Sample records for transmissions including files

  1. Hybrid powertrain system including smooth shifting automated transmission

    DOE Patents [OSTI]

    Beaty, Kevin D.; Nellums, Richard A.

    2006-10-24T23:59:59.000Z

    A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.

  2. File:08HIABulkTransmissionSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File historyFDCNIETCProcess.pdf Jump

  3. File:08IDAStateTransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File

  4. Pulse transmission transmitter including a higher order time derivate filter

    DOE Patents [OSTI]

    Dress Jr., William B.; Smith, Stephen F.

    2003-09-23T23:59:59.000Z

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  5. File:08COaBulkTransmissionSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata

  6. File:08ORAStateTransmissionSitingProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission (3).pdf

  7. File:0 - Overall Flow - Transmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes- Transmission.pdf Jump to:

  8. File:08 - TransmissionOverview.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8 - TransmissionOverview.pdf Jump

  9. File:08UTAStateTransmissionSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File

  10. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

    1984-01-01T23:59:59.000Z

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  11. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  12. File:08-AK-c - Transmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8 - TransmissionOverview.pdfc -

  13. File:Transmission Siting White Paper Final.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdf Jump to: navigation,

  14. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  15. GIS Datasets Specific to the US (These do not include VENTYX, PLATTS or HSIP data.) I. Boundary Files

    E-Print Network [OSTI]

    . Solar Vent Preheat vii. Wind 1. 50 m Wind Power Density/Class 2. Onshore/Offshore viii. Other 1 Files a. Political i. States ii. Counties iii. Congressional Districts iv. State Legislative Regions v. Interconnects c. Federal Lands i. National Parks/Monuments ii. National Forests

  16. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOE Patents [OSTI]

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29T23:59:59.000Z

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  17. How to file a FOIA request for NASA Agency records A FOIA request for NASA Agency records must include the requester's name and mailing address, a description of

    E-Print Network [OSTI]

    Waliser, Duane E.

    the country. In accordance with the Agency Records Management procedures NASA has not yet implemented a records management application for automated capture and control of e-records; therefore, official filesHow to file a FOIA request for NASA Agency records A FOIA request for NASA Agency records must

  18. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15T23:59:59.000Z

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  19. How to file a FOIA request for NASA Agency records A FOIA request for NASA Agency records must include the requester's name and mailing address, a description of

    E-Print Network [OSTI]

    Waliser, Duane E.

    throughout the country. In accordance with the Agency Records Management procedures NASA has not yet implemented a records management application for automated capture and control of e-records; thereforeHow to file a FOIA request for NASA Agency records A FOIA request for NASA Agency records must

  20. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  1. Open Access Transmission Tariff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OATT currently in effect, including Large Generator Interconnection and Small Generator Interconnection Provisions, as well as historical OATT revision filings along with EIS and...

  2. Euclid File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File storage File storage Disk Quota Change Request Form Euclid File Systems Euclid has 3 kinds of file systems available to users: home directories, scratch directories and...

  3. Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York)

    Broader source: Energy.gov [DOE]

    Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and...

  4. Remote File Access 2010

    E-Print Network [OSTI]

    University of Technology, Sydney

    Remote File Access 2010 Mac Users Guide #12;Remote File Access: MAC Users Guide 2010 2 Table Remote File Access 11 Part IV: Using Remote File Access 15 Part V: FAQ 24 #12;Remote File Access: MAC Users Guide 2010 3 1. What is Remote File Access? UTS Remote File Access service is provided to enable

  5. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Jr., Richard G. (Royal Oak, MI); Bernier, David R. (Rochester Hills, MI)

    1999-12-28T23:59:59.000Z

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  6. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFileFileFile

  7. NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems NERSC File Systems Overview NERSC file systems can be divided into two categories: local and global. Local file systems are only accessible on a single platform, providing...

  8. Franklin File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Files systems Files systems NERSC's global home and project file systems are available on Franklin. Additionally, Franklin has over 400 TB of locally attached high-performance...

  9. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

    2004-06-29T23:59:59.000Z

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  10. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFileFile

  11. A Metadata-Rich File System

    SciTech Connect (OSTI)

    Ames, S; Gokhale, M B; Maltzahn, C

    2009-01-07T23:59:59.000Z

    Despite continual improvements in the performance and reliability of large scale file systems, the management of file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address these problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, metadata, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS includes Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the defacto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.

  12. Transmission Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Daylight Saving Time Posted: 2232015 Effective Date: 382015 This document provides the procedure for reserving and scheduling transmission that spans the time change...

  13. Fact #851: December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #851: December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise

  14. Data & File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management Policies NERSC File Systems HPSS Data Archive IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file system IO Formats...

  15. FERC Filing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal Columbia River RiskFatigueFERC-Filing Sign

  16. FERC Filing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal Columbia River RiskFatigueFERC-Filing

  17. TO: FILE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T' j-jE:, ,, TO: FILE

  18. TO: FILE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T' j-jE:, ,, TO: FILE3

  19. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFile Systems

  20. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFile

  1. Transmission Services J7000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Business Unit - J7300 CRSP - DSW - RMR Open Access Transmission Tariff Management Transmission Service Requests Interconnection Requests OASIS...

  2. Automated manual transmission clutch controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (9375 Kearney Rd., Whitmore Lake, MI 48189); Reed, Jr., Richard G. (3003 Bembridge, Royal Oak, MI 48073); Rausen, David J. (519 S. Gaylord St., Denver, CO 80209)

    1999-11-30T23:59:59.000Z

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  3. Transmission INTRODUCTION

    E-Print Network [OSTI]

    , to a significant degree, on a well-functioning wholesale power market. The transmission system is integral the consequences of a poorly designed wholesale power market, and the Council does not want to see those Regulatory Commission began taking actions to further facilitate competition in wholesale power supply. Today

  4. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    based on existing transmission corridors or rights of way.The transmission costs also include right-of-way costs,

  5. Numerical Methods & .m Files

    E-Print Network [OSTI]

    1910-70-10T23:59:59.000Z

    Save this file as a .m file with the SAME name as your function. The above example would be saved as fcn1.m. You can check if your function has been saved...

  6. Information regarding previous INCITE awards including selected...

    Office of Science (SC) Website

    .pdf file (185KB) Molecular Dynameomics .pdf file (413KB) 2004 INCITE Projects Thermonuclear Supernovae: Stellar Explosions in Three Dimensions .pdf file (176KB) Fluid...

  7. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. (Cincinnati Univ., OH (United States))

    1992-10-01T23:59:59.000Z

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  8. Transmission Investment: A Primer

    SciTech Connect (OSTI)

    McGarvey, Joe

    2006-10-15T23:59:59.000Z

    This primer highlights recent trends in transmission investment, summarizes the division of jurisdictional authority over transmission, and presents four alternative models for transmission ownership. (author)

  9. PDF file

    E-Print Network [OSTI]

    the decrease in reliability of Slique as the problem size varies from medium (M) to large. (L). Included in the failures for ..... Unconstrained Testing Environment.

  10. PDF file

    E-Print Network [OSTI]

    SIAM (#1) 1035 2001 Apr 10 12:32:38

    2008-06-10T23:59:59.000Z

    morphology but remain chaotic; as De increases, chaotic dynamics becomes ..... The remaining steps beyond the present paper include flow coupling and...

  11. Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheetTransferring the Wayne,TRANSMISSION WORKSHOP

  12. File:NREL-asia-dir.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File history File

  13. Electrical transmission line diametrical retainer

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2004-12-14T23:59:59.000Z

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  14. AC and DC power transmission

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    The technical and economic assessment of AC and DC transmission systems; long distance transmission, cable transmission, system inter-connection, voltage support, reactive compensation, stabilisation of systems; parallel operation of DC links with AC systems; comparison between alternatives for particular schemes. Design and application equipment: design, testing and application of equipment for HVDC, series and shunt static compensated AC schemes, including associated controls. Installations: overall design of stations and conductor arrangements for HVDC, series and shunt static AC schemes including insulation co-ordination. System analysis and modelling.

  15. Remote File PC Users Guide

    E-Print Network [OSTI]

    University of Technology, Sydney

    UTS: ITD Remote File Access 2010 PC Users Guide V3.0 #12;UTS:ITD Remote File Access: PC Users Guide Part III: Accessing Remote File Access 8 Part IV: Using Remote File Access 14 Part V: FAQ 25 #12;UTS:ITD Remote File Access: PC Users Guide v3.0 2010 3 1. What is Remote File Access? UTS Remote File Access

  16. Patterns of Transmission Investment

    E-Print Network [OSTI]

    Joskow, Paul

    2006-03-14T23:59:59.000Z

    while providing imperfect protection against abusive self-dealing behavior by the TSO. The creation of truly independent TSOs reduces the regulatory burdens and creates entities whose management focuses on the transmission business. 15... of physical components that are to be added to the network or to replace components that are already in the network. They include: a. new relays and switches b. new remote monitoring and control equipment c. transformer upgrades d. substation...

  17. Regulations for Gas Transmission Lines Less than Ten Miles Long (New York)

    Broader source: Energy.gov [DOE]

    Any person who wishes to construct a gas transmission line that is less than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of...

  18. Complex harmonic wave scattering asthe framework for investigation of bounded beam reflection and transmission

    E-Print Network [OSTI]

    Complex harmonic wave scattering asthe framework for investigation of bounded beam reflection their pro- files.We will verifythesestatementswith a largenumberof illustrations. I. COMPLEX HARMONIC WAVE REFLECTION AND TRANSMISSION A. Representation of a complex harmonic wave in a viscoelastic medium

  19. Coordinating Interstate Electric Transmission Siting: An Introduction...

    Open Energy Info (EERE)

    the near future. While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other...

  20. HVDC power transmission technology assessment

    SciTech Connect (OSTI)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

    1997-04-01T23:59:59.000Z

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  1. UNIX file permissions

    E-Print Network [OSTI]

    ... out sensitive information (like promotion documents and qualifier exams). ... about security, you will want to change your "umask" line in your .cshrc file.

  2. Midwest Transmission Workshop I Summary

    SciTech Connect (OSTI)

    Kevin Bryan

    2001-05-01T23:59:59.000Z

    OAK-B135 The meeting was opened with a review of the purposes of the workshop: (1) Present and discuss key studies and assessments of transmission upgrades, additions and related issues for the upper Midwest, including work that addresses the full range of views on these topics; (2) Understand the various transmission issues in the upper Midwest and discuss options for addressing the issues; and (3) Identify the decision makers and entities that need to play an active role if transmission issues are to be resolved, and agree on next steps for engaging these individuals and organizations through education, outreach, and information dissemination.

  3. ELCAP Data Assembly and Conversion Project: Report on File Contents

    E-Print Network [OSTI]

    ................................................................................................................7 PNNL Data Files.........................................................................................................................................9 PNNL Site Files.SASLIB.XPT.....................................................................................................................................14 PNNL AVAX Files

  4. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28T23:59:59.000Z

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  5. Transmission line: design manual

    SciTech Connect (OSTI)

    Farr, H.H.

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to outline the various requirements for, and the procedures to be followed in the design of power transmission lines by the Bureau of Reclamation, US Department of the Interior. Numerous design studies, which have been made on specific aspects of transmission line design, are included with explanations of their applications. Information is presented concerning such aspects as selection of type of construction, conductor sags and tensions, insulation, lightning protection, clearance patterns, galloping conductors, structure limitation and guying charts, and structure spotting. Structure design examples are limited to wood-pole construction. Interpretations of the National Electrical Safety Code and other codes are made as required. Some of the example problems were developed when the sixth edition of NESC was current, and are so noted; however, most examples use the 1977 edition of NESC.

  6. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01T23:59:59.000Z

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  7. Merchant transmission investment

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    We examine the performance attributes of a merchant transmission investment framework that relies on "market driven" transmission investment to provide the infrastructure to support competitive wholesale markets for ...

  8. PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes

    E-Print Network [OSTI]

    Legout, Arnaud

    PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes A. Legout and E. W- ticast congestion control protocol (called PLM) for audio/video and file transfer applications based PLM for a large variety of scenarios and show that it converges fast to the optimal link utilization

  9. Automated manual transmission mode selection controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI)

    1999-11-09T23:59:59.000Z

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  10. Automated manual transmission shift sequence controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Richard G. (Royal Oak, MI); Rausen, David J. (Denver, CO)

    2000-02-01T23:59:59.000Z

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  11. An empirical study of the economies of scale in AC transmission line construction costs

    E-Print Network [OSTI]

    Baldick, Ross

    1 An empirical study of the economies of scale in AC transmission line construction costs Krishnan data filed at the Federal Energy Regulatory Commission to empirically determine the cost of transmission projects completed between the years 1994 and 2000. We examine the economies of scale in the cost

  12. Detonator comprising a nonlinear transmission line

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-12-30T23:59:59.000Z

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  13. File:Consultants.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW NOI

  14. File:Coordination.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW NOICoordination.pdf Jump

  15. BPA files reciprocity tariff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 12 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Friday, March 30, 2012 CONTACT: Doug Johnson, 503-230-5840 or 503-230-5131 BPA files reciprocity tariff Portland, Ore. -...

  16. Working Set-Based Access Control for Network File Systems Stephen Smaldone, Vinod Ganapathy, and Liviu Iftode

    E-Print Network [OSTI]

    Ganapathy, Vinod

    accessing files from untrusted devices, including personal home computers and mobile devices such as smart, including personal computers as well as mobile devices, such as smart phones. File access is typically permissive or too restrictive in allowing file access from untrusted devices. This paper proposes a novel

  17. File:08CAACaliforniaTransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8

  18. File:08CABCaliforniaTransmissionCPUCProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf

  19. File:08COAStateTransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdfCADCAISOQueueClusterProcess.pdf

  20. File:08COCStateTransmissionProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are

  1. File:08FDCNIETCProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File historyFDCNIETCProcess.pdf Jump to:

  2. File:08HIATransmissionLineApproval.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File historyFDCNIETCProcess.pdf

  3. File:08MTATransmission (3).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission (3).pdf Jump to:

  4. File:08NVATransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission (3).pdf Jump

  5. File:08TXATransmissionSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File08MTATransmission

  6. File:EIA-MTB-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size ofMTB-GAS.pdf Jump to: navigation, search File File

  7. File:NREL-asia-glo.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File history

  8. File:NREL-asia-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File historytilt.pdf Jump

  9. File:NREL-banglmetst-221.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File

  10. Seer: An analysis package for LHCO files

    E-Print Network [OSTI]

    Martin, Travis A W

    2015-01-01T23:59:59.000Z

    Seer is a multipurpose package for performing trigger, signal determination and cuts of an arbitrary number of collider processes stored in the LHCO file format. This article details the use of Seer, including the necessary details for users to customize the code for investigating new kinematic variables.

  11. Manual transmission shift linkage

    SciTech Connect (OSTI)

    Sewell, J.S.

    1991-10-01T23:59:59.000Z

    This patent describes a sliding gear manual transmission (10) for an automotive vehicle including a transmission housing (11), an input shaft (12) journalled in the housing, an output shaft (13) axially aligned with the input shaft and journalled in the housing, a countershaft (15) journalled in the housing and carrying a cluster gear (17) thereon, the input shaft (12) terminating in an input gear (14), a plurality of gears (26,27,28,29,31,31) on the output shaft (13) in meshing engagement with the cluster gear (17), and a plurality of synchronizing clutches (36,38,41,42) on the output shaft and countershaft for engagement of gear ratios of the meshing gears, and an axially movable and rotatable shift rail (81) located in the housing and operatively connected to a shift lever (82) actuated by the vehicle operator, the improvement comprising an auxiliary shift rail (98) located in the housing (11) generally paralleling the first mentioned shift rail (81) to provide for actuation of fifth, sixth and reverse gears the auxiliary shift rail (98) having a 5-6 shift arm (104) journalled thereon for axial movement relative thereto, and a reverse shift arm (99) rotatably mounted thereon for axial movement therewith.

  12. LONG TERM FILE MIGRATION - PART II: FILE REPLACEMENT ALGORITHMS

    E-Print Network [OSTI]

    Jay Smith, Alan

    2011-01-01T23:59:59.000Z

    MIGRATION PART II: FILE REPLACEMENT ALGORITHMS Alan Jaymay vary even though replacement fi~~d the pa~ameter value PIe N - P ;, RT I r:. fILE REPLACEMENT ALGORITHMS. I.lan ~1ar

  13. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  14. Midwest Transmission Workshop III Summary

    SciTech Connect (OSTI)

    Kevin Bryan

    2003-03-12T23:59:59.000Z

    OAK-B135 On March 12-13, 2002, the National Wind Coordinating Committee (NWCC), in cooperation with regional stakeholders, held a two-day workshop: Planning for Electrical Transmission Needs in the Upper Midwest. The workshop was the outgrowth of an effort to develop a forum and process for consideration of transmission options that strives for equitable allocation of benefits and impacts among all affected parties. The goal of this workshop was to provide a catalyst for an enhanced, inclusive process for transmission planning with participation of and acceptance by all affected stakeholders. Participants in the meeting included representatives of state and regional regulatory agencies, utilities and power generators, the wind industry, environmental and landowner interests, and other interested parties (see Attachment A for a list of meeting participants).

  15. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  16. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  17. File:08FDAFERCOrderNo2003Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage

  18. File:08FDBFERCOrderNo.792Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File

  19. File:NREL-ar-80m.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File history File usage

  20. File:CDPHE Industrial Individual Wastewater Discharge Permit...

    Open Energy Info (EERE)

    Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual Wastewater...

  1. Transmission Line Security Monitor: Final Report

    SciTech Connect (OSTI)

    John Svoboda

    2011-04-01T23:59:59.000Z

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  2. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  3. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2007-11-06T23:59:59.000Z

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  4. Midwest Transmission Workshop II Summary

    SciTech Connect (OSTI)

    Kevin Bryan

    2002-12-05T23:59:59.000Z

    OAK-B135 After introductions of all participants, Abby Arnold, RESOLVE, reviewed the purpose of the meeting and the agenda. The purpose of the workshop was to share the results of the Midwest Independent System Operator (MISO) scenario development for wind and other fuel sources and the corresponding implications for transmission throughout the MISO control area. The workshop agenda is included in Attachment A.

  5. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  6. Electric Transmission Lines (Nebraska)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has jurisdiction over all electricity transmission lines crossing over or under railroad tracks at public highway crossings. This section contains general regulations...

  7. Patterns of transmission investment

    E-Print Network [OSTI]

    Joskow, Paul L.

    2005-01-01T23:59:59.000Z

    This paper examines a number of issues associated with alternative analytical approaches for evaluating investments in electricity transmission infrastructure and alternative institutional arrangements to govern network ...

  8. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    techniques, and tools to analyze data from power quality recorders Size-up demand response opportunities Transmission level monitoring with PMUs is not sufficient and needs to...

  9. Method of calibrating clutches in transmissions

    SciTech Connect (OSTI)

    Bulgrien, G.H.

    1991-02-05T23:59:59.000Z

    This paper describes a microprocessor controlling a shuttle shift transmission programmed to effect a calibration of the final drive clutches in the transmission so that the microprocessor can efficiently effect engagement of each respective clutch by applying the proper hydraulic pressure to cause proper engagement thereof. This method of calibrating the final drive clutches in the transmission includes braking the output shaft of the transmission so that any engagement of the selected final drive clutch being calibrated will cause a load to be applied to the engine. The hydraulic pressure is then incrementally increased until the engine RPM's decrease because of the load being placed on the engine. The value of this engagement hydraulic pressure is stored in the microprocessor for use when effecting engagement of the selected clutch during operation of the transmission. Service indicators are programmed into the microprocessor should the selected clutch not be capable of being calibrated.

  10. Coordinating Interstate ElectricTransmission Siting: An Introduction...

    Broader source: Energy.gov (indexed) [DOE]

    the near future. While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other...

  11. Highline Pacific Northwests High-Voltage Transmission System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made substantial contributions to BPA, including the innovation of vibration dampers on transmission towers, which help reduce wind noise. It was the first color film produced by...

  12. EIS-0486: Plains & Eastern Clean Line Transmission Project |...

    Broader source: Energy.gov (indexed) [DOE]

    project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver...

  13. [Article 1 of 7: Motivates and Includes the Consumer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surges; the extra cost of these premium features can be included in the electric service contract. The Smart Grid will mitigate PQ events that originate in the transmission and...

  14. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  16. Transmission Enhancement Technology Report

    E-Print Network [OSTI]

    of Existing Transmission 6 5. Potential New Equipment to Improve Transmission Capability 9 6. Potential New parties for the sites that should be studied as potential locations for new generation and to consult lignite and wind energy. " As per the requirements of the above-referenced Congressional direction

  17. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S [ORNL

    2012-05-01T23:59:59.000Z

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  18. Key-shift transmission

    SciTech Connect (OSTI)

    Nemoto, S.

    1989-03-07T23:59:59.000Z

    A key-shift transmission is described, characterized by the speed-change shaft being divided into a pair of trough-shaped shaft halves each having an arched inner surface which defines a part of a cylindrical bore extending axially through the speed-change shaft thereby the shaft being formed into a hollow shaft, and by each of the shaft halves including a pair of flattened end surfaces which extend axially of each shaft half at both sides of the inner surface, one of the end surfaces having thereon an axially elongated projection and the other of the end surfaces having herein an axially elongated recess of a depth smaller than the height of the projection. The pair of shaft halves are engaged to each other co-rotatably by fitting the projections of the respective shaft halves into the recesses of the respective shaft halves so as to form in an outer surface of the speed-change shaft a pair of elongated axial grooves which are located radially outwardly of the elongated projections of the respective shaft halves and between the flattened end surfaces of the respective shaft halves. A pair of the shift keys are disposed within the pair of elongated axial grooves.

  19. Electrical Transmission Line Diametrical Retention Mechanism

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2006-01-03T23:59:59.000Z

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  20. rfs Remote File System Softwarepraktikum fur Fortgeschrittene

    E-Print Network [OSTI]

    rfs Remote File System Softwarepraktikum fur Fortgeschrittene Parallele und Verteilte Systeme. Overview 5 2.1. Remote File System Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2. Remote File System Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3. Global Remote

  1. How to use the m-files

    E-Print Network [OSTI]

    shaoh

    2008-11-05T23:59:59.000Z

    How to use the m- files? There is a basic idea of using m-files in Matlab. That is : the m-files written by you ( and you want to use it ) should be in the current...

  2. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01T23:59:59.000Z

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  3. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01T23:59:59.000Z

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  4. Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Rogers, J.; Porter, K.

    2010-07-01T23:59:59.000Z

    This report describes transmission cost allocation methodologies for transmission projects developed to maintain or enhance reliability, to interconnect new generators, or to access new resources and enhance competitive bulk power markets, otherwise known as economic transmission projects.

  5. The Umbrella File System: Storage Management Across Heterogeneous Devices

    E-Print Network [OSTI]

    Garrison, John Allen

    2011-08-08T23:59:59.000Z

    coherent directory structure for users. Particular files are directed to appropriate underlying file systems by intercepting system calls connecting the Virtual File System (VFS) to the underlying file systems. Files are evaluated by a policy module...

  6. Designing electricity transmission auctions

    E-Print Network [OSTI]

    Greve, Thomas; Pollitt, Michael G.

    2012-10-26T23:59:59.000Z

    The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

  7. Transmission Services Bulletin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard Time On the first Sunday in November Transmission Services sets clocks from Daylight Savings Time (PD) back to Standard Time (PS). At 02:00 the time becomes 01:00. In...

  8. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2008-01-15T23:59:59.000Z

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  9. Electric Transmission Lines (Iowa)

    Broader source: Energy.gov [DOE]

    Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

  10. Down hole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-07-24T23:59:59.000Z

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  11. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

  12. Aquatic Toxicity Information Retrieval Data Base (ACQUIRE). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.

  13. Honda Transmission Technical Center

    High Performance Buildings Database

    Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

  14. Bulk Power Transmission Study

    E-Print Network [OSTI]

    John, T.

    BULK POWER TRANSMISSION STUDY TOMMY JOH~ P. E. Manager of Resource Recovery Waste Management of North America, Inc. Houston, Texas Texans now have a choice. We can become more efficient and maintain our standard of living, or we can... continue business as usual and watch our standard of living erode from competition from other regions. In the past, except for improving reliability, there was no need for a strong transmission system. When Texas generation was primarily gas fueled...

  15. JPEG File Interchange Format

    E-Print Network [OSTI]

    Hamilton, Eric

    2004-03-30T23:59:59.000Z

    interchange format compressed image representation PC or Mac or Unix workstation compatible Standard color space: one or three components. For three components, YCbCr (CCIR 601-256 levels) APP0 marker used to specify Units, X pixel density, Y pixel... by the Macintosh but not by PCs or workstations. JPEG File Interchange Format, Version 1.02 2 Standard color space The color space to be used is YCbCr as defined by CCIR 601 (256 levels). The RGB components calculated by linear conversion from YCbCr shall...

  16. Signature on File

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSettingUncertainties ElitzaSignon File

  17. Unix File Permissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout Us / OurPast EventsFile

  18. MEMORANDUfl J: FILE DATE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGYS IDCSTEJ: FILE

  19. TO: FILE FROM: SUBJECT:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl' lO--23,TO: FILE

  20. TO: FILE MEMORANDUM

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl'FILE MEMORANDUM

  1. Franklin File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms &FrancisEmailFile

  2. Euclid File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements Archive Email AnnouncementsFile

  3. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31T23:59:59.000Z

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  4. PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes (extended version)

    E-Print Network [OSTI]

    Legout, Arnaud

    PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes (extended version) A the properties of a new multicast congestion control protocol (called PLM) for audio/video and file transfer. We evaluated PLM for a large variety of scenarios and show that it converges fast to the optimal link

  5. PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes (extended version) \\Lambda

    E-Print Network [OSTI]

    Legout, Arnaud

    PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes (extended version the properties of a new multicast congestion control protocol (called PLM) for audio/video and file transfer. We evaluated PLM for a large variety of scenarios and show that it converges fast to the optimal link

  6. Geothermal-energy files in computer storage: sites, cities, and industries

    SciTech Connect (OSTI)

    O'Dea, P.L.

    1981-12-01T23:59:59.000Z

    The site, city, and industrial files are described. The data presented are from the hydrothermal site file containing about three thousand records which describe some of the principal physical features of hydrothermal resources in the United States. Data elements include: latitude, longitude, township, range, section, surface temperature, subsurface temperature, the field potential, and well depth for commercialization. (MHR)

  7. A Special-Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks

    E-Print Network [OSTI]

    Lindemann, Christoph

    application scenarios include sharing traffic and weather data by car-to-car communication in a wideA Special-Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks Alexander Klemm-to-peer (P2P) file sharing for mobile ad hoc networks (MANET) requires the construction of a search algorithm

  8. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31T23:59:59.000Z

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  9. Intern Opportunity: Office of Technology Alliances at UC Irvine What we need: Technology assessment of university inventions including patent landscape,

    E-Print Network [OSTI]

    Loudon, Catherine

    assessment of university inventions including patent landscape, invention summary, and initial market at UCI. Licensing Officers within OTA are responsible for making decisions about proceeding with a patent filing and, for cases that are already filed, whether or not to continue with patent prosecution. A big

  10. Hybrid Transmission Corridor study

    SciTech Connect (OSTI)

    Clairmont, B.A.; Johnson, G.B.; Zaffanella, L.E. (General Electric Co., Lenox, MA (United States))

    1992-06-01T23:59:59.000Z

    Hybrid Transmission Corridors are areas where High Voltage Alternating Current (HVAC) transmission lines and High Voltage Direct Current (HVDC) transmission lines exist in close proximity of each other. Because of the acceptance of HVDC as a means of transporting electric power over long distances and the difficulties associated with obtaining new right-of-ways, HVDC lines may have to share the same transmission corridor with HVAC lines. The interactions between conductors energized with different types of voltages causes changes in the electrical stresses applied to the conductors and insulators. As a result, corona phenomena, field effects and insulation performance can be affected. This report presents the results of an investigation of the HVAC-HVDC interaction and its effect on corona and AC and DC electric field phenomena. The method of investigation was based on calculation methods developed at the EPRI High Voltage Transmission Research Center (HVTRC) and supported by the results of full and reduced-scale line tests. Also, a survey of existing hybrid corridors is given along with the results of measurements made at one of those corridors. A number of examples in which an existing AC corridor may be transformed into a hybrid corridor are discussed. The main result of the research is an analytical/empirical model for predicting the electrical/environmental performance of hybrid corridors, a definition of ACDC interaction and a set of criteria for specifying when the interaction becomes significant, and a set of design rules.

  11. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27T23:59:59.000Z

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  12. Low Frequency Transmission Final Project Report

    E-Print Network [OSTI]

    to HVDC transmission and conventional AC transmission in different configurations. The issue is quite

  13. File:09FDDBLMAppealsProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:09-FD-g

  14. File:09HIBHawaiiEAProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf9HIBHawaiiEAProcess.pdf Jump

  15. File:09HICHawaiiEISProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf9HIBHawaiiEAProcess.pdf

  16. File:Banglmetst 221.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile Edit with form

  17. File:BrazilTMYst 238.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile Edit

  18. File:Breakout Session Groups.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile EditBreakout Session

  19. File:Breakout Session Guidance.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile EditBreakout

  20. File:CDPHE Industrial Individual Wastewater Discharge Permit

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile EditBreakoutCCS

  1. File:CV TidePotential.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFileTidePotential.pdf Jump

  2. File:CV WindSpeed.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFileTidePotential.pdf

  3. File:Calabarzon Speed 100m | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form History Facebook

  4. File:Cammetst 58.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form History

  5. File:CaveProtectionLaw.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form

  6. File:Cert Compliance inst 0110.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind

  7. File:Chinametst 220.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang

  8. File:Cubametst 59.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW NOICoordination.pdf

  9. File:DEQ Circular 2.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW

  10. File:Denver Basin.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSWDOE-USFWS Migratory

  11. File:Div15.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSWDOE-USFWS

  12. File:Div20.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSWDOE-USFWSDiv20.pdf Jump

  13. File:EIA-MTB-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size ofMTB-GAS.pdf Jump to: navigation, search File

  14. File:EIA-PRB-N-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size ofMTB-GAS.pdf Jump to: navigation, search FileBy 2001

  15. File:EIA-PRB-N-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size ofMTB-GAS.pdf Jump to: navigation, search FileBy

  16. File:Ethiopiametst 226.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametst 226.pdf Jump to: navigation, search File

  17. File:INL-geothermal-ak.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdf Jump to: navigation, search File

  18. File:NREL-bhutan-wind.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdfBhutan - 50m

  19. File:NREL-brazil-dir.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdfBhutan -

  20. File:NREL-brazil-glo.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdfBhutan

  1. File:Permit factsheet.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Original Rule from OAR 20.03.15.pdf Jumppages) File

  2. File:Stormwater faq.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdf Jump to: navigation, search File

  3. Save PDF files as Word documents You can save a PDF file as a Word document, even if the file was originally created in a

    E-Print Network [OSTI]

    Segraves, Kari A.

    Save PDF files as Word documents You can save a PDF file as a Word document, even if the file to save. 2. Choose File > Save As > Microsoft Word > Word Document. The Word Document command saves File > Save As > Microsoft Word > Word 97-2003 Document to save a DOC file. Tip: If you want to save

  4. MEMORANDU TO: FILE FHOM: SUBJECT:

    Office of Legacy Management (LM)

    TO: FILE FHOM: SUBJECT: Curre"t: Ll&k&&d l- ; if yes, date contacted 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample &...

  5. Methods, apparatus, and systems for monitoring transmission systems

    DOE Patents [OSTI]

    Polk, Robert E. (Idaho Falls, ID) [Idaho Falls, ID; Svoboda, John M. (Idaho Falls, ID) [Idaho Falls, ID; West, Phillip B. (Idaho Falls, ID) [Idaho Falls, ID; Heath, Gail L. (Iona, ID) [Iona, ID; Scott, Clark L. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-31T23:59:59.000Z

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  6. Omega Transmission Lines

    E-Print Network [OSTI]

    Vehmas, Joni

    2013-01-01T23:59:59.000Z

    In this paper, we show how bi-anisotropic media with omega-type response can be realized using periodically loaded transmission lines. General conditions for the needed unit cell circuit block are derived. Also, an implementation is shown and analyzed.

  7. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1993-03-23T23:59:59.000Z

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  8. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (1739 Grandview #2, Idaho Falls, ID 83402)

    1993-01-01T23:59:59.000Z

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  9. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

    1997-01-01T23:59:59.000Z

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  10. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1997-03-25T23:59:59.000Z

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  11. WEYL ASYMPTOTICS OF THE TRANSMISSION EIGENVALUES ...

    E-Print Network [OSTI]

    2014-09-02T23:59:59.000Z

    plex internal transmission eigenvalues when the domain is a ball and the index ..... parameter in the operators in a non-linear way; and the implicit choice of the .... in the interior of I, and thus, q ?p ITEs in I, since we include the right endpoint in.

  12. File:08FDBFERCOrderNo2006Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history

  13. File:NREL-az-80m.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File File historytilt.pdf

  14. Harvard Library: FY2010 Volumes, Records, Titles, and Digital Files

    E-Print Network [OSTI]

    Harvard Library: FY2010 Volumes, Records, Titles, and Digital Files Total Expenditures *Digital Repository Service SOURCE: HARVARD LIBRARY OFFICE OF THE EXECUTIVE DIRECTOR 0.00 2.00 4.00 6.00 8.00 10.00 12 Collections Costs Staffing Costs Operations Harvard's library system now includes more than 70 separate

  15. Deploying Server-side File System Monitoring at NERSC

    SciTech Connect (OSTI)

    Uselton, Andrew

    2009-05-01T23:59:59.000Z

    The Franklin Cray XT4 at the NERSC center was equipped with the server-side I/O monitoring infrastructure Cerebro/LMT, which is described here in detail. Insights gained from the data produced include a better understanding of instantaneous data rates during file system testing, file system behavior during regular production time, and long-term average behaviors. Information and insights gleaned from this monitoring support efforts to proactively manage the I/O infrastructure on Franklin. A simple model for I/O transactions is introduced and compared with the 250 million observations sent to the LMT database from August 2008 to February 2009.

  16. CAD Tools for Creating Space-filing 3D Escher Tiles

    E-Print Network [OSTI]

    Howison, Mark

    2010-01-01T23:59:59.000Z

    Space-filing 3D Escher Tiles Mark Howison 1 and Carlo H.decorative solids that tile 3-space in a regular, isohedralrepresentations of 3D tiles, including a Java implementation

  17. A Novel Preamble Design for OFDM Transmission Parameter Signalling

    E-Print Network [OSTI]

    Chen, Sheng

    - input single-output (SISO) and multiple-input single-output (MISO) transmission modes are supported. Quick and reliable detection of the transmission parameters is critical for the receiver to perform), including the FFT size and SISO/MISO mode [5]. In the time domain, a novel cyclic extension structure

  18. Pulse transmission transceiver architecture for low power communications

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05T23:59:59.000Z

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  19. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  20. Boardman to Hemingway Transmission Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  1. Transmission Issues Policy Steering Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Practices CommitteesTeams Joint Operating Committee Transmission Issues Policy Steering Committee Customer Training Interconnection Notices Rates Standards of...

  2. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  3. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, Kenneth E. (Naperville, IL)

    1989-01-01T23:59:59.000Z

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  4. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, K.E.

    1988-07-28T23:59:59.000Z

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  5. Hydraulic system for a ratio change transmission

    DOE Patents [OSTI]

    Kalns, Ilmars (Northville, MI)

    1981-01-01T23:59:59.000Z

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  6. How to batch upload video files with Unison How to batch upload video files with Unison

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    How to batch upload video files with Unison How to batch upload video files with Unison There are two different ways to upload already existing video files into Unison: Upload from the New Session page (only allows one video file to be uploaded at a time) Launching the editor in Composer (allows

  7. Notes on the PMC Journal List CSV file This CSV file, available from the Journal List page on the PMC site, http://www.ncbi.nlm.nih.gov/pmc/

    E-Print Network [OSTI]

    Levin, Judith G.

    Notes on the PMC Journal List CSV file This CSV file, available from the Journal List page on the PMC site, http://www.ncbi.nlm.nih.gov/pmc/ journals/, is a list of journals that currently deposit in PMC. It includes journals that are no longer in publication or no longer deposit material in PMC

  8. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » DataContact-Information-Transmission

  9. Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTownTrama TecnoTransmission

  10. Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) JumpTradeWindPrepared asTransmission

  11. Transmission resonances in the bipolar quantum resonant tunneling transistor

    E-Print Network [OSTI]

    Mondragon, Antonio Richard

    1996-01-01T23:59:59.000Z

    A propagator method is introduced for calculating the transmission spectra of semiconductor nanostructures, and the bound state energies and wave functions of quantum wells. This method is then generalized to include the effects of a nonpa...

  12. Transmission resonances in the bipolar quantum resonant tunneling transistor

    E-Print Network [OSTI]

    Mondragon, Antonio Richard

    1996-01-01T23:59:59.000Z

    A propagator method is introduced for calculating the transmission spectra of semiconductor nanostructures, and the bound state energies and wave functions of quantum wells. This method is then generalized to include the effects of a nonpa...

  13. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02T23:59:59.000Z

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS and WinDS). The authors and general location of the 40 detailed transmission studies included in our review are illustrated in Figure ES-1. As discussed in the body of the report, these studies vary considerably in scope, authorship, objectives, methodology, and tools. Though we recognize this diversity and are cognizant that comparisons among these studies are therefore somewhat inappropriate, we nonetheless emphasize such simple comparisons in this report. We do so in order to improve our understanding of the range of transmission costs needed to access greater quantities of wind, and to highlight some of the drivers of those costs. In so doing, we gloss over many important details and differences among the studies in our sample. In emphasizing simple comparisons, our analysis focuses primarily on the unit cost of transmission implied by each of the studies. The unit cost of transmission for wind in $/kW terms on a capacity-weighted basis is estimated by simply dividing the total transmission cost in a study by the total amount of incremental generation capacity (wind and non-wind) modeled in that study. In so doing, this metric assumes that within any individual study all incremental generation capacity imposes transmission costs in proportion to its nameplate capacity rating. The limitations to this approach are described in some detail in the body of the report.

  14. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  15. Factors influencing quantitative liquid (scanning) transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing quantitative liquid (scanning) transmission electron microscopy. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Abstract:...

  16. File:Rules and Regulations for the Management and Control of...

    Open Energy Info (EERE)

    Facebook icon Twitter icon File:Rules and Regulations for the Management and Control of Designated Ground Water.pdf Jump to: navigation, search File File history File...

  17. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    icon File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File...

  18. File:Texas NOI for Storm Water Discharges Associated with Construction...

    Open Energy Info (EERE)

    NOI for Storm Water Discharges Associated with Construction Activities (TXR150000).pdf Jump to: navigation, search File File history File usage Metadata File:Texas NOI for Storm...

  19. File:App Commercial Leases and Easements or Amendment or Residential...

    Open Energy Info (EERE)

    App Commercial Leases and Easements or Amendment or Residential Coastal Easements HOA.pdf Jump to: navigation, search File File history File usage Metadata File:App Commercial...

  20. Transmission Planning | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Performance of Federal Permitting and Review of Infrastructure Projects Energy Corridors on Federal Lands Transmission Projects Proposed Under EPAct Section 1222 Activity...

  1. AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION

    Broader source: Energy.gov [DOE]

    The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

  2. EIS-0365: Imperial-Mexicali 230-kV Transmission Lines

    Broader source: Energy.gov [DOE]

    On February 27, 2001, Baja California Power, Inc. (hereafter referred to as Intergen), InterGen Aztec Energy, V.B.V., filed an application with DOE, Office of Fossil Energy, for a Presidential permit that would allow construction and connection of a double-circuit, 230-kV transmission line extending from the Imperial Valley Substation in California for a distance of about 6 mi (10 km) to a point west of Calexico at the U.S.-Mexico border.

  3. Transmission line environmental assessment guidance document

    SciTech Connect (OSTI)

    Jackson, J.; Pentecost, E.; Muzzarelli, J.

    1994-01-01T23:59:59.000Z

    Since 1939, U.S. utility companies have been required to obtain a Presidential Permit to construct electric transmission lines that cross a U.S. border and connect with a foreign utility. The purpose of this document is to provide Presidential Permit applicants with two types of guidance: (1) on the type of environmental and project descriptive information needed to assess the potential impacts of the proposed and alternative actions and (2) on compliance with applicable federal and state regulations. The main three chapters present information on the purpose and content of this document (Chapter 1); legislative, regulatory, and consultation requirements for transmission line interconnect projects (Chapter 2); and identification of basic transmission system design parameters and environmental data requirements for analysis of potential impacts of the proposed action (Chapter 3). Chapter 3 also includes information on possible techniques or measures to mitigate impacts. Appendix A presents an overview of NEPA requirements and DOE`s implementing procedures. Appendix B summarizes information on legislation that may be applicable to transmission line projects proposed in Presidential Permit applications.

  4. Raj JainThe Ohio State University Data TransmissionData TransmissionData Transmission

    E-Print Network [OSTI]

    Jain, Raj

    The Ohio State University 2-14 Bit Error RateBit Error RateBit Error Rate Energy/bit Eb =STb, where TbRaj JainThe Ohio State University 2-1 Data TransmissionData TransmissionData Transmission Raj Jain Professor of CIS The Ohio State University Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio

  5. Small file aggregation in a parallel computing system

    DOE Patents [OSTI]

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02T23:59:59.000Z

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  6. GDCT Initialization File [gdct.ini] Format Specification Guide

    E-Print Network [OSTI]

    Rosebrugh, Robert

    GDCT Initialization File [gdct.ini] Format Specification Guide Written By: Jeremy Bradbury June 22, 2000 Below is the layout of the gdct.ini file. It is important to note the following: · If the gdct.ini to represent that a file does not exist under the "Recent Files" section of the gdct.ini file. [Internal

  7. Unix/Linux Command Reference .com File Commands

    E-Print Network [OSTI]

    Reluga, Tim

    word in the current line Ctrl+U erases the whole line Ctrl+R type to bring up a recent commandUnix/Linux Command Reference .com File Commands ls directory listing ls -al formatted listing output the contents of file head file output the first 10 lines of file tail file output the last 10

  8. Direct current power transmission systems

    SciTech Connect (OSTI)

    Padiyar, K.R.

    1991-01-01T23:59:59.000Z

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  9. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    Wind Energy Access, Transmission, and Intermittency Really Cost?transmission cost barrier for wind energy. A secondary goalfocus on the cost of transmission for wind energy does not

  10. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15T23:59:59.000Z

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

  11. FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission

    E-Print Network [OSTI]

    McDonald, Kirk

    FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission and Fusion Reactor Materials Applications David Wootan - david.wootan@pnnl.gov, 1-509-372-6865 Radiation Damage

  12. Saving Output to a File (Using Codeblocks or Dev-C++) Saving Your Output to a File

    E-Print Network [OSTI]

    Sokol, Dina

    Saving Output to a File (Using Codeblocks or Dev-C++) Saving Your Output to a File To save | New | Source File. d. In the new window, right-click and select Paste. e. Then select "File | Save as" to save and name the file. i. In the window that pops up, the bottom fill-in box is labelled "Save as type

  13. Reading File Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds forAdvancedAdvancedReading File

  14. Downhole Data Transmission System

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2004-04-06T23:59:59.000Z

    A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

  15. NWCC Transmission Case Study III

    SciTech Connect (OSTI)

    Terry Allison, Steve Wiese

    2000-03-01T23:59:59.000Z

    OAK-B135 Transmission System Improvements for Wind Energy Development in the Upper Midwest and Great Plains: Opportunities and Obstacles. This case study set out to ascertain the validity of three assumptions from the perspectives of stakeholders involved in wind energy and transmission issues in the Upper Midwest and Great Plains. The assumptions, and the stakeholders' reactions to each, are summarized below: Assumption 1--Transmission system improvements would provide significant benefits to the electricity network and its customers. Respondents acknowledge the potential for overall system benefits in the form of reduced line losses, improved grid stability and reliability, and enhanced ability to conduct spot market transactions. They also agree that these benefits relate to specific regional needs. However, there is disagreement over the extent of other benefits such as efficiency gains and cost savings from reduced line losses. Further, environmental and community interest groups point out that none of these benefits are realized without significant financial, environmental and social costs. Assumption 2--The benefits of transmission improvements would be helpful, but not confined, to wind power. All respondents agree that wind energy could benefit from transmission system improvements. But they also acknowledge, reluctantly, in the case of environmental stakeholders, that the benefits of an improved transmission system cannot be limited to environmentally preferable forms of generation. Some environmental and community advocate respondents also feel that transmission system improvement projects can be avoided altogether through energy conservation and efficiency measures, and by substituting wind energy for fossil generation. Assumption 3--Transmission alliances among stakeholders within and external to the wind community can provide benefits in the public interest. The fractured, multi-jurisdictional governance of the regional transmission system, and the distrust and diversity of perspectives among affected stakeholders, may make the formation of multi-stakeholder alliances necessary to accomplishing transmission goals. If the wind industry and utilities want to partner with environmental and community advocate groups in supporting a transmission project, they may have to convince these groups that the project would result in a net environmental benefit. The project proponents would have to make the case that the benefits of the additional wind energy will at least offset the emissions of any additional fossil generation made possible by the transmission project, as well as offset the environmental impact of the transmission project itself.

  16. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09T23:59:59.000Z

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  17. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...

  18. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  19. Multi-ratio transmission

    SciTech Connect (OSTI)

    Polak, J.C.

    1987-07-14T23:59:59.000Z

    A preselected multi-ratio power transmission is described comprising: input means for transmitting drive forces; output means; first, second and third friction clutch means each selectively engageable with the input means for accepting drive forces. First input gear means drivingly connects with the first friction clutch means; second input gear means drivingly connects with the second friction clutch means; third input gear means drivingly connects with the third clutch means; first output gear means drivingly connects with the first input gear means; second output gear means drivingly connects with the first and second input gear means; third output means drivingly connects between the third input gear means and the output means; and one double-acting synchronizer clutch for selectively engaging the first output gear means with the output means and alternately the second output gear means with the output means. The first friction clutch means and the one double-acting synchronizer clutch cooperates during engagement to establish two forward drive ratios between the input and output means. The second friction clutch means and the one double-acting synchronizer clutch cooperates during engagement to establish two other forward drive ratios between the input and output means. The third friction clutch means is engageable to provide another forward drive ratio between the input means and the output means; and the one double-acting synchronizer clutch is relieved of transmitting drive forces during the engagement of the third friction clutch means and being manipulable for alternate connection with either the first output gear or the second output gear while the third friction clutch means is engaged.

  20. Instructions for transmitting Collector files to KFS In order for a department's KFS Collector file to be processed, departments must transfer the file to an

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Instructions for transmitting Collector files to KFS In order for a department's KFS Collector file. The name of the KFS Collector file transferred to the Information Systems server by each department should in .xml. Once a department's Collector file has been processed by KFS it will be removed from

  1. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    S. S. Oren, Smart flexible just-in-time transmission andFlexible Transmission in the Smart Grid By Kory WalterAll rights reserved. A BSTRACT Flexible Transmission in the

  2. NERSC Online Training May 3: Navigating NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Training May 3: Navigating NERSC File Systems NERSC Online Training May 3: Navigating NERSC File Systems April 26, 2011 by Richard Gerber A NERSC training event, "Navigating...

  3. DOE Successfully Resolves Three Enforcement Cases and Files Yet...

    Office of Environmental Management (EM)

    Successfully Resolves Three Enforcement Cases and Files Yet Another DOE Successfully Resolves Three Enforcement Cases and Files Yet Another September 29, 2010 - 5:24pm Addthis The...

  4. File:Notice of Termination for Authorization under TPDES General...

    Open Energy Info (EERE)

    | Sign Up Search File Edit History Facebook icon Twitter icon File:Notice of Termination for Authorization under TPDES General Permit TXR150000.pdf Jump to: navigation,...

  5. Transmission Workshop | Department of Energy

    Energy Savers [EERE]

    - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A...

  6. Video transmission over wireless networks

    E-Print Network [OSTI]

    Zhao, Shengjie

    2005-08-29T23:59:59.000Z

    Compressed video bitstream transmissions over wireless networks are addressed in this work. We first consider error control and power allocation for transmitting wireless video over CDMA networks in conjunction with multiuser detection. We map a...

  7. Video transmission over wireless networks

    E-Print Network [OSTI]

    Zhao, Shengjie

    2005-08-29T23:59:59.000Z

    Compressed video bitstream transmissions over wireless networks are addressed in this work. We first consider error control and power allocation for transmitting wireless video over CDMA networks in conjunction with multiuser detection. We map a...

  8. EIS-0231: Navajo Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise,to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned...

  9. Immunology of naturally transmissible tumours

    E-Print Network [OSTI]

    Siddle, Hannah V.; Kaufman, Jim

    2014-09-04T23:59:59.000Z

    in a graft. These APCs move to the draining lymph nodes of the host, after which primed effector T cells migrate back to the graft site and target foreign cells (reviewed in (10)). Alternatively, T cells can be primed with graft-derived peptides... transmissible venereal tumour at different stages of growth. Vet Immunol Immunopathol. 1998;64(2):133-47. 57. Chandler JP, Yang TJ. Canine transmissible venereal sarcoma: distribution of T and B lymphocytes in blood, draining lymph nodes and tumours...

  10. Transmission Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets PeopleTransmission Workshop Transmission

  11. Briefing Memo: Petroleum Product Transmission & Distribution...

    Energy Savers [EERE]

    Briefing Memo: Petroleum Product Transmission & Distribution Briefing Memo: Petroleum Product Transmission & Distribution Click below to download a PDF of the briefing memo....

  12. Agenda: Natural Gas: Transmission, Storage and Distribution ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

  13. Device for adapting continuously variable transmissions to infinitely variable transmissions with forward-neutral-reverse capabilities

    DOE Patents [OSTI]

    Wilkes, Donald F. (Albuquerque, NM); Purvis, James W. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.

  14. Downhole Data Transmission System

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2003-12-30T23:59:59.000Z

    A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

  15. Aquatic toxicity information on VAX VMS backup (ACQUIRE for VMS). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.

  16. 1996 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1996-10-01T23:59:59.000Z

    Bonneville Power Administration`s (BPA) 1996 Wholesale Power Rate Schedules, 1996 Ancillary Products and Services Rate Schedule, 1996 Transmission Rate Schedules, and General Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1996. These rate schedules and provisions were approved by the Federal Energy Regulatory Commission (FERC), United States Department of Energy, in September 1996 (Docket Nos EF96-2011-000 and EF96f-2021-000). These rate schedules and General Rate Schedule Provisions were approved on a final basis by the FERC July 30, 1997, in Dept. of Energy--Bonneville Power Administration, Docket Nos. EF96-2011-000 and EF96-2021-000. Except as noted elsewhere, these 1996 rate schedules and provisions supersede BPA`s Wholesale Power Rate Schedules and General Rate Schedule Provisions, and Transmission Rate Schedules and General Transmission Rate Schedule Provisions, effective October 1, 1995. These rate schedules and general rate schedule provisions include all errata.

  17. UBC Subject File Collection / UBC Archives (collector)

    E-Print Network [OSTI]

    Handy, Todd C.

    UBC Subject File Collection / UBC Archives (collector) Compiled by Max Steiner (2005) Revised Description o Title / Dates of Creation / Physical Description o Collector's Biographical Sketch o Scope Files Collection / UBC Archives (collector). 1915-2000. 10.8 m of textual materials. Collector

  18. Contributing Storage using the Transparent File System

    E-Print Network [OSTI]

    Berger, Emery

    Contributing Storage using the Transparent File System JAMES CIPAR and MARK D. CORNER and EMERY D barrier to the adoption of contributory storage systems is that contributing a large quantity of local--all of the currently available space-- without impacting the performance of ordinary file access operations. We show

  19. Common File Formats in Rosetta Steven Combs

    E-Print Network [OSTI]

    Meiler, Jens

    different ways Command Line Fixbb.release database -s 1thfD.pdb ex1 ex2 packing.942 19.190 1.00 8.50 P Ligand lines Atom # Atom name Residue name Chain ID Residue # Xcoord Ycoord Zcoord occupancy Bfactor Element name Atom lines #12;Silent Files Specify by in:file:silent and out

  20. TO: FILE FROM: I SUBJECT:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;I : T'ncZl' lO--23,TO: FILE

  1. How to Include Zebras in the

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Cellular... So far in class, you've talked a lot about cellular service: ­ Cellular towers receive voice antennas available ­ Looking at 802.11 or VHF transmission Difficult terrain Power generation & storage

  2. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect (OSTI)

    Nozari, F.; Patel, H.S.

    1988-04-01T23:59:59.000Z

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  3. Ponderomotive phase plate for transmission electron microscopes

    DOE Patents [OSTI]

    Reed, Bryan W. (Livermore, CA)

    2012-07-10T23:59:59.000Z

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  4. July 2, 2007 1 Optimal Transmission Switching

    E-Print Network [OSTI]

    Mangasarian, Olvi L.

    d to node n. zk: binary variable indicating whether transmission line k is removed from the system limit on number of open transmission lines Manuscript received July 2, 2007. This work was supported-mail: ferris@cs.wisc.edu). Sets : Set of all transmission lines L: Set of open transmission lines in solution

  5. An Analysis of Web File Sizes: New Methods and Models

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    An Analysis of Web File Sizes: New Methods and Models A Thesis presented by Brent Tworetzky consider such models and how to improve their fits. This thesis contributes to file size research-improved file size estimations over type-blind models. We therefore present a range of useful new file size

  6. FILE USAGE RECOMMENDATIONS OCTOBER 31, 2013 | PAGE: 1 AVAILABLE LOGOS

    E-Print Network [OSTI]

    Aronov, Boris

    FILE USAGE RECOMMENDATIONS OCTOBER 31, 2013 | PAGE: 1 AVAILABLE LOGOS EPS JPG PNG LONG LOGO_long_white.png STACKED LOGO engineering_stacked_color.eps engineering_stacked_color.jpg engineering O R - Recommended File Type O - Optional File Type Which file to use Logo formats are available

  7. Transmission Lines Emulating Moving Media

    E-Print Network [OSTI]

    Vehmas, Joni; Tretyakov, Sergei

    2014-01-01T23:59:59.000Z

    In this paper, we show how the electromagnetic phenomena in moving magnetodielectric media can be emulated using artificial composite structures at rest. In particular, we introduce nonreciprocal periodically loaded transmission lines which support waves obeying the same rules as plane electromagnetic waves in moving media. Because the actual physical structure is at rest, in these transmission lines there are no fundamental limitations on the velocity values, which may take values larger than the speed of light or even complex values (considering complex amplitudes in the time-harmonic regime). An example circuit of a unit cell of a "moving" transmission line is presented and analyzed both numerically and experimentally. The special case of composite right/left handed host line is also studied numerically. Besides the fundamental interest, the study is relevant for potential applications in realizing engineered materials for various transformations of electromagnetic fields.

  8. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 & EIA-920,Condensate,Electric Power

  9. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 & EIA-920,Condensate,Electric PowerElectric

  10. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 & EIA-920,Condensate,Electric

  11. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 &

  12. FILE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (;%hEROF'

  13. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial Plants Excluding

  14. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial Plants ExcludingCoke

  15. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial Plants

  16. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. DepartmentOregon826Industrial

  17. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S.

  18. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S.3,"Alabama","Alabama","Electric Power

  19. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S.3,"Alabama","Alabama","Electric

  20. File

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1

  1. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 1, FEBRUARY 2005 171 Dispatchable Transmission in RTO Markets

    E-Print Network [OSTI]

    Baldick, Ross

    .S. ISO/RTO markets.3 For our purposes, the core SMD elements include locational marginal pricing (LMP), flowgate marginal pricing (FMP), and financial transmission rights (FTRs).4 In addition, the SMD proposal to transmission. In the context of RTOs, marginal transmission pricing and uni

  2. ITC Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC Transmission Jump to: navigation, search Name:

  3. File storage and I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel andFifth Annual RadWasteFileFileFileO

  4. The Centre for Power Transmission

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    The Centre for Power Transmission and Motion Control Centre for PTMC Department of Mechanical) 1225 38-6371 Email: ptmc@bath.ac.uk Web: http://www.bath.ac.uk/ptmc/ Consultancy Project WAVE POWER SYSTEM SIMULATIONS Power take-off systems Wave power take-off systems are an exciting new development

  5. The Centre for Power Transmission

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    precision and high bandwidth motion control In fluid power systems, seals are typically passive elements Bois) PTO #12;5. Modelling and Development of Low Noise Hydraulic Fluid Power Systems Hydraulic fluidThe Centre for Power Transmission and Motion Control The Centre for PTMC: analytical

  6. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01T23:59:59.000Z

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  7. File:09-FD-a - NEPAProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to: navigation, search

  8. File:09-FD-b - EAProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to: navigation,

  9. File:09-FD-c - EISProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to: navigation,9-FD-c -

  10. File:09-FD-e - DOE NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to: navigation,9-FD-c

  11. File:09-FD-f - DOD NEPA Process (2).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:

  12. File:09-FD-g - USFS NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:09-FD-g - USFS NEPA

  13. File:09AKAStateEnvironmentalProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:09-FD-g - USFS

  14. File:09CAAStateEnvironmentalProcessUse.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:09-FD-g -

  15. File:09FDDBLMProtestAndAppealsProcess (2).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump

  16. File:09HIAStateEnvironmentalReviewEAEIS (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf

  17. File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile Edit with

  18. File:Boiler permit packet s-20.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile Edit withBoiler

  19. File:CCS EA 2012 Web-ready.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile EditBreakoutCCS EA

  20. File:Central America 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind Power.pdf

  1. File:China Chifeng 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind50m Wind

  2. File:China Enshi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind50m

  3. File:China Fuzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m Wind50mFuzhou

  4. File:China Guangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50m

  5. File:China Haikou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikou 50m Wind

  6. File:China Hangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikou 50m

  7. File:China Hohhot 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikou

  8. File:China Jiamusi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with form50mHaikouJiamusi

  9. File:China Manzhouli 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit with

  10. File:China Nanchang 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang 50m Wind

  11. File:China Qingdao 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang 50m Windpdf

  12. File:China Qiqihar 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang 50m

  13. File:China Shenyang 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang 50mm Wind

  14. File:China Tianjin 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang 50mm

  15. File:China Yinchuan 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchang 50mmYinchuan

  16. File:Colorado Water Quality Control Act.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchangAct.pdf Jump

  17. File:Const SW swppp template.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit withNanchangAct.pdf

  18. File:Construction Air Permit Application.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File Edit

  19. File:Construction SW NOI modified 7-18-2011.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSW NOI modified

  20. File:DOE-USFWS Migratory Bird MOU.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSWDOE-USFWS Migratory Bird

  1. File:EIA-AK-CookInlet-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File EditSWDOE-USFWSDiv20.pdf

  2. File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:File

  3. File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf Jump to: navigation,

  4. File:EIA-AK-NPRA-ANWR-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf Jump to:

  5. File:EIA-AK-NPRA-ANWR-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf Jump to:Thumbnail for

  6. File:EIA-AK-NPRA-ANWR-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf Jump to:Thumbnail

  7. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf Jump

  8. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf JumpClass Sources

  9. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf JumpClass Sources7

  10. File:EIA-Appalach1-NY-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf JumpClass

  11. File:EIA-Appalach1-NY-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf JumpClassBasin, New

  12. File:EIA-Appalach1-NY-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf JumpClassBasin,

  13. File:EIA-Appalach2-OH-PA-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview:FileLiquids.pdf

  14. File:EIA-Appalach5-eastWV-LIQ.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of thisAppalach3-eastPA-BOE.pdf Jump to:,ReserveFile

  15. File:NREL-bhutan-10kmsolar-dni.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdf Jump to:

  16. File:NREL-bhutan-10kmsolar-ghi.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdf Jump

  17. File:NREL-bhutan-10kmsolar-tilt.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdf

  18. File:NREL-ca-80m.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File Filedni.pdfBhutanm.pdf

  19. File:NREL-ca-90m-offshore.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to: navigation, search File

  20. File:USDA-CE-Production-GIFmaps-OR.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdfNM.pdf Jump to:OH.pdfFile

  1. File:Usgs.9.2010.Fig01.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf JumpUsgs.9.2010.Fig01.pdf Jump to: navigation, search File

  2. File:08-CA-c California Transmission - CPUC Process.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8 -

  3. File:08-CA-d - CPCN for Transmission Projects (2).pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8 -Information 8-CA-d - CPCN for

  4. File:08-CO-c - State Transmission Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8 -Information 8-CA-d -

  5. File:08-FD-a - FederalTransmission.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf07ORDExpeditedPlantCommissioningProcess.pdf Jump8 -Information 8-CA-d -8-FD-a -

  6. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    analysis of the difference in transmission costs for wind andour meta-analysis on the unit cost of transmission for windanalysis of these studies reveals considerable differences in the implied unit cost of transmission for wind.

  7. Argonne integrated heterogeneous file transfer network

    SciTech Connect (OSTI)

    Schofield, J.

    1984-01-01T23:59:59.000Z

    This presentation describes the computing environment at Argonne National Laboratory and the actions underway to implement a coherent hierarchy of computing systems connected through a heterogeneous file transfer network. A major goal of the Computing Services Division is to integrate heterogeneous computing elements incrementally into a nework, with the goal of having everything somehow connected to everything else. Using standard IBM networking protocols, we have already built a full-function computer-to-computer file transfer network of IBM and DEC VAX systems. Currently, the users on the IBM MVS and VM/CMS systems can use standard IBM commands to send files and mail to DEC VAX users and output devices, and they can receive files from the DEC VAX's as if they had been sent from other IBM systems; similarly, the DEC VAX users can use standard DEC commands to send files and mail to IBM users and output devices, and they can receive files from the IBM systems as if they had been sent from other DEC VAX systems. In fact, the VAXes can exchange files and mail among themselves via the IBM NJE-based network without the need for DECnet links between the VAXes. Because this integrated heterogeneous file transfer network uses the standard IBM peer-to-peer communications protocol, all of the Laboratory's IBM and DEC computers easily communicate with the approximately 170 other computers in the Bitnet university network. Plans call for further integration of existing HP 3000 systems and future word processing systems such as Exxon, NBI, or Wang; we believe it is vitally important to provide smooth paths into this network for users of personal desktop computers. 17 references.

  8. Voice Quality Evaluation for Wireless Transmission with ROHC Stephan Rein

    E-Print Network [OSTI]

    Reisslein, Martin

    are the compression gain (reduction in header and total packet size), the voice quality, and the delay jit- terVoice Quality Evaluation for Wireless Transmission with ROHC Stephan Rein Dept. of Electrical Eng and the voice qualities using a wide array of objective voice quality met- rics including SNR metrics, spectral

  9. NREL: Transmission Grid Integration - Transmission Planning and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and Analysis Thumbnail

  10. Estimated Costs of Crop Production in Iowa -2014 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2014 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Busi- ness Association record summaries, production and costs data from, and a survey of selected agricultural cooperatives and other input suppliers around the state. These cost

  11. Estimated Costs of Crop Production in Iowa -2013 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2013 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Busi- ness Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These cost

  12. Estimated Costs of Crop Production in Iowa -2012 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2012 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  13. Estimated Costs of Crop Production in Iowa -2007 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2007 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small

  14. Estimated Costs of Crop Production in Iowa -2009 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2009 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small

  15. Estimated Costs of Crop Production in Iowa -2008 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2008 File A1-20 T he estimated costs of corn, corn sources. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs the state. These costs estimates are representative of average costs for farms in Iowa. Very large or small

  16. Collective operations in a file system based execution model

    DOE Patents [OSTI]

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-12T23:59:59.000Z

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  17. Collective operations in a file system based execution model

    DOE Patents [OSTI]

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-19T23:59:59.000Z

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  18. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    2007. Inclusion of Wind in the MISO Transmission Expansionhttp://www.jcspstudy.org/ Midwest ISO (MISO). 2007. Midwest+Planning Midwest ISO (MISO). 2003. Midwest Transmission

  19. A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS

    E-Print Network [OSTI]

    Mills, Andrew; Wiser, Ryan; Porter, Kevin

    2007-01-01T23:59:59.000Z

    A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROMof establishing a wind transmission cost adder with respectthat involve wind and divide the cost by the relative share

  20. A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS

    E-Print Network [OSTI]

    Mills, Andrew; Wiser, Ryan; Porter, Kevin

    2007-01-01T23:59:59.000Z

    in calculating the unit cost of wind energy transmissionimpacts of the cost of transmission for wind energy. Only inj = Transmission cost per unit of wind energy weighted by

  1. Method and apparatus for executing a shift in a hybrid transmission

    DOE Patents [OSTI]

    Gupta, Pinaki; Kaminsky, Lawrence A; Demirovic, Besim

    2013-09-03T23:59:59.000Z

    A method for executing a transmission shift in a hybrid transmission including first and second electric machines includes executing a shift-through-neutral sequence from an initial transmission state to a target transmission state including executing an intermediate shift to neutral. Upon detecting a change in an output torque request while executing the shift-through-neutral sequence, possible recovery shift paths are identified. Available ones of the possible recovery shift paths are identified and a shift cost for each said available recovery shift path is evaluated. The available recovery shift path having a minimum shift cost is selected as a preferred recovery shift path and is executed to achieve a non-neutral transmission state.

  2. Transmission

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveITransactional7AMelissa Howell |

  3. Transmission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Data ManagementTransit

  4. High speed, long distance, data transmission multiplexing circuit

    DOE Patents [OSTI]

    Mariotti, Razvan (Boulder, CO)

    1991-01-01T23:59:59.000Z

    A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100 Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit.

  5. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect (OSTI)

    Lee, Jack M.

    1989-06-01T23:59:59.000Z

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  6. Introduction Container Library Container Tools FUSE Container File System Evaluation Container Library and FUSE Container File

    E-Print Network [OSTI]

    The library was completely overhauled It now provides consistently named functions and data types The commentsIntroduction Container Library Container Tools FUSE Container File System Evaluation Container Library and FUSE Container File System Softwarepraktikum fur Fortgeschrittene Michael Kuhn Parallele und

  7. GNU Radio & USRPGNU Radio & USRP File transfer through WirelessFile transfer through Wireless

    E-Print Network [OSTI]

    Yu, Chansu

    1 GNU Radio & USRPGNU Radio & USRP File transfer through WirelessFile transfer through WirelessSachin Hirve April 30, 2008April 30, 2008 Contents:Contents: What is Software Radio?What is Software Radio? USRPUSRP ­­ MultiMulti--functional hardwarefunctional hardware GNU RadioGNU Radio Previous Work

  8. Transmission channel Sensitive Multi-Metric Routing for Wireless Sensor Networks

    E-Print Network [OSTI]

    Beigl, Michael

    Transmission channel Sensitive Multi-Metric Routing for Wireless Sensor Networks Behnam Banitalebi and provide more flexibility. Depending on the network objectives and characteristics, various parameters like realistic hop cost model including transmission loss, and energy storage and relay traffic of the nodes. Two

  9. Scanning transmission x-ray microscopy of isolated multiwall carbon A. Felten,a

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Scanning transmission x-ray microscopy of isolated multiwall carbon nanotubes A. Felten,a H. Hody September 2006 Scanning transmission x-ray microscopy STXM has been used to study isolated carbon nanotubes- cations including biological and chemical sensors, nanoelec- tronic devices, tips for scanning probe

  10. A Service-Oriented Architecture for Electric Power Transmission System Asset Management

    E-Print Network [OSTI]

    Honavar, Vasant

    A Service-Oriented Architecture for Electric Power Transmission System Asset Management Jyotishman,tua,honavar,jdm}@iastate.edu Abstract. In electric power transmission systems, the assets include transmis- sion lines, transformers, power plants and support structures. Maintaining these assets to reliably deliver electric energy at low

  11. Data file management in the DIII-D data acquisition and analysis computer systems

    SciTech Connect (OSTI)

    McHarg, B.B. Jr.

    1989-11-01T23:59:59.000Z

    DIII-D is a large tokamak plasma physics and fusion energy research experiment funded by the Department of Energy. Each shot of the experiment results in data files containing between 20 and 30 Mbytes of data. These shots occur about once every 10 minutes with 40 to 50 shots per operating day. Over 1.2 gigabytes have been acquired in one daily session. Most of this data is acquired by MODCOMP Classic computers and is transferred via a Network Systems Hyperchannel to the DIII-D DEC VAX cluster system which is connected via Ether-net to the User Service Center DEC VAX cluster system. Some other data is acquired by local MicroVAX based plasma diagnostic systems and is transferred via DECnet to the DIII-D cluster. A substantial part of these VAX cluster systems is devoted to handling the large data files so as to maintain availability of the data for users, provide for shot archiving and shot restoration capabilities, and at the same time allow for new data to be received into the systems. Many of these tasks are carried out in near real time in sequence with a tokamak shot while other tasks are performed periodically throughout operations or during off hours. These tasks include disk space management, data archiving to 6250 and/or 8 mm tape drives, data file migration from the DIII-D cluster to the User Service Center cluster, data file compression, and network wide data file access. 11 refs., 2 figs.

  12. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOE Patents [OSTI]

    Dress Jr., William B.; Smith, Stephen F.

    2003-09-16T23:59:59.000Z

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  13. NFS File Handle Security Avishay Traeger, Abhishek Rai, Charles P. Wright, and Erez Zadok

    E-Print Network [OSTI]

    Zadok, Erez

    a file han- dle. When an NFS client performs an operation, it passes the file handle to the server, which decodes the file han- dle to determine what object the file handle refers to. Since NFS is a stateless

  14. NREL: Transmission Grid Integration - Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and Analysis

  15. NREL: Transmission Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and AnalysisWebmaster

  16. Grand Coulee Transmission Line Replacement Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Bureau of Reclamation to design and construct six new 500-kV overhead transmission lines at Grand Coulee Dam. BPA will replace the existing underground transmission...

  17. Scanning Transmission Electron Microscopy for Nanostructure

    E-Print Network [OSTI]

    Pennycook, Steve

    152 6 Scanning Transmission Electron Microscopy for Nanostructure Characterization S. J. Pennycook. Introduction The scanning transmission electron microscope (STEM) is an invaluable tool atom. The STEM works on the same principle as the normal scanning electron microscope (SEM), by forming

  18. Sandia National Laboratories: energy transmission and distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in...

  19. Sandia National Laboratories: transmission grid integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in...

  20. Florida Electric Transmission Line Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    The Transmission Line Siting Act (TLSA) is the states centralized process for licensing electrical transmission lines which; (a) are 230 kV or larger; (b) cross a county line; and, (c) are 15...

  1. Uncertain Power Flows and Transmission Planning

    E-Print Network [OSTI]

    capability and quantifying transmission revenues under uncertainty. Illustrative analyses demonstrated potential uses in transmission planning. Part I:Stochastic-Algebraic Evaluation of Available Transfer using a deterministic model for a given system state specified by given loads, generation, line

  2. Transmission Issues and Power Exchanges in Texas

    E-Print Network [OSTI]

    Hughes, H. L.

    on the transmission owning utilities by several parties, primary distribution cooperatives, cogenerators, and large industrial customers, to grant wider access to the system. This pressure is coming at a time when transmission lines are becoming increasingly difficult...

  3. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09T23:59:59.000Z

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  4. Articles about Grid Integration and Transmission

    Broader source: Energy.gov [DOE]

    Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

  5. California - Establishing Transmission Project Review Streamlining...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: California - Establishing Transmission Project Review Streamlining DirectivesPermitting...

  6. Discontinuities in transmission lines and wave guides

    E-Print Network [OSTI]

    Mathis, Harold Fletcher

    1952-01-01T23:59:59.000Z

    DISCONTINUITIES IN TRANSMISSION LINES AND WAVEGUIDES H. F. MATHIS DISCONTINUITIES IN TRANSMISSION LINES AND liVAVNGUIDBS A Thesis By Harola Fletcher htathis Approved as to style and content by: Chairman of Committee DISCONTINUITIES... Subject. Electrical Engineering COHERENT S PAGE I Introduct ion, II Dl. scontlnuit les in Transmission Lines 2 1. Some Seneral char aeter 1 st 1 ca of the transmission lines. . . , . . . , ~ 5 2 ~ 2. Types of dlscontlnuitles ln transmls- sl...

  7. Transmission line design manual. A guide for the investigation, development, and design of power transmission lines. Water resources technical pub

    SciTech Connect (OSTI)

    Farr, H.H.

    1980-01-01T23:59:59.000Z

    The purpose of the manual is to outline the various requirements for, and the procedures to be followed in the design of power transmission lines by the Bureau of Reclamation. U.S. Department of the Interior. Numerous design studies, which have been made on specific aspects of transmission line design, are included with explanations of their applications. Information is presented concerning such aspects as selection of type of construction, conductor sags and tensions, insulation, lightning protection, clearance patterns, galloping conductors, structure limitation and guying charts, and structure spotting. Structure design examples are limited to wood-pole construction. Interpretations of the National Electrical Safety Code and other codes are made as required.

  8. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  9. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  10. Case study on the US superconducting power transmission program

    SciTech Connect (OSTI)

    Hammel, E.F.

    1996-02-01T23:59:59.000Z

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  11. Transmission Dr. Sandra Cruz-Pol

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    Transmission Lines Dr. Sandra Cruz-Pol ECE Dept. UPRM Exercise 11.3 n A 40-m long TL has Vg=15 Vrms to electric circuits! cmc kmc GHz Hz 15000,000,2000/ 000,560/ 2 60 == == Transmission Lines I. TL parameters-wave transformer ¨ Slotted line ¨ Single stub VI. Microstrips Transmission Lines (TL) n TL have two conductors

  12. Smart Grid Application of Optimal Transmission Switching

    E-Print Network [OSTI]

    Ferris, Michael C.

    ;6 Introduction continued Electric Transmission Network Flow Problem Optimal Power Flow (OPF) AlternatingSmart Grid Application of Optimal Transmission Switching By, Kory W. Hedman, et al.* University (Professor, UC Berkeley) #12;2 Motivation Co-optimize transmission topology and generation dispatch

  13. A Distributed System for Cooperative MIMO Transmissions

    E-Print Network [OSTI]

    Kalyanaraman, Shivkumar

    a distributed system for facilitating cooperative MIMO transmissions in networks without multiple antenna diversity can be leveraged at the network, link or physical layers to provide energy efficient transmissions for reliable low-power transmissions. The rest of this paper is organized as follows: the proposed system

  14. > MEPS06 Preprint Version Transmission Loss

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    .phulpin@supelec.fr Abstract - In the deregulated electrical power system, the allocation of transmission losses is becoming a key issue. The electric transmission power system is more and more constrained due to the increasing electrical power system, the allocation of transmission losses is becoming a key issue. The electric

  15. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16T23:59:59.000Z

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: Develop a simulation environment for integrating transmission and distribution control, Construct reduced-order controllable models for smart grid assets at the distribution level, Design and validate closed-loop control strategies for distributed smart grid assets, and Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  16. QER Public Meeting: Petroleum Product Transmission & Distribution

    Broader source: Energy.gov [DOE]

    May 27, 2014 Public Meeting: Petroleum Product Transmission & Distribution (including CO2/EOR) On May 27, 2014, the DOE will hold a public meeting in New Orleans, Louisiana. The May 27, 2014 public meeting will feature facilitated panel discussions, followed by an open microphone session. Persons desiring to speak during the 6 open microphone session at the public meeting should come prepared to speak for no more than 3 minutes and will be accommodated on a first- come, first- serve basis, according to the order in which they register to speak on a sign-in sheet available at the meeting location, on the morning of the meeting. In advance of the meeting, DOE anticipates making publicly available a briefing memorandum providing useful background information regarding the topics under discussion at the meeting. DOE will post this memorandum on its website: http://energy.gov

  17. Using the Sirocco File System for high-bandwidth checkpoints.

    SciTech Connect (OSTI)

    Klundt, Ruth Ann; Curry, Matthew L.; Ward, H. Lee

    2012-02-01T23:59:59.000Z

    The Sirocco File System, a file system for exascale under active development, is designed to allow the storage software to maximize quality of service through increased flexibility and local decision-making. By allowing the storage system to manage a range of storage targets that have varying speeds and capacities, the system can increase the speed and surety of storage to the application. We instrument CTH to use a group of RAM-based Sirocco storage servers allocated within the job as a high-performance storage tier to accept checkpoints, allowing computation to potentially continue asynchronously of checkpoint migration to slower, more permanent storage. The result is a 10-60x speedup in constructing and moving checkpoint data from the compute nodes. This demonstration of early Sirocco functionality shows a significant benefit for a real I/O workload, checkpointing, in a real application, CTH. By running Sirocco storage servers within a job as RAM-only stores, CTH was able to store checkpoints 10-60x faster than storing to PanFS, allowing the job to continue computing sooner. While this prototype did not include automatic data migration, the checkpoint was available to be pushed or pulled to disk-based storage as needed after the compute nodes continued computing. Future developments include the ability to dynamically spawn Sirocco nodes to absorb checkpoints, expanding this mechanism to other fast tiers of storage like flash memory, and sharing of dynamic Sirocco nodes between multiple jobs as needed.

  18. Fact #850: December 8, 2014 Automatic Transmissions have closed...

    Broader source: Energy.gov (indexed) [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed...

  19. Comments of New England Electric Transmission Corporation on...

    Broader source: Energy.gov (indexed) [DOE]

    out of time and comments of New England Electric Transmission Corporation, New England Hydro-Transmission Electric Company, Inc. and New England Hydro-Transmission Corporation and...

  20. How-to: Use EMSL's Aurora File System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How-to: Use EMSL's Aurora File System How-to: Use EMSL's Aurora File System Synopsis The Aurora archive system is used for long-term storage of data collected by EMSL instuments,...

  1. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date for 2013: February 19, 2015 Next Release date: October 2015 Annual data for...

  2. Data Files Monthly Natural Gas Gross Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Data Files Data Files 1 EIA Best Estimate of Gross Withdrawals: Combination of historical production data from the Natural Gas Annual and current estimates based on data from the...

  3. The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    on U. S . Wind Power Installation, Cost, and Performance30% wind penetration. Wind transmission costs in the severalof Transmission ($/kW-wind) Unit Cost of Transmission ($/

  4. Duplicate File Names-A Novel Steganographic Data Hiding Technique

    E-Print Network [OSTI]

    Wu, Jie

    or a terrorist plot. None-the-less, these files can also be potentially dangerous viruses, malware, child porn

  5. 1674 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 3, AUGUST 2010 Security-Constrained Generation and Transmission

    E-Print Network [OSTI]

    Fu, Yong

    -Constrained Generation and Transmission Outage Scheduling With Uncertainties Lei Wu, Member, IEEE, Mohammad Shahidehpour systems including forced outages of generation units and transmission lines, load forecast errors-and-cut method using CPLEX. The outcome of this study includes the hourly scheduling of outages of gener- ation

  6. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, Russell B. (Oakland, CA)

    1987-01-01T23:59:59.000Z

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  7. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, R.B.

    1985-08-15T23:59:59.000Z

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  8. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission Grid

  9. Scanning/Transmission Electron Microscopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffectsScanning/Transmission Electron Microscopes

  10. Transmission Workshop | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTankToledo, Ohio,Transmission

  11. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    E-Print Network [OSTI]

    Canizares, Claude R.

    Details of the design, fabrication, and ground and flight calibration of the High Energy Transmission Grating (HETG) on the Chandra X?Ray Observatory are presented after 5 years of flight experience. Specifics include the ...

  12. EIS-0078: Jonesboro-Hergett 161-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Southwestern Power Administration developed this statement to assess the environmental and socioeconomic impacts of a 161-kilovolt transmission line in Craighead County, Arkansas, including its proposed and alternate routes.

  13. Patent subsidy and patent filing in China By Zhen Lei

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Patent subsidy and patent filing in China By Zhen Lei , Zhen Sun, and Brian Wright Department of patent subsidy policies on patent filings in Chi- na. China had rapid growth in patenting in recent years and became the number one in patent filings in 2011. We study five neighboring cities in Jiangsu province

  14. File Popularity Characterisation. Chris Roadknight, Ian Marshall and Deborah Vearer

    E-Print Network [OSTI]

    Marshall, Ian W.

    , BAE 97]. Caches can bring files nearer the client (with a possible reduction in latency), reduce load curve, which plots the number of requests for each file against the file's popularity ranking. It is often said that this popularity curve follows Zipf's law, Popularity = K* ranking-a , with a being close

  15. The Future of the Andrew File System

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    The talk will discuss the ten operational capabilities that have made AFS unique in the distributed file system space and how these capabilities are being expanded upon to meet the needs of the 21st century. Derrick Brashear and Jeffrey Altman will present a technical road map of new features and technical innovations that are under development by the OpenAFS community and Your File System, Inc. funded by a U.S. Department of Energy Small Business Innovative Research grant. The talk will end with a comparison of AFS to its modern days competitors.

  16. Janus: Automatic Ontology Builder from XSD Files

    E-Print Network [OSTI]

    Bedini, Ivan; Gardarin, Georges

    2010-01-01T23:59:59.000Z

    The construction of a reference ontology for a large domain still remains an hard human task. The process is sometimes assisted by software tools that facilitate the information extraction from a textual corpus. Despite of the great use of XML Schema files on the internet and especially in the B2B domain, tools that offer a complete semantic analysis of XML schemas are really rare. In this paper we introduce Janus, a tool for automatically building a reference knowledge base starting from XML Schema files. Janus also provides different useful views to simplify B2B application integration.

  17. History of wireless power transmission

    SciTech Connect (OSTI)

    Brown, W.C. [Microwave Power Transmission Systems, Weston, MA (United States)] [Microwave Power Transmission Systems, Weston, MA (United States)

    1996-12-31T23:59:59.000Z

    The history of wireless power transmission at microwave frequencies is reviewed with emphasis upon the time period starting with the post World War II efforts to use the new microwave technology developed during the war. A nationally televised demonstration of a microwave powered helicopter at the Spencer Laboratory of the Raytheon Co., in 1964 was the result of these early efforts and broadly introduced the concept of wireless power transmission to scientific and engineering communities and to the public. Subsequent development efforts centered on improving the efficiency of the interconversion of d.c. and microwave power at the ends of the system to reach a demonstrated overall d.c. to d.c. system efficiency of 54% in 1974. The response to the requirements of applications such as the Solar Power Satellite and high altitude microwave powered aircraft have changed the direction of technology development and greatly expanded the technology base. Recent and current efforts are centered on examining the use of higher frequencies than the baseline 2.45 GHz, and in reducing the system costs at 2.45 GHz. 26 refs., 14 figs.

  18. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01T23:59:59.000Z

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  19. Friction Stir Welding Download the files fswss.txt and fswdyn.txt from the course website. These files contain

    E-Print Network [OSTI]

    Landers, Robert G.

    Friction Stir Welding QUESTION 1 Download the files fswss.txt and fswdyn.txt from the course website. These files contain experimental data from a friction stir welding process of 6061 aluminum 0 2 1 0 F z b z b d z z a z a + = + + (3) #12;Friction Stir Welding QUESTION 2 Download the files

  20. Summary of EPIC-2001 Rain Map Files EPIC Rainmap files were generated using all surveillance scans (3 tilt, full PPI)

    E-Print Network [OSTI]

    Rutledge, Steven

    information about the rain map cartesian grid and data values of radar reflectivity (dBZ) and rain rate (mm hrSummary of EPIC-2001 Rain Map Files EPIC Rainmap files were generated using all surveillance scans of the surveillance radar scan in UTC. The gif file (1) shows a 1-km height map (CAPPI) of rainfall intensity (mm hr-1

  1. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01T23:59:59.000Z

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  2. Transmission grid access and pricing in Norway, Spain, and California: A comparative study

    SciTech Connect (OSTI)

    Gronli, H.; Gomez San Ramon, T.; Marnay, C.

    1999-09-01T23:59:59.000Z

    The openness of the transmission grid and the incentives given by transmission pricing form the foundation for retail and wholesale competition in the electricity market. The deregulated markets of Norway, Spain, and California all have introduced retail access and wholesale competition, although with different approaches to pricing of transmission grid services. This paper will briefly describe the three different solutions, and discuss some of their implications. Of the three electricity systems, Norway was the first to open the grid to competition in electricity trade. The Norwegian Energy Law of 1990 introduced open competition to wholesale and retail trade starting January 1991. In Spain, the Electricity Law of 1997 came into force early in 1998. Wholesale and retail markets in California were opened for competition on April 1, 1998, following the passage of Assembly Bill 1890, in August 1996. Introducing competition in electricity markets also implies introducing Third Party Access to the transmission grid. All potential competitors have to be given access to the grid in order to compete, no matter who owns the actual wires. This principle raises several challenges, notably, how to price transmission services. Who is to pay for which transmission services? The Norwegian grid is divided into three levels depending on its function. The transmission grid includes all parts of the national grid having a transmission function, meaning that some lower voltage levels also are included. In Spain, the definition of the transmission grid is similar, including the 400 kV and 220 kV national grid as well as lower voltage installations that could affect transmission operation or generation dispatch. For historic reasons, wholesale electricity transactions in the US are regulated by the federal government through the FERC. However, operations of utility systems within one state fall primarily under state jurisdiction. Because the utility systems in California generally are large and exchanges between them limited, the role of FERC was small prior to restructuring, although the state is a large importer of power.

  3. Consanguine Calculations Input File: blood.in

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 of 20 Problem A+ Consanguine Calculations Input File: blood.in Every person's blood has 2 markers in a particular ABO blood type for that person. Combination ABO Blood Type AA A AB AB AO A BB B BO B OO O Likewise, every person has two alleles for the blood Rh factor, represented by the characters + and -. Someone who

  4. Historical_Habitats File Geodatabase Feature Class

    E-Print Network [OSTI]

    Historical_Habitats File Geodatabase Feature Class Tags Historical ecology, Ventura, Oxnard View, Meiners Oaks, Camarillo, Somis, Ventura River, Santa Clara River, Calleguas Creek, Santa Paula Springs, Ormond Beach, Mandalay Beach, Pierpont Bay, McGrath Lake, Ventura County, Los Angeles County

  5. DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS

    E-Print Network [OSTI]

    for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

  6. Design and Implementation of a Metadata-rich File System

    SciTech Connect (OSTI)

    Ames, S; Gokhale, M B; Maltzahn, C

    2010-01-19T23:59:59.000Z

    Despite continual improvements in the performance and reliability of large scale file systems, the management of user-defined file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and semantic metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address these problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, user-defined attributes, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS incorporates Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the de facto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.

  7. Method of modeling transmissions for real-time simulation

    DOE Patents [OSTI]

    Hebbale, Kumaraswamy V.

    2012-09-25T23:59:59.000Z

    A transmission modeling system includes an in-gear module that determines an in-gear acceleration when a vehicle is in gear. A shift module determines a shift acceleration based on a clutch torque when the vehicle is shifting between gears. A shaft acceleration determination module determines a shaft acceleration based on at least one of the in-gear acceleration and the shift acceleration.

  8. Fiber optically isolated and remotely stabilized data transmission system

    DOE Patents [OSTI]

    Nelson, M.A.

    1992-11-10T23:59:59.000Z

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  9. Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including a

    E-Print Network [OSTI]

    Oliveira, Aurlio R. L.

    that minimizes losses in the transmission and costs in the generation of a hydroelectric power system, formulated such perturbing parameter. Keywords-- Hydroelectric power system, Network flow, Predispatch, Primal-dual interiorPrimal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including

  10. Final Report Navajo Transmission Project (NTP)

    SciTech Connect (OSTI)

    Bennie Hoisington; Steven Begay

    2006-09-14T23:59:59.000Z

    The Din Power Authority is developing the Navajo Transmission Project (NTP) to relieve the constraints on the transmission of electricity west of the Four Corners area and to improve the operation flexibility and reliability of the extra-high-voltage transmission system in the region. The NTP creates the wholesale transmission capacity for more economical power transfers, sales, and purchases in the region. It will facilitate the development of Navajo energy resources, improve economic conditions on the Navajo Nation as well as allow DPA to participate in the western electrical utility industry.

  11. Transmission Expansion Planning Using an AC Model ...

    E-Print Network [OSTI]

    Periodicals

    2013-01-02T23:59:59.000Z

    Western Interconnection under contract DOE-FOA0000068. ... problem to determine locations for placing new transmission ... KNITRO and BONMIN are de

  12. Exploring the Business Link Opportunity: Transmission & Clean...

    Energy Savers [EERE]

    Jennifer Weddle, Greenberg Traurig LLP Rapid Response Team for Transmission: Laura Smith Morton, DOE Energy Storage: Michael Stosser, Day Pitney LLP Centennial West Clean...

  13. In Situ Electrochemical Transmission Electron Microscopy for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Battery Research. Abstract: The recent development of in situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details...

  14. Sandia National Laboratories: Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security,...

  15. Natural Gas Transmission Pipeline Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas...

  16. Natural Gas Transmission and Distribution Module This

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    They relate to (1) structural components of the model, (2) capacity expansion and pricing of transmission and distribution services, (3) Arctic pipelines, and (4) imports...

  17. Natural Gas Transmission and Distribution Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    They relate to (1) structural components of the model, (2) capacity expansion and pricing of transmission and distribution services, (3) Arctic pipelines, and (4) imports...

  18. Proponent's Environmental Assessment (PEA) Checklist for Transmission...

    Open Energy Info (EERE)

    Proponent's Environmental Assessment (PEA) Checklist for Transmission Line and Substation Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  19. Transmission Reassignment Reporting Requirement - April 2, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CommitteesTeams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Transmission Reassignment Reporting Requirement This notice...

  20. Transmission and Generation Investment in Electricity Markets

    E-Print Network [OSTI]

    Grimm Veronika

    2015-03-04T23:59:59.000Z

    Mar 4, 2015 ... The model incorporates investment decisions of the transmission operator and private firms in expectation of an energy-only market and...

  1. 2006 National Electric Transmission Congestion Study Federal...

    Office of Environmental Management (EM)

    Comments to the Feb 06 FRN received after March 9, 2006 More Documents & Publications Proceedings of the March 29, 2006 Conference for the 2006 National Electric Transmission...

  2. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers, Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  3. Wild Horse 69-kV transmission line environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

  4. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-07-01T23:59:59.000Z

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  5. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    SciTech Connect (OSTI)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12T23:59:59.000Z

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  6. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01T23:59:59.000Z

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  7. Wireless energy transmission to supplement energy harvesters in sensor network applications

    SciTech Connect (OSTI)

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  8. Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models

    SciTech Connect (OSTI)

    Donohoo, P.; Milligan, M.

    2014-06-01T23:59:59.000Z

    The extra-high-voltage transmission network is the bulk transport network of the electric power system. To understand how the future power system may react to planning decisions today, wide-area transmission models are increasingly used to aid decision makers and stakeholders. The goal of this work is to illuminate these models for a broader audience that may include policy makers or relative newcomers to the field of transmission planning. This paper explains the basic transmission expansion planning model formulation. It highlights six of the major simplifications made in transmission expansion planning models and the resulting need to contextualize model results using knowledge from other models and knowledge not captured in the modeling process.

  9. A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS

    E-Print Network [OSTI]

    Mills, Andrew; Wiser, Ryan; Porter, Kevin

    2007-01-01T23:59:59.000Z

    Report.pdf Midwest ISO (MISO). 2003. Midwest TransmissionConference September 2007 MISO. 2007. Midwest Transmission2006 SDG&E Midwest ISO (MISO) ISO/RTO February 2007 MISO '06

  10. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and PerformanceTransmission ($/kW-wind) Unit Cost (Capacity-weighted) Windof Transmission ($/MWh- wind) Unit Cost (Capacity-weighted)

  11. Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same

    DOE Patents [OSTI]

    Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

    2014-05-20T23:59:59.000Z

    A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

  12. I. SUPPLEMENTARY MATERIAL Supplementary material includes the XSL file with all organisms, their coordinates in codon space, statistical

    E-Print Network [OSTI]

    Carbone, Alessandra

    Helicobacter pylori 26695 NC 000915 19 Staphylococcus aureus N315 NC 002745 58 Helicobacter pylori J99 NC

  13. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

  14. File:CFR-2011-title36-vol2-part251-subpartB.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile

  15. Probabilistic Reliable Message Transmission Subodh Kumar

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Probabilistic Reliable Message Transmission Subodh Kumar January 17, 1996 Abstract Most communication systems require reliable transmission of a sequence of messages over a physical network which can with messages by the sender and they are acknowledged by the receiver. It is known that protocols that use

  16. Empirical Analysis of Transmission Power Control Algorithms

    E-Print Network [OSTI]

    Culler, David E.

    Empirical Analysis of Transmission Power Control Algorithms for Wireless Sensor Networks Jaein Power saving techniques in WSN Duty-cycling, TX-power control, clustering We study effect of TX-power transmission. End-to-end delivery rate TX Power Control Best of Fixed TX Power El Batt [1] 36.5% 35.5% PCBL [6

  17. A Transmission Control Framework Continuous Media

    E-Print Network [OSTI]

    Whitton, Mary C.

    Rights Reserved #12;ABSTRACT A Transmission Control Framework for Continuous Media (Under the directionA Transmission Control Framework for Continuous Media by Terry Michael Talley A dissertation by integrating real-time two-way audio and video with the computer system. Unfortunately, the quality of video

  18. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    SciTech Connect (OSTI)

    Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

    2008-07-01T23:59:59.000Z

    California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

  19. Quick Start The various sample data files after expansion (use Zip)

    E-Print Network [OSTI]

    library (49 signature files and 1 library list file, all in ASCII, 300 KB). Duncan Knob.sdf Lidar full wave form SDF file (60 MB). Duncan Knob.idx Required index file for Duncan Knob.sdf (4.5 MB). sbet_mission 1.out Smoothed Best Estimate of Trajectory file. Needed for Duncan Knob.sdf (98 MB). Immediate

  20. March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and

    E-Print Network [OSTI]

    Adam, Salah

    March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and Hashing. #12;March 24, 2008 ADBS: Storage 2 Chapter Outline The Storage Hierarchy How Far is Your Data Disk Storage Devices Records Blocking Files of Records Unordered Files Ordered Files Hashed Files RAID Technology Storage Area Network

  1. Low cost Image Transmission System

    SciTech Connect (OSTI)

    Skogmo, D.

    1994-06-01T23:59:59.000Z

    Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

  2. Transportation technology quick reference file

    SciTech Connect (OSTI)

    Shepherd, E.W. (ed.)

    1981-05-01T23:59:59.000Z

    This publication is a collection of items written by different authors on subjects relating to the transportation of radioactive materials. The purpose of the document is to meet the continuing need for information on specific subjects for dissemination to the public at their request. The subjects included were selected on the basis of the questions most often asked about radioactive materials and their transportation. Additional subjects are being considered and will be included in the future. The loose-leaf notebook format is used to facilitate the updating of this material. The data used in many of the papers represent the best available at time of publication and will be updated as more current information becomes available.

  3. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance...

  4. with transmission zeros near the passband are obtained. This dual band BPF shows the advantages including size and loss reduction

    E-Print Network [OSTI]

    Lee, Jong Duk

    -wide band (UWB); low noise amplifier (LNA);, Zeland Software, Fremont, CA, 1997. 2008 Wiley Periodicals, Inc. LOW POWER SIZE-EFFICIENT CMOS UWB LOW-NOISE AMPLIFIER DESIGN Hee-Sauk Jhon, Ickhyun Song, Jongwook Jeon, MinSuk Koo, Byung-Gook Park, Jong Duk Lee

  5. Constant-mesh, multiple-shaft transmission

    SciTech Connect (OSTI)

    Rea, J.E.; Mills, D.D.; Sewell, J.S.

    1992-04-21T23:59:59.000Z

    This patent describes a multiple-shaft, constant-mesh transmission adapted to establish selectively a reverse torque delivery path and a forward drive torque delivery path and having a torque input means including a torque input shaft, a mainshaft aligned with the input shaft, a countershaft geared to the input shaft in spaced, parallel relationship with respect to the mainshaft, a torque output shaft joined to the mainshaft; multiple mainshaft gear elements journalled on the main airshaft, multiple cluster gear elements carried by the countershaft in meshing engagement with the mainshaft gear elements, one of the cluster gear elements being rotatably journalled on the countershaft; a reverse idle gear, a reverse gear journalled on the countershaft, the reverse idler gear being in constant mesh with the reverse gear and one of the mainshaft gear elements; first clutch means for connecting selectively the reverse gear and the countershaft; second synchronizer clutch means for connecting selectively the one of the mainshaft gear elements to the mainshaft; and third synchronizer clutch means for selectively connecting another of the mainshaft gear elements to the mainshaft; the first clutch means being a double-acting clutch with a first common axially movable clutch element adapted upon movement in one axial direction to drivably connected the reverse gear to the countershaft and adapted upon movement in the opposite axial direction to connect the one cluster gear element to the countershaft.

  6. INSPIRE and SPIRES Log File Analysis

    SciTech Connect (OSTI)

    Adams, Cole; /Wheaton Coll. /SLAC

    2012-08-31T23:59:59.000Z

    SPIRES, an aging high-energy physics publication data base, is in the process of being replaced by INSPIRE. In order to ease the transition from SPIRES to INSPIRE it is important to understand user behavior and the drivers for adoption. The goal of this project was to address some questions in regards to the presumed two-thirds of the users still using SPIRES. These questions are answered through analysis of the log files from both websites. A series of scripts were developed to collect and interpret the data contained in the log files. The common search patterns and usage comparisons are made between INSPIRE and SPIRES, and a method for detecting user frustration is presented. The analysis reveals a more even split than originally thought as well as the expected trend of user transition to INSPIRE.

  7. 33.99.99.M0.01 Official Personnel File Page 1 of 2 STANDARD ADMINISTRATIVE PROCEDURE

    E-Print Network [OSTI]

    will maintain personnel records for each employee in accordance with records management requirements and where directed by policy, regulation or rule. The individual employee records will consist of documents relevant of the employee include, but are not limited to, the items identified in the Official Personnel File Records

  8. Reliability modeling and evaluation of HVDC power transmission systems

    SciTech Connect (OSTI)

    Dialynas, E.N.; Koskolos, N.C. (National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering)

    1994-04-01T23:59:59.000Z

    The objective of this paper is to present an improved computational method for evaluating the reliability indices of HVdc transmission systems. The developed models and computational techniques are described. These can be used to simulate the operational practices and characteristics of a system under study efficiently and realistically. This method is based on the failure modes and effects analysis and uses the event tree method and the minimal cut set approach to represent the system's operational behavior and deduce the appropriate system's failure modes. A set of five reliability indices is evaluated for each output node being analyzed together with the probability and frequency of encountering particular regions of system performance levels. The analysis of an assumed HVdc bipolar transmission system is also included.

  9. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOE Patents [OSTI]

    Tran, Nang T. (Cottage Grove, MN); Gilbert, James R. (Maplewood, MN)

    1992-08-04T23:59:59.000Z

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  10. Conductive Channel for Energy Transmission

    SciTech Connect (OSTI)

    Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

    2011-11-10T23:59:59.000Z

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  11. File:03ORENoncompetitiveGeothermalLease.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File

  12. CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY

    E-Print Network [OSTI]

    Burkhart, B.R.

    2011-01-01T23:59:59.000Z

    BERKELEY LABORATORY: 1978 INVENTORY f(ECEfVED tAWRENCE!FILES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY B. R.1979 ABSTRACT This inventory describes the cartographic base

  13. Scalable Parallel File System for Data and Metadata-intensive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Host: Rob Ross A critical purpose for parallel file systems used in high performance computing is to capture quickly and durably hold checkpoints of long running massive...

  14. File:03ORCEncroachment.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File usage File:03ORCEncroachment.pdf

  15. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01T23:59:59.000Z

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  16. Repository Surface Design Engineering Files Report Rev 00 ICN 1

    SciTech Connect (OSTI)

    DOE

    2001-05-08T23:59:59.000Z

    The objective of the Repository Surface Design Engineering Files Report Supplement [herein known as the Engineering Files (EF)] is to provide the surface design data needed by the Environmental Impact Statement (EIS) contractor to prepare the EIS and evaluate options and alternatives. This document is based on the Repository Surface Design Engineering Files Report, Revision 03 (CRWMS M and O 1999f) (EF Rev 03). Where facility and system designs have been changed for the Site Recommendation (SR) effort they are described in this report. EIS information provided in this report includes the following: (1) Description of program phases; there are no changes that impact this report. (2) A description of the major design requirements and assumptions that drive the surface facilities reference design is provided herein (Section 2.2), including the surface design resulting from recommendations regarding Enhanced Design Alternative (EDA) II, as discussed in the License Application Design Section Report (CRWMS M and O 1999d), and changes to the waste stream. See Section 2, Table 2-2, for the SR waste stream. (3) The major design requirements and assumptions that drive the surface facilities reference design are by reference to EF Rev 03; there are no changes that impact this report. (4) Description of the reference design concept and existing site conditions is by reference to EF Rev 03 (including Table 4-1, which is not included in this supplement); there are no changes that impact this report. (5) Description of alternative design cases is by reference to EF Rev 03; there are no changes that impact this report. (6) Description of optional inventory modules is by reference to EF Rev 03; there are no changes that impact this report. (7) Tabular summary level engineering values (i.e., staffing, wastes, emissions, resources, and land use) for the reference design and the alternative design cases that address construction, emplacement operations, caretaker operations, and closure; changes, if any, are indicated on appropriate tables. (8) A description of a design concept for the complete retrieval and storage of waste packages, and summary-level engineering quantities for the construction and operation of this concept, is included as Attachment I; there are no changes that impact this report. (9) The concept for a 10,000 metric tons heavy metal (MTHM) Waste Staging Facility (Attachment II) has been deleted. The addition of four spent fuel assembly (SFA) staging pools in the Waste Handling Building (WHB) is described herein. (10) Description of a design concept for an on-site Cask Maintenance Facility to provide for shipping cask repair and recertification (Attachment III) is by reference to EF Rev 03; there are no changes that impact this report. (11) Figures that have changed for the SR effort are included in Attachment IV. Unchanged figures are referenced from EF Rev 03. (12) A preliminary design concept for dry vault inventory of commercial spent nuclear fuel to support thermal blending of spent fuel assemblies in waste packages has been added as Attachment V for this supplement.

  17. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  18. DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING (HOLOGRAPHIC TELEVISION)

    E-Print Network [OSTI]

    de Aguiar, Marcus A. M.

    DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING HoloTV (HOLOGRAPHIC TELEVISION) José J. Lunazzi , DanielCampinasSPBrasil Abstract: Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where

  19. Sessions include: Beginning Farmer and Rancher

    E-Print Network [OSTI]

    Watson, Craig A.

    Sessions include: Beginning Farmer and Rancher New Markets and Regulations Food Safety Good Bug, Bad Bug ID Horticulture Hydroponics Livestock and Pastured Poultry Mushrooms Organic Live animal exhibits Saturday evening social, and Local foods Florida Small Farms and Alternative

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  2. MATHEMATICAL ANALYSIS OF CONDUCTING AND SUPERCONDUCTING TRANSMISSION LINES

    E-Print Network [OSTI]

    Ramdani, Karim - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

    MATHEMATICAL ANALYSIS OF CONDUCTING AND SUPERCONDUCTING TRANSMISSION LINES ANNE-SOPHIE BONNET propagation in the microstrip transmission lines used in microelectronics. In the first part, the case of the perfectly conducting strip. Key words. superconducting transmission lines, waveguides, spectral analysis

  3. CHARACTERIZING LOSSES IN MICROSTRIP TRANSMISSION LINES Rashmi Pathak

    E-Print Network [OSTI]

    Timbie, Peter

    CHARACTERIZING LOSSES IN MICROSTRIP TRANSMISSION LINES by Rashmi Pathak A dissertation submitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Engineering) at the UNIVERSITY OF WISCONSIN­MADISON Summer 2005 #12;i Characterizing Losses in Transmission

  4. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  5. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  6. Articles about Grid Integration and Transmission | Department...

    Broader source: Energy.gov (indexed) [DOE]

    grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. May 18, 2015 New Report Says Western Grid Can Weather Disturbances with High Wind,...

  7. Efficient Spectral Methods for Transmission Eigenvalues and ...

    E-Print Network [OSTI]

    2014-03-24T23:59:59.000Z

    Mar 20, 2014 ... The scattered electric and magnetic fields Es and Hs satisfy the Silver-Muller radiation ... of k for which the (homogeneous) interior transmission problem ...... Mathematical methods in the applied sciences, 27(18):2111. 2129...

  8. Scanning Transmission Electron Microscopy Investigations of Complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of...

  9. Load-resistant coaxial transmission line

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-01-03T23:59:59.000Z

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  10. Transmission policy in the United States

    E-Print Network [OSTI]

    Joskow, Paul L.

    2004-01-01T23:59:59.000Z

    This paper provides an overview of the development of electric power transmission access, pricing and investment policies in the U.S. over the last 15 years and evaluates the current state of those policies. Pre-liberalization ...

  11. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4,200 miles of transmission lines, 72,000 miles of distribution lines, and 6,300 miles of natural gas pipelines. Our over 8,600 employees are committed to our mission to deliver...

  12. Polarization transmission at RHIC, numerical simulations

    SciTech Connect (OSTI)

    Meot F.; Bai, M.; Liu, C.; Minty, M.; Ranjbar, V.

    2012-05-20T23:59:59.000Z

    Typical tracking simulations regarding the transmission of the polarization in the proton-proton collider RHIC are discussed. They participate in general studies aimed at understanding and improving polarization performances during polarized proton-proton runs.

  13. Geothermal Electricity Technology Evaluation Model (GETEM) Individual Case Files and Summary Spreadsheet (GETEM version Spring 2013)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hanson, Steven CJ

    This group of files-- 10 GETEM individual case files and 1 summary spreadsheet-- contain final data from the revisions between summer 2011 and spring 2013.

  14. Geothermal Electricity Technology Evaluation Model (GETEM) Individual Case Files and Summary Spreadsheet (GETEM version Spring 2013)

    SciTech Connect (OSTI)

    Hanson, Steven CJ

    2013-03-07T23:59:59.000Z

    This group of files-- 10 GETEM individual case files and 1 summary spreadsheet-- contain final data from the revisions between summer 2011 and spring 2013.

  15. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  16. Working Data File Sets from the Comprehensive Epidemiologic Data Resource (CEDR)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The more-than-100 working data file sets available from CEDR mainly include the data collected and updated by the three epidemiologic research centers. A researcher selects or generates variables from these more dynamic data files in order to form analytic data files. CEDR is a DOE electronic database comprised of health studies of DOE contract workers and environmental studies of areas surrounding DOE facilities. CEDR provides independent researchers and the public with access to de-identified data collected since the Department's early production years. Current holdings include studies of over 1 million workers at 31 DOE sites. Most of CEDR's holdings are derived from epidemiologic studies of DOE workers at many large nuclear weapons plants, such as Hanford, Los Alamos, the Oak Ridge reservation, Savannah River Site, and Rocky Flats. These studies primarily use death certificate information to identify excess deaths and patterns of disease among workers to determine what factors contribute to the risk of developing cancer and other illnesses. In addition, many of these studies have radiation exposure measurements on individual workers.

  17. MASe UCRL-15037 CONTINUOUSLY VARIABLE TRANSMISSIONS: THEORY AND...

    Office of Scientific and Technical Information (OSTI)

    transmission when operating in the power recirculation mode 20 Simple manual system to control the speed ratio of a variable V-belt continuously variable transmission 21 Schematic...

  18. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild...

    Broader source: Energy.gov (indexed) [DOE]

    EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project,...

  19. EIS-0325: Schultz-Hanford Area Transmission Line Project, WA

    Broader source: Energy.gov [DOE]

    BPA proposes to construct a new 500-kilovolt (kV) transmission line in central Washington. This project would increase transmission system capacity north of Hanford.

  20. OAHU Wind Integration And Transmission Study: Summary Report...

    Energy Savers [EERE]

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL...