of fluid switching down to sub-attoliter volumes; extension of analytical “unit operations” down to sub-femtomole sample sizes; and exerting spatiotemporal control over fluid mixing to enable studies of reaction dynamics. Digital flow switching mediated by nanocapillary array membranes can be controlled by bias, ionic strength, or pore diameter and is being studied by observing the temporal characteristics of transport across a single nanopore in thin PMMA membranes. The control of flow via nanopore surface characteristics, charge density and functional group presentation, is being studied by coupled conductivity and laser-induced fluorescence (LIF) measurements. Reactive mixing experiments previously established low millisecond mixing times for NCAM-mediated fluid transfer, and this has been exploited to demonstrate capture of mass-limited target species by Au colloids. Voltage and thermally-activated polymer switches have been developed for active control of transport in NCAMs. Thermally-switchable and size-selective transport was achieved by grafting poly(N-isopropylacrylamide) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane, while the voltage-gated properties of poly(hydroxyethylmethacrylate) were characterized dynamically. Electrophoretic separations have been coupled to analyte sampling both by LIF and mass spectrometry. Detection of electrophoresis separation products by electrospray mass spectrometry was achieved through direct interfacing to an electrospray mass spectrometer. Pb(II) interactions with the DNAzyme have been realized in an NCAM-coupled integrated microfluidic structure allowing cation separations to be coupled to molecular beacon detection motifs for the determination of Pb(II) in an electroplating sludge reference material. By changing the DNAzyme to select for other compounds of interest, it is possible to incorporate multiple sensing systems within a single device, thereby achieving great flexibility.

  19. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  20. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  1. Development of pollutant release estimates due to abrasive blasting for lead paint removal from New York City Department of Transportation steel bridges

    SciTech Connect (OSTI)

    Lee, M.; Domanski, J.

    1999-07-01

    The use of abrasive blasting techniques in the removal of lead paint from steel bridges is a subject of public health and environmental concerns. This process creates airborne dust that must be appropriately contained to prevent inhalation or ingestion exposure during the removal activity, since some of that dust contains lead and other metals. Lead particles, if not appropriately contained, can also settle in local soils or on and within buildings, and can ultimately be inhaled or ingested. Potential worst case release scenarios for the release of dust and pollutants from paint removal operations were developed as part of the analysis framework for the Environmental Impact Statement for Lead Paint Removal Operations on New York City Department of Transportation Bridges. A multi-step analytical framework was developed for the Environmental Impact Statement (EIS), aimed at characterizing and quantifying a series of worst case scenarios for the release of contaminated material into the environment. The pollutants that the analysis focused on were lead, respirable particulates (PM10), Total Suspended Particulates (TSP) and other metals. Samples of existing paint obtained from various surfaces of representative bridges were analyzed to determine average paint dry film thickness and the concentration of metals in the paint for each of the representative bridges. Samples of expendable abrasives were analyzed to determine the concentration of metals within the abrasives. Six scenarios were developed to encompass the range of potential releases that can occur during blasting operations. Two subcategories of hypothetical release events were developed for each scenario-- reasonable worst case events and maximum worst case events. Air quality dispersion modeling with the Environmental Protection Agency's ISC3ST model was employed with the predicted release rates.

  2. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    SciTech Connect (OSTI)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  3. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  4. Oxygen-permeable ceramic membranes for gas separation

    SciTech Connect (OSTI)

    Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1998-02-01

    Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

  5. Among the major applications of pervaporation membrane processes, organic separation from organic/water mixtures is becoming increasingly important. The

    E-Print Network [OSTI]

    Among the major applications of pervaporation membrane processes, organic separation from organic referred to as "silicone rubber", exhibiting excellent film-forming ability, thermal stability, chemical for Engineering of Matter, Transport and Energy #12;

  6. Implications of Permeation through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation

    E-Print Network [OSTI]

    Sun, Chengzhen

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially ...

  7. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J.R.; Wang, D.; Bischoff, B.; Ciora; Radhakrishnan, B.; Gorti, S.B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

  8. Sustainable Transportation Program | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with government, industry, and academia, Oak Ridge National Laboratory's (ORNL) Sustainable Transportation Program research and development efforts are resulting in...

  9. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  10. Alkaline Membrane Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJune 2, 2015AlignedRPTnnnn Membrane-Based

  11. Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA)

    E-Print Network [OSTI]

    Wiley, Patrick Edward

    2013-01-01

    Microalgae cultivation using offshore membrane enclosuresbiofouling on the proposed offshore membrane enclosures forMicroalgae cultivation using offshore membrane enclosures

  12. Superconnections and Parallel Transport

    E-Print Network [OSTI]

    Dumitrescu, Florin

    2007-01-01

    This note addresses the construction of a notion of parallel transport along superpaths arising from the concept of a superconnection on a vector bundle over a manifold $M$. A superpath in $M$ is, loosely speaking, a path in $M$ together with an odd vector field in $M$ along the path. We also develop a notion of parallel transport associated with a connection (a.k.a. covariant derivative) on a vector bundle over a \\emph{supermanifold} which is a direct generalization of the classical notion of parallel transport for connections over manifolds.

  13. Plastidic Pi transporters in Arabidopsis thaliana 

    E-Print Network [OSTI]

    Irigoyen Aranda, Sonia Cristina

    2012-10-19

    and reverse genetics to demonstrate functional specialization for the PHT4 family members with a focus on PHT4;1 and PHT4;2. The PHT4;1 Pi transporter is localized to chloroplast thylakoid membranes and it is expressed in a circadian manner. Plants that lack a...

  14. Palladium-coated zirconium membranes for oxidative extraction of hydrogen

    SciTech Connect (OSTI)

    Hsu, C.; Buxbaum, R.E.

    1987-01-01

    Palladium-coated metal membranes are attractive choices for low pressure, high temperature hydrogen and hydrogen isotope extractions, e.g. from fusion blanket fluids. The authors present experimental data on hydrogen transport through palladium-coated zirconium membranes at 600 - 700/sup 0/K. The upstream hydrogen pressure range is 10/sup -4/ to 10/sup -6/ torr and an oxygen-containing gas flows over the downstream side of the membrane. Thus, the irreversible oxidation reaction drives the flux. Deuterium permeabilities in zirconium are 2.00x10/sup -6/exp(59/T)+-20% g-mol/m.s.Pa/sup 1/2/, similar to the values obtained from diffusivity and solubility measurements. Extrapolated deuterium absorptive sticking coefficients on palladium are about .05.

  15. Water Transport in Hydrophilic Channels of Nafion (DMR 0819860)

    E-Print Network [OSTI]

    Petta, Jason

    (RH) that open up the ion channels for optimal proton transport. Nafion, a polymer used for fuel cells Benziger, Princeton University Sr Fuel cells convert chemical energy to electrical energy by transporting protons through ion conducting channels in polymer membranes. Improving proton conduction will make fuel

  16. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  17. Performance modelling of a proton exchange membrane fuel cell

    SciTech Connect (OSTI)

    Marr, C.; Li, X.

    1998-12-31

    This paper presents a performance model of a proton exchange membrane fuel cell that has sufficient accuracy for engineering applications with reduced computational requirements. The model includes electrochemical reaction in the catalyst layers and formulation for electrical resistance in the membrane, electrodes and bipolar plates, and employs engineering correlation for the reactant gas transport in the flow channels and through the electrodes. It is shown that the present model predictions are in reasonable agreement with known experimental observations, indicating that the present model can be employed for fuel cell stack and system modeling. The effect of various operating and design parameters on the cell performance has been investigated. It is found that mass transport limitations are the largest cause of performance loss in the cell when graphite is used as the material for bipolar plates and electrodes. If conducting polymers are substituted as construction materials, cell performance is expected to suffer considerably at high current densities due to their reduced electrical conductivity.

  18. Catalytic membrane reactors for chemicals upgrading and environmental control

    SciTech Connect (OSTI)

    Sammells, A.F. [Eltron Research, Inc., Boulder, CO (United States)

    1994-12-31

    Mixed ionic and electronic conducting catalytic membrane reactors are being developed for promoting a number of spontaneous chemical reactions either leading to synthesis of value added products or decomposition of environmental contaminants. The dense non-porous ceramic materials behave as short-circuited electrochemical devices whereby ions (oxygen anions or protons) and electrons become simultaneously mediated for one reaction surface to another. The rationale behind membrane materials selection and specific applications will be discussed.

  19. Sustainable Transportation: Findings from an International Scanning Review

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2006-01-01

    sustainable transportation and its linkages to land use and urban development patterns, economic growth, environmental impacts,

  20. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    SciTech Connect (OSTI)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  1. Structural basis for alginate secretion across the bacterial outer membrane

    SciTech Connect (OSTI)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  2. Identifying Calcium Channels and Porters in Plant Membranes

    SciTech Connect (OSTI)

    Sze, Heven

    1998-04-01

    The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

  3. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  4. Technological Changes and Transportation Development

    E-Print Network [OSTI]

    Garrison, William L.

    2001-01-01

    Consumption Production Segmentation Choices F~gure 1. Aand market and production segmentation and the diffusion of

  5. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;Å

    SciTech Connect (OSTI)

    Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong (Duke)

    2012-07-11

    Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.

  6. Online determination of biophysical parameters of mucous membranes of a human body

    SciTech Connect (OSTI)

    Lisenko, S A; Kugeiko, M M [Belarusian State University, Minsk (Belarus)] [Belarusian State University, Minsk (Belarus)

    2013-07-31

    We have developed a method for online determination of biophysical parameters of mucous membranes (MMs) of a human body (transport scattering coefficient, scattering anisotropy factor, haemoglobin concentration, degrees of blood oxygenation, average diameter of capillaries with blood) from measurements of spectral and spatial characteristics of diffuse reflection. The method is based on regression relationships between linearly independent components of the measured light signals and the unknown parameters of MMs, obtained by simulation of the radiation transfer in the MM under conditions of its general variability. We have proposed and justified the calibration-free fibre-optic method for determining the concentration of haemoglobin in MMs by measuring the light signals diffusely reflected by the tissue in four spectral regions at two different distances from the illumination spot. We have selected the optimal wavelengths of optical probing for the implementation of the method. (laser applications in biology and medicine)

  7. A survey of integral ?-helical membrane proteins

    E-Print Network [OSTI]

    2009-01-01

    opti- mum eukaryotic integral membrane proteins forLarge-scale identi?cation of yeast integral membrane protein009-9069-8 A survey of integral a-helical membrane proteins

  8. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos (San Jose, CA)

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  9. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.

    1997-09-23

    A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

  10. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect (OSTI)

    Jerry Y. S. Lin; Scott Cheng; Vineet Gupta

    2003-12-01

    Dense perovskite-type structured ceramic membranes, SrCe{sub 0.95}Tm{sub 0.05}O{sub 3} (SCTm), of different thickness, were prepared by the dry-press method. Membrane thickness was varied from 3 mm to 150 {micro}m. The hydrogen permeation flux was found to be inversely proportional to the thickness of the dense films, indicating that the bulk diffusion rather than the surface reaction played a dominant role in the H{sub 2} transport through these dense membranes within the studied thickness range. Hydrogen permeation flux increases with increasing upstream hydrogen partial pressure and decreasing downstream hydrogen partial pressure. The activation energy for hydrogen permeation through the SCTm membrane is about 116 kJ/mol in 600-700 C and 16 kJ/mol in 750-950 C. This indicates a change in the electrical and protonic conduction mechanism at around 700 C. Pd-Cu thin films were synthesized with elemental palladium and copper targets by the sequential R.F. sputter deposition on porous substrates. Pd-Cu alloy films could be formed after proper annealing. The deposited Pd-Cu films were gas-tight. This result demonstrated the feasibility of obtaining an ultrathin SCTm film by the sequential sputter deposition of Sr, Ce and Tm metals followed by proper annealing and oxidation. Such ultrathin SCTm membranes will offer sufficiently high hydrogen permeance for practical applications.

  11. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect (OSTI)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  12. Comparing Active TransportationComparing Active Transportation in China and Europein China and Europe

    E-Print Network [OSTI]

    Bertini, Robert L.

    and Europe Shawn Turner, P.E. Texas Transportation Institute O C b l SOTREC Livability Seminar Portland #12;Economic Development - EuropeEconomic Development Europe · Active transportation directly affects

  13. FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT

    SciTech Connect (OSTI)

    Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

    2006-08-03

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with respect to the deposition of electrocatalyst and use of conductive carbon materials such as carbon cloth and carbon paper. Findings from these evaluations and the results of the membrane and electrocatalyst testing, we prepared three different membrane electrode assemblies (MEA) for electrolyzer testing. The first MEA consisted of a Nafion{reg_sign} membrane with platinum electrocatalyst deposited on carbon cloths, which were heat pressed onto the membrane, an assembly identical to those used in proton exchange membrane fuel cells. The second MEA also used a Nafion membrane with the electrocatalysts deposited directly onto the membrane. The third MEA proved similar to the second but utilized a PBI membrane in place of the Nafion{reg_sign} membrane. Tailor of the membrane and catalysts properties for the SDE system was concluded as a required step for the technology to move forward. It was also recommended the evaluation of the tested and new developed materials at conditions closer to the SDE operating conditions and for longer period of time.

  14. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doorway for Letting Ammonia into Cells Like any factory, a biological cell takes in raw materials and energy and expels waste products. What goes in and out passes through the cell...

  15. Supporting Information for: Ammonium Bicarbonate Transport in Anion Exchange Membranes

    E-Print Network [OSTI]

    films were cast in PTFE molds from 5% (w/v) solutions of polymer in 1-methyl-2-pyrrolidinone (NMP a given film) was achieved by placing the PTFE molds on a level casting plate in a gravity oven (VWR removed from the PTFE molds and soaked in de-ionized (DI) water (18.2 M cm) to extract any residual

  16. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    E-Print Network [OSTI]

    Hoarfrost, Megan Lane

    2012-01-01

    Bee, M. , Quasielastic Neutron Scattering: Principles andBee, M. , Quasielastic Neutron Scattering: Principles andand Quasi-Elastic Neutron Scattering ii 5.1. Introduction

  17. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    E-Print Network [OSTI]

    Hoarfrost, Megan Lane

    2012-01-01

    imide ([Im][TFSI]) and poly(styrene-b-2-vinyl pyridine) (PS-behavior of mixtures of poly(styrene-b-2-vinyl pyridine) (thermal properties of poly(styrene-b-2-vinylpyridine) (PS-b-

  18. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    E-Print Network [OSTI]

    Hoarfrost, Megan Lane

    2012-01-01

    the Joint Center for Artificial Photosynthesis, a DOE Energythe Joint Center for Artificial Photosynthesis, a DOE Energy

  19. Membrane transporters in the relict plastid of malaria parasites

    E-Print Network [OSTI]

    McFadden, Geoff

    . The parasite plastid synthesizes fatty acids, heme, iron sulfur clusters and isoprenoid precursors are fuelled in the absence of photosynthetic capture of energy and carbon was not clear. Here, we describe fatty acids, isoprene subunits, heme and iron sulfur clusters, which might be exported from

  20. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhotonStructure of DNA-BoundFinanceStructures for

  1. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure and Receptorsurvivor 8 StructureStructures

  2. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure and Receptorsurvivor 8

  3. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure and Receptorsurvivor 8Structures for Three

  4. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure and Receptorsurvivor 8Structures for

  5. Anion Exchange Membranes - Transport/Conductivity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table ofDepartment of EnergyOperationsAndrewAndy-

  6. Transport diffusion of liquid water and methanol through membranes (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and PionExperiments (Journallithium(Journal Article)Article) |

  7. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHoursa Wind Turbine Works HowHow

  8. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-SummerHow is the Data QualityHowHow

  9. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-SummerHow is the Data

  10. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-SummerHow is the DataHow the

  11. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  12. Surface Segregation in a PdCu Alloy Hydrogen Separation Membrane

    SciTech Connect (OSTI)

    Miller, J.B.; Matranga, C.S.; Gellman, A.J.

    2007-06-01

    Separation of hydrogen from mixed gas streams is an important step for hydrogen generation technologies, including hydrocarbon reforming and coal/biomass gasification. Dense palladium-based membranes have received significant attention for this application because of palladium’s ability to dissociatively adsorb molecular hydrogen at its surface for subsequent transport of hydrogen atoms through its bulk. Alloying palladium with minor components, like copper, has been shown to improve both the membrane’s structural characteristics and resistance to poisoning of its catalytic surface [1]. Surface segregation—a composition difference between the bulk material and its surface—is common in alloys and can affect important surface processes. Rational design of alloy membranes requires that surface segregation be understood, and possibly controlled. In this work, we examine surface segregation in a polycrystalline Pd70Cu30 hydrogen separation membrane as a function of thermal treatment and adsorption of hydrogen sulfide.

  13. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    while reducing fuel losses. Compact Membrane Systems, Inc. (CMS) was founded in 1993 in Wilmington, DE, with the acquisition of rights to certain DuPont polymer membrane...

  14. Fullerene-Nafion Composite Recast Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Fullerene-Nafion Composite Recast Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  15. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  16. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Broader source: Energy.gov (indexed) [DOE]

    Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling. cmssbircasestudy2010.pdf More Documents &...

  17. Hydrogen Bond Shaping of Membrane Protein Structure

    E-Print Network [OSTI]

    Cao, Zheng

    2013-01-01

    Bowie JU (2011) Membrane protein folding: how important areRadford SE (2000) Protein folding mechanisms: new methodset al. (2003) Membrane protein folding: beyond the two stage

  18. Membrane and MEA Accelerated Stress Test Protocols

    Broader source: Energy.gov [DOE]

    This presentation on fuel cell membrane and MEA stress test protocols was given by T. Benjamin at the High Temperature Membrane Working Group Meeting in May 2007.

  19. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  20. New Membranes for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation on New Membranes for PEM Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  1. Apparatus for tensioning a heliostat membrane

    DOE Patents [OSTI]

    Sallis, Daniel V. (P.O. Box 554, Littleton, CO 80120)

    1986-01-01

    An apparatus for pneumatically or hydraulically tensioning a membrane, which stretched membrane can support a reflective surface for use as a heliostat in a solar energy collection system.

  2. Neuron, Vol. 19, 12711283, December, 1997, Copyright 1997 by Cell Press Vesicular Transport Regulates Monoamine Storage

    E-Print Network [OSTI]

    Sulzer, David

    -University of California plasm, requiring transport into the vesicle, and severalSan Francisco, California 94143 distinctNeuron, Vol. 19, 1271­1283, December, 1997, Copyright ©1997 by Cell Press Vesicular Transport, cocaine and antidepressants act by inhibiting plasma membrane transport, thereby in- creasing the synaptic

  3. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  4. Functionalized inorganic membranes for gas separation

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung (Rexford, NY); Ruud, James Anthony (Delmar, NY); Molaison, Jennifer Lynn (Marietta, GA); Schick, Louis Andrew ,(Delmar, NY); Ramaswamy, Vidya (Niskayuna, NY)

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  5. A historical view and proposal analysis of the strategic role of the transportation sector in the economic development of post-war Liberia

    E-Print Network [OSTI]

    Kwame Corkrum, Ellen

    2010-01-01

    This thesis examines the proposals for building and improving the transportation sector in Liberia, primarily the roads while providing immediate social opportunities and employment for many of the poor in Liberia. As ...

  6. Healthy transportation - healthy communities: developing objective measures of built-environment using GIS and testing significance of pedestrian variables on walking to transit 

    E-Print Network [OSTI]

    Maghelal, Praveen Kumar

    2009-05-15

    Walking to transit stations is proposed as one of the strategies to increase the use of transit. Urban planners, transportation planners, environmentalists, and health professionals encourage and support environmental ...

  7. The development of a high speed solution for the evaluation of track structure Monte Carlo electron transport problems using field programmable gate arrays 

    E-Print Network [OSTI]

    Pasciak, Alexander Samuel

    2009-05-15

    There are two principal techniques for performing Monte Carlo electron transport computations. The first, and least common, is the full track-structure method. This method individually models all physical electron interactions ...

  8. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    SciTech Connect (OSTI)

    Adams, T; Paul Korinko, P

    2007-11-13

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using both electrochemical and gaseous hydrogen permeation testing techniques..

  9. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    SciTech Connect (OSTI)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  10. Adapting Urban Transport to Climate Change- Module 5f - Sustainable...

    Open Energy Info (EERE)

    Urban Transport to Climate Change- Module 5f - Sustainable transport: a sourcebook for policy-makers in developing cities Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  11. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  12. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 ?m to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.

  13. Membrane Separations of Liquid Mixtures 

    E-Print Network [OSTI]

    Lloyd, D. R.

    1985-01-01

    , respectively. 147 A membrane (defined below) can be used to separate gas-phase mixtures and liquid-phase mixtures. This paper deals almost exclusively with the latter - a catagory of separation that includes dissolved and suspended solids in liquids... valuable. I ESL-IE-85-05-27 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 The membrane may be a gas [56 L a liquid [57,15], or a solid [11-23]. Solid polymeric membranes,and to a lesser extent...

  14. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  15. Transportation Plan 

    E-Print Network [OSTI]

    Boreo, Andrea; Li, Wei; Wunnenbuger, Douglas; Giusti, Cecilia; Cooper, John T.; Masterson, Jaimie

    2015-01-01

    Mobility throughout a community ensures freedom of movement and enhances quality of life. Traffic congestion, pollution, urban sprawl, social exclusion, safety and health can decrease mobility and should be a part of a sustainable transportation...

  16. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    programme of electrification and the potential introduction of diesel hybrids. The Department for Transport vehicles Wind turbine systems Industrial equipment The lab has full ethernet capability which will enable

  17. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  18. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  19. Attoheat transport phenomena

    E-Print Network [OSTI]

    J. Marciak-Kozlowska; M. Pelc; M. A. Kozlowski

    2009-06-09

    Fascinating developments in optical pulse engineering over the last 20 years lead to the generation of laser pulses as short as few femtosecond, providing a unique tool for high resolution time domain spectroscopy. However, a number of the processes in nature evolve with characteristic times of the order of 1 fs or even shorter. Time domain studies of such processes require at first place sub-fs resolution, offered by pulse depicting attosecond localization. The generation, characterization and proof of principle applications of such pulses is the target of the attoscience. In the paper the thermal processes on the attosecond scale are described. The Klein-Gordon and Proca equations are developed. The relativistic effects in the heat transport on nanoscale are discussed. It is shown that the standard Fourier equation can not be valid for the transport phenomena induced by attosecond laser pulses. The heat transport in nanoparticles and nanotubules is investigated.

  20. Particles in Surface Waters: Coagulation and Transport 

    E-Print Network [OSTI]

    Culkin, Gerald W.; Lawler, Desmond F.

    1991-01-01

    -averaged, unsteady particle transport were developed to approximate the size-dependent particle transport processes, which included advection, dispersion, and settling. Coupled exchange of discrete particles between the water column and sediment bed was modeled using...