Sample records for transparent conductive oxide

  1. Precise Application of Transparent Conductive Oxide Coatings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide...

  2. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10T23:59:59.000Z

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  3. Transparent conducting oxides and production thereof

    SciTech Connect (OSTI)

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27T23:59:59.000Z

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  4. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28T23:59:59.000Z

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  5. Transparent conducting oxides: A -doped superlattice approach

    SciTech Connect (OSTI)

    Cooper, Valentino R [ORNL; Seo, Sung Seok A. [University of Kentucky, Lexington; Lee, Suyoun [ORNL; Kim, Jun Sung [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Choi, Woo Seok [ORNL; Okamoto, Satoshi [ORNL; Lee, Ho Nyung [ORNL

    2014-01-01T23:59:59.000Z

    Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

  6. Synthesis of transparent conducting oxide coatings

    DOE Patents [OSTI]

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04T23:59:59.000Z

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  7. Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an Indium Tin Oxide Replacement

    E-Print Network [OSTI]

    Park, Yong Tae

    2012-07-16T23:59:59.000Z

    Transparent electrodes made from metal oxides suffer from poor flexibility and durability. Highly transparent and electrically conductive thin films based on carbon nanotubes (CNTs) were assembled as a potential indium tin oxide (ITO) replacement...

  8. Magnetic transparent conducting oxide film and method of making

    DOE Patents [OSTI]

    Windisch Jr., Charles F.; Exarhos, Gregory J.; Sharma, Shiv K.

    2004-07-13T23:59:59.000Z

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 .OMEGA..multidot.cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450.degree. C. in air. Films deposited on sapphire substrates exhibit a refractive index of about 1.7 and are relatively transparent in the wavelength region from 0.6 to 10.0 .mu.m. They are also magnetic. The electrical and spectroscopic properties of the oxides have been studied as a function of x=Co/(Co+Ni) ratio. An increase in film resistivity was found upon substitution of other cations (e.g., Zn.sup.2+, Al.sup.3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo.sub.2 O.sub.4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity. The influence of cation charge state and site occupancy in the spinel structure markedly affects calculated electron band structures and contributes to a reduction of p-type conductivity, the formation of polarons, and the reduction in population of mobile charge carriers that tend to limit transmission in the infrared.

  9. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOE Patents [OSTI]

    Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

    2009-04-14T23:59:59.000Z

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  10. Magnetic Transparent Conducting Oxide Film And Method Of Making

    DOE Patents [OSTI]

    Windisch, Jr., Charles F. (Richland, WA); Exarhos, Gregory J. (Richland, WA); Sharma, Shiv K. (Honolulu, HI)

    2006-03-14T23:59:59.000Z

    Cobalt-nickel oxide films of nominal 100 nm thickness, and resistivity as low as 0.06 O·cm have been deposited by spin-casting from both aqueous and organic precursor solutions followed by annealing at 450° C. in air. An increase in film resistivity was found upon substitution of other cations (e.g., Zn2+, Al3+) for Ni in the spinel structure. However, some improvement in the mechanical properties of the films resulted. On the other hand, addition of small amounts of Li decreased the resistivity. A combination of XRD, XPS, UV/Vis and Raman spectroscopy indicated that NiCo2O4 is the primary conducting component and that the conductivity reaches a maximum at this stoichiometry. When x<0.67, NiO forms leading to an increase in resistivity; when x>0.67, the oxide was all spinel but the increased Co content lowered the conductivity.

  11. Impact of degenerate n-doping on the optical absorption edge in transparent conducting cadmium oxide

    E-Print Network [OSTI]

    Schleife, André

    n-type or can be heavily doped. Transparent conductive cadmium oxide (CdO) thin films, for instance devices or modern solar cells, material performance is critically important. A combination of high in the conduction bands of CdO can increase the conductivity up to values desired for technological applications

  12. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13T23:59:59.000Z

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  13. Data Mining-Aided Crystal Engineering for the Design of Transparent Conducting Oxides: Preprint

    SciTech Connect (OSTI)

    Suh, C.; Kim, K.; Berry, J. J.; Lee, J.; Jones, W. B.

    2010-12-01T23:59:59.000Z

    The purpose of this paper is to accelerate the pace of material discovery processes by systematically visualizing the huge search space that conventionally needs to be explored. To this end, we demonstrate not only the use of empirical- or crystal chemistry-based physical intuition for decision-making, but also to utilize knowledge-based data mining methodologies in the context of finding p-type delafossite transparent conducting oxides (TCOs). We report on examples using high-dimensional visualizations such as radial visualization combined with machine learning algorithms such as k-nearest neighbor algorithm (k-NN) to better define and visualize the search space (i.e. structure maps) of functional materials design. The vital role of search space generated from these approaches is discussed in the context of crystal chemistry of delafossite crystal structure.

  14. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02T23:59:59.000Z

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  15. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02T23:59:59.000Z

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  16. Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A

    2014-01-28T23:59:59.000Z

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  17. Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications

    SciTech Connect (OSTI)

    Ohodnicki, Paul R., Jr.; Wang, Congjun; Andio, Mark

    2013-07-31T23:59:59.000Z

    The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

  18. Why MnIn{sub 2}O{sub 4} spinel is not a transparent conducting oxide?

    SciTech Connect (OSTI)

    Martinez-Lope, M.J. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco E-28049 Madrid (Spain); Retuerto, M. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco E-28049 Madrid (Spain); Department of Chemistry, Rutgers State University of New Jersey, Piscataway, NJ 08854-8087 (United States); Calle, C. de la [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco E-28049 Madrid (Spain); Porcher, Florence [Laboratoire Leon Brillouin, CEA/Saclay, 91191 Gif Sur Ivette Cedex, France. (France); Alonso, J.A., E-mail: ja.alonso@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco E-28049 Madrid (Spain)

    2012-03-15T23:59:59.000Z

    The title compound has been synthesized by a citrate technique. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3-bar m, Z=8, with a=9.0008(1) A at 295 K. It exhibits a crystallographic formula (Mn{sub 0.924(2)}In{sub 0.076(2)}){sub 8a}(In{sub 1.804(2)}Mn{sub 0.196(2)}){sub 16d}O{sub 4}, where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively, with a slight degree of inversion, {lambda}=0.08. MnIn{sub 2}O{sub 4} shows antiferromagnetic interactions below T{sub N} Almost-Equal-To 40 K, due to the statistical distribution of Mn ions over the two available sites. Unlike the related MgIn{sub 2}O{sub 4} and CdIn{sub 2}O{sub 4} spinels, well known as transparent conducting oxides, MnIn{sub 2}O{sub 4} is not transparent and shows a poor conductivity ({sigma}=0.38 S cm{sup -1} at 1123 K): the presence of Mn ions, able to adopt mixed valence states, localizes the charges that, otherwise, would be delocalized in the spinel conduction band. - Graphical Abstract: From NPD data the crystallographic formula (Mn{sub 0.924(2)}In{sub 0.076(2)}){sub 8a}(In{sub 1.804(2)}Mn{sub 0.196(2)}){sub 16d}O{sub 4}, shows a slight degree of inversion, {lambda}=0.08 and a certain In deficiency. The presence of Mn ions, able to adopt mixed oxidation states, localize the charges that, otherwise, would be delocalized in the spinel conduction band; the presence of localized Mn{sup 2+} and Mn{sup 3+} ions provides the characteristic brown color. Highlights: Black-Right-Pointing-Pointer Accurate structural determination from NPD data: inversion degree (8%), and In deficiency. Black-Right-Pointing-Pointer Bond-valence indicates Mn{sup 2+}-Mn{sup 3+} ions; edge-sharing octahedra contain 90% In{sup 3+}+10% Mn{sup 3+} cations. Black-Right-Pointing-Pointer Conductivity several orders of magnitude lower than those of MgIn{sub 2}O{sub 4} or CdIn{sub 2}O{sub 4}. Black-Right-Pointing-Pointer Variability of Mn oxidation states cancels any electron-doping effect, emptying conduction band of mobile charge carriers. Black-Right-Pointing-Pointer Curie-Weiss behavior confirming the determined charge distribution.

  19. Degradation of transparent conductive oxides; Mechanistic insights across configurations and exposures

    E-Print Network [OSTI]

    Rollins, Andrew M.

    . An encapsulated configuration study was conducted on ITO and AZO, exposing samples to the above accel- erated applications, durability concerns arise. The cost and reliability of solar power are often cited as a primary been reported in thin film silicon solar modules123 , CIGS modules456 and OPV technologies78910

  20. Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A

    E-Print Network [OSTI]

    -energy conversion.1-9 For example, high-surface-area silica-based aerogels can be used as scaffolds for constructing), display both good light-harvesting and good charge collection.5-7,10 Since SiO2 aerogels are insulating of making high-surface-area electrodes (e.g., aerogels) directly from conducting materials (e.g., fluorine

  1. Optically transparent yttrium oxide

    SciTech Connect (OSTI)

    Hartnett, T.; Greenberg, M.; Gentilman, R.L.

    1988-08-02T23:59:59.000Z

    A body is described comprising at least 99.9% yttrium oxide having a density of at least 99% of theoretically density, a sample of the body having a in-line transmission of at least 73%, over a wavelength range of 2-5 microns with the sample having a thickness of 0.375 inches.

  2. Dopant Ion Size and Electronic Structure Effects on Transparent Conducting Oxides. Sc-Doped CdO Thin Films

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    -doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates metallic conductivities, and relatively simple crystal structures.2,4-7 Sn doping of CdO thin films grown with the highest carrier mobilities grown to date.7 In addition, Cd2SnO4, CdIn2O4, and CdO-ZnO thin films have been

  3. Misfit layered Ca{sub 3}Co{sub 4}O{sub 9} as a high figure of merit p-type transparent conducting oxide film through solution processing

    SciTech Connect (OSTI)

    Aksit, M.; Kolli, S. K.; Slauch, I. M.; Robinson, R. D., E-mail: rdr82@cornell.edu [Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2014-04-21T23:59:59.000Z

    Ca{sub 3}Co{sub 4}O{sub 9} thin films synthesized through solution processing are shown to be high-performing, p-type transparent conducting oxides (TCOs). The synthesis method is a cost-effective and scalable process that consists of sol-gel chemistry, spin coating, and heat treatments. The process parameters can be varied to produce TCO thin films with sheet resistance as low as 5.7?k?/sq (????57 m? cm) or with average visible range transparency as high as 67%. The most conductive Ca{sub 3}Co{sub 4}O{sub 9} TCO thin film has near infrared region optical transmission as high as 85%. The figure of merit (FOM) for the top-performing Ca{sub 3}Co{sub 4}O{sub 9} thin film (151 M?{sup ?1}) is higher than FOM values reported in the literature for all other solution processed, p-type TCO thin films and higher than most others prepared by physical vapor deposition and chemical vapor deposition. Transparent conductivity in misfit layered oxides presents new opportunities for TCO compositions.

  4. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in

    E-Print Network [OSTI]

    Fan, Shanhui

    Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics electrodes are critical to the operation of optoelectronic devices. Effective elec- trodes need to combine

  5. Enhanced Thermal Conductivity Oxide Fuels

    SciTech Connect (OSTI)

    Alvin Solomon; Shripad Revankar; J. Kevin McCoy

    2006-01-17T23:59:59.000Z

    the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

  6. Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 622625 Al-ZnO Thin Films as Transparent Conductive Oxides : Synthesis,

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    , and low-tech applications, such as antistatic coatings, touch display panels, solar cells, flat panel exhibit n-type conduction. It is caused by a deviation from stoichiometry due to native defects-31-290-7075; Department of Chemistry, Sungkyunkwan University, Suwon 440- 746 on glass substrates at different target

  7. Nanostructured Transparent Conducting Oxides via Blockcopolymer Patterning

    E-Print Network [OSTI]

    Kim, Joung Youn Ellie

    2014-05-27T23:59:59.000Z

    deposi- tion methods such as magnetron sputtering or pulse laser deposition (PLD), as they are currently the methods conventionally used for thin film TCO deposition. The solution processing method for a-TCO thin films is more economical com- pared... ., Ai, X., Hastings, G., and Lian, T. (2001) Ultrafast and long- lived photoinduced charge separation in meh-ppv/nanoporous semiconductor thin film composites. Chemical physics letters, 347 (4), 304–310. 15 [51] Savenije, T., Warman, J., and Goossens, A...

  8. Transparent Conducting Oxide - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfordefault BPASolar Photovoltaic

  9. Transparent conductive grids via direct writing of silver nanoparticle inks Bok Yeop Ahn,a

    E-Print Network [OSTI]

    Lewis, Jennifer

    . Using this approach, microscale features ($1 mm) in one-dimensional (1D) to three-dimensional (3D transparency and electrical conductivity.6 Recent efforts have focused on printing and other solution routes and co-workers have produced transparent conductive arrays by inkjet printing of dilute silver

  10. Graphene growth on glass 1 Synthesis of conducting transparent few-layer graphene directly

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene growth on glass 1 Synthesis of conducting transparent few-layer graphene directly on glass major hurdles that research has to overcome to get graphene out of research laboratories. Here, using transparent graphene layers at temperatures as low as 450 °C. Our few-layer graphene grows at the interface

  11. Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO{sub 3} thin films

    SciTech Connect (OSTI)

    Seo, Dongmin; Yu, Kwangnam; Jun Chang, Young; Choi, E. J., E-mail: echoi@uos.ac.kr [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of); Sohn, Egon; Hoon Kim, Kee [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13T23:59:59.000Z

    We have performed optical transmission, reflection, spectroscopic ellipsometry, and Hall effect measurements on the electron-doped La{sub x}Ba{sub 1–x}SnO{sub 3} (x?=?0.04) transparent thin films. From the infrared Drude response and plasma frequency analysis we determine the effective mass of the conducting electron m*?=?0.35m{sub 0}. In the visible-UV region the optical band gap shifts to high energy in (La,Ba)SnO{sub 3} by 0.18?eV compared with undoped BaSnO{sub 3} which, in the context of the Burstein-Moss analysis, is consistent with the infrared-m*. m* of BaSnO{sub 3} is compared with other existing transparent conducting oxides (TCO), and implication on search for high-mobility TCO compounds is discussed.

  12. Hematite-based Photo-oxidation of Water Using Transparent Distributed Current Collectors

    E-Print Network [OSTI]

    Hematite-based Photo-oxidation of Water Using Transparent Distributed Current Collectors Shannon C layer deposition, Fe2O3, inverse opal, iron oxide, water splitting, distributed current collector 1

  13. Integration of Laser-Welded Ag Nanowire Transparent Conducting Layers on Photovoltaic Devices (DMR-0819860)

    E-Print Network [OSTI]

    Petta, Jason

    Integration of Laser-Welded Ag Nanowire Transparent Conducting Layers on Photovoltaic Devices (DMR conducting layers in applications ranging from organic flexible electronics to rigid photovoltaics. However of a hybrid organic photovoltaic device [1]. The NWs are dispersed on the device and the network is welded

  14. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid

    SciTech Connect (OSTI)

    Ghosh, D. S.; Chen, T. L. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona, 08860 Catalunya (Spain); Pruneri, V. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona, 08860 Catalunya (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2010-01-25T23:59:59.000Z

    It is known that ultrathin (<10 nm) metal films (UTMFs) can achieve high level of optical transparency at the expense of the electrical sheet resistance. In this letter, we propose a design, the incorporation of an ad hoc conductive grid, which can significantly reduce the sheet resistance of UTMF based transparent electrodes, leaving practically unchanged their transparency. The calculated highest figure-of-merit corresponds to a filling factor and a grid spacing-to-linewidth ratio of 0.025 and 39, respectively. To demonstrate the capability of the proposed method the sheet resistance of a continuous 2 nm Ni film (>950 OMEGA/square) is reduced to approx6.5 OMEGA/square when a 100 nm thick Cu grid is deposited on it. The transparency is instead maintained at values exceeding 75%. These results, which can be further improved by making thicker grids, already demonstrate the potential in applications, such as photovoltaic cells, optical detectors and displays.

  15. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-12-17T23:59:59.000Z

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  16. p-Type transparent conducting oxides and methods for preparation

    DOE Patents [OSTI]

    Shahriari, Dean Y. (Evanston, IL); Barnabe, Antoine (Toulouse, FR); Mason, Thomas O. (Evanston, IL); Poeppelmeier, Kenneth R. (Evanston, IL)

    2011-05-31T23:59:59.000Z

    A facile, low temperature and low pressure method for the preparation of a wide range of phase pure ABO.sub.2 compositions.

  17. Controlling Surface Properties of Transparent Conducting Oxides | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov ContactsContractOffice of ScientificCenter |

  18. Cation Defects and Conductivity in Transparent Oxides. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites ProposedOccupational Healthcatalysts . |with ZnO

  19. Precise Application of Transparent Conductive Oxide Coatings for Flat Panel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaver Exemplary StudentDisplays and

  20. Precise Application of Transparent Conductive Oxide Coatings for Flat Panel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaver Exemplary StudentDisplays

  1. E-Print Network 3.0 - al transparent conducting Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Summary: ISSN 1745-9648 Price Transparency and Consumer Naivety in a Competitive Market by Luke Garrod ESRC... , obfuscation, price transparency Acknowledgements: I am...

  2. Quantum conductance of zigzag graphene oxide nanoribbons

    SciTech Connect (OSTI)

    Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza, E-mail: mkhatun@bsu.edu [Department of Physics and Astronomy, Center for Computational Nanoscience, Ball State University, Muncie, Indiana 47306 (United States)

    2014-04-21T23:59:59.000Z

    The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.

  3. Zinc oxyfluoride transparent conductor

    DOE Patents [OSTI]

    Gordon, Roy G. (Cambridge, MA)

    1991-02-05T23:59:59.000Z

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  4. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    SciTech Connect (OSTI)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

    2014-09-01T23:59:59.000Z

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50?°C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  5. NO.sub.x sensing devices having conductive oxide electrodes

    DOE Patents [OSTI]

    Montgomery, Frederick C. (Oak Ridge, TN); West, David L. (Oak Ridge, TN); Armstrong, Timothy R. (Clinton, TN); Maxey, Lonnie C. (Powell, TN)

    2010-03-16T23:59:59.000Z

    A NO.sub.x sensing device includes at least one pair of spaced electrodes, at least one of which is made of a conductive oxide, and an oxygen-ion conducting material in bridging electrical communication with the electrodes.

  6. Co-sputtered Aluminum Doped Zinc Oxide Thin Film as Transparent Anode for Organic Light-emitting Diodes

    E-Print Network [OSTI]

    Co-sputtered Aluminum Doped Zinc Oxide Thin Film as Transparent Anode for Organic Light and Technology, Clear Water Bay, Kowloon, Hong Kong, China ABSTRACT Aluminum doped zinc oxide (AZO that MTDATA matches better with AZO than CuPc, which served as hole injection layer. Keywords: Aluminum doped

  7. Low temperature proton conducting oxide devices

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

    2008-08-19T23:59:59.000Z

    A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

  8. In0,53Ga0.47Asp-i-n photodiodes with transparent cadmium tin oxide contacts

    E-Print Network [OSTI]

    In0,53Ga0.47Asp-i-n photodiodes with transparent cadmium tin oxide contacts Paul R. Berger,a) Niloy for publication 28 July 1992) A new type of p-i-n In,,,,GaO,,,As photodiode having an optically transparent into the i-region is not relevant avoiding an increased dark current. The photodiodes exhibited leakage

  9. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics

    SciTech Connect (OSTI)

    Yang, Yang [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Room GB254B, Toronto, Ontario M5S 3G4 (Canada)] [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Room GB254B, Toronto, Ontario M5S 3G4 (Canada); O’Brien, Paul G. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Room 140, Toronto, Ontario M5S 3E4 (Canada) [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Room 140, Toronto, Ontario M5S 3E4 (Canada); Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada); Ozin, Geoffrey A., E-mail: gozin@chem.utoronto.ca, E-mail: kherani@ecf.utoronto.ca [Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada); Kherani, Nazir P., E-mail: gozin@chem.utoronto.ca, E-mail: kherani@ecf.utoronto.ca [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Room GB254B, Toronto, Ontario M5S 3G4 (Canada); Department of Materials Science and Engineering, University of Toronto, 184 College Street, Room 140, Toronto, Ontario M5S 3E4 (Canada)

    2013-11-25T23:59:59.000Z

    Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135?nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295?W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

  10. Mössbauer study of conductive oxide glass

    SciTech Connect (OSTI)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27T23:59:59.000Z

    Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  11. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    SciTech Connect (OSTI)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung-Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Noh, Yong-Jin; Na, Seok-In [Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14, Deokjin-dong, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of)

    2014-09-01T23:59:59.000Z

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8?nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55?×?10{sup ?5} ? cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54?×?10{sup ?3} ?{sup ?1}, comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10?nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.

  12. Nano Res (2010) 3: 564573564 Uniform, Highly Conductive, and Patterned Transparent Films

    E-Print Network [OSTI]

    Zhou, Chongwu

    and Center for Energy Nanoscience and Technology, University of Southern California, Los Angeles, California technique to fabricate silver nanowire films on both rigid and flexible substrates, bringing advantages displays, solar cells, and light emitting diodes [1­3].Doped-metal oxides such as tin-doped indium oxide

  13. Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics

    E-Print Network [OSTI]

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01T23:59:59.000Z

    The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.

  14. Fluorine compounds for doping conductive oxide thin films

    DOE Patents [OSTI]

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23T23:59:59.000Z

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  15. Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires

    E-Print Network [OSTI]

    tin oxide films in electrochromic (EC) devices. The successful integration of such graphene/NW films. KEYWORDS: Graphene, nanowires, transparent conductive films, electrochromic devices Due to low electron

  16. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect (OSTI)

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01T23:59:59.000Z

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  17. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01T23:59:59.000Z

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  18. Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL

    SciTech Connect (OSTI)

    None

    2012-07-15T23:59:59.000Z

    An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaledâ??s HIL material instead of Plextronicsâ??. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are the obvious advantages of this technology. The project has shown that this nanowire technology is a viable option to achieve OLED devices with good lifetime and efficiency and we are currently working with manufacturers to utilize this technology in a production setting.

  19. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOE Patents [OSTI]

    Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.

    1999-07-13T23:59:59.000Z

    A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.

  20. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    SciTech Connect (OSTI)

    Vu, B.T.V.

    1994-02-01T23:59:59.000Z

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10{sup 4}-10{sup 6}K) and high density plasmas (10{sup 22}-10{sup 24}cm{sup {minus}3}) produced by irradiating a transparent solid target with high intensity (10{sup 13} - 10{sup 15}W/cm{sup 2}) and subpicosecond (10{sup {minus}12}-10{sup {minus}13}s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature ({approximately}40eV) super-critical density ({approximately}10{sup 23}/cm{sup 3}) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical ({approximately}10{sup 18}/cm{sup 3}) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  1. Highly transparent Nb-doped indium oxide electrodes for organic solar cells

    SciTech Connect (OSTI)

    Kim, Jun Ho; Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Na, Seok-In [Professional Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14, Deokjin-dong, Jeongju-si, Jellabuk-do 561-756 (Korea, Republic of); Chung, Kwun-Bum [Department of Physics, Dankook University, Mt. 29, Anseo-Dong, Chenan 330-714 (Korea, Republic of); Lee, Hye-Min; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin, Gyeonggi-do 446-701 (Korea, Republic of)

    2014-03-15T23:59:59.000Z

    The authors investigated the characteristics of Nb-doped In{sub 2}O{sub 3} (INbO) films prepared by co-sputtering of Nb{sub 2}O{sub 5} and In{sub 2}O{sub 3} for use in transparent anodes for organic solar cells (OSCs). To optimize the Nb dopant composition in the In{sub 2}O{sub 3} matrix, the effect of the Nb doping power on the resistivity and transparency of the INbO films were examined. The electronic structure and microstructure of the INbO films were also investigated using synchrotron x-ray absorption spectroscopy and x-ray diffraction examinations in detail. At the optimized Nb co-sputtering power of 30?W, the INbO film exhibited a sheet resistance of 15??/sq, and an optical transmittance of 86.04% at 550?nm, which are highly acceptable for the use as transparent electrodes in the fabrication of OSCs. More importantly, the comparable power conversion efficiency (3.34%) of the OSC with an INbO anode with that (3.31%) of an OSC with a commercial ITO anode indicates that INbO films are promising as a transparent electrode for high performance OSCs.

  2. Structural and electrochemical characterization of two proton conducting oxide thin films for a microfabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Capozzoli, Peter M

    2006-01-01T23:59:59.000Z

    The use of proton conducting oxide materials as an electrolyte offers the potential to reduce the operating temperature of a solid oxide fuel cell (SOFC), leading to improved thermal management and material compatibility. ...

  3. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04T23:59:59.000Z

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  4. Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides

    E-Print Network [OSTI]

    Park, Byungwoo

    , and this behavior was resolved by separating the changes in the carrier-transport characteristics of the intragrain, such as photovoltaic devices, liquid crystal displays (LCD), organic light-emitting diodes (OLED), touch panels, etc-film solar cells, which suggest a great potential toward effective light trapping for enhancing power

  5. Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer

    E-Print Network [OSTI]

    Lu, Tianlin

    2012-07-16T23:59:59.000Z

    Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

  6. KAg11(VO4)4 as a Candidate p-Type Transparent Conducting Oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3 |K-Eastand theory

  7. Indium-Vanadium Oxides Deposited by Radio Frequency Sputtering: New Thin Film Transparent

    E-Print Network [OSTI]

    Artuso, Florinda

    in many works, metal/vanadium mixed oxides have favorable properties when used as charge storage, 144 (No. 12), 4099. (2) Opara Krasovec, U.; Orel, B.; Reisfeld, R. Electrochem. Solid- State Let

  8. Enhanced Power Stability for Proton Conducting Solid Oxides Fuel Cells

    SciTech Connect (OSTI)

    Boris Merinov; William A. Goddard III; Sossina Haile; Adri van Duin; Peter Babilo; Sang Soo Han

    2005-12-29T23:59:59.000Z

    In order to provide the basis for a rational approach to improving the performance of Y-doped BaZrO{sub 3} electrolytes for proton conducting ceramic fuel cells, we carried out a series of coupled computational and experimental studies to arrive at a consensus view of the characteristics affecting the proton conductivity of these systems. The computational part of the project developed a practical first principles approach to predicting the proton mobility as a function of temperature and doping for polycrystalline systems. This is a significant breakthrough representing the first time that first principles methods have been used to study diffusion across grain boundaries in such systems. The basis for this breakthrough was the development of the ReaxFF reactive force field that accurately describes the structure and energetics of Y-doped BaZrO{sub 3} as the proton hops from site to site. The ReaxFF parameters are all derived from an extensive set of quantum mechanics calculations on various clusters, two dimensionally infinite slabs, and three dimensionally infinite periodic systems for combinations of metals, metal alloys, metal oxides, pure and Y-doped BaZrO{sub 3}, including chemical reaction pathways and proton transport pathways, structures. The ReaxFF force field enables molecular dynamics simulations to be carried out quickly for systems with {approx} 10,000 atoms rather than the {approx}100 or so practical for QM. The first 2.5 years were spent on developing and validating the ReaxFF and we have only had an opportunity to apply these methods to only a few test cases. However these simulations lead to transport properties (diffusion coefficients and activation energy) for multi-granular systems in good agreement with current experimental results. Now that we have validated the ReaxFF for diffusion across grain boundaries, we are in the position of being able to use computation to explore strategies to improve the diffusion of protons across grain boundaries, which both theory and experiment agree is the cause of the low conductivity of multi-granular systems. Our plan for a future project is to use the theory to optimize the additives and processing conditions and following this with experiment on the most promising systems. The experimental part of this project focused on improving the synthetic techniques for controlling the grain size and making measurements on the properties of these systems as a function of doping of impurities and of process conditions. A significant attention was paid to screening potential cathode materials (transition metal perovskites) and anode electrocatalysts (metals) for reactivity with Y-doped BaZrO{sub 3}, fabrication compatibility, and chemical stability in fuel cell environment. A robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have been successfully developed. Our Pt|BYZ|Pt fuel cell, with a 100 {micro}m thick Y-doped BaZrO{sub 3} electrolyte layer, demonstrates the peak power density and short circuit current density of 28 mW/cm{sup 2} and 130mA/cm{sup 2}, respectively. These are the highest values of this type of fuel cell. All of these provide the basis for a future project in which theory and computation are combined to develop modified ceramic electrolytes capable of both high proton conductivity and excellent mechanical and chemical stability.

  9. Electronically conducting metal oxide nanoparticles and films for optical sensing applications

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A

    2014-09-16T23:59:59.000Z

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  10. Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Yang, Bin (Columbus, OH); Perry, Steven T. (Galloway, OH); Mazanec, Terry (Solon, OH); Arora, Ravi (New Albany, OH); Daly, Francis P. (Delaware, OH); Long, Richard (New Albany, OH); Yuschak, Thomas D. (Lewis Center, OH); Neagle, Paul W. (Westerville, OH); Glass, Amanda (Galloway, OH)

    2011-08-16T23:59:59.000Z

    Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.

  11. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets

    E-Print Network [OSTI]

    implementation is its mass production, and the chemical exfoliation of graphite through oxidation. Alternative approaches to large-scale production of graphene, such as the thermal exfoliation of graphite oxide3 and the liquid-phase exfoliation of graphite4 and expandable graphite5 powders, are also studied

  12. Mechanical and transparent conductive properties of ZnO and Ga-doped ZnO films sputtered using electron-cyclotron-resonance plasma on polyethylene naphtalate substrates

    SciTech Connect (OSTI)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Microsystem Integration Laboratories 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2014-03-15T23:59:59.000Z

    Transparent conductive ZnO and Ga-doped ZnO (GZO) films were deposited on polyethylene naphtalate (PEN) sheet substrates using electron cyclotron resonance plasma sputtering. Both ZnO and GZO films were highly adhesive to the PEN substrates without inserting an intermediate layer in the interface. When compared at the same thickness, the transparent conductive properties of GZO films on PEN substrates were only slightly inferior to those on glass substrates. However, the carrier concentration of ZnO films on PEN substrates was 1.5?times that of those on glass substrates, whereas their Hall mobility was only 60% at a thickness of 300?nm. The depth profile of elements measured by secondary ion mass spectroscopy revealed the diffusion of hydrocarbons out of the PEN substrate into the ZnO film. Hence, doped carbons may act as donors to enhance carrier concentration, and the intermixing of elements at the interface may deteriorate the crystallinity, resulting in the lower Hall mobility. When the ZnO films were thicker than 400?nm, cracks became prevalent because of the lattice mismatch strain between the film and the substrate, whereas GZO films were free of cracks. The authors investigated how rolling the films around a cylindrical pipe surface affected their conductive properties. Degraded conductivity occurred at a threshold pipe radius of 10?mm when tensile stress was applied to the film, but it occurred at a pipe radius of 5?mm when compressive stress was applied. These values are guidelines for bending actual devices fabricated on PEN substrates.

  13. Operation of mixed conducting metal oxide membrane systems under transient conditions

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA)

    2008-12-23T23:59:59.000Z

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

  14. Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation

    E-Print Network [OSTI]

    Trice, Rodney W.

    , and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K oxidation resistance while maintaining low thermal conductivity and good phase stability. Padture) is proposed. The objective of this work is to quantify the effect of YAG on thermal resistance, long

  15. Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures

    E-Print Network [OSTI]

    Howden, Rachel M. (Rachel Mary)

    2013-01-01T23:59:59.000Z

    The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the ...

  16. Development of a cost effective surface-patterned transparent conductive coating as top-contact of light emitting diodes

    SciTech Connect (OSTI)

    Haldar, Arpita [Department of Applied Optics and Photonics, University of Calcutta, Kolkata-700009 (India); Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bera, Susanta; Jana, Sunirmal, E-mail: sjana@cgcri.res.in, E-mail: srirajib@yahoo.com [Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bhattacharya, Kallol; Chakraborty, Rajib, E-mail: sjana@cgcri.res.in, E-mail: srirajib@yahoo.com [Department of Applied Optics and Photonics, University of Calcutta, Kolkata-700009 (India)

    2014-05-21T23:59:59.000Z

    Sol-gel process has been used to form indium zinc oxide films using an optimized combination of zinc to indium concentration in the precursor solutions. Different structures, like one (1D) and two-dimensional (2D) gratings and diffractive optical elements (DOEs) in the form of Fresnel lens are fabricated on the film surface of proposed top metal contact of LED by imprint soft lithography technique. These structures can enhance the LED's light extraction efficiency (LEE) or can shape the output beam pattern, respectively. Several characterizations are done to analyze the material and structural properties of the films. The presence of 1D and 2D gratings as well as DOEs is confirmed from field emission scanning electron and atomic force microscopes analyses. Although, X-ray diffraction shows amorphous nature of the film, but transmission electron microscopy study shows that it is nano crystalline in nature having fine particles (?8?nm) of hexagonal ZnO. Shrinkage behaviour of gratings as a function of curing temperature is explained by Fourier transform infra-red spectra and thermo gravimetric-differential thermal analysis. The visible transmission and sheet resistance of the sample are found comparable to tin doped indium oxide (ITO). Therefore, the film can compete as low cost substitute of ITO as top metal contact of LEDs.

  17. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA)

    2007-12-25T23:59:59.000Z

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  18. Conductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity Jiahua Zhu,

    E-Print Network [OSTI]

    Guo, John Zhanhu

    ) nanocomposites reinforced with tungsten oxide (WO3) nanoparticles (NPs) and nanorods (NRs) are fabricatedConductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity Jiahua Zhu, Suying techniques to form PNCs. Therefore, synthesis techniques have been developed and optimized to incorporate

  19. AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion

    E-Print Network [OSTI]

    Konezny, Steven J.

    AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny% solar-to-electric energy conversion efficiency) exploited the large surface area of nanoporous thin for solar photoconversion is analyzed using a model based on fluctuation-induced tunneling conduction (FITC

  20. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01T23:59:59.000Z

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  1. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment

    SciTech Connect (OSTI)

    Liu, Kejia; Luo, Junhang; Johnson, Christopher; Liu, Xingbo; Lang, J.; Mao, S.X.

    2008-08-15T23:59:59.000Z

    The oxidation properties of potential SOFCs materials Crofer 22 APU, Ebrite and Haynes 230 exposed in coal syngas at 800 °C for 100 h were studied. The phases and surface morphology of the oxide scales were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis (EDX). The mechanical endurance and electrical resistance of the conducting oxides were characterized by indentation and electrical impedance, respectively. It was found that the syngas exposure caused the alloys to form porous oxide scales, which increased the electrical resistant and decreased the mechanical stability. As for short-term exposure in syngas, neither carbide nor metal dusting was found in the scales of all samples.

  2. Transparent conductive nano-composites

    DOE Patents [OSTI]

    Geohegan, David Bruce (Knoxville, TN); Ivanov, Ilia N. (Knoxville, TN); Puretzky, Alexander A. (Knoxville, TN); Jesse, Stephen (Knoxville, TN); Hu, Bin (Knoxville, TN); Garrett, Matthew (Knoxville, TN); Zhao, Bin (Easley, SC)

    2011-04-12T23:59:59.000Z

    The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.

  3. Transparent conductive nano-composites

    DOE Patents [OSTI]

    Geohegan, David Bruce; Ivanov, Ilia N; Puretzky, Alexander A; Jesse, Stephen; Hu, Bin; Garrett, Matthew; Zhao, Bin

    2013-09-24T23:59:59.000Z

    The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.

  4. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect (OSTI)

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01T23:59:59.000Z

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  5. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors

    E-Print Network [OSTI]

    Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films. KEYWORDS: Graphene, flexible film, chemical activation, supercapacitors Free-standing thin film materials

  6. CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  7. Investigation of zinc oxide doped with metal impurities for use as thin film conductive phosphors

    E-Print Network [OSTI]

    Evatt, Steven R.

    1994-01-01T23:59:59.000Z

    of a viable flat panel display, low voltage, conductive phosphors which emit blue, red, and green light will be required for the field emission technology. This thesis examines zinc oxide (ZnO) based thin ( ) phosphors for such an application. ZnO is a...

  8. Oxide Electronic Conductivity and Hydrogen Pickup Fraction in Zr alloys Adrien Coueta

    E-Print Network [OSTI]

    Motta, Arthur T.

    hydrogen ingress can cause cladding embrittlement and limit cladding lifetime. However, mechanisticOxide Electronic Conductivity and Hydrogen Pickup Fraction in Zr alloys Adrien Coueta , Arthur T, 77818 Moret-sur-Loing, France INTRODUCTION The hydrogen pick-up during cladding corrosion is a critical

  9. Stochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1

    E-Print Network [OSTI]

    Averbuch, Amir

    Stochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1 A. Averbuch,2,a of LiI salt. The current is due to diffusion and electric interactions with a permanent external field, the PEO charges, and ion-ion interactions. Potential barriers are created in the PEO by loops in structure

  10. Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides Bassat J we obtain in both cases data concerning the oxygen diffusion in the bulk and the oxygen exchange with regards to the oxygen reduction reaction. Detailed experimental and analytical processes are given

  11. Pressure effect on ionic conductivity in yttrium-oxide-doped single-crystal zirconium oxide

    SciTech Connect (OSTI)

    Park, E.T.; Park, J.H.

    1998-06-01T23:59:59.000Z

    In this study, the authors investigated the effect of pressure on the ionic conductivity of a 9.5 mol% yttria-stabilized zirconia (YSZ) single crystal. The experiment was conducted in the elastic region, and the oxygen ion transport number was unity (t{sub ion} > 0.99999). A conventional four-probe DC method was used to measure the ionic conductivity of the rectangular-shaped sample under uniaxial pressures up to 600 atm at 750 C in air. Measured ionic conductivity decreased as applied pressure increased. Based on henry Eyring`s absolute reaction rate theory, which states that the calculated activation volume has a positive value ({Delta}V{sup 2} = 2.08 cm{sup 3}/mol of O{sup {minus}2}) for oxygen ion transport in the fluoride cubic lattice, they concluded that the results they obtained could be explained by an oxygen ion transport mechanism. This mechanism can explain the fact that the interionic distance increases during oxygen ion transport from one unit cell to neighboring unit cells.

  12. CdO as the Archetypical Transparent Conducting Oxide. Systematics of Dopant Ionic Radius and Electronic Structure

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    the last two decades as critical components of flat panel displays, solar cells, and low-emissivity windowsO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii

  13. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-03-31T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

  14. Conductive” yttria-stabilized zirconia as an epitaxial template for oxide heterostructures

    SciTech Connect (OSTI)

    Caspers, C.; Müller, M., E-mail: mart.mueller@fz-juelich.de [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), 47048 Duisburg (Germany)

    2014-05-07T23:59:59.000Z

    We report an in situ thermochemical treatment that significantly increases the macroscopic electrical conductivity of insulating yttria-stabilized zirconia (YSZ) (001) single-crystalline substrates. We demonstrate the high-quality surface crystalline structure of the resulting “conductive” cYSZ (001) by low- and high-energy electron diffraction. Soft- and hard X-ray photoemission spectroscopy measurements reveal a sizable reduction of Zr cations to a metallic state and their homogeneous distribution within the cYSZ. We discuss the correlation between the microscopic chemical processes leading to the increased macroscopic metallicity. Finally, the heteroepitaxial growth of a functional magnetic oxide model system, ultrathin EuO on cYSZ (001), was demonstrated. cYSZ (001) thereby enables both high quality oxide heteroepitaxy and the advanced sample characterization by high electron-fluence characterization techniques.

  15. TRANSPARENCY RECYCLING PROGRAM PROCEDURES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, andor files. 3.) PLACE the transparencies (only) into...

  16. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2000-10-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

  17. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-09-30T23:59:59.000Z

    A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

  18. Light Induced Water Oxidation on Cobalt-Phosphate (Co-Pi) Catalyst Modified Semi-Transparent, Porous SiO2-BiVO4 Electrodes

    SciTech Connect (OSTI)

    Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Turner, J. A.; Brown, L. D.; Herring, A. M.

    2012-04-21T23:59:59.000Z

    A facile and simple procedure for the synthesis of semi-transparent and porous SiO{sub 2}-BiVO{sub 4} electrodes is reported. The method involves a surfactant assisted metal-organic decomposition at 500 C. An earth abundant oxygen evolution catalyst (OEC), cobalt phosphate (Co-Pi), has been used to modify the SiO{sub 2}-BiVO{sub 4} electrode by electrodeposition (ED) and photoassisted electrodeposition (PED) methods. Modified electrodes by these two methods have been examined for light induced water oxidation and compared to the unmodified SiO{sub 2}-BiVO{sub 4} electrodes by various photoelectrochemical techniques. The PED method was a more effective method of OEC preparation than the ED method as evidenced by an increased photocurrent magnitude during photocurrent-potential (I-V) characterizations. Electrode surfaces catalyzed by PED exhibited a very large cathodic shift (420 mV) in the onset potential for water oxidation. The chopped-light I-V measurements performed at different intervals over 24-hour extended testing under illumination and applied bias conditions show a fair photostability for PED Co-Pi modified SiO{sub 2}-BiVO{sub 4}.

  19. Relationship between transport properties and phase transformations in mixed-conducting oxides

    SciTech Connect (OSTI)

    Deng, Z.Q. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)]. E-mail: dzqm@dicp.ac.cn; Yang, W.S. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu, W. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, C.S. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2006-02-15T23:59:59.000Z

    To elucidate the relationship between transport properties and phase transformations in mixed-conducting oxides, Sr{sub 0.9}Ca{sub 0.1}Co{sub 0.89}Fe{sub 0.11}O{sub 3-} {sub {delta}} (SCCFO) and SrCoO{sub 3-} {sub {delta}} (SCO) were chosen as the model materials and have been investigated in detail. Oxygen permeation measurements verified that both oxides are well permeable to oxygen at elevated temperatures, e.g., at 900 deg. C during a cooling procedure, oxygen permeation rates as large as 1.5 and 2.0 mL/min/cm{sup 2} could be obtained with disk-shaped SCCFO and SCO membranes of thickness 1.5 mm, respectively. But when cooled to critical temperatures, the oxygen permeability of these kinds of oxides diminished sharply, which could be recovered by increasing the temperature again to certain values. Abrupt changes on electrical conductivity were also observed for both oxides around the same region of temperature as that of oxygen permeability. As indicated by high-temperature X-ray diffraction and thermal analysis, the SCCFO and SCO systems undergo phase transformation between a low-temperature orthorhombic brownmillerite structure (B) or a hexagonal 2H-type structure (H) and a high-temperature cubic perovskite structure (C), respectively. The present results suggest the observed abrupt changes in transport properties versus temperature are attributed to such phase transformation, which may be directly associated with the order-disorder transition of oxygen vacancies. Moreover, compared to the B/C transformation that mainly involves an order-disorder transition on the oxygen sublattice, the H/C one necessarily also involves the cooperative long-range reorganization on the cation sublattice. Therefore it occurs at a higher temperature and absorbs more heat quantity than those of B/C transformation.

  20. Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes

    SciTech Connect (OSTI)

    Han, W.

    2011-05-18T23:59:59.000Z

    Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

  1. New insight into the properties of proton conducting oxides from neutron total scattering

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory; Malavasi, Lorenzo [U PAVIA, ITALY; Flor, Giorgio [U PAVIA, ITALY

    2008-01-01T23:59:59.000Z

    In recent years there has been a growing interest in searching for new proton conducting materials that could be successfully used in medium temperature solid oxide fuel cells (SOFC). In particular, proton conducting oxides have been the subject of a massive research activity. Among the most promising oxide the acceptor doped cerates appears to be those most appealing in view of practical applications. A relevant aspect of these materials is the investigation of the local distortion of the structure arising from water incorporation. This kind of study is of great help in defining how the structure changes in order to accommodate the proton which is usually thought to enter the structure in form of hydroxyl group where the oxygen vacancy results from the acceptor doping on the Ce site. Atomistic simulation work confirmed that the preferential location of dopant ions is on the Ce site. To the best of our knowledge the only experimental work addressing the role of dopant and water incorporation on the local structure of V-doped cerates is a X-ray absorption spectroscopy (XAS) work carried out by Longo and coworkers at the Y K-edge. The main conclusion of that work was the observation that Y-doping induces a distortion of the parent BaCe0{sub 3} structure resulting in a significantly distorted Y local environment. However, local structure information derived from XAS study does not provide a direct structural information and depends strongly upon the model used to calcualte theoretical {chi}(k) which is not unique. Moreover, the XAS analysis usually provide significant information only up to the second shell. As a consequence, a more reliable and useful technique to investigate the local arrangement in these proton conducting oxides appears to be the Pair Distribution Function (PDF) analysis derived from total neutron scattering measurements. In the present work we investigated the pure BaCeO{sub 3} and the acceptor doped BaCe{sub 0.90}Y{sub 0.10}O{sub 2.85} compounds. In both cases the samples have been measured at room temperature and after being exposed to dry and wet air (humidification attained through bubbling air in D{sub 2}O). Aim of this work is to look at the effect of Y-doping and water doping on the local structure of the above mentioned samples.

  2. GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al{sub 2}O{sub 3} powder

    SciTech Connect (OSTI)

    Kim, T. K.; Kim, S. H.; Yang, S. S.; Son, J. K.; Lee, K. H.; Hong, Y. G.; Shim, K. H.; Yang, J. W.; Lim, K. Y.; Yang, G. M. [Department of Semiconductor and Chemical Engineering and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Bae, S. J. [Optowell Co., Ltd., 308, Semiconductor Physics Research Center, 664-14, Dukjin-Dong, Dukjin-Gu, Jeonju 561-756 (Korea, Republic of)

    2009-04-20T23:59:59.000Z

    Surface-textured InGaN/GaN light-emitting diodes (LEDs) coated with transparent Al{sub 2}O{sub 3} powder were fabricated by natural lithography combined with inductively coupled plasma etching. For surface texturing, 300 nm size Al{sub 2}O{sub 3} powder is used as an etching mask by simply coating the surface using a spin-coating process. Also, the powders are left on the surface after surface texturing to further increase extraction efficiency. At 20 mA, the light output power of the textured indium tin oxide (ITO) InGaN/GaN LEDs coated with the Al{sub 2}O{sub 3} powder is enhanced by {approx}112% compared with the conventional nontextured ITO LED. The enhanced light output power is attributed to the improved extraction efficiency resulting from an overall decrease in the total internal reflection due to the textured surface and the Al{sub 2}O{sub 3} powder coating.

  3. Novel transparent electrodes allow sustainable production of electronic devices

    SciTech Connect (OSTI)

    Constant, Kristen

    2010-12-27T23:59:59.000Z

    A novel technique for fabricating inexpensive, transparent electrodes from common metals has been developed by engineers and scientists at Iowa State University and Ames Laboratory. They exhibit very high transparency and are very good electrical conductors. This is a combination of properties that is difficult to achieve with common materials. The most frequently used transparent electrode in today's high-technology devices (such as LCD screens) is indium tin oxide (ITO). While ITO performs well in these applications, the supply of indium is very limited. In addition, it is rapidly decreasing as consumer demand for flat-panel electronics is skyrocketing. According to a 2004 US Geological Survey report, as little as 14 years exploitation of known indium reserves remains. In addition to increasing prices, the dwindling supply of indium suggests its use is not sustainable for future generations of electronics enthusiasts. Solar cells represent another application where transparent electrodes are used. To make solar-energy collection economically feasible, all parts of solar photovoltaics must be made more efficient and cost-effective. Our novel transparent electrodes have the potential to do both. In addition, there is much interest in developing more efficient, cost-effective, and environmentally friendly lighting. Incandescent light bulbs are very inefficient, because most of their energy consumption is wasted as heat. Fluorescent lighting is much more efficient but still uses mercury, an environmental toxin. An attractive alternative is offered by LEDs, which have very high efficiencies and long lifetimes, and do not contain mercury. If made bright enough, LED use for general lighting could provide a viable alternative. We have fabricated electrodes from more commonly available materials, using a technique that is cost effective and environmentally friendly. Most of today's electronic devices are made in specialized facilities equipped with low-particle-count clean-room facilities and multimillion-dollar equipment. On the other hand, the novel process we developed uses a method that makes use of polymer molds and standard deposition techniques in an ambient laboratory environment. The final structure consists of tall ribbons of metal (standing on edge) that are so thin that they do not block light but are very good conductors. The advantage of this design is that it avoids the competition between conductivity and transparency inherent in transparent oxide electrodes. By making the structure taller, conductivity can be increased without impacting transparency. We have measured both electrical conductivity and transparency for these structures. We performed two-wire electrical measurements to quantify the structures resistance using metal contacts deposited on each end. The total sample area was 4 x 4mm{sup 2}. We measured a resistance of structures with 40nm gold sidewalls of 7.3{Omega}, which is lower than that of ITO glass (which has a sheet resistance around 10O/square). We investigated the structures optical properties based on both specular- and total-transmission measurements. Specular transmission is measured by collecting the transmitted light at normal incidence, while total transmission is obtained by collecting transmitted light at normal incidence and diffracted light using an integrating sphere. Figure 3 shows the total transmission of a grating with 40nm gold or silver sidewalls on a glass substrate compared to that of ITO. Additionally, the transparency changes very little within 30{sup o} off normal incidence. This high visible-light transmission of our metal-patterned structures is very promising for their application as transparent electrodes, because most visible light was allowed to propagate through the patterned metallic/polymeric structures. Researchers in our group continue to refine the fabrication methods and are investigating methods to make large-scale structures for use in a variety of applications that require both transparency and high electrical conductivity. We are also applying these fab

  4. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    SciTech Connect (OSTI)

    Glatkowski, P.J.; Landis, D.A.

    2013-04-16T23:59:59.000Z

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon���® enabled solar cells.

  5. Transparent Flexible Conductive Polymer Antennas Nicholas A. Vacirca, Nicholas J. Kirsch, Elizabeth E. Plowman, Adam K. Fontecchio, Kapil R. Dandekar, Timothy P. Kurzweg

    E-Print Network [OSTI]

    Kurzweg, Timothy P.

    and Computer Engineering, Drexel University Antenna Testing & Results . PEDOT:PSS Conductive Polymer Printing-temperature printing methods also enable the use of many non-traditional substrates including polymers and plastics. PEDOT:PSS Solution Modifications Why Printing? Recently developed conductive materials, such as PEDOT

  6. Laser Direct Write Patterned Indium Tin Oxide Films for Photomasks and Anisotropic Resist Applications

    E-Print Network [OSTI]

    Chapman, Glenn H.

    Laser Direct Write Patterned Indium Tin Oxide Films for Photomasks and Anisotropic Resist bimetallic Sn/In film into a indium tin oxide layer. Sn over In films (15-120nm thick) with a 1:10 thickness mask, etch resist. 1. Introduction The transparent and conductive films like indium tin oxide (ITO

  7. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    SciTech Connect (OSTI)

    Rajeeva, M. P., E-mail: jayanna60@gmail.com; Jayanna, H. S., E-mail: jayanna60@gmail.com; Ashok, R. L.; Naveen, C. S. [Department of P.G. Studies and Research in Physics, Kuvempu University, Jnanasahyadri, Shankarghatta, Shimoga- 577451, Karnataka (India); Bothla, V. Prasad [Department of Physics, Indian Institute of Science, Bangalore-560012 (India)

    2014-04-24T23:59:59.000Z

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C{sub 6}H{sub 8}O{sub 7}) to oxidizer (HNO{sub 3}) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO{sub 2} powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO{sub 2} nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO{sub 2} nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO{sub 2} nanomaterial decreases with the grain size at constant temperature.

  8. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  9. Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays

    E-Print Network [OSTI]

    Jain, Kanti

    Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication online 25 June 2007 Indium tin oxide ITO , an important material used as a transparent conductive oxide in such fabrication. Therefore, innovations in patterning tech- nology, especially for materials such as indium tin

  10. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, April 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    Gordon, R.G. [Harvard Univ., Cambridge, MA (United States)

    1995-10-01T23:59:59.000Z

    Transparent and reflecting electrodes are important parts of the structure of amorphous silicon solar cells. We report improved methods for depositing zinc oxide, deposition of tin nitride as a potential reflection-enhancing diffusion barrier between the a-Si and back metal electrodes. Highly conductive and transparent fluorine-doped zinc oxide was successfully produced on small areas by atmospheric pressure CVD from a less hazardous zinc precursor, zinc acetylacetonate. The optical properties measured for tin nitride showed that the back-reflection would be decreased if tin nitride were used instead of zinc oxide as a barrier layer over silver on aluminum. Niobium-doped titanium dioxide was produced with high enough electrical conductivity so that normal voltages and fill factors were obtained for a-Si cells made on it.

  11. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOE Patents [OSTI]

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26T23:59:59.000Z

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  12. Fabrication of transparent ceramics using nanoparticles

    DOE Patents [OSTI]

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18T23:59:59.000Z

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  13. Conductivity and optical band gaps of polyethylene oxide doped with Li{sub 2}SO{sub 4} salt

    SciTech Connect (OSTI)

    Chapi, Sharanappa, E-mail: dehu2010@gmail.com; Raghu, S., E-mail: dehu2010@gmail.com; Subramanya, K., E-mail: dehu2010@gmail.com; Archana, K., E-mail: dehu2010@gmail.com; Mini, V., E-mail: dehu2010@gmail.com; Devendrappa, H., E-mail: dehu2010@gmail.com [Dept. of Physics, Mangalore University, Mangalagangothri-574199 (India)

    2014-04-24T23:59:59.000Z

    The conductivity and optical properties of Li{sub 2}SO{sub 4} doped polyethylene oxide (PEO) films were studied. The polymer electrolyte films are prepared using solution casting technique. The material phase change was confirmed by X-ray diffraction (XRD) technique. Optical absorption study was conducted using UV- Vis. Spectroscopy in the wavelength range 190–1100nm on pure and doped PEO films. The direct and indirect optical band gaps were found decreased from 5.81–4.51eV and 4.84–3.43eV respectively with increasing the Li{sub 2}SO{sub 4}. The conductivity found to increases with increasing the dopant concentration due to strong hopping mechanism at room temperature.

  14. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOE Patents [OSTI]

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18T23:59:59.000Z

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  15. Modeling and simulation of Li-ion conduction in poly(ethylene oxide)

    E-Print Network [OSTI]

    Averbuch, Amir

    /discharge voltage depends on the current and resistance of all battery components. In most solid-state lithium as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter-ion batteries, a thin-layer (0.02­0.2 mm) solid polymer electrolyte (SPE) is sandwiched between two electrodes

  16. Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent

    E-Print Network [OSTI]

    , 71004 Heraklion, Crete, Greece Available online 19 January 2006 Abstract Transparent zinc oxide (Zn Keywords: Zinc oxide; PLD; AFM; Ozone 1. Introduction Zinc oxide (ZnO) is an n-type semiconductor devices [3], varistors, planar optical waveguides [4], transparent electrodes [5,6], ultraviolet

  17. Efficient Electro-Optical Modulation Based on Indium Tin Oxide

    E-Print Network [OSTI]

    Shi, Kaifeng

    2015-01-01T23:59:59.000Z

    We experimentally demonstrate several electro-optical modulators based on transparent conducting oxides. Our previous work demonstrated the modulator structure on glass substrate with broadband bias polarity-dependent modulation. Further exploration shows similar modulation effect of the modulator on quartz and silicon substrate.

  18. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

    2012-08-21T23:59:59.000Z

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  19. A Dictionary for Transparency

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2001-11-15T23:59:59.000Z

    There are many terms that are used in association with the U.S. Defense Threat Reduction Agency (DTRA) Transparency Project associated with the Mayak Fissile Materials Storage Facility. This is a collection of proposed definitions of these terms.

  20. Supersymmetric transparent optical intersections

    E-Print Network [OSTI]

    Stefano Longhi

    2015-01-09T23:59:59.000Z

    Supersymmetric (SUSY) optical structures provide a versatile platform to manipulate the scattering and localization properties of light, with potential applications to mode conversion, spatial multiplexing and invisible devices. Here we show that SUSY can be exploited to realize broadband transparent intersections between guiding structures in optical networks for both continuous and discretized light. These include transparent crossing of high-contrast-index waveguides and directional couplers, as well as crossing of guiding channels in coupled resonator lattices.

  1. High Temperature Oxidation Resistance and Surface Electrical Conductivity of Stainless Steels with Filtered Arc Cr-Al-N Multilayer and/or Superlattice Coatings

    SciTech Connect (OSTI)

    Gannon, Paul E.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Deibert, Max; Smith, Richard J.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-11-01T23:59:59.000Z

    The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks has directed attention to the use of metal plates with oxidation resistant coatings. Candidate coatings must exhibit chemical and thermal-mechanical stability and high electrical conductivity during long-term (>400,000 hrs) exposure to SOFC operatong conditions. The high temperature oxidation resistance and surface electrical donductivity of 304, 440A,a dn Crofer-22 APU steel coupons, with and without multilayer and/or superlattice coatings from a Cr-Al-N system were investigated as a function of exposure in an oxidization atmosphere at high temperatures. The coatins were deposited using large area filtered arc depsition (LAFAD) technology [1], and subsequently annealed in air at 800 degrees C for varying times. Area specific resistance and activation energy for electrical conductivity of oxidized coupons were measured using a 4-point technique with Pt paste for electrical contact between facing oxidized coupon surfaces. The surface compositon, structure and morphology of the coupons were characterized using RBS, nuclear reaction analysis, XPS, SEM, and AFM techniques. The structure of the CRN/CrAlN multilayered superlattice coatings was characterized by TEM. By altering the architecture of the coating layers, both surface electrical conductivity and oxidation resistance [2] improved signigicantly for some of the coated samples tested up to ~100hrs.

  2. List of Journal Publications (updated April 2014) R. Justin, B. Chen*: Strong and conductive polymer-reduced graphene oxide

    E-Print Network [OSTI]

    Ojovan, Michael

    polymer-reduced graphene oxide nanocomposites for transdermal drug deliveyr. Journal of Materials*: Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites. Carbohydrate Polymers. 2014, 103, 70-80. · R. Justin, B. Chen*: Body temperature reduction of graphene oxide through

  3. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

  4. Stretchable, Transparent, Ionic Conductors

    E-Print Network [OSTI]

    Suo, Zhigang

    , transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled reaction occurs, and the electrical double layer behaves like a capacitor (Fig. 1C). A circuit

  5. Product Information Transparent

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    , transformers, amplifiers, high voltage resistor packs, and relays; adhesive/encapsulant for solar cellsProduct Information Solar FEATURES · Transparent · Cures to flexible elastomer · Constant cure rate elastomer, which is suited for the protection of electrical/electronic devices in solar applications. HOW

  6. 335Nanostructured ZnO and ZAO transparent thin films by sputteringsurface characterization Corresponding author: M. Suchea, e-mail: mirasuchea@iesl.forth.gr

    E-Print Network [OSTI]

    as transparent electrode in solar cells and flat panel displays as well as for the fabrication of gratings Abstract. Zinc oxide (ZnO) and aluminum zinc oxide (ZAO) transparent thin films with different thickness Zinc oxide is one of the earliest discovered metal oxide gas sensing materials. It is an n-type semi

  7. Oxide-ion conductivity in Cu {sub x}Ce{sub 1-x}O{sub 2-{delta}} (0 {<=} x {<=} 0.10)

    SciTech Connect (OSTI)

    Gayen, Arup [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Priolkar, K.R. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India); Shukla, A.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Ravishankar, N. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Hegde, M.S. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)]. E-mail: mshegde@sscu.iisc.ernet.in

    2005-03-08T23:59:59.000Z

    Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10{sup -5} atm, Cu {sub x}Ce{sub 1-x}O{sub 2-{delta}} (0 {<=} x {<=} 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu{sub 0.10}Ce{sub 0.90}O{sub 2-{delta}} exhibits the oxide-ion conductivity of ca. 10{sup -4} {omega}{sup -1} cm{sup -1} at 600 deg. C at an oxygen partial pressure of 10{sup -5} atm.

  8. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    SciTech Connect (OSTI)

    Kuang, Ping

    2011-05-15T23:59:59.000Z

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R{sub s} = 10 ohms/square ({Omega}#2;/?)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2{Omega}#2;/?. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

  9. Photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum thin films at interfaces with metal oxide films of different conductivities

    E-Print Network [OSTI]

    Mei, Jun

    We report a comprehensive study of photoluminescence (PL) quenching of tris-(8-hydroxyquinoline) aluminum (Alq[subscript ]3) at interfaces with thin films of tin oxide (SnO[subscript 2]) using both steady-state and ...

  10. TRANSPARENCY RECYCLING PROGRAM PROCEDURES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainabilitySyntheticaquifer TRANSPARENCY

  11. GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, Kun; Xu, Chen, E-mail: xuchen58@bjut.edu.cn; Deng, Jun; Zhu, Yanxu; Guo, Weiling; Mao, Mingming; Xun, Meng; Chen, Maoxing; Zheng, Lei [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China)] [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China); Xie, Yiyang [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 (China)] [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Jie, E-mail: jie.sun@chalmers.se [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China) [Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124 (China); Mikroteknologi och Nanovetenskap, Chalmers Tekniska Högskola AB, Göteborg 41296 (Sweden)

    2013-11-25T23:59:59.000Z

    Ordered and dense GaN light emitting nanorods are studied with polycrystalline graphene grown by rapid chemical vapor deposition as suspended transparent electrodes. As the substitute of indium tin oxide, the graphene avoids complex processing to fill up the gaps between nanorods and subsequent surface flattening and offers high conductivity to improve the carrier injection. The as-fabricated devices have 32% improvement in light output power compared to conventional planar GaN-graphene diodes. The suspended graphene remains electrically stable up to 300?°C in air. The graphene can be obtained at low cost and high efficiency, indicating its high potential in future applications.

  12. 2011 Annual Health Physics Report for the HEU transparency Program

    SciTech Connect (OSTI)

    Radev, R

    2012-04-30T23:59:59.000Z

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoring visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.

  13. 1 Introduction The perception of motion transparency can arise from physically transparent objects,

    E-Print Network [OSTI]

    Vaina, Lucia M.

    motion transparency processing implements an ecological smoothness constraint Perception, 2006, volume 351 Introduction The perception of motion transparency can arise from physically transparent objects between two perpendicularly moving gratings favors the perception of transparent over coherent motion

  14. Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process

    E-Print Network [OSTI]

    Chelawat, Hitesh

    2010-01-01T23:59:59.000Z

    Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

  15. Compound transparent ceramics and methods of preparation thereof

    DOE Patents [OSTI]

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard L.

    2012-12-11T23:59:59.000Z

    According to one embodiment, a method for forming a composite transparent ceramic preform includes forming a first suspension of oxide particles in a first solvent which includes a first dispersant but does not include a gelling agent, adding the first suspension to a first mold of a desired shape, and uniformly curing the first suspension in the first mold until stable. The method also includes forming a second suspension of oxide particles in a second solvent which includes a second dispersant but does not include a gelling agent, adding the second suspension to the stable first suspension in a second mold of a desired shape encompassing the first suspension and the second suspension, and uniformly curing the second suspension in the second mold until stable. Other methods for forming a composite transparent ceramic preform are also described according to several other embodiments. Structures are also disclosed.

  16. Transparent Conductive Nano-Composites - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfordefault BPASolar

  17. Layed Perovskite PRBA0.5SR0.5CO205 as High Performance Cathode for Solid Oxide Fuels Using Photon Conducting Electrolyte

    SciTech Connect (OSTI)

    Brinkman, K.

    2010-05-05T23:59:59.000Z

    The layered perovskite PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (PBSC) was investigated as a cathode material for a solid oxide fuel cell using a proton-conducting electrolyte based on BaCe{sub 0.7}Y{sub 0.2}Zr{sub 0.1}O{sub 3-{delta}} (BCYZ). The sintering conditions for the PBSC-BCYZ composite cathode were optimized resulting in the lowest area-specific resistance and apparent activation energy obtained with the cathode sintered at 1200 C for 2h. The maximum power densities of the PBSC-BCYZ/BZCY/NiO-BCYZ cell were 0.179, 0.274, 0.395, and 0.522 Wcm{sup -2} at 550, 600, 650, and 700 C, respectively with a 15{micro}m thick electrolyte. A relatively low cell interfacial polarization resistance of 0.132 {Omega}cm{sup 2} at 700 C indicated that the PBSC-BCYZ could be a good cathode candidate for intermediate temperature SOFCs with proton-conducting electrolyte.

  18. Transparent self-cleaning dust shield

    DOE Patents [OSTI]

    Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.

    2005-06-28T23:59:59.000Z

    A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.

  19. Efficient Applications in User Transparent

    E-Print Network [OSTI]

    Seinstra, Frank J.

    Chapter 7 Efficient Applications in User Transparent Parallel Image Processing "Thy will by my parallel image processing. First, in Chapter 2 we have discussed the need for the availability is a sustainable software library consisting of an extensive set of operations commonly applied in state

  20. Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line

    SciTech Connect (OSTI)

    Kim, Sun-Hong; Kim, Sung-Soo, E-mail: sskim@chungbuk.ac.kr [Department of Advanced Materials Engineering, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2014-05-05T23:59:59.000Z

    In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ?10{sup ?4} ? m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1?GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

  1. Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements

    SciTech Connect (OSTI)

    Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden); Guillén, C.; Herrero, J. [Department of Energy, Ciemat, Avda. Complutense 40, Ed. 42, E-28040 Madrid (Spain)

    2014-04-21T23:59:59.000Z

    Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as to drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.

  2. Transparent electrode for optical switch

    DOE Patents [OSTI]

    Goldhar, J.; Henesian, M.A.

    1984-10-19T23:59:59.000Z

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  3. Transparency Homework: C. Scott Ananian

    E-Print Network [OSTI]

    Ananian, C. Scott

    Ici:pA:hkim ** c. nIci:pa:hkim b ? c * d. nici:pa:hkim f ? d c ? d e. nIcI:pA:hkIm *! a ? e f. nici:pA:hkim b ? fTransparency Homework: Menomini C. Scott Ananian March 5, 2001 Menomini summary: iterative regressive (right­to­left) assimilation of long high [­ATR] vowels ([I:] and [U:]) with following high [+ATR

  4. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOE Patents [OSTI]

    Tench, D. Morgan (Camarillo, CA); Cunningham, Michael A. (Thousand Oaks, CA); Kobrin, Paul H. (Newbury Park, CA)

    2008-01-08T23:59:59.000Z

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  5. Electrochromism in copper oxide thin films

    SciTech Connect (OSTI)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15T23:59:59.000Z

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  6. High temperature, optically transparent plastics from biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

  7. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for windows Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20,...

  8. NREL scientists develop robust, high-performance IZO transparent contact for CIGS solar cells.

    E-Print Network [OSTI]

    NREL scientists develop robust, high-performance IZO transparent contact for CIGS solar cells indium gallium diselenide (CIGS) solar cell is zinc oxide (ZnO). The problem is that unprotected Zn is a lifetime-limiting problem that is currently addressed solely through encapsulation. Fundamentally improving

  9. Three-terminal resistive switching memory in a transparent vertical-configuration device

    SciTech Connect (OSTI)

    Ungureanu, Mariana; Llopis, Roger [CIC nanoGUNE Consolider, Donostia - San Sebastian (Spain)] [CIC nanoGUNE Consolider, Donostia - San Sebastian (Spain); Casanova, Fèlix; Hueso, Luis E. [CIC nanoGUNE Consolider, Donostia - San Sebastian (Spain) [CIC nanoGUNE Consolider, Donostia - San Sebastian (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain)

    2014-01-06T23:59:59.000Z

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies.

  10. Microsoft Word - Net Requirements Transparency Process_09302014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 As part of its Net Requirements Transparency process, on July 31, 2014 BPA published the SliceBlock and Block customers' FY2013 and forecast FY2015 Total Retail Load (TRL) and...

  11. Beyond transparency : collective engagement in sustainable design

    E-Print Network [OSTI]

    Bonanni, Leonardo Amerigo, 1977-

    2010-01-01T23:59:59.000Z

    For a timely answer to the question of sustainability, or how to provide for future generations, there needs to be shared accounting of our social and physical resources. Supply chain transparency makes it possible to map ...

  12. Thermal conductivity control by oxygen defect concentration modification in reducible oxides: The case of Pr{sub 0.1}Ce{sub 0.9}O{sub 2??} thin films

    SciTech Connect (OSTI)

    Luckyanova, Maria N.; Chen, Gang, E-mail: gchen2@mit.edu, E-mail: byildiz@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Chen, Di; Tuller, Harry L. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ma, Wen; Yildiz, Bilge, E-mail: gchen2@mit.edu, E-mail: byildiz@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-10T23:59:59.000Z

    We demonstrate the impact on thermal conductivity of varying the concentration of oxygen vacancies and reduced cations in Pr{sub 0.1}Ce{sub 0.9}O{sub 2??} thin films prepared by pulsed laser deposition. The oxygen vacancy concentration is controlled by varying the oxygen partial pressure between 1?×?10{sup ?4} and 1?atm at 650??°C. Corresponding changes in the oxygen non-stoichiometry (?) are monitored by detecting the lattice parameters of the films with high-resolution X-ray diffraction, while the thermal properties are characterized by time-domain thermoreflectance measurements. The films are shown to exhibit a variation in oxygen vacancy content, and in the Pr{sup 3+}/Pr{sup 4+} ratio, corresponding to changes in ? from 0.0027 to 0.0364, leading to a reduction in the thermal conductivity from k?=?6.62?±?0.61 to 3.82?±?0.51?W/m-K, respectively. These values agree well with those predicted by the Callaway and von Baeyer model for thermal conductivity in the presence of point imperfections. These results demonstrate the capability of controlling thermal conductivity via control of anion and cation defect concentrations in a given reducible oxide.

  13. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

    1993-01-01T23:59:59.000Z

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  14. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07T23:59:59.000Z

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  15. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, Param H. (Milpitas, CA); Hunt, Arlon J. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO.sub.2, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO.sub.2, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40.degree. C. instead of at about 270.degree. C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementry particles or cosmic rays.

  16. Process for forming transparent aerogel insulating arrays

    DOE Patents [OSTI]

    Tewari, P.H.; Hunt, A.J.

    1985-09-04T23:59:59.000Z

    An improved supercritical drying process for forming transparent silica aerogel arrays is described. The process is of the type utilizing the steps of hydrolyzing and condensing aloxides to form alcogels. A subsequent step removes the alcohol to form aerogels. The improvement includes the additional step, after alcogels are formed, of substituting a solvent, such as CO/sub 2/, for the alcohol in the alcogels, the solvent having a critical temperature less than the critical temperature of the alcohol. The resulting gels are dried at a supercritical temperature for the selected solvent, such as CO/sub 2/, to thereby provide a transparent aerogel array within a substantially reduced (days-to-hours) time period. The supercritical drying occurs at about 40/sup 0/C instead of at about 270/sup 0/C. The improved process provides increased yields of large scale, structurally sound arrays. The transparent aerogel array, formed in sheets or slabs, as made in accordance with the improved process, can replace the air gap within a double glazed window, for example, to provide a substantial reduction in heat transfer. The thus formed transparent aerogel arrays may also be utilized, for example, in windows of refrigerators and ovens, or in the walls and doors thereof or as the active material in detectors for analyzing high energy elementary particles or cosmic rays.

  17. E#cient Applications in User Transparent

    E-Print Network [OSTI]

    Seinstra, Frank J.

    Chapter 7 E#cient Applications in User Transparent Parallel Image Processing # ''Thy will by my parallel image processing. First, in Chapter 2 we have discussed the need for the availability is a sustainable software library consisting of an extensive set of operations commonly applied in state

  18. Radio-transparent multi-layer insulation for radiowave receivers

    SciTech Connect (OSTI)

    Choi, J. [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of)] [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ishitsuka, H. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan)] [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Mima, S. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oguri, S., E-mail: shugo@post.kek.jp [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, K. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Tajima, O. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan) [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-15T23:59:59.000Z

    In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.

  19. Enhanced certificate transparency and end-to-end encrypted mail

    E-Print Network [OSTI]

    Enhanced certificate transparency and end-to-end encrypted mail Mark D. Ryan University develop and extend certificate transparency, a proposal in this direction, so that it efficiently handles

  20. Conductive Polymers

    SciTech Connect (OSTI)

    Bohnert, G.W.

    2002-11-22T23:59:59.000Z

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  1. Theory of Dipole Induced Electromagnetic Transparency

    E-Print Network [OSTI]

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01T23:59:59.000Z

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  2. PT-Symmetric Optomechanically-Induced Transparency

    E-Print Network [OSTI]

    H. Jing; S. K. Özdemir; Z. Geng; J. Zhang; X. -Y. Lü; B. Peng; L. Yang; F. Nori

    2014-12-09T23:59:59.000Z

    Optomechanically-induced transparency (OMIT) and the associated slow-light propagation provide the basis for storing photons in nanofabricated phononic devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a reversed, non-amplifying transparency: inverted-OMIT. When the gain-to-loss ratio is steered, the system exhibits a transition from the PT-symmetric phase to the broken-PT-symmetric phase. We show that by tuning the pump power at fixed gain-to-loss ratio or the gain-to-loss ratio at fixed pump power, one can switch from slow to fast light and vice versa. Moreover, the presence of PT-phase transition results in the reversal of the pump and gain dependence of transmission rates. These features provide new tools for controlling light propagation using optomechanical devices.

  3. Transparent heat-spreader for optoelectronic applications

    DOE Patents [OSTI]

    Minano, Juan Carlos; Benitez, Pablo

    2014-11-04T23:59:59.000Z

    An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

  4. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  5. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Net Requirements Transparency Process for Slice/Block Customers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 Net Requirements Transparency Process for SliceBlock Customers Description of Changes and a Response to Comments September 24, 2012 Background and Description of Changes:...

  8. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  9. Electromagnetically induced transparency controlled by a microwave field

    E-Print Network [OSTI]

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.

    2009-01-01T23:59:59.000Z

    interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....

  10. Thin film method of conducting lithium-ions

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-11-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  11. Thin film method of conducting lithium-ions

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-11-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  12. Doping stability and opto-electronic performance of CVD graphene on transparent flexible substrates

    E-Print Network [OSTI]

    Kang, Moon Hyo; Milne, William I.; Cole, Matthew T.

    2014-07-15T23:59:59.000Z

    -dimensional honeycomb of single carbon atoms, has a myriad of impressive, novel optical and electrical properties [1, 2]. As such, it has attracted much attention as a promising material to complement indium tin oxide in large area transparent electrodes for many... transferred to laminate and PET substrates (ATI, Unicam UV2). The transmittance (550 nm) of graphene on PET and on laminate was 10% and 12% lower than the as-received PET and laminate, respectively. The high optical absorption suggests around four layer...

  13. Transparency of 0.2% GdCl3 Doped Water in a Stainless Steel Test Environment

    E-Print Network [OSTI]

    W. Coleman; A. Bernstein; S. Dazeley; R. Svoboda

    2008-06-11T23:59:59.000Z

    The possibility of neutron and neutrino detection using water Cerenkov detectors doped with gadolinium holds the promise of constructing very large high-efficiency detectors with wide-ranging application in basic science and national security. This study addressed a major concern regarding the feasibility of such detectors: the transparency of the doped water to the ultraviolet Cerenkov light. We report on experiments conducted using a 19-meter water transparency measuring instrument and associated materials test tank. Sensitive measurements of the transparency of water doped with 0.2% GdCl3 at 337nm, 400nm and 420nm were made using this instrument. These measurements indicate that GdCl3 is not an appropriate dopant in stainless steel constructed water Cerenkov detectors.

  14. Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal

    E-Print Network [OSTI]

    Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting,2 The exfoliation of graphite oxide (GO) followed by reduction has provided an affordable route to the large scale (by the exfoliation of GO) has been demon- strated by the fabrication of paperlike films,3 transparent

  15. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  16. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  17. Perception-Based Transparency Optimization for Direct Volume Rendering

    E-Print Network [OSTI]

    Chen, Wei

    Perception-Based Transparency Optimization for Direct Volume Rendering Ming-Yuen Chan, Student. Perceptual enhancement on transparent layers in direct volume rendered images: a CT head dataset with layered structures (left); layers are enhanced using our proposed rendering optimization method (right). Abstract

  18. Eyo: Device-Transparent Personal Storage Jacob Strauss

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    Eyo: Device-Transparent Personal Storage Jacob Strauss Justin Mazzola Paluska Chris Lesniewski on multiple personal devices, each of which typically offers a storage management interface oblivious. This paper presents Eyo, a novel personal storage sys- tem that provides device transparency: a user can

  19. Influence of growth temperature on electrical, optical, and plasmonic properties of aluminum:zinc oxide films grown by radio frequency magnetron sputtering

    SciTech Connect (OSTI)

    Dondapati, Hareesh; Santiago, Kevin; Pradhan, A. K. [Center for Materials Research, Norfolk State University, 700 Park Avenue, Norfolk, Virginia 23504 (United States)] [Center for Materials Research, Norfolk State University, 700 Park Avenue, Norfolk, Virginia 23504 (United States)

    2013-10-14T23:59:59.000Z

    We have investigated the responsible mechanism for the observation of metallic conductivity at room temperature and metal-semiconductor transition (MST) at lower temperatures for aluminum-doped zinc oxide (AZO) films. AZO films were grown on glass substrates by radio-frequency magnetron sputtering with varying substrate temperatures (T{sub s}). The films were found to be crystalline with the electrical resistivity close to 1.1 × 10{sup ?3} ? cm and transmittance more than 85% in the visible region. The saturated optical band gap of 3.76 eV was observed for the sample grown at T{sub s} of 400 °C, however, a slight decrease in the bandgap was noticed above 400 °C, which can be explained by Burstein–Moss effect. Temperature dependent resistivity measurements of these highly conducting and transparent films showed a MST at ?110 K. The observed metal-like and metal-semiconductor transitions are explained by taking into account the Mott phase transition and localization effects due to defects. All AZO films demonstrate crossover in permittivity from positive to negative and low loss in the near-infrared region, illustrating its applications for plasmonic metamaterials, including waveguides for near infrared telecommunication region. Based on the results presented in this study, the low electrical resistivity and high optical transmittance of AZO films suggested a possibility for the application in the flexible electronic devices, such as transparent conducting oxide film on LEDs, solar cells, and touch panels.

  20. Integrated broadband bowtie antenna on transparent substrate

    E-Print Network [OSTI]

    Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T

    2015-01-01T23:59:59.000Z

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  1. Gravitational Lensing Characteristics of the Transparent Sun

    E-Print Network [OSTI]

    Bijunath Patla; Robert J. Nemiroff

    2007-11-29T23:59:59.000Z

    The transparent Sun is modeled as a spherically symmetric and centrally condensed gravitational lens using recent Standard Solar Model (SSM) data. The Sun's minimum focal length is computed to a refined accuracy of 23.5 +/- 0.1 AU, just beyond the orbit of Uranus. The Sun creates a single image of a distant point source visible to observers inside this minimum focal length and to observers sufficiently removed from the line connecting the source through the Sun's center. Regions of space are mapped where three images of a distant point source are created, along with their associated magnifications. Solar caustics, critical curves, and Einstein rings are computed and discussed. Extremely high gravitational lens magnifications exist for observers situated so that an angularly small, unlensed source appears near a three-image caustic. Types of radiations that might undergo significant solar lens magnifications as they can traverse the core of the Sun, including neutrinos and gravitational radiation, are discussed.

  2. Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films

    E-Print Network [OSTI]

    Osedach, Timothy P.

    We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

  3. Low temperature lithographically patterned metal oxide transistors for large area electronics

    E-Print Network [OSTI]

    Wang, Annie I. (Annie I-Jen), 1981-

    2011-01-01T23:59:59.000Z

    Optically transparent, wide bandgap metal oxide semiconductors are a promising candidate for large-area electronics technologies that require lightweight, temperature-sensitive flexible substrates. Because these thin films ...

  4. Overview of Transparent Metal Mesh Electrode Technologies

    Energy Savers [EERE]

    range that is transmitted by the conductive coating and substrate. Often the absorption of the substrate is subtracted and the transmission of the coating itself reported....

  5. E-Print Network 3.0 - alternative transparent electrodes Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Society Introduction Transparent electrodes are ubiquitously used in optoelectronic devices where light... of transparent electrodes are extremely important for device...

  6. Application of CVD graphene in organic photovoltaics as transparent conducting electrodes

    E-Print Network [OSTI]

    Park, Hyesung, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Graphene, a hexagonal arrangement of carbon atoms forming a one-atom thick planar sheet, has gained much attention due to its remarkable physical properties. Apart from the micromechanical cleavage of highly ordered pyrolytic ...

  7. Center for Inverse Design Highlight: Anomalous Surface Conductivity in In2O3 Transparent Conductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUMCongratulations to CEN onWhite Light

  8. Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels

    E-Print Network [OSTI]

    Dreyer, Philippe; Nicolay, Sylvain; Ballif, Christophe; Perruisseau-Carrier, Julien

    2013-01-01T23:59:59.000Z

    This work addresses the integration of reflectarray antennas (RA) on thin film Solar Cell (SC) panels, as a mean to save real estate, weight, or cost in platforms such as satellites or transportable autonomous antenna systems. Our goal is to design a good RA unit cell in terms of phase response and bandwidth, while simultaneously achieving high optical transparency and low microwave loss, to preserve good SC and RA energy efficiencies, respectively. Since there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, here both standard copper and transparent conductors are considered. The results obtained at the unit cell level demonstrates the feasibility of integrating RA on a thin-film SC, preserving for the first time good performance in terms of both SC and RA efficiency. For instance, measurement at X-band demonstrate families of cells providing a phase range larger than 270{\\deg} with average microwave loss of -2.45dB (resp. -0.25dB) and average optical transpa...

  9. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  10. Anatomy of an transparent optical circulator.

    SciTech Connect (OSTI)

    Podsednik, Jason W.

    2010-09-01T23:59:59.000Z

    An optical circulator is a multi-port, nonreciprocal device that routes light from one specific port to another. Optical circulators have at least 3 or 4 ports, up to 6 port possible (JDS Uniphase, Huihong Fiber) Circulators do not disregard backward propagating light, but direct it to another port. Optical circulators are commonly found in bi-directional transmission systems, WDM networks, fiber amplifiers, and optical time domain reflectometers (OTDRs). 3-Port optical circulators are commonly used in PDV systems. 1550 nm laser light is launched into Port 1 and will exit out of Port 2 to the target. Doppler-shifted light off the moving surface is reflected back into Port 2 and exits out of Port 3. Surprisingly, a circulator requires a large number of parts to operate efficiently. Transparent circulators offer higher isolation than those of the reflective style using PBSs. A lower PMD is obtained using birefringent crystals rather than PBSs due to the similar path lengths between e and o rays. Many various circulator designs exist, but all achieve the same non-reciprocal results.

  11. Net Requirements Transparency Process for Slice/Block and Block...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 As part of its Net Requirements Transparency process, on July 31, 2013 BPA published the SliceBlock and Block customers' FY2012 and forecast FY2014 Total Retail Load (TRL) and...

  12. Highly transparent and flexible triboelectric nanogenerators: performance improvements and

    E-Print Network [OSTI]

    Wang, Zhong L.

    of mobile electronics and optoelectronic devices. Here, based on the first generation of the transparent and optoelectronic devices.1­4 A suitable energy source is a vital part for realizing fully self-pow- ered systems

  13. DMTCP: Transparent Checkpointing for Cluster Computations and the Desktop

    E-Print Network [OSTI]

    Arya, Kapil

    DMTCP (Distributed MultiThreaded CheckPointing) is a transparent user-level checkpointing package for distributed applications. Checkpointing and restart is demonstrated for a wide range of over 20 well known applications, ...

  14. Device Transparency: a New Model for Mobile Storage

    E-Print Network [OSTI]

    Strauss, Jacob A.

    This paper proposes a new storage model, device transparency, in which users view and manage their entire data collection from any of their devices, even from disconnected storage-limited devices holding only a subset of ...

  15. Acoustical “transparency” induced by local resonance in Bragg bandgaps

    SciTech Connect (OSTI)

    Yu, Gaokun; Wang, Xinlong, E-mail: xlwang@nju.edu.cn [Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2014-01-28T23:59:59.000Z

    We show that sound waves can resonantly transmit through Bragg bandgaps in an acoustical duct periodically attached with an array of Helmholtz resonators, forming within the normally forbidden band a transparency window with group velocity smaller than the normal speed of sound. The transparency occurs for the locally resonant frequency so much close to the Bragg one that both the local-resonance-induced bandgap and the Bragg one heavily overlap with each other. The phenomenon seems an acoustical analog of the well-known electromagnetically induced transparency by quantum interference. Different from the Fano-like interference explanation, we also provide a mechanism for the transparency window phenomenon which makes it possible to extend the phenomenon in general.

  16. Slip casting nano-particle powders for making transparent ceramics

    DOE Patents [OSTI]

    Kuntz, Joshua D. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Landingham, Richard Lee (Livermore, CA); Hollingsworth, Joel P. (Oakland, CA)

    2011-04-12T23:59:59.000Z

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  17. Nanostructured Transparent Conductors Have Potential for Thin-Film Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    Possible alternatives to transparent conductors show promise for enabling new processes and reducing costs.

  18. NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government

    Broader source: Energy.gov [DOE]

    NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government, Environmental Law Institute, 2010.

  19. Nuclear transparency in 90c.m. quasielastic A,,p,2p... reactions

    E-Print Network [OSTI]

    Christensen, Nelson

    Nuclear transparency in 90c.m. ° quasielastic A,,p,2p... reactions J. Aclander,7 J. Alster,7 G Synchrotron of BNL to measure the nuclear transparency of nuclei measured in the A p,2p quasielastic of the energy dependence of the nuclear transparency. In E850 the angular dependence of the nuclear transparency

  20. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27T23:59:59.000Z

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

  1. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28T23:59:59.000Z

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  2. Student Affairs STUDENT CONDUCT

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Student Affairs CODE OF STUDENT CONDUCT 2014-15 #12;Contents Letter from the Dean of Students ....................................................................ii Binghamton University's Code of Student Conduct Preamble...................... 1 Section I: Rules of Student Conduct.............................................................. 1 Section II: Definitions

  3. Sensors and Actuators B 118 (2006) 135141 Low temperature indium oxide gas sensors

    E-Print Network [OSTI]

    Sensors and Actuators B 118 (2006) 135­141 Low temperature indium oxide gas sensors M. Sucheaa rights reserved. Keywords: Metal oxide thin films; InOx; Gas sensors; Ozone 1. Introduction The interest's attractive for many areas such as transparent electrodes for solar cells and flat panel displays

  4. Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial

    SciTech Connect (OSTI)

    Zhang, Fuli, E-mail: fuli.zhang@nwpu.edu.cn; He, Xuan [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi'an 710072 (China); Zhao, Qian [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Lan, Chuwen; Zhou, Ji [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Weihong, E-mail: zhangwh@nwpu.edu.cn; Qiu, Kepeng [School of Mechanical Engineering, P.O. Box 552, Northwestern Polytechnical University, Xi'an 710072 (China)

    2014-03-31T23:59:59.000Z

    In this manuscript, we experimentally demonstrate magnetically coupled electromagnetically induced transparency (EIT) analogy effect inside dielectric metamaterial. In contrast to previous studies employed different metallic topological microstructures to introduce dissipation loss change, barium strontium titanate, and calcium titanate (CaTiO{sub 3}) are chosen as the bright and dark EIT resonators, respectively, due to their different intrinsic dielectric loss. Under incident magnetic field excitation, dielectric metamaterial exhibits an EIT-type transparency window around 8.9?GHz, which is accompanied by abrupt change of transmission phase. Numerical calculations show good agreement with experiment spectra and reveal remarkably increased group index, indicating potential application in slow light.

  5. Electromagnetically Induced Transparency from a Single Atom in Free Space

    E-Print Network [OSTI]

    L. Slodicka; G. Hetet; S. Gerber; M. Hennrich; R. Blatt

    2010-05-18T23:59:59.000Z

    We report an absorption spectroscopy experiment and the observation of electromagnetically induced transparency from a single trapped atom. We focus a weak and narrowband Gaussian light beam onto an optically cooled Barium ion using a high numerical aperture lens. Extinction of this beam is observed with measured values of up to 1.3 %. We demonstrate electromagnetically induced transparency of the ion by tuning a strong control beam over a two-photon resonance in a three-level lambda-type system. The probe beam extinction is inhibited by more than 75 % due to population trapping.

  6. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  7. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone

    SciTech Connect (OSTI)

    Kannan Selvaraj, Sathees [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Feinerman, Alan [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Departments of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2014-01-15T23:59:59.000Z

    In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac){sub 2}], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1?±?0.01?nm/cycle within the wide ALD temperature window of 175–300?°C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure, refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnO{sub x}–Si interface. The resistivity of the SnO{sub x} films was calculated to be 0.3?? cm. Results of this work demonstrate the possibility of introducing Sn(acac){sub 2} as tin precursor to deposit conducting ALD SnO{sub x} thin films on a silicon surface, with clean interface and no formation of undesired SiO{sub 2} or other interfacial reaction products, for transparent conducting oxide applications.

  8. Graphene transparency in weak magnetic fields

    E-Print Network [OSTI]

    Valenzuela, David; Loewe, Marcelo; Raya, Alfredo

    2014-01-01T23:59:59.000Z

    We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from th...

  9. Intrinsic nature of visible-light absorption in amorphous semiconducting oxides

    SciTech Connect (OSTI)

    Kang, Youngho; Song, Hochul; Han, Seungwu, E-mail: hansw@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-755 (Korea, Republic of); Nahm, Ho-Hyun [Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 151-747 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Jeon, Sang Ho; Cho, Youngmi [CAE Team, Samsung Display Co., Ltd, 95 Samsung 2-ro, Giheung-gu, Youngin-City, Gyeonggi-Do 446-711 (Korea, Republic of)

    2014-03-01T23:59:59.000Z

    To enlighten microscopic origin of visible-light absorption in transparent amorphous semiconducting oxides, the intrinsic optical property of amorphous InGaZnO{sub 4} is investigated by considering dipole transitions within the quasiparticle band structure. In comparison with the crystalline InGaZnO{sub 4} with the optical gap of 3.6 eV, the amorphous InGaZnO{sub 4} has two distinct features developed in the band structure that contribute to significant visible-light absorption. First, the conduction bands are down-shifted by 0.55 eV mainly due to the undercoordinated In atoms, reducing the optical gap between extended states to 2.8 eV. Second, tail states formed by localized oxygen p orbitals are distributed over ?0.5 eV near the valence edge, which give rise to substantial subgap absorption. The fundamental understanding on the optical property of amorphous semiconducting oxides based on underlying electronic structure will pave the way for resolving instability issues in recent display devices incorporating the semiconducting oxides.

  10. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Wang, Jin (Burr Ridge, IL)

    2011-07-26T23:59:59.000Z

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  11. Exploring the Design Space of LUT-based Transparent Accelerators

    E-Print Network [OSTI]

    Mahlke, Scott A.

    Exploring the Design Space of LUT-based Transparent Accelerators Sami Yehia1 , Nathan Clark2.flautner}@arm.com {ntclark, mahlke}@umich.edu ABSTRACT Instruction set customization accelerates the performance of appli resources. With instruction set customization, specialized accelerators are added to a conventional

  12. Federated Clusters Using the Transparent Remote Execution (TREx) Environment

    E-Print Network [OSTI]

    Scherson, Isaac D.

    Federated Clusters Using the Transparent Remote Execution (TREx) Environment Richert Wang1 University of California, Irvine 442 Computer Science Building Irvine, CA 92697-3435 rkwang@ics.uci.edu Enrique Cauich University of California, Irvine 442 Computer Science Building Irvine, CA 92697

  13. PodBase: Transparent storage management for personal devices

    E-Print Network [OSTI]

    Druschel, Peter

    PodBase: Transparent storage management for personal devices Ansley Post Petr Kuznetsov PeterBase, a system that automatically manages the data and storage across a household's personal devices and frees Druschel Max Planck Institute for Software Systems Rice University 1. INTRODUCTION Personal electronic

  14. Device-Transparent Personal Storage Jacob Alo Strauss

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    Device-Transparent Personal Storage by Jacob Alo Strauss S.B., Massachusetts Institute personal devices, each of which typically presents the user with a storage management interface isolated and drift out of sync. This thesis presents Eyo, a novel personal storage system that provides device trans

  15. Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Image of porous...

  16. CONDUCT OF OPERATIONS (CO)

    Broader source: Energy.gov (indexed) [DOE]

    CONDUCT OF OPERATIONS (CO) OBJECTIVE TA-55 SST Facility NNSA ORR Implementation Plan 1 1 CO.1 The formality and discipline of operations is adequate to conduct work safely and...

  17. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  18. Cermet fuel thermal conductivity

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    CERMET FUEL THERMAL CONDUCTIVITY A Thesis by JOHN MARK ALVIS, JR. Submitted to the Graduate College of Texas A&. M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Nuclear... particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work...

  19. Graphene transparency in weak magnetic fields

    E-Print Network [OSTI]

    David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya

    2014-10-20T23:59:59.000Z

    We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.

  20. Efficient Polymer Solar Cells Fabricated on Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)-Etched Old Indium Tin Oxide Substrates

    SciTech Connect (OSTI)

    Elshobaki, Moneim [Mansoura University; Anderegg, James [Ames Laboratory; Chaudhary, Sumit [Ames Laboratory

    2014-08-13T23:59:59.000Z

    In organic electronic devices, indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the most common transparent electrode and anodic buffer layer materials, respectively. A widespread concern is that PEDOT:PSS is acidic and etches ITO. We show that this issue is not serious: only a few nanometers of ITO are etched in typical device processing conditions and storage thereafter; conductivity losses are affordable; and optical transmission gains further offset these losses. Organic photovoltaic (OPV) devices fabricated on old ITO (with PEDOT:PSS history) were similar or higher in efficiency than devices on fresh ITO. Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b?]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  1. The Effects of Price Transparency Regulation on Prices in the Healthcare Industry

    E-Print Network [OSTI]

    Mateo, Jill M.

    The Effects of Price Transparency Regulation on Prices in the Healthcare Industry Hans B Policymakers have enacted price transparency regulations in over thirty states during the past decade-state variation to address endogeneity concerns, we find that price transparency regulations reduce the price

  2. Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Department Committee on Graduate Students #12;2 #12;Tesla: A Transparent of these services, we describe Tesla, a transparent and extensible framework that allows session-layer services

  3. TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services

    E-Print Network [OSTI]

    TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services Jon describes TESLA, a transparent and extensible framework allowing session- layer services to be developed using a high-level flow- based abstraction. TESLA services can be deployed transparently using dynamic

  4. Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services

    E-Print Network [OSTI]

    Tesla: A Transparent, Extensible Session-Layer Framework for End-to-end Network Services by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Department Committee on Graduate Students #12; 2 #12; Tesla: A Transparent of these services, we describe Tesla, a transparent and extensible framework that allows session-layer services

  5. TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    TESLA: A Transparent, Extensible Session-Layer Architecture for End-to-end Network Services Jon describes TESLA, a transparent and extensible framework allowing session- layer services to be developed using a high-level ¤ow- based abstraction. TESLA services can be deployed transparently using dynamic

  6. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  7. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  9. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect (OSTI)

    Korinko, P.

    2009-11-12T23:59:59.000Z

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

  10. High conductance surge cable

    DOE Patents [OSTI]

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08T23:59:59.000Z

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  11. High conductance surge cable

    DOE Patents [OSTI]

    Murray, Matthew M. (Espanola, NM); Wilfong, Dennis H. (Brooksville, FL); Lomax, Ralph E. (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  12. Transparent runtime parallelization of the R scripting language

    SciTech Connect (OSTI)

    Yoginath, Srikanth B [ORNL

    2011-01-01T23:59:59.000Z

    Scripting languages such as R and Matlab are widely used in scientific data processing. As the data volume and the complexity of analysis tasks both grow, sequential data processing using these tools often becomes the bottleneck in scientific workflows. We describe pR, a runtime framework for automatic and transparent parallelization of the popular R language used in statistical computing. Recognizing scripting languages interpreted nature and data analysis codes use pattern, we propose several novel techniques: (1) applying parallelizing compiler technology to runtime, whole-program dependence analysis of scripting languages, (2) incremental code analysis assisted with evaluation results, and (3) runtime parallelization of file accesses. Our framework does not require any modification to either the source code or the underlying R implementation. Experimental results demonstrate that pR can exploit both task and data parallelism transparently and overall has better performance as well as scalability compared to an existing parallel R package that requires code modification.

  13. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1991-01-01T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  14. Conductive ceramic composition and method of preparation

    DOE Patents [OSTI]

    Smith, J.L.; Kucera, E.H.

    1991-04-16T23:59:59.000Z

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  15. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04T23:59:59.000Z

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  16. Nanoantennas for enhanced light trapping in transparent organic solar cells

    E-Print Network [OSTI]

    Voroshilov, Pavel M; Belov, Pavel A

    2014-01-01T23:59:59.000Z

    We propose a light-trapping structure offering a significant enhancement of photovoltaic absorption in transparent organic solar cells operating at infrared while the visible light transmission keeps sufficiently high. The main mechanism of light trapping is related with the excitation of collective oscillations of the metal nanoantenna arrays, characterized by advantageous field distribution in the volume of the solar cell. It allows more than triple increase of infrared photovoltaic absorption.

  17. Three Successful Tests of Color Transparency and Nuclear Filtering

    E-Print Network [OSTI]

    Pankaj Jain; John P. Ralston

    1993-10-06T23:59:59.000Z

    We review the theoretical formalism for hard exclusive processes in a nuclear medium. Theory suggests that these processes will show the very interesting phenomena of color transparency and nuclear filtering. The survival probability in nuclear media has also been predicted to show a scaling behavior at large momentum and large nuclear number. We show that all of these effects may have already been seen experimentally.

  18. EMSL - oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxides en Influence of Adsorption Site and Wavelength on the Photodesorption of NO from the (Fe,Cr)3O4(111) Mixed Oxide Surface. http:www.emsl.pnl.govemslwebpublications...

  19. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect (OSTI)

    Jamil A. Khan

    2009-11-21T23:59:59.000Z

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  20. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

    1997-01-01T23:59:59.000Z

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  1. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

    1996-01-01T23:59:59.000Z

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  2. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

  3. Facile, Noncovalent Decoration of Graphene Oxide Sheets with Nanocrystals

    E-Print Network [OSTI]

    Chen, Junhong

    [12 14], hydrogen storage media [15 17], and transparent conducting electrodes [18 20, such as in nanocomposites, chemical sensors, biosensors, nanoelectronics, photovoltaic cells, fuel cells, and perhaps for hydrogen storage. Solution-based chemical methods have been reported for the production of graphene

  4. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    E-Print Network [OSTI]

    Moon, Hi Gyu

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor ...

  5. Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    matched to InP are widely used for the fabrication of optoelectronic devices [1­3]. Many high speed optoelectronic devices rely on the creation of an electrical p­n junction using p-type InP with high carrier

  6. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency

    E-Print Network [OSTI]

    S. Mauger; J. Millen; M. P. A. Jones

    2007-10-05T23:59:59.000Z

    We report on the all-optical detection of Rydberg states in a effusive atomic beam of strontium atoms using electromagnetically induced transparency (EIT). Using narrow-linewidth CW lasers we obtain an EIT linewidth of 5 MHz. To illustrate the high spectroscopic resolution offered by this method, we have measured isotope shifts of the 5s18d ^1D_2 and 5s19s ^1S_0 Rydberg states. This technique could be applied to high-resolution, non-destructive measurements of ultra-cold Rydberg gases and plasmas.

  7. Rapid process for producing transparent, monolithic porous glass

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    2006-02-14T23:59:59.000Z

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  8. Electromagnetically induced transparency in mechanical effects of light

    SciTech Connect (OSTI)

    Agarwal, G. S.; Huang, Sumei [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2010-04-15T23:59:59.000Z

    We consider the dynamical behavior of a nanomechanical mirror in a high-quality cavity under the action of a coupling laser and a probe laser. We demonstrate the existence of the analog of electromagnetically induced transparency (EIT) in the output field at the probe frequency. Our calculations show explicitly the origin of EIT-like dips as well as the characteristic changes in dispersion from anomalous to normal in the range where EIT dips occur. Remarkably the pump-probe response for the optomechanical system shares all the features of the {Lambda} system as discovered by Harris and collaborators.

  9. Electromagnetically induced transparency with quantized fields in optocavity mechanics

    SciTech Connect (OSTI)

    Huang Sumei; Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2011-04-15T23:59:59.000Z

    We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.

  10. Low thermal conductivity skutterudites

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1997-07-01T23:59:59.000Z

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  11. E-Print Network 3.0 - area uv transparent Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90 A. Biographical Information: Donald P. Morris Summary: . The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency... , climate,...

  12. E-Print Network 3.0 - aerogels isolants transparent-super Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: aerogels isolants transparent-super Page: << < 1 2 3 4 5 > >> 1 INSTITUTE OF PHYSICS...

  13. E-Print Network 3.0 - advanced transparency framework Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the image into estimates of illumination, ... Source: Winawer, Jonathan - Department of Psychology, Stanford University Collection: Biology and Medicine 25 Mapping Transparency...

  14. Graphene-Silica Composite Thin Films as Transparent Conductors

    E-Print Network [OSTI]

    as fillers for a broad range of composite materials. Attempts to exfoliate graphene-based sheets by intercalation of graphite with potassium metal have been discussed;34 however, the exfoliated nanoplatelets oxide-based sheets35,36 produced by complete exfoliation of graphite oxide (GO) as an entry

  15. Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems

    E-Print Network [OSTI]

    Singha, Kamini

    Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems Aaron; published 16 April 2011. [1] Although changes in bulk electrical conductivity (b) in aquifers have been. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction

  16. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29T23:59:59.000Z

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

  17. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  18. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01T23:59:59.000Z

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  19. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  20. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a long time, it was thought that their chemical complexity would preclude their use in device applications. All changed in 2004 with the discovery that the interface between...

  1. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewA NewA New

  2. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewA NewA NewA

  3. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewA NewA NewAA

  4. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewA NewA

  5. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewA NewAA New

  6. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewA NewAA NewA

  7. High Temperature Oxidation Resistance and Surface Electrical Conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the Assembly of Photosystem

  8. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First LookMicroscopy for Analysis ofA NewAAAAA

  9. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First LookMicroscopy for Analysis ofA NewAAAAANew

  10. Sandia National Laboratories: electronic conducting transition metal oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuels economicallyefficientelectronic

  11. TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX

    E-Print Network [OSTI]

    Walker, D. Greg

    result is a material with high electrical conductivity and low thermal conductivity. Transport Models,2 , J. Rozen3 Introduction Thermal and electrical transport through a low-conductivity matrix containing conversion devices high electrical conductivity and low thermal conductivity are preferred for superior

  12. Electrically conductive alternating copolymers

    DOE Patents [OSTI]

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31T23:59:59.000Z

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  13. innovati nNREL Designs Promising New Oxides for Solar Cells

    E-Print Network [OSTI]

    material. The upper TCO contact in a solar cell allows light to reach the absorber material below, whichinnovati nNREL Designs Promising New Oxides for Solar Cells High-efficiency, thin-film solar cells electricity but are 90% transparent to visible light. Scientists at the National Renewable Energy Laboratory

  14. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06T23:59:59.000Z

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  15. High conductivity composite metal

    DOE Patents [OSTI]

    Zhou, Ruoyi (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Embury, John David (Hamilton, CA)

    1998-01-01T23:59:59.000Z

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  16. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01T23:59:59.000Z

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  17. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films

    E-Print Network [OSTI]

    Zhou, Chongwu

    Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films; accepted 17 December 2008; published online 28 January 2009 In this paper, a supercapacitor galvanostatic measurements. In addition, to study the stability of flexible and transparent supercapacitor

  18. Plasmonic Metamaterials and Nanocomposites with the Narrow Transparency Window Effect in Broad Extinction Spectra

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Plasmonic Metamaterials and Nanocomposites with the Narrow Transparency Window Effect in Broad from 400 nm to 5 m but exhibit a narrow transparency window centered at a given wavelength. The main be designed as a solution, nanocomposite film or metastructure. The principle of the formation

  19. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry Sphere resonance Nano-polycrystalline diamond NPD Elastic properties Superhard materials a b s t r a c t The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have

  20. Intense red upconversion luminescence from Tm3Yb3 codoped transparent glass ceramic

    E-Print Network [OSTI]

    Cao, Wenwu

    choose the oxyfluoride glass ceramic as the host material in our investigations. Through thermal treatIntense red upconversion luminescence from Tm3Yb3 codoped transparent glass ceramic Wei Xu,1 (Doc. ID 158093); published January 12, 2012 Tm3Yb3 codoped transparent glass ceramic containing -PbF2

  1. ISIS technical report series, Vol. 2002-06 User Transparency: A Fully Sequential

    E-Print Network [OSTI]

    Seinstra, Frank J.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 A Sustainable Software Architecture for User Transparent Parallel Image Processing 12 4 to provide such a tool, we have designed a software architecture that allows transparent (i.e., se- quential the software architecture, and gives an assessment of the architecture's effectiveness in providing signif

  2. ISIS technical report series, Vol. 2002-06 User Transparency: A Fully Sequential

    E-Print Network [OSTI]

    Seinstra, Frank J.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 A Sustainable Software Architecture for User Transparent Parallel Image Processing 12 4 to provide such a tool, we have designed a software architecture that allows transparent (i.e., se- quential the software architecture, and gives an assessment of the architecture's e#11;ectiveness in providing signif

  3. Erbium-doped transparent glass ceramic optical Characterization using mass spectroscopy and molecular dynamics modeling.

    E-Print Network [OSTI]

    Boyer, Edmond

    Erbium-doped transparent glass ceramic optical fibres: Characterization using mass spectroscopy) doped silica-based optical fibres with transparent glass ceramic (TGC) core were fabricated through properties of the erbium ions embedded within the phospho-silicate DNP. These results permit to get more

  4. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1985-06-18T23:59:59.000Z

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  5. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1986-04-08T23:59:59.000Z

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  6. Microscopic modulation of mechanical properties in transparent insect wings

    SciTech Connect (OSTI)

    Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin; Singh, Kamal P., E-mail: kpsingh@iisermohali.ac.in; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 (India)

    2014-02-10T23:59:59.000Z

    We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10??m long and 2??m wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodic organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.

  7. Measurement of Dicke Narrowing in Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    M. Shuker; O. Firstenberg; R. Pugatch; A. Ben-Kish; A. Ron; N. Davidson

    2007-03-13T23:59:59.000Z

    Dicke narrowing is a phenomena that dramatically reduces the Doppler width of spectral lines, due to frequent velocity-changing collisions. A similar phenomena occurs for electromagnetically induced transparency (EIT) resonances, and facilitates ultra-narrow spectral features in room-temperature vapor. We directly measure the Dicke-like narrowing by studying EIT line-shapes as a function of the angle between the pump and the probe beams. The measurements are in good agreement with an analytic theory with no fit parameters. The results show that Dicke narrowing can increase substantially the tolerance of hot-vapor EIT to angular deviations. We demonstrate the importance of this effect for applications such as imaging and spatial solitons using a single-shot imaging experiment, and discuss the implications on the feasibility of storing images in atomic vapor.

  8. Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances

    SciTech Connect (OSTI)

    Shuker, M.; Firstenberg, O.; Ben-Kish, A.; Ron, A. [Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Pugatch, R.; Davidson, N. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2007-08-15T23:59:59.000Z

    Dicke narrowing is a phenomenon that dramatically reduces the Doppler width of spectral lines, due to frequent velocity-changing collisions. A similar phenomenon occurs for electromagnetically induced transparency (EIT) resonances, and facilitates ultranarrow spectral features in room-temperature vapor. We directly measure the Dicke-like narrowing by studying EIT line shapes as a function of the angle between the pump and probe beams. The measurements are in good agreement with an analytic theory with no fit parameters. The results show that Dicke narrowing can increase substantially the tolerance of hot-vapor EIT to angular deviations. We demonstrate the importance of this effect for applications such as imaging and spatial solitons using a single-shot imaging experiment, and discuss the implications for the feasibility of storing images in atomic vapor.

  9. Infrared transparent frequency selective surface based on metallic meshes

    SciTech Connect (OSTI)

    Yu, Miao [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China) [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Xu, Nianxi; Liu, Hai; Gao, Jinsong, E-mail: gaojs@ciomp.ac.cn [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)] [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2014-02-15T23:59:59.000Z

    This paper presents an infrared transparent frequency selective surface (ITFSS) based on metallic meshes. In this ITFSS structure, periodic cross-slot units are integrated on square metallic meshes empowered by coating and UV-lithography. A matching condition is proposed to avoid the distortion of units. Experimental results show that this ITFSS possesses a good transmittance of 80% in the infrared band of 3–5 ?m, and also a stable band-pass behavior at the resonance frequency of 36.4 GHz with transmittance of ?0.56 dB. Theoretical simulations about the ITFSS diffractive characteristics and frequency responses are also investigated. The novel ITFSS will attract renewed interest and be exploited for applications in various fields.

  10. TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX

    E-Print Network [OSTI]

    Walker, D. Greg

    to sev- eral applications including flexible thin-film transistors, PEM fuel cells, and direct energy, particularly Peltier devices, high electrical conductivity and low thermal conductivity are preferred

  11. Do More Transparent Corporate Actions Following a Restatement Influence the SEC's Decision to Issue an Enforcement Action?

    E-Print Network [OSTI]

    Files, Rebecca Lynn

    2010-10-12T23:59:59.000Z

    This study examines whether corporate transparency about a restatement influences the Securities and Exchange Commission's (SEC) decision to issue an enforcement action. I consider corporate transparency to be higher when firms initiate...

  12. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials

    SciTech Connect (OSTI)

    Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

    2013-02-01T23:59:59.000Z

    Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

  13. Conductance modulation in topological insulator Bi{sub 2}Se{sub 3} thin films with ionic liquid gating

    SciTech Connect (OSTI)

    Son, Jaesung; Banerjee, Karan; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)] [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States); Lee, Seoung-Ki [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of) [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Jong-Hyun [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)] [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-11-18T23:59:59.000Z

    A Bi{sub 2}Se{sub 3} topological insulator field effect transistor is investigated by using ionic liquid as an electric double layer gating material, leading to a conductance modulation of 365% at room temperature. We discuss the role of charged impurities on the transport properties. The conductance modulation with gate bias is due to a change in the carrier concentration, whereas the temperature dependent conductance change is originated from a change in mobility. Large conductance modulation at room temperature along with the transparent optical properties makes topological insulators as an interesting (opto)electronic material.

  14. Lateral conduction infrared photodetector

    DOE Patents [OSTI]

    Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

    2011-09-20T23:59:59.000Z

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  15. Low Conductivity Thermal Barrier Coatings

    E-Print Network [OSTI]

    Wadley, Haydn

    Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

  16. PLASTIC PORT NON-CONDUCTIVE

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    PIN NO. 1 INDICATOR 81 3 5 2 4 6 7 CONDUCTIVE PLASTIC PORT NON-CONDUCTIVE PLASTIC HOUSING Description The conductive port option for the Low Cost Miniature Link component family consists of a grounding path from the conductive port to four grounding pins as shown in the package outline drawing

  17. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09T23:59:59.000Z

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  18. Dipole induced transparency in drop-filter cavity-waveguide systems

    E-Print Network [OSTI]

    Edo Waks; Jelena Vuckovic

    2005-12-05T23:59:59.000Z

    We show that a waveguide that is normally opaque due to interaction with a drop-filter cavity can be made transparent when the drop filter is also coupled to a dipole. A transparency condition is derived between the cavity lifetime and vacuum Rabi frequency of the dipole. This condition is much weaker than strong coupling, and amounts to simply achieving large Purcell factors. Thus, we can observe transparency in the weak coupling regime. We describe how this effect can be useful for designing quantum repeaters for long distance quantum communication.

  19. Tunable Electromagnetically Induced Transparency and Absorption with Dressed Superconducting Qubits

    E-Print Network [OSTI]

    Hou Ian; Yu-xi Liu; Franco Nori

    2010-07-06T23:59:59.000Z

    Electromagnetically induced transparency and absorption (EIT and EIA) are usually demonstrated by three-level atomic or atom-like systems. In contrast to the usual case, we theoretically study the EIT and EIA in an equivalent three-level system, which is constructed by dressing a superconducting two-level system (qubit) dressed by a single-mode cavity field. In this equivalent system, we find that both the EIT and the EIA can be tuned by controlling the level-spacing of the superconducting qubit and hence controlling the dressed system. This tunability is due to the dressed relaxation and dephasing rates which vary parametrically with the level-spacing of the original qubit and thus affect the transition properties of the dressed qubit and the susceptibility. These dressed relaxation and dephasing rates characterize the reaction of the dressed qubit to an incident probe field. We also use recent experimental data on superconducting qubits (charge, phase, and flux qubits) to demonstrate our approach and show the possibility of experimentally realizing this proposal.

  20. Colour transparency: a novel test of QCD in nuclear interactions

    E-Print Network [OSTI]

    N. N. Nikolaev

    1993-04-20T23:59:59.000Z

    Colour transparency is a cute and indispensable property of QCD as the gauge theory of strong interaction. CT tests of QCD consist of production of the perturbative small-sized hadronic state and measuring the strngth of its non-perturbative diffraction nteraction in a nuclear matter. The energy depenednce of the final- state interaction in a nuclear matter probes a dynamical evolution from the perturbative small-sized state to the full-sized nonperturbative hadron. QCD observables of CT experiments correspond to a novel mechanism of scanning of hadronic wave functions from the large nonperturbative to the small perturbative size. In these lectures, which are addressed to experimentalists and theorists, I discuss the principle ideas of CT physics and the physics potential of the hadron and electron facilities in the > 10 GeV energy range. The special effort was made to present the material in the pedagigical and self-consistent way, with an emphasis on the underlying rich quantum-mechanical interference phenomena.

  1. Identification of LAMBDA-like systems in Er{sup 3+}:Y{sub 2}SiO{sub 5} and observation of electromagnetically induced transparency

    SciTech Connect (OSTI)

    Baldit, E.; Bencheikh, K.; Monnier, P.; Briaudeau, S.; Levenson, J. A.; Crozatier, V.; Lorgere, I.; Bretenaker, F.; Le Goueet, J. L.; Guillot-Noeel, O.; Goldner, Ph. [Laboratoire de Photonique et de Nanstructures, CNRS-UPR 20, 91460 Marcoussis (France); Laboratoire Aime Cotton, CNRS-UPR 3321, University Paris-Sud, Bat. 505, 91405 Orsay Cedex (France); Laboratoire de Chimie de la Matiere Condensee de Paris, CNRS-UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2010-04-01T23:59:59.000Z

    Electromagnetically induced transparency (EIT) is reported in a solid-state material doped with erbium ions. In this paper we introduce the spectroscopic investigations we have conducted in order to identify the adequate LAMBDA-like three-level systems in Er{sup 3+}:Y{sub 2}SiO{sub 5} crystal, relevant for the demonstration of EIT. These results pave the way for nonlinear and quantum optics applications based on EIT at the telecom wavelength around 1.5 mum.

  2. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOE Patents [OSTI]

    Swain, Greg M.; Wang, Jian

    2005-04-26T23:59:59.000Z

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  3. Measurement of nuclear transparency from A(e,e'[pi]?) reactions

    E-Print Network [OSTI]

    Clasie, Benjamin Michael Patrick

    2006-01-01T23:59:59.000Z

    The color transparency phenomenon refers to the suppression of final-state interactions of a hadron propagating through the nuclear medium at large momentum transfer when the hadron is produced with small transverse size. ...

  4. Programmable window : a large-scale transparent electronic display using SPD film

    E-Print Network [OSTI]

    Ramos, Martin (Ramos Rizo-Patron)

    2004-01-01T23:59:59.000Z

    This research demonstrates that Suspended Particle Device (SPD) film is a viable option for the development of large-scale transparent display systems. The thesis analyzes the SPD film from an architectural display application ...

  5. Patternable transparent carbon nanotube films for electrochromic devices Liangbing Hu and George Grunera

    E-Print Network [OSTI]

    Gruner, George

    Patternable transparent carbon nanotube films for electrochromic devices Liangbing Hu and George nanotube films on polyethylene terephthalate as flexible electrodes in electrochromic devices using. Electrochromic devices attract much interest due to their potential use in applications such as smart windows

  6. Evidence for the Onset of Color Transparency in ?0 Electroproduction off Nuclei

    SciTech Connect (OSTI)

    Guo, L; Hanretty, C; Hicks, K; Holt, R J; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jawalker, S S; Keller, D; Khandaker, M; Kheterpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Laget, J M; Lu, H Y; MacGregor, I.D. J; Mao, Y; Markov, N; Mayer, M; McAndrew, J; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moutarde, H; Muneva, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Raue, B A; Reimer, P E; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatie, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voskanyan, H; Voutier, E; Watts, D; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhao, B; Zhao, Z W

    2012-06-12T23:59:59.000Z

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'?0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ?A interaction, was studied as function of the coherence length (Ic), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no Ic dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  7. GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

    Broader source: Energy.gov [DOE]

    Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee...

  8. Microsoft PowerPoint - 9_David Thomas_WR Transparency at NMMSS...

    National Nuclear Security Administration (NNSA)

    be converted to LEU and delivered to USEC Deliveries of "WR" LEU from USEC to the fuel fabricators are likely to continue into CY 2015 Transparency in U.S. facilities...

  9. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications

    E-Print Network [OSTI]

    Lunt, Richard R.

    We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous ...

  10. Synthesis of mono-to-multi-layer graphene for transparent electrode applications

    E-Print Network [OSTI]

    Choi, Minseok

    2012-01-01T23:59:59.000Z

    In this thesis, mono-to-multilayer graphene for transparent electrode applications was synthesized by Atmospheric Pressure Chemical Vapor Deposition (APCVD) and the key factors that determine the electrical and optical ...

  11. Evidence for the Onset of Color Transparency in ?0 Electroproduction off Nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, L; Hanretty, C; Hicks, K; Holt, R J; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jawalker, S S; Keller, D; Khandaker, M; Kheterpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Laget, J M; Lu, H Y; MacGregor, I.D. J; Mao, Y; Markov, N; Mayer, M; McAndrew, J; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moutarde, H; Muneva, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Raue, B A; Reimer, P E; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatie, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voskanyan, H; Voutier, E; Watts, D; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhao, B; Zhao, Z W

    2012-06-12T23:59:59.000Z

    We have measured the nuclear transparency of the incoherent diffractive A(e,e'?0) process in 12C and 56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the produced {rho}{sup 0}'s on a nucleus relative to deuterium, which is sensitive to ?A interaction, was studied as function of the coherence length (Ic), a lifetime of the hadronic fluctuation of the virtual photon, and the four-momentum transfer squared (Q2). While the transparency for both 12C and 56Fe showed no Ic dependence, a significant Q2 dependence was measured, which is consistent with calculations that included the color transparency effects.

  12. Thick and Thin Film Polymer CNT Nanocomposites for Thermoelectric Energy Conversion and Transparent Electrodes

    E-Print Network [OSTI]

    Fisher, Frank

    Thick and Thin Film Polymer ­ CNT Nanocomposites for Thermoelectric Energy Conversion gradient. Thermoelectric materials harvest electricity from waste heat or any temperature gradient]. The PDDA/(SWNT+DOC) system produced transparent (> 82% visible light transmittance) and electrically

  13. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  14. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  15. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  16. The new geospatial tools: global transparency enhancing safeguards verification

    SciTech Connect (OSTI)

    Pabian, Frank Vincent [Los Alamos National Laboratory

    2010-09-16T23:59:59.000Z

    This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

  17. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28T23:59:59.000Z

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  18. Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study

    SciTech Connect (OSTI)

    Han, Cheng [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China) [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Lin, Jiadan; Xiang, Du [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)] [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Wang, Chaocheng; Wang, Li [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China)] [Department of Physics and Institute for Advanced Study, Nanchang University, 999 Xue Fu Da Dao, Nanchang (China); Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore) [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 and Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-12-23T23:59:59.000Z

    By using in situ field effect transistor characterization integrated with molecular beam epitaxy technique, we demonstrate the strong surface transfer p-type doping effect of single layer chemical vapor deposition (CVD) graphene, through the surface functionalization of molybdenum trioxide (MoO{sub 3}) layer. After doping, both the hole and electron mobility of CVD graphene are nearly retained, resulting in significant enhancement of graphene conductivity. With coating of 10 nm MoO{sub 3}, the conductivity of CVD graphene can be increased by about 7 times, showing promising application for graphene based electronics and transparent, conducting, and flexible electrodes.

  19. Communiquer dans un monde de normes l 198 Boutaud J-J. (2005), La transparence, nouveau rgime visible , Transparence & communication, MEI, n 22, Paris, L'Harmattan,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    visible », Transparence & communication, MEI, n° 22, Paris, L'Harmattan, pp. 1-7. Debord G. (1967), La communication, Paris, L'Harmattan, pp. 207-225. Introduction La communication proposée s'inscrit dans la

  20. Experimental thermal conductivity and contact conductance of graphite composites

    E-Print Network [OSTI]

    Jackson, Marian Christine

    1998-01-01T23:59:59.000Z

    Figure 2. 1 One-Dimensional Heat Transfer by Conduction Across a Plane Wall Figure 2. 2 Fundamental Element for Electrically Based Thermal Model. . . 14 Figure 2. 3 Rectangular Unit Cell Orientation . 14 Figure 2. 4 Model of Parabolic Distribution... a low transverse thermal conductivity, they show better thermal performance than MMC's for some weight-critical applications (Ibrahim, 1992). Graphite/organic compound composites also will be reviewed. Using a high conductivity graphite fiber...

  1. UCSB researchers uncover fundamental limits on optical transparency in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The U.S.1,summerconducting oxides | Center

  2. Superhydrophobic Transparent Glass Thin Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSuminDeposition of MetalSolar Thermal Solar Thermal

  3. Optical Conductivity with Holographic Lattices

    E-Print Network [OSTI]

    Gary T. Horowitz; Jorge E. Santos; David Tong

    2012-08-03T23:59:59.000Z

    We add a gravitational background lattice to the simplest holographic model of matter at finite density and calculate the optical conductivity. With the lattice, the zero frequency delta function found in previous calculations (resulting from translation invariance) is broadened and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a strong resemblance to the properties of some of the cuprates.

  4. Appendix C Conducting Structured Walkthroughs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21T23:59:59.000Z

    This guide describes how to conduct a structured walkthroughs during the lifecycle stages of software engineering projects, regardless of hardware platform.

  5. Project Profile: High Performance Reduction/Oxidation Metal Oxides...

    Office of Environmental Management (EM)

    High Performance ReductionOxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance ReductionOxidation Metal Oxides for Thermochemical Energy...

  6. Oxidation Characteristics of Fe-18Cr-18Mn-stainless alloys

    SciTech Connect (OSTI)

    James Rawers

    2010-10-01T23:59:59.000Z

    Air oxidation studies of Fe-18Cr-18Mn stainless steels were conducted at 525°C, 625°C, and 725°C. Alloys were evaluated with respect to changes in oxidation properties as a result of interstitial additions of nitrogen and carbon and of minor solute additions of silicon, molybdenum, and nickel. Interstitial concentrations possibly had a small, positive effect on oxidation resistance. Minor solute additions significantly improved oxidation resistance but could also reduce interstitial solubility resulting in formation of chromium carbides. Loss of solute chromium resulted in a slight reduction in oxidation protection. Oxidation lasting over 500 hours produced a manganese rich, duplex oxide structure: an outer sesquioxide and an inner spinel oxide.

  7. Conduction cooling: multicrate fastbus hardware

    SciTech Connect (OSTI)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01T23:59:59.000Z

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

  8. Enhancement of Topological Insulators Surface Conduction

    E-Print Network [OSTI]

    Yu, Xinxin

    2012-01-01T23:59:59.000Z

    Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator

  9. Method for producing metal oxide aerogels

    SciTech Connect (OSTI)

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25T23:59:59.000Z

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  10. Method for producing metal oxide aerogels

    DOE Patents [OSTI]

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  11. Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process

    SciTech Connect (OSTI)

    Tillotson, T.M.; Hrubesh, L.W.

    1991-09-01T23:59:59.000Z

    Conventional silica sol-gel chemistry is limited for the production of transparent ultralow-density aerogels because (1) gelation is either slow or unachievable, and (2) even when gelation is achieved, the large pore sizes result in loss of transparency for aerogels <.020 g/cc. We have developed a two-step sol-gel process that circumvents the limitations of the conventional process and allows the formation of ultralow-density gels in a matter of hours. we have found that the gel time is dependent on the catalyst concentration. After supercritical extraction, the aerogels are transparent, uncracked tiles with densities as low as .003 g/cc. 6 figs., 11 refs.

  12. Energy Dependence of Nuclear Transparency in C(p,2p) Scattering

    E-Print Network [OSTI]

    A. Leksanov; J. Alster; G. Asryan; Y. Averichev; D. Barton; V. Baturin; N. Bukhtoyarova; A. Carroll; S. Heppelmann; T. Kawabata; Y. Makdisi; E. Minina; I. Navon; A. Malki; H. Nicholson; A. Ogawa; Yu. Panebratsev; E. Piasetzky; A. Schetkovsky; S. Shimanskiy; A. Tang; J. W. Watson; H. Yoshida; D. Zhalov

    2001-07-20T23:59:59.000Z

    The transparency of carbon for (p,2p) quasi-elastic events was measured at beam energies ranging from 6 to 14.5 GeV at 90 degrees c.m. The four momentum transfer squared q*q ranged from 4.8 to 16.9 (GeV/c)**2. We present the observed energy dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to normalize this transparency ratio. We find a sharp rise in transparency as the beam energy is increased to 9 GeV and a reduction to approximately the Glauber level at higher energies.

  13. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications

    SciTech Connect (OSTI)

    Lunt, Richard R; Bulovic, Vladimir

    2011-01-01T23:59:59.000Z

    We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous average visible transmission of >65% . Subsequent incorporation of near-infrared distributed-Bragg-reflector mirrors leads to an increase in the efficiency to 1.7±0.1% , approaching the 2.4±0.2% efficiency of the opaque cell, while maintaining high visible-transparency of >55% . Finally, we demonstrate that a series-integrated array of these transparent cells is capable of powering electronic devices under near-ambient lighting. This architecture suggests strategies for high-efficiency power-generating windows and highlights an application uniquely benefiting from excitonic electronics.

  14. Asphalt Oxidation Kinetics and Pavement Oxidation Modeling

    E-Print Network [OSTI]

    Jin, Xin

    2012-07-16T23:59:59.000Z

    Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

  15. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes

    SciTech Connect (OSTI)

    Huang, Sumei; Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2011-02-15T23:59:59.000Z

    We describe how electromagnetically induced transparency can arise in quadratically coupled optomechanical systems. Due to quadratic coupling, the underlying optical process involves a two-phonon process in an optomechanical system, and this two-phonon process makes the mean displacement, which plays the role of atomic coherence in traditional electromagnetically induced transparency (EIT), zero. We show how the fluctuation in displacement can play a role similar to atomic coherence and can lead to EIT-like effects in quadratically coupled optomechanical systems. We show how such effects can be studied using the existing optomechanical systems.

  16. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    SciTech Connect (OSTI)

    Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo [Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2014-05-07T23:59:59.000Z

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  17. Enhanced electronic conductivity by controlled self-doping in pyrochlores

    SciTech Connect (OSTI)

    Xiao, Haiyan [University of Tennessee, Knoxville (UTK); Zhang, Yanwen [ORNL; Weber, William J [ORNL

    2012-01-01T23:59:59.000Z

    Most 5d transition-metal (TM) pyrochlores exhibit metallic behavior, but 3d and 4d TM pyrochlores are generally electronic semiconductors or insulators. Here, we report a semiconductor metal transition induced by introducing excess Ti metal as interstitials into Y2Ti2O7. These Ti interstitials prefer anion vacant 8a sites or bridge sites between two neighboring cations along the h010i direction. Density functional theory calculations suggest that an increased electronic conductivity originates from the interplay between the extra Ti and its neighboring cations. These findings suggest a means for achieving metallic behavior in semiconducting pyrochlore oxides and tuning the electronic conduction in pyrochlores for their electrochemical applications in solid oxide fuel cells.

  18. Computational design, fabrication, and characterization of microarchitectured solid oxide fuel cells with improved energy efficiency.

    E-Print Network [OSTI]

    Yoon, Chan

    2010-01-01T23:59:59.000Z

    ??Electrodes in a solid oxide fuel cell (SOFC) must possess both adequate porosity and electronic conductivity to perform their functions in the cell. They must… (more)

  19. Ductility and chemical reactions at the interface between nickel and magnesium oxide single crystals.

    E-Print Network [OSTI]

    Hasselman, Didericus Petrus Hermannus

    2011-01-01T23:59:59.000Z

    ??An investigation was conducted on the interaction between nickel metal and single crystals of magnesium oxide. The nickel was cleaned with purified hydrogen gas at… (more)

  20. Continuous production of conducting polymer

    E-Print Network [OSTI]

    Gaige, Terry A. (Terry Alden), 1981-

    2004-01-01T23:59:59.000Z

    A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

  1. CONDUCTANCE OF NANOSYSTEMS WITH INTERACTION

    E-Print Network [OSTI]

    Ramsak, Anton

    -beam lithography or small metallic grains,[1] semiconductor quantum dots,[2] or a single large molecule of an atomic-size bridge that forms in the break,[3] or even measure the conductance of a single hydrogen

  2. Conducting polymer actuators : temperature effects

    E-Print Network [OSTI]

    Del Zio, Michael R. (Michael Robert), 1982-

    2006-01-01T23:59:59.000Z

    In order to utilize conducting polymer actuators as a viable engineering solution, it is necessary to produce usable levels of force with a reasonable bandwidth. Polypyrrole actuated at temperatures as high as 100 °C ...

  3. Plasma conductivity at finite coupling

    E-Print Network [OSTI]

    Babiker Hassanain; Martin Schvellinger

    2011-08-31T23:59:59.000Z

    By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

  4. Long term experience with semi-conductive glaze high voltage post insulators

    SciTech Connect (OSTI)

    Baker, A.C.; Maney, J.W.; Szilagyi, Z. (Lapp Insulator Co., LeRoy, NY (US))

    1990-01-01T23:59:59.000Z

    Insulators using semi-conductive glaze have long been known for their superior contamination performance. Early glazes for this type however were not stable and successful use of semi-conductive glazed porcelain insulators was delayed many years until tin-antimony oxide glazes were developed. Service experience of eighteen years is now available for line and station post insulators with this type of glaze. Based on this experience, the aging characteristics of tin-antimony oxide semi-conductive glazes are described and quantified. Several different applications of these insulators are also described.

  5. Nanoengineered Thin Films for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Su, Qing

    2013-11-21T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because of their high energy efficiency, flexible fuel selections and clean energy conversion. To avoid cell cracking and formation of non-conducting compounds...

  6. Electrical properties and defect structures of praseodymium-cerium oxide solid solutions

    E-Print Network [OSTI]

    Stefanik, Todd Stanley, 1973-

    2004-01-01T23:59:59.000Z

    A defect chemistry model consistent with observed trends in the pO2 and temperature dependence of electrical conductivity in praseodymium cerium oxide (PCO) was developed. Four point DC conductivity measurements were made ...

  7. Silver nanowire transparent electrodes for liquid crystal-based smart windows

    E-Print Network [OSTI]

    Goldthorpe, Irene

    privacy glass or as energy saving windows through the modulation of solar heat gain [1,3,4]. The operating sheet resistance, and low-cost. While the benefits of increased transparency and low-cost are obvious Polymer dispersed liquid crystal Smart window a b s t r a c t A significant manufacturing cost of polymer

  8. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    SciTech Connect (OSTI)

    Gad-Allah, Tarek A., E-mail: tareqabdelshafy@yahoo.ca [Water Pollution Research Department, National Research Centre, Cairo 12311 (Egypt); Margha, Fatma H. [Department of Glass Research, National Research Centre, Cairo 12311 (Egypt)] [Department of Glass Research, National Research Centre, Cairo 12311 (Egypt)

    2012-12-15T23:59:59.000Z

    Graphical abstract: Display Omitted Highlights: ? Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ? Precipitation of photoactive phases by using controlled heat-treatment. ? Conservation of transparency along with photoactivity. ? Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UV–visible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  9. Distributed XML Repositories: Top-down Design and Transparent Query Processing

    E-Print Network [OSTI]

    Gertz, Michael

    Distributed XML Repositories: Top-down Design and Transparent Query Processing Michael Gertz Jan over the Web. However, design and query processing models for distributed XML data have not yet been studied in detail. The goal of this paper is to study the design and management of distributed XML

  10. RemusDB: Transparent High Availability for Database Umar Farooq Minhas

    E-Print Network [OSTI]

    Aboulnaga, Ashraf

    system (DBMS). The proposed tech- nique can be applied to any DBMS with little or no customization transparent HA and failover capabilities. We show that while Remus and similar systems can protect a DBMS, database workloads incur a performance overhead of up to 32% as compared to an unprotected DBMS. We

  11. Reconstructing the Surface of Inhomogeneous Transparent Scenes by Scatter-Trace Photography

    E-Print Network [OSTI]

    Toronto, University of

    . W. Morris Kiriakos N. Kutulakos University of Toronto Abstract We present a new method one or more viewpoints while moving a proxi- mal light source to a 2D or 3D set of positions is that even though light trans- port within a transparent scene's interior can be exceed- ingly complex

  12. THE ONE-DIMENSIONAL SHALLOW WATER EQUATIONS WITH TRANSPARENT BOUNDARY CONDITIONS

    E-Print Network [OSTI]

    Temam, Roger

    THE ONE-DIMENSIONAL SHALLOW WATER EQUATIONS WITH TRANSPARENT BOUNDARY CONDITIONS MADALINA PETCU the question of the local in time well-posedness of the one-dimensional Shallow Water on an interval, these equations being supplemented with suitable boundary conditions. The flows considered are subcritical

  13. Hair Self Shadowing and Transparency Depth Ordering Using Occupancy maps Erik Sintorn

    E-Print Network [OSTI]

    Assarsson, Ulf

    approximate visibility function for high frequency semi- transparent geometry such as hair. We can then reconstruct the vis- ibility for any fragment without the expensive compression needed by Deep Shadow Maps cylinders or as line primitives, the two main challenges are the self-shadowing effects within the volume

  14. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect (OSTI)

    Yang, Chan-Shan [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tang, Tsung-Ta [Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan (China); Pan, Ru-Pin [Department of Electrophysics, National Chiao Tung University, Hsinchu 30078, Taiwan (China); Yu, Peichen [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Pan, Ci-Ling, E-mail: clpan@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Science of Matters, Hsinchu 30013, Taiwan (China)

    2014-04-07T23:59:59.000Z

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding ?/2 at 1.0 THz was achieved in a ?517??m-thick cell. The phase shifter exhibits high transmittance (?78%). The driving voltage required for quarter-wave operation is as low as 5.66?V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  15. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, Richard B. (Hurricane, WV); Warren, Barbara K. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  16. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, R.B.; Warren, B.K.

    1991-12-17T23:59:59.000Z

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  17. Optical conductivity of curved graphene

    E-Print Network [OSTI]

    A. J. Chaves; T. Frederico; O. Oliveira; W. de Paula; M. C. Santos

    2014-05-01T23:59:59.000Z

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far and mid infrared frequencies for periodicities $\\sim100\\,$nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthemore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

  18. Zinc Oxide Modified with Benzylphosphonic Acids as Transparent Electrodes in Regular and Inverted Organic Solar Cell Structures

    E-Print Network [OSTI]

    Ilja Lange; Sina Reiter; Juliane Kniepert; Fortunato Piersimoni; Michael Paetzel; Jana Hildebrandt; Thomas Brenner; Stefan Hecht; Dieter Neher

    2015-02-05T23:59:59.000Z

    An approach is presented to modify the WF of solution-processed sol-gel derived ZnOover an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using P3HT:PCBM as the active layer. These devices compete with or even exceed the performance of the reference cell on ITO/PEDOT:PSS. Our finding challenges the current view that bottom electrodes in inverted solar cells need to be electron-blocking for good device performance.

  19. Tuning the Properties of Transparent Oxide Conductors. Dopant Ion Size and Electronic Structure Effects on CdO-Based

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    on the CdO- based TCO structural, electronic, and optical properties: (1) lattice parameters contract as key components in optoelectronic devices such as flat panel displays (FPDs), organic light-emitting diodes (OLEDs), photovoltaics, solar cells, optical waveguides, and energy-efficient windows.1

  20. Conductive Channel for Energy Transmission

    SciTech Connect (OSTI)

    Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

    2011-11-10T23:59:59.000Z

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  1. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  2. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14T23:59:59.000Z

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  3. Electrically Conductive Bacterial Nanowires Produced by Shewanella...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

  4. Metal current collect protected by oxide film

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2004-05-25T23:59:59.000Z

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  5. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita (Old Field, NY)

    2001-01-01T23:59:59.000Z

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  6. Conducting Your Own Energy Audit

    E-Print Network [OSTI]

    Phillips, J.

    2008-01-01T23:59:59.000Z

    Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a company’s profit every minute...

  7. Conducting Polymer Devices for Bioelectronics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    signals recording. Organic electrochemical transistors (OECTs) represent a step beyond conducting polymer a far superior signal-to-noise- ratio (SNR) compared to electrodes. The high SNR of the OECT recordings and contamination. The use of an organic electrochemical transistor for detection of lactate by integration

  8. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, T.E.; Spieker, D.A.

    1983-12-08T23:59:59.000Z

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  9. ETHICAL CONDUCT IN BIOMEDICAL RESEARCH

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    ETHICAL CONDUCT IN BIOMEDICAL RESEARCH: A Handbook for Biomedical Graduate Studies Students and Research Fellows Third Edition BIOMEDICAL GRADUATE STUDIES PROGRAM UNIVERSITY of PENNSYLVANIA #12 that a trainee in biomedical research should be taught to maintain the highest standards of scientific integrity

  10. Transition metal-promoted oxygen ion conductors as oxidation catalyst

    SciTech Connect (OSTI)

    Liu, W.; Sarofim, A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering

    1994-12-31T23:59:59.000Z

    A novel metal oxide composite catalyst for the complete oxidation of carbon monoxide and hydrocarbons was prepared by combining oxygen ion conducting materials with active transition metals. The oxygen ion conductors used were typical fluorite-type oxides, such as ceria, zirconia, and others. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of oxygen ion conductors. The intimate contact of the two kinds of materials gave rise to a highly active oxidation catalyst. On Cu-Ce-O composite catalysts, 95% of carbon monoxide was oxidized by air at {approximately} 100 C. Complete methane oxidation on the same catalyst took place at {approximately} 550 C. When the stoichiometric amount of sulfur dioxide was sued to oxidize carbon monoxide, 96% of sulfur dioxide was reduced to elemental sulfur at temperatures above 460 C with 99% of sulfur dioxide conversion. This type of composite catalyst also showed excellent resistance to water poisoning.

  11. Oxidation of propylene over copper oxide catalysts

    E-Print Network [OSTI]

    Billingsley, David Stuart

    1958-01-01T23:59:59.000Z

    work on other phases of this project concerning cata- lytic oxidation of hydrocarbons has been described by Sanderson (59), Looney (34), Burns (11), Dunlop (17), Woodham (71), and Perkins (49). The early work of Sanderson indicated that chromia-alumina... and pro- moted chromia?alumina agents possessed the ability to catalyze the oxidation of propane by air. Subsequent work of Looney suggested that propylene was a primary product of this oxidation; hence most investigations since then have been confined...

  12. Cerium Oxide Coating for Oxidation Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award In order to produce power more efficiently and cleanly, the next generation of power plant boilers, turbines, solid oxide fuel cells (SOFCs) and other essential...

  13. Interfacial material for solid oxide fuel cell

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    1999-01-01T23:59:59.000Z

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  14. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  15. Conduct of operations implementation plan

    SciTech Connect (OSTI)

    Anderson, C.K.; Hall, R.L.

    1991-02-20T23:59:59.000Z

    This implementation plan describes the process and provides information and schedules that are necessary to implement and comply with the Department of Energy (DOE) Order 5480.19, {open_quotes}Conduct of Operations{close_quotes} (CoOp). This plan applies to all Pinellas Plant operations and personnel. Generally, this Plan discusses how DOE Order 5480.19 will be implemented at the Pinellas Plant.

  16. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  17. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

    1990-01-01T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  18. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13T23:59:59.000Z

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  19. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  20. Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups

    SciTech Connect (OSTI)

    Liu, Chien-Hung; Yeh, Shien-Chang; Huang, Hsueh-Liang

    2010-02-01T23:59:59.000Z

    A low-cost high-precision thickness measurement system for transparent plates that uses dual digital versatile disc (DVD) pickups is proposed. The two DVD pickups are used as the transmitter and the receiver in the measurement system, respectively. One of the DVD pickups emits a laser to the other DVD pickup (receiver) and projects on the photodiode integrated circuit of the receiver. The transparent plate is placed in the optical path to change the focused point that will affect the focusing error signal (FES) of the receiver. Using the FES, a mathematical model for thickness measurement based on the geometric optical method is developed. The experimental results show that the accuracy is 1.5 {mu}m, and the uncertainty is estimated to be {+-}1.37 {mu}m for the measured thickness of 150{mu}m.

  1. Transparent Symmetric Active/Active Replication for Service-Level High Availability

    SciTech Connect (OSTI)

    Engelmann, Christian [ORNL; Scott, Stephen L [ORNL; Leangsuksun, Chokchai [Louisiana Tech University; He, X. [Tennessee Technological University

    2007-01-01T23:59:59.000Z

    As service-oriented architectures become more important in parallel and distributed computing systems, individual service instance reliability as well as appropriate service redundancy becomes an essential necessity in order to increase overall system availability. This paper focuses on providing redundancy strategies using service-level replication techniques. Based on previous research using symmetric active/active replication, this paper proposes a transparent symmetric active/active replication approach that allows for more reuse of code between individual service-level replication implementations by using a virtual communication layer. Service- and client-side interceptors are utilized in order to provide total transparency. Clients and servers are unaware of the replication infrastructure as it provides all necessary mechanisms internally.

  2. Development of transparent silica aerogel over a wide range of densities

    E-Print Network [OSTI]

    Tabata, Makoto; Ishii, Yoshikazu; Kawai, Hideyuki; Sumiyoshi, Takayuki; Yokogawa, Hiroshi; 10.1016/j.nima.2010.02.241

    2011-01-01T23:59:59.000Z

    We have succeeded in developing hydrophobic silica aerogels over a wide range of densities (i.e. refractive indices). A pinhole drying method was invented to make possible producing highly transparent aerogels with entirely new region of refractive indices of 1.06-1.26. Obtained aerogels are more transparent than conventional ones, and the refractive index is well controlled in the pinhole drying process. A test beam experiment was carried out in order to evaluate the performance of the pinhole-dried aerogels as a Cherenkov radiator. A clear Cherenkov ring was successfully observed by a ring imaging Cherenkov counter. We also developed monolithic and hydrophobic aerogels with a density of 0.01 g/cm^3 (a low refractive index of 1.0026) as a cosmic dust capturer for the first time. Consequently, aerogels with any refractive indices between 1.0026 and 1.26 can be produced freely.

  3. Development of transparent silica aerogel over a wide range of densities

    E-Print Network [OSTI]

    Makoto Tabata; Ichiro Adachi; Yoshikazu Ishii; Hideyuki Kawai; Takayuki Sumiyoshi; Hiroshi Yokogawa

    2011-12-21T23:59:59.000Z

    We have succeeded in developing hydrophobic silica aerogels over a wide range of densities (i.e. refractive indices). A pinhole drying method was invented to make possible producing highly transparent aerogels with entirely new region of refractive indices of 1.06-1.26. Obtained aerogels are more transparent than conventional ones, and the refractive index is well controlled in the pinhole drying process. A test beam experiment was carried out in order to evaluate the performance of the pinhole-dried aerogels as a Cherenkov radiator. A clear Cherenkov ring was successfully observed by a ring imaging Cherenkov counter. We also developed monolithic and hydrophobic aerogels with a density of 0.01 g/cm^3 (a low refractive index of 1.0026) as a cosmic dust capturer for the first time. Consequently, aerogels with any refractive indices between 1.0026 and 1.26 can be produced freely.

  4. Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator

    E-Print Network [OSTI]

    U. Schnorrberger; J. D. Thompson; S. Trotzky; R. Pugatch; N. Davidson; S. Kuhr; I. Bloch

    2009-03-01T23:59:59.000Z

    We experimentally demonstrate electromagnetically induced transparency and light storage with ultracold 87Rb atoms in a Mott insulating state in a three dimensional optical lattice. We have observed light storage times of about 240 ms, to our knowledge the longest ever achieved in ultracold atomic samples. Using the differential light shift caused by a spatially inhomogeneous far detuned light field we imprint a "phase gradient" across the atomic sample, resulting in controlled angular redirection of the retrieved light pulse.

  5. Color transparency after the NE18 and E665 experiments: Outllok and perspectives at CEBAF

    E-Print Network [OSTI]

    J. Nemchik; N. N. Nikolaev; B. G. Zakharov

    1994-06-06T23:59:59.000Z

    CEBAF is a high-luminocity factory of virtual photons with variable virtuality $Q^{2}$ and transverse size. This makes CEBAF, in particular after the energy upgrade to (8-12)GeV, an ideal facility for uncovering new phenomena, and opening new windows, at the interface of the perturbative and nonperturbative QCD. We discuss color transparency as the case for a broad program on electroproduction of vector mesons $\\rho^{0},\\,\\omega^{0},\\,\\phi^{0}$ and their radial excitations $\\rho',\\,\\omega',\\,\\phi'$ at CEBAF. We also comment on the second generation of experiments on color transparency in $^{4}He(e,e'p)$ scattering, which are also feasible at CEBAF. In 1994, we can make more reliable projections into future because our understanding of the onset of color transparency has greatly been augmented by two experiments completed in 1993:\\\\ i) no effect of CT was seen in the SLAC NE18 experiment on $A(e,e'p)$ scattering at virtualities of the exchanged photon $Q^{2} \\lsim 7$ GeV$^{2}$, \\\\ ii) strong signal of CT was observed in the FNAL E665 experiment on exclusive $\\rho^{0}$- meson production in deep inelastic scattering in the same range of $Q^{2}$. \\\\ We discuss the impact of these observations on the CEBAF experimental program. We argue they both are good news, both were anticipated theoretically, and both rule in the correct QCD mechanism of the onset of CT.

  6. Transfer of Large-Area Graphene Films for High-Performance Transparent

    E-Print Network [OSTI]

    reduction of exfoliated graphite oxide layers can produce large quantities of reduced graphene oxide of exfoliated natural graphite. This is possibly due to a combination of factors, such as damage of the graphene oxide.15 Graphite has also been partially exfoliated and dispersed in certain solvents,5

  7. Nuclear transparency and effective kaon-nucleon cross section from the A(e,e?K+) reaction

    E-Print Network [OSTI]

    Clasie, Benjamin Michael Patrick

    We have determined the transparency of the nuclear medium to kaons from A(e,e[superscript ?]K+) measurements on [superscript 12]C, [superscript 63]Cu, and [superscript 197]Au targets. The measurements were performed at the ...

  8. Method of making a catalytic metal oxide selective for the conversion of a gas and a coating system for the selective oxidation of hydrocarbons and carbon monoxide

    SciTech Connect (OSTI)

    Logothetis, E.M.; Soltis, R.E.

    1993-07-20T23:59:59.000Z

    A method is described of making a catalytic metal oxide selective to catalyzing the conversion of given gas species, comprising: intimately supporting a solid film of catalytic metal oxide on an electrically conducting material, said film having an exposed outer surface spaced no greater than 1,000 angstroms from said conducting material and said conducting material being matched to the composition of said oxide to change the electron state of the exposed outer surface to promote a reaction between given gas species and said oxide, said metal oxide being selected from the group consisting of TiO[sub 2], SnO[sub 2], FeO, SrTiO[sub 3], and CoO, and said conducting material being selected from the group consisting of Au, Pt, TiN, Pd, Rh, Ni, and Co.

  9. Student ConduCt Student Affairs

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Code of Student ConduCt 2013-14 Student Affairs #12;Contents Letter from the Dean of Students .........................................................................................ii University Code of Student Conduct Preamble............................................. 1 Section I: Rules of Student Conduct.............................................................. 1 Section

  10. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect (OSTI)

    Ronald baney; James Tulenko

    2012-11-20T23:59:59.000Z

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  11. High-temperature electrically conductive ceramic composite and method for making same

    DOE Patents [OSTI]

    Beck, David E. (Knoxville, TN); Gooch, Jack G. (Seymour, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN)

    1983-01-01T23:59:59.000Z

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  12. Analysis of the empirical relations between visible solar radiation, the solar altitude and the transparency of the atmosphere

    E-Print Network [OSTI]

    Garcia Occhipinti, Antonio

    1965-01-01T23:59:59.000Z

    ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISUAL SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti Submitted to the Graduate College of the Texas ARM Untverstty in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1965 Major Subject: Oceanography ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISIBLE SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti...

  13. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, M.

    1988-02-12T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  14. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1989-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  15. Water-soluble conductive polymers

    DOE Patents [OSTI]

    Aldissi, Mahmoud (Sante Fe, NM)

    1990-01-01T23:59:59.000Z

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  16. Advances in inherently conducting polymers

    SciTech Connect (OSTI)

    Aldissi, M.

    1987-09-01T23:59:59.000Z

    The discovery of polyacetylene as the prototype material led to extensive research on its synythesis and characterization. The techniques that emerged as the most important and promising ones are those that dealt with molecular orientation and that resulted in conductivities almost as high as that of copper. The study of dozens of other materials followed. Interest in conducting polymers stems from their nonclassical optical and electronic properties as well as their potential technological applications. However, some of the factors currently limiting their use are the lack of long-term stability and the need to develop conventional low-cost techniques for easy processing. Therefore, research was extended toward solving these problems, and progress has been recently made in that direction. The synthesis of new materials such as stable and easily processable alkylthiophenes, water-soluble polymers, and multicomponent systems, including copolymers and composites, constitutes an important step forward in the area of synthetic metals. However, a full understanding of materials chemistry and properties requires more work in the years to come. Although, few small-scale applications have proven to be successful, long-term stability and applicability tests are needed before their commercial use becomes reality.

  17. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01T23:59:59.000Z

    semiconductors and ceramics with desired thermalthermal conductivity of several polycrystalline semiconductors and ceramics,Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

  18. Continuous Processing of High Thermal Conductivity Polyethylene...

    Broader source: Energy.gov (indexed) [DOE]

    Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

  19. THE MICROSTRUCTURAL LOCATION OF THE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR

    E-Print Network [OSTI]

    Clarke, D. E

    2011-01-01T23:59:59.000Z

    OXIDE PHASE IN A ZINC OXIDE VARISTOR MICROSI'RUCTIJRALMETAL OXIDE PHASE IN A ZINC OXIDE VARISTOR David R. Clarke

  20. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31T23:59:59.000Z

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  1. Method for producing metal oxide aerogels having densities less than 0.02 g/cc

    SciTech Connect (OSTI)

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.

  2. Method for producing metal oxide aerogels having densities less than 0. 02 g/cc

    DOE Patents [OSTI]

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1994-01-04T23:59:59.000Z

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm[sup 3] to those with a density of more than 0.8 g/cm[sup 3], by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm[sup 3]. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm[sup 3], with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described. 7 figures.

  3. Solid oxide fuel cell with monolithic core

    DOE Patents [OSTI]

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02T23:59:59.000Z

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  4. Solid oxide fuel cell with monolithic core

    DOE Patents [OSTI]

    McPheeters, Charles C. (Plainfield, IL); Mrazek, Franklin C. (Hickory Hills, IL)

    1988-01-01T23:59:59.000Z

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  5. Hydraulic conductivity of shaly sands

    SciTech Connect (OSTI)

    Lima, O.A.L. de [PPPG/Federal Univ. of Bahia, Salvador Bahia (Brazil)

    1994-12-31T23:59:59.000Z

    The effects of clays on the hydraulic conductivity of a sandstone are analyzed by considering a simple clay coating structure for the sand grains. In the model, silicate insulating nuclei are uniformly surrounded by charged clay particles. The total charge on the clays is compensated by a counterion density Q{sub v}. Assuming a capillary flow regime inside this granular model a Kozeny-Carman type equation has been derived, expressing its intrinsic permeability k in terms of a porosity-tortuosity factor {phi}{sup (m{minus}0.5)} and of the parameter Q{sub v}. The power-law derived expression shows that k decreases with the amount of clay, not only because a high Q{sub v} implies a narrowing of the pore channels, but also because it modifies the hydraulic tortuosity of the medium. This new equation has been statistically tested with extensive petrophysical laboratory data for different types of shaly sandstones.

  6. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15T23:59:59.000Z

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  7. Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide

    E-Print Network [OSTI]

    Kim, Sehun

    Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

  8. STUDENT CONDUCT CODE REVIEW/DISCUSSION

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    STUDENT CONDUCT CODE REVISION REVIEW/DISCUSSION Student Conduct Code Revision Workgroup #12;Agenda Introductions/Purpose History of the Student Conduct Code Revision Workgroup Highlights of the Draft Revision Introduction: Principles Promoting Student Responsibility Jurisdiction Conduct in Violation of Community

  9. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect (OSTI)

    Estochen, E.

    2013-03-20T23:59:59.000Z

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  10. A Job Pause Service under LAM/MPI+BLCR for Transparent Fault Tolerance

    SciTech Connect (OSTI)

    Wang, Chao [North Carolina State University; Mueller, Frank [North Carolina State University; Engelmann, Christian [ORNL; Scott, Steven L [ORNL

    2007-01-01T23:59:59.000Z

    Checkpoint/restart (C/R) has become a requirement for long-running jobs in large-scale clusters due to a meantime- to-failure (MTTF) in the order of hours. After a failure, C/R mechanisms generally require a complete restart of an MPI job from the last checkpoint. A complete restart, however, is unnecessary since all but one node are typically still alive. Furthermore, a restart may result in lengthy job requeuing even though the original job had not exceeded its time quantum. In this paper, we overcome these shortcomings. Instead of job restart, we have developed a transparent mechanism for job pause within LAM/MPI+BLCR. This mechanism allows live nodes to remain active and roll back to the last checkpoint while failed nodes are dynamically replaced by spares before resuming from the last checkpoint. Our methodology includes LAM/MPI enhancements in support of scalable group communicationwith fluctuating number of nodes, reuse of network connections, transparent coordinated checkpoint scheduling and a BLCR enhancement for job pause. Experiments in a cluster with the NAS Parallel Benchmark suite show that our overhead for job pause is comparable to that of a complete job restart. A minimal overhead of 5.6% is only incurred in case migration takes place while the regular checkpoint overhead remains unchanged. Yet, our approach alleviates the need to reboot the LAM run-time environment, which accounts for considerable overhead resulting in net savings of our scheme in the experiments. Our solution further provides full transparency and automation with the additional benefit of reusing existing resources. Executing continues after failures within the scheduled job, i.e., the application staging overhead is not incurred again in contrast to a restart. Our scheme offers additional potential for savings through incremental checkpointing and proactive diskless live migration, which we are currently working on.

  11. Sintered electrode for solid oxide fuel cells

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Warner, Kathryn A. (Bryan, TX)

    1999-01-01T23:59:59.000Z

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  12. Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts. I. Catalyst composition and activity

    SciTech Connect (OSTI)

    Liu, W.; Flytzani-Stephanopoulos, F. [Tufts Univ., Medford, MA (United States)] [Tufts Univ., Medford, MA (United States)

    1995-05-01T23:59:59.000Z

    A novel metal oxide composite catalyst for the total oxidation of carbon monoxide and methane was prepared by combining fluorite oxides with active transition metals. The fluorite oxides, such as ceria and zirconia, are oxygen-ion-conducting materials having catalytic properties usually at high temperatures. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of these oxides. The contact of the two types of materials gave rise to a high active oxidation catalyst. At a space velocity of about 42,000 h{sup {minus}1}, complete carbon monoxide oxidation in air occurred at room temperature on the Au{sub 0.05}[Ce(La)]{sub 0.95}L{sub x} catalyst and at ca. 100{degrees}C on Cu-Ce-O composite catalysts. At the same space velocity, total oxidation of methane on the Cu-Ce-O catalyst doped with La{sub 2}O{sub 3} or SrO took place at ca. 550{degrees}C. The specific carbon monoxide oxidation activity of the Cu-Ce-O catalyst was several orders of magnitude higher than that of conventional copper-based catalysts and comparable or superior to platinum catalysts. This type of composite catalyst also showed excellent resistance to water vapor poisoning. The enhanced catalyst activity and stability resulted from strong interaction of the transition metal and fluorite oxide materials. 44 refs., 14 figs., 5 tabs.

  13. Theory of Thermal Motion in Electromagnetically Induced Transparency: Diffusion, Doppler, Dicke and Ramsey

    E-Print Network [OSTI]

    O. Firstenberg; M. Shuker; R. Pugatch; D. R. Fredkin; N. Davidson; A. Ron

    2008-01-30T23:59:59.000Z

    We present a theoretical model for electromagnetically induced transparency (EIT) in vapor, that incorporates atomic motion and velocity-changing collisions into the dynamics of the density-matrix distribution. Within a unified formalism we demonstrate various motional effects, known for EIT in vapor: Doppler-broadening of the absorption spectrum; Dicke-narrowing and time-of-flight broadening of the transmission window for a finite-sized probe; Diffusion of atomic coherence during storage of light and diffusion of the light-matter excitation during slow-light propagation; and Ramsey-narrowing of the spectrum for a probe and pump beams of finite-size.

  14. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    SciTech Connect (OSTI)

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye, E-mail: zhaojianye@pku.edu.cn [Department of Electronics, Peking University, Beijing, 100871 (China)

    2014-03-17T23:59:59.000Z

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  15. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24T23:59:59.000Z

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  16. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01T23:59:59.000Z

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  17. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01T23:59:59.000Z

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  18. Ionic conductors for solid oxide fuel cells

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Bloom, Ira D. (Bolingbrook, IL); Pullockaran, Jose D. (Hanover Park, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01T23:59:59.000Z

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  19. Influence of physisorbed water on the conductivity of hydrogen terminated silicon-on-insulator surfaces

    E-Print Network [OSTI]

    the water layer is displaced by inert gas purging, heating, or pumping. The observed conductivity changes active defects as the surface oxidizes. Surprisingly, physisorbed water via adsorption from ambient.1063/1.2822417 On semiconductor surfaces adsorption or reaction events which result in charge redistribution give rise to changes

  20. DOI: 10.1002/adma.200702672 Intact Pattern Transfer of Conductive Exfoliated Graphite

    E-Print Network [OSTI]

    Lee, Ilsoon

    DOI: 10.1002/adma.200702672 Intact Pattern Transfer of Conductive Exfoliated Graphite Nanoplatelet as biosensors[8,9] or in drug deliv- ery.[10,11] Exfoliated graphite has been incorporated into PEM and other incorporated into PEM.[15­18] Oxidized graphite is created by the acid treatment of graphite, which exfoliates

  1. Highly conductive PEDOT:PSS on flexible substrate as ITO-free anode for polymer solar cells

    SciTech Connect (OSTI)

    Del Mauro, A. De Girolamo; Ricciardi, R.; Montanino, M.; Morvillo, P.; Minarini, C. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, p.le E. Fermi 1, 80055 Portici (Italy)

    2014-05-15T23:59:59.000Z

    In this work, highly conductive anode based on PEDOT:PSS is proposed as substitute of Indio-Tin Oxide (ITO) in flexible solar cells. The anodic conductive polymer was spin coated on a 125 ?m thick polyethylene naphthalate (PEN) substrate. The obtained film was characterized in terms of structure and physical- chemical proprieties. The obtained results are very promising and the conductive film will be investigated in future as electrode in a complete polymeric solar cell.

  2. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    SciTech Connect (OSTI)

    McCammon, K.; Haigh, R.; Armstrong, G. [and others

    1996-06-01T23:59:59.000Z

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km of Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.

  3. Participatory approach, acceptability and transparency of waste management LCAs: Case studies of Torino and Cuneo

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG - Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@jrc.ec.europa.eu [European Commission - Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra (Italy); Genon, Giuseppe, E-mail: giuseppe.genon@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Zanetti, Maria Chiara, E-mail: mariachiara.zanetti@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-09-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Life Cycle Assessment is still not fully operational in waste management at local scale. Black-Right-Pointing-Pointer Credibility of WM LCAs is negatively affected by assumptions and lack of transparency. Black-Right-Pointing-Pointer Local technical-social-economic constraints are often not reflected by WM LCAs. Black-Right-Pointing-Pointer A participatory approach can increase acceptability and credibility of WM LCAs. Black-Right-Pointing-Pointer Results of a WM LCA can hardly ever be generalised, thus transparency is essential. - Abstract: The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale.

  4. Experimental investigation of the thermal conductivity of porous adsorbents. Master's thesis

    SciTech Connect (OSTI)

    Secary, J.J.

    1989-01-01T23:59:59.000Z

    The thermal conductivities of Praseodymium-Cerium-Oxide (PCO) and Saran Carbon have been experimentally investigated using a steady-state heat transfer technique. The investigated substances are used as adsorbents in adsorption compressors being developed for spaceborne refrigeration applications. The objectives of the investigation were to determine the thermal conductivities and establish their temperature dependency. Data were collected for the PCO over a temperature range of 300 C to 600 C, and O (zero) C to 200 C for the Saran Carbon. The thermal conductivities were found to have a strong temperature dependency. In particular, the results for the PCO showed a temperature dependency indicative of some thermal radiation effects.

  5. Reduced Thermal Conductivity of Compacted Silicon Nanowires

    E-Print Network [OSTI]

    Yuen, Taylor S.

    Thermal-Barrier-Coating Applications,” Journa of American Ceramicthermal conductivity materials are typically found among ceramicsThermal Conductivity of Porous Materials: Application to Thick Barrier Coatings,” Journal of the European Ceramic

  6. Inhibition of Oxidation in Nuclear Graphite

    SciTech Connect (OSTI)

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01T23:59:59.000Z

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  7. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04T23:59:59.000Z

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  8. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

    1988-01-01T23:59:59.000Z

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  9. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06T23:59:59.000Z

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  10. Planar ceramic membrane assembly and oxidation reactor system

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohm, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, deceased, Paul Nigel (Allentown, PA)

    2007-10-09T23:59:59.000Z

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  11. Planar ceramic membrane assembly and oxidation reactor system

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohrn, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, Paul Nigel (Allentown, PA)

    2009-04-07T23:59:59.000Z

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  12. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01T23:59:59.000Z

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  13. The workshop on conductive polymers: Final report

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  14. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    SciTech Connect (OSTI)

    Manohar Sohal

    2009-05-01T23:59:59.000Z

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  15. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect (OSTI)

    Yoshimura, Masatoshi, E-mail: yoshimura@rciqe.hokudai.ac.jp; Nakai, Eiji; Fukui, Takashi [Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Kita 13 Nishi 8, Sapporo 060–8628 (Japan)] [Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Kita 13 Nishi 8, Sapporo 060–8628 (Japan); Tomioka, Katsuhiro [Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Kita 13 Nishi 8, Sapporo 060–8628 (Japan) [Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Kita 13 Nishi 8, Sapporo 060–8628 (Japan); PRESTO, Japan Science and Technology Agency (JST), Honcho Kawaguchi, 332–0012 Saitama (Japan)

    2013-12-09T23:59:59.000Z

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436?V, short-circuit current of 24.8?mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5?G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  16. Kinetics of the reactions of hydrogen fluoride with calcium oxide

    SciTech Connect (OSTI)

    Kossaya, A.M.; Belyakov, B.P.; Kuchma, Z.V.; Sandrozd, M.K.; Vasil'eva, V.G.

    1986-08-01T23:59:59.000Z

    This paper studies the kinetics of interaction of gaseous hydrogen fluoride with calcium oxide at temperatures 300-700 degrees. The experiments were conducted in a laboratory adsorption apparatus modified and adapted for work with corrosive hydrogen fluoride. Calcium oxide samples in granulated form and deposited on gamma-alumina were used in the experiments. Kinetic curves representing variations of the degree of conversion of the solid samples with time are shown. The influence of retardation dure to diffusion was observed in the experiments. The influence of diffusion control on the reaction rate was also observed in a study of the reaction kinetics on supported layers of calcium oxide.

  17. Optical and electrical studies of cerium mixed oxides

    SciTech Connect (OSTI)

    Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

    2014-10-15T23:59:59.000Z

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  18. Properties and characterization of an oxide/oxide composite filter

    SciTech Connect (OSTI)

    Lane, J.E.; Painter, C.J.; Su, W.F.A.; Radford, K.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; LeCostaouec, J.F. [Techniweave, Inc., Rochester, NH (United States)

    1996-12-31T23:59:59.000Z

    Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1997 pilot scale demonstration in one of the two hot gas filter system at Southern Company Service`s Wilsonville PSD Facility. This program`s objective is to develop an oxide CFCC (continuous fiber ceramic composite) candle filter that is cost competitive with prototype next generation filters through the development of a low cost sol-gel fabrication process and a 3D fiber architecture optimized for high volume filter manufacturing. Phase 1, Filter Material Development and Evaluation, results will be presented. Phase 1 activities included laboratory-scale development, characterization, and testing of a mullite matrix 3D fiber-reinforced (Nextel 550) ceramic composite filter material. Eleven 3D architectures were designed, preforms and ceramic matrix composite (CMC) filter materials were made, tested and evaluated. The CMC fabrication process was optimized for reduced cost and acceptable filter performance. Permeability, 4-pt bend and microstructural evaluation results, previously presented, were used to downselect to one 3D architecture and CMC processing method. The downselected filter material was fabricated and tested via permeability and 4-pt bend; Weibull modulus was determined. High-temperature flow-through corrosion tests and thermal aging tests in static air up to 5,000 h were conducted. SEM and XRD have been used to characterize microstructural and phase changes, if any, from high temperature exposure testing. Weaving feasibility studies for the flange and the closed end of a candle filter have been conducted in order to develop a low cost weaving method to make a single piece candle filter fiber preform. Results and conclusions for the evaluation of the downselected filter material above will be presented and discussed.

  19. Another Look at Confidence Intervals: Proposal for a More Relevant and Transparent Approach

    E-Print Network [OSTI]

    Steven D. Biller; Scott M. Oser

    2015-02-03T23:59:59.000Z

    The behaviors of various confidence/credible interval constructions are explored, particularly in the region of low statistics where methods diverge most. We highlight a number of challenges, such as the treatment of nuisance parameters, and common misconceptions associated with such constructions. An informal survey of the literature suggests that confidence intervals are not always defined in relevant ways and are too often misinterpreted and/or misapplied. This can lead to seemingly paradoxical behaviours and flawed comparisons regarding the relevance of experimental results. We therefore conclude that there is a need for a more pragmatic strategy which recognizes that, while it is critical to objectively convey the information content of the data, there is also a strong desire to derive bounds on models and a natural instinct to interpret things this way. Accordingly, we attempt to put aside philosophical biases in favor of a practical view to propose a more transparent and self-consistent approach that better addresses these issues.

  20. Two-phase flow visualization in a transparent, atmospheric pressure, boiling water loop

    SciTech Connect (OSTI)

    Levin, A.E.; Carbajo, J.J.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01T23:59:59.000Z

    The Simulant Boiling Flow Visualization (SBFV) loop, a transparent, atmospheric pressure test apparatus employing boiling water as a simulant for boiling liquid sodium, has been designed and operated at Oak Ridge National Laboratory. The objective of testing in this loop has been to study two-phase flow behavior that is phenomenologically similar to that observed in sodium boiling experiments, as part of the US Department of Energy Breeder Reactor Safety Program. A detailed description of the design of the SBFV loop is presented, as well as experimental results that show the similarity between low-power boiling behavior in water and liquid sodium. Future tests are planned in a seven-pin flow visualization bundle that will be installed in the SBFV loop. The design of this bundle is also discussed.

  1. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell

    SciTech Connect (OSTI)

    Garcia-Lechuga, M.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, J.; Solis, J. [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-09-15T23:59:59.000Z

    Phase transition pathways of matter upon ablation with ultrashort laser pulses have been considered to be understood long-since for metals and semiconductors. We provide evidence that also certain dielectrics follow the same pathway, even at high pulse energies triggering optical breakdown. Employing femtosecond microscopy, we observe a characteristic ring pattern within the ablating region that dynamically changes for increasing time delays between pump and probe pulse. These transient Newton rings are related to optical interference of the probe beam reflected at the front surface of the ablating layer with the reflection at the interface of the non-ablating substrate. Analysis of the ring structure shows that the ablation mechanism is initiated by a rarefaction wave leading within a few tens of picoseconds to the formation of a transparent thin shell of reduced density and refractive index, featuring optically sharp interfaces. The shell expands and eventually detaches from the solid material at delays of the order of 100 ps.

  2. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    SciTech Connect (OSTI)

    Santarius, John F. [University of Wisconsin-Madison] [University of Wisconsin-Madison; Emmert, Gilbert A. [University of Wisconsin-Madison] [University of Wisconsin-Madison

    2013-11-07T23:59:59.000Z

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat the species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.

  3. Resolution of hyperfine transitions in metastable 83Kr using Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    Kale, Y B; Tiwari, V B; Singh, S; Rawat, H S

    2015-01-01T23:59:59.000Z

    Narrow linewidth signals of Electromagnetically Induced Transparency (EIT) in the metastable 83Kr have been observed for the first time. Various hyperfine transitions in 4p55s[3/2]2 to 4p55p[5/2]3 manifolds of 83Kr have been identified through the experimentally observed EIT signals. Some unresolved or poorly resolved hyperfine transitions in saturated absorption spectroscopy (SAS) are clearly resolved in the present work. Using the spectral separation of these EIT identified hyperfine transitions, the magnetic hyperfine constant (A) and the electric quadrupole hyperfine constant (B) are determined with improved accuracy for 4p55s[3/2]2 and 4p55p[5/2]3 manifolds.

  4. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W. (San Diego, CA); Rajasekar, Arcot (Del Mar, CA); Wan, Michael Y. (San Diego, CA)

    2010-09-21T23:59:59.000Z

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  5. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2004-01-13T23:59:59.000Z

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  6. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOE Patents [OSTI]

    Moore, Reagan W. (San Diego, CA); Rajasekar, Arcot (Del Mar, CA); Wan, Michael Y. (San Diego, CA)

    2007-09-11T23:59:59.000Z

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the re quest, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  7. Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia

    E-Print Network [OSTI]

    and jet turbine engines1 and as material in solid oxide fuel cells.2 The high melting point makes YSZ of K dependence on temperature and the grain size. The obtained results are important for optimization

  8. Oxidative Tritium Decontamination System

    DOE Patents [OSTI]

    Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

    2006-02-07T23:59:59.000Z

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  9. Holographic conductivity of zero temperature superconductors

    E-Print Network [OSTI]

    R. A. Konoplya; A. Zhidenko

    2010-02-15T23:59:59.000Z

    Using the recently found by G. Horowitz and M. Roberts (arXiv:0908.3677) numerical model of the ground state of holographic superconductors (at zero temperature), we calculate the conductivity for such models. The universal relation connecting conductivity with the reflection coefficient was used for finding the conductivity by the WKB approach. The dependence of the conductivity on the frequency and charge density is discussed. Numerical calculations confirm the general arguments of (arXiv:0908.3677) in favor of non-zero conductivity even at zero temperature. In addition to the Horowitz-Roberts solution we have found (probably infinite) set of extra solutions which are normalizable and reach the same correct RN-AdS asymptotic at spatial infinity. These extra solutions (which correspond to larger values of the grand canonical potential) lead to effective potentials that also vanish at the horizon and thus correspond to a non-zero conductivity at zero temperature.

  10. Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties

    E-Print Network [OSTI]

    Chae, Sung Hee

    2007-09-17T23:59:59.000Z

    This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce lipid oxidation...

  11. Transport involving conducting fibers in a non-conducting matrix R. A. Hansela

    E-Print Network [OSTI]

    Walker, D. Greg

    result is a material with high electrical conduc- tivity and low thermal conductivity. If we consider, conducting fibers, thin-film devices 1. Introduction Thermal and electrical transport through a low to predict conductance of the combined system. However, if the two materials are similar in conductivity

  12. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, M.A.; Hoch, M.M.

    1997-06-10T23:59:59.000Z

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  13. Transparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films with Increased

    E-Print Network [OSTI]

    Harmon, Julie P.

    Transparent Poly(methyl methacrylate)/Single-Walled Carbon Nanotube (PMMA/SWNT) Composite Films to conventional polymer composites due to the stronger interac- tions between polymer and filler phases. Carbon and fast-growing class of materials with nanosized filler domains finely dispersed in a polymer matrix.[1

  14. Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers

    E-Print Network [OSTI]

    Aizenberg, Joanna

    Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane: Daylight control system Dynamic window system Energy-efficiency Transparent louvers a b s t r a c in standard office buildings. The development of daylight control systems that maximize the penetration

  15. Conducting polymer actuator enhancement through microstructuring

    E-Print Network [OSTI]

    Pillai, Priam Vasudevan

    2007-01-01T23:59:59.000Z

    Electroactive conducting polymers, such as polypyrrole, polyaniline, and polythiophenes are currently studied as novel biologically inspired actuators. The actuation mechanisms in these materials are based on the diffusion ...

  16. Fabrication and characterization of conducting polymer microwires

    E-Print Network [OSTI]

    Saez, Miguel Angel

    2009-01-01T23:59:59.000Z

    Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

  17. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  18. Thermal conductivity and heat transfer in superlattices

    SciTech Connect (OSTI)

    Chen, G.; Neagu, M.; Borca-Tasciuc, T.

    1997-07-01T23:59:59.000Z

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  19. Modernizing Patent Law's Inequitable Conduct Doctrine

    E-Print Network [OSTI]

    Cotropia, Christopher

    2008-01-01T23:59:59.000Z

    conduct doctrine, but the patent system in general. Berkeleyof the currently pending patent reform legislation containsUTCLE 12th Annual Advanced Patent Law Institute, http://

  20. EPA -- Addressing Children's Health through Reviews Conducted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health...

  1. ADVANCED OXIDATION PROCESS

    SciTech Connect (OSTI)

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04T23:59:59.000Z

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  2. Non-oxidative intercalation and exfoliation of graphite by Brnsted acids

    E-Print Network [OSTI]

    Non-oxidative intercalation and exfoliation of graphite by Brønsted acids Nina I. Kovtyukhova1 and the polarizable graphene sheets. The intercalated graphites readily exfoliate in dimethylformamide to give, with loss of conductivity9,10. These highly oxidized graphite compounds can be exfoliated to form

  3. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOE Patents [OSTI]

    Mason, David M. (Los Altos, CA)

    1984-01-01T23:59:59.000Z

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  4. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    SciTech Connect (OSTI)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01T23:59:59.000Z

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  5. STUDENT CONDUCT CODE (Approved June 16, 2006)

    E-Print Network [OSTI]

    Gering, Jon C.

    CHAPTER 8 STUDENT CONDUCT CODE (Approved June 16, 2006) 8.010. Purpose 8.020. Definitions 8 of the conduct of all students" and "to enforce obedience to the rules." Although the grant of authority is broadly stated, it is well recognized that students are citizens. Students have legal rights, and deserve

  6. Flexible moldable conductive current-limiting materials

    SciTech Connect (OSTI)

    Shea, John Joseph (Pittsburgh, PA); Djordjevic, Miomir B. (Milwaukee, WI); Hanna, William Kingston (Pittsburgh, PA)

    2002-01-01T23:59:59.000Z

    A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

  7. Selected factors influencing GCL hydraulic conductivity

    SciTech Connect (OSTI)

    Petrov, R.J. [Trow Consulting Engineers Ltd., Brampton, Ontario (Canada); Rowe, R.K.; Quigley, R.M. [Univ. of Western Ontario, London, Ontario (Canada)

    1997-08-01T23:59:59.000Z

    A series of confined swell and hydraulic conductivity tests were conducted on a needle-punched geosynthetic clay liner (GCL) with water as the hydrating medium and reference permeant. Increases in the static confining stress and the needle-punching both restricted GCL swell and contributed to lower bulk GCL void ratios and hence significantly lower hydraulic conductivity values. A well defined linear-log relationship is found between the bulk void ratio and hydraulic conductivity. The number of pore volumes of permeant flow and consequently the level of chemical equilibrium is shown to have a significant effect on the hydraulic conductivity. It is shown that there is a decrease in hydraulic conductivity for small amounts of permeant flow for all ethanol/water mixtures examined. At or near chemical equilibrium, low concentration mixtures (25 and 50% ethanol) continued to produce relative decreases in GCL hydraulic conductivity due to the increased viscosity of the permeant; however, highly concentrated mixtures (75 and 100% ethanol) produced relative increases in GCL hydraulic conductivity arising from double layer contraction. The implications are discussed.

  8. The Organic Chemistry of Conducting Polymers

    SciTech Connect (OSTI)

    Tolbert, Laren Malcolm [Georgia Institute of Technology

    2014-12-01T23:59:59.000Z

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  9. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

    2011-09-06T23:59:59.000Z

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  10. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Butler, K. T.; Walsh, A. [Center for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Quackenbush, N. F. [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Junda, M.; Podraza, N. J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); White, B. E.; Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-06-09T23:59:59.000Z

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  11. Cerium Oxide Coating for Oxidation Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding Friedel Waves,TheoryParliament'v0,MixturesCerium Oxide

  12. Graphene oxide based conductive glue as a binder for ultracapacitor Jiayan Luo,a

    E-Print Network [OSTI]

    Huang, Jiaxing

    applica- tions, such as wind turbines or photovoltaics.21 Compared with lithium ion batteries, such as carbon nanotubes in water,17 which has led to all-carbon composites for photovoltaics20 and energy:PSS) can be altered upon mixing with the insulating GO, resulting in a composite of much higher viscosity

  13. Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)

    E-Print Network [OSTI]

    Yarlagadda, Venkata Raviteja

    2011-09-08T23:59:59.000Z

    ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

  14. Evaporative oxidation treatability test report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  15. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01T23:59:59.000Z

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  16. Solid oxide fuel cell operable over wide temperature range

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  17. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01T23:59:59.000Z

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  18. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  19. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17T23:59:59.000Z

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  20. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24T23:59:59.000Z

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  1. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin, E-mail: aldin@oxide.tu-darmstadt.de; Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp, E-mail: komissinskiy@oxide.tu-darmstadt.de [Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf [Institute for Microwave Engineering and Photonics, TU Darmstadt, Merckstraße 25, 64283 Darmstadt (Germany)

    2014-09-15T23:59:59.000Z

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???·cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  2. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    SciTech Connect (OSTI)

    Jalarvo, Niina H [ORNL] [ORNL; Gourdon, Olivier [ORNL] [ORNL; Bi, Zhonghe [ORNL] [ORNL; Gout, Delphine J [ORNL] [ORNL; Ohl, Michael E [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activation energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.

  3. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15T23:59:59.000Z

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  4. Thermal conductivity of bulk nanostructured lead telluride

    SciTech Connect (OSTI)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13T23:59:59.000Z

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  5. Increased thermal conductivity monolithic zeolite structures

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

    2008-11-25T23:59:59.000Z

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  6. Electrochemical patterning of the surface of insulators with electrically conductive polymers

    SciTech Connect (OSTI)

    Zheng, X.Y.; Ding, Y.; Bottomley, L.A. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1995-12-01T23:59:59.000Z

    The great potential of {pi}-conjugated polymers, especially polyacetylene, polyarylenes, and poly(arylenevinylene)s, as components in optical displays, sensors, rechargeable batteries, electromagnetic interference shielding, and microelectronics is well recognized. This paper presents a protocol for patterning the surface of insulators with electrically conductive polymers. The pattern is formed on a gold electrode surface via electro-oxidation of heteroarene monomers. An adhesion layer is used to bond the surface of the conducting polymer pattern to the surface of an insulator. The pattern is then developed by etching away the gold. The approach is illustrated with polypyrrole and is applicable to a wide range of substituted polyheteroarenes and insulating substrates.

  7. Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor

    E-Print Network [OSTI]

    Schmid, Bryan D. (Bryan David), 1981-

    2005-01-01T23:59:59.000Z

    Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

  8. Method and apparatus for casting conductive and semi-conductive materials

    DOE Patents [OSTI]

    Ciszek, T.F.

    1984-08-13T23:59:59.000Z

    A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.

  9. Molecular water oxidation catalyst

    DOE Patents [OSTI]

    Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  10. Tetraalklylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

    1998-10-06T23:59:59.000Z

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  11. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

    1998-01-01T23:59:59.000Z

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  12. Tubular solid oxide fuel cell current collector

    DOE Patents [OSTI]

    Bischoff, Brian L. (Knoxville, TN); Sutton, Theodore G. (Kingston, TN); Armstrong, Timothy R. (Clinton, TN)

    2010-07-20T23:59:59.000Z

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  13. Solid oxide electrochemical cell fabrication process

    DOE Patents [OSTI]

    Dollard, Walter J. (Churchill Borough, PA); Folser, George R. (Lower Burrell, PA); Pal, Uday B. (Cambridge, MA); Singhal, Subhash C. (Murrysville, PA)

    1992-01-01T23:59:59.000Z

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  14. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic

    E-Print Network [OSTI]

    Surface modification of indium tin oxide by plasma treatment: An effective method to improve; accepted for publication 7 January 1997 We demonstrate the improvement of an indium tin oxide anode contact conductivity, and effi- ciency as a hole injector into organic materials, indium tin oxide ITO has been widely

  15. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01T23:59:59.000Z

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  16. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    SciTech Connect (OSTI)

    Dr. Paul A. Lessing

    2012-03-01T23:59:59.000Z

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  17. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect (OSTI)

    Vora, Heli; Nielsen, Bent; Du, Xu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York (United States)

    2014-02-21T23:59:59.000Z

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  18. Method of bonding a conductive layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Bowker, J.C.; Singh, P.

    1989-08-29T23:59:59.000Z

    A dense, electronically conductive interconnection layer is bonded onto a porous, tubular, electronically conductive air electrode structure, optionally supported by a ceramic support, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface, without the use of pressure, particles of LaCrO[sub 3] doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300 C to 1,550 C, without the application of pressure, to provide a dense, sintered, interconnection material bonded to the air electrode, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO[sub 3]. A solid electrolyte layer can be applied to the uncovered portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 4 figs.

  19. 9/15/09 8:58 AMEureka!: Geobacter keeps on conducting Page 1 of 3http://www.gazettenet.com/print/242982

    E-Print Network [OSTI]

    Lovley, Derek

    of months for Geobacter, the riverbed muck biologically capable of conducting electricity. In University." Single-celled Geobacter directly produces electricity as part of its biological process. It uses its pili iron oxide and electrons. The microbial fuel cells that conduct Geobacter's electricity consist of two

  20. Large displacement fast conducting polymer actuators

    E-Print Network [OSTI]

    Chen, Angela Y. (Angela Ying-Ju), 1982-

    2006-01-01T23:59:59.000Z

    Conducting polymers are a promising class of electroactive materials that undergo volumetric changes under applied potentials, which make them particularly useful for many actuation applications. Polypyrrole , is one of ...