Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Action Plan Addressing the Electricity Transmission System  

Broader source: Energy.gov (indexed) [DOE]

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY ACTION PLAN ADDRESSING THE ELECTRICITY TRANSMISSION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Transmission System 1 Table of Contents * INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ...................................................................................................... 2 Focus on Transmission .................................................................................................. 3 Roadmap Goals ............................................................................................................. 4 * PROCESS OVERVIEW ........................................................................................................... 5

2

AC transmission system planning choosing lines from a discrete set  

E-Print Network [OSTI]

Transmission system planning (TSP) is a difficult nonlinear optimization problem involving non-convex quadratic terms, as well as discrete variables. We extend prior results for linear relaxations, drawing on a preliminary ...

Gilbertson, Eric W.

2013-04-24T23:59:59.000Z

3

Planning considerations for the intermountain HVDC transmission system  

SciTech Connect (OSTI)

Planning of an HVDC transmission system embedded into an existing ac network may require unique control and converter equipment capability in order to satisfy stability requirements of the network. The planning and design of the Intermountain Power Project HVDC transmission system are based on unique control performance features for power transfers during terminal ac faults, rapid power recovery following fault clearing and utilization of exceptionally high transient overload capability of 2 per unit during the post-fault period to maintain system stability. The Department, in its efforts to meet the Western Systems Coordinating Council's (WSCC) reliability criteria, developed and incorporated into its HVDC specifications very rigorous reliability and availability requirements. One objective of this project was to attain the unusually low bipolar converter system outage frequency goal of one outage in five years to achieve a bipole performance rating equivalent to two ac circuits of similar capability. The reliability goals of this project have provided one of the impetus for revisions to the WSCC Reliability Criteria for System Design. The reliability goals and other features adopted for the Intermountain HVDC transmission system are discussed in this paper and study results are included to demonstrate the effectiveness of various controls implemented as stability enhancement techniques.

Lee, R.L.; Beshir, M.J.; Gee, J.H.

1986-01-01T23:59:59.000Z

4

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2007. Blevins #12; i ACKNOWLEDGEMENTS The 2007 Strategic Transmission Investment Plan was prepared Investment Plan. California Energy Commission, Engineering Office. CEC7002007018CTF. #12; ii #12; iii

5

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2007 Investment Plan was prepared with contribution from the following Energy Commission staff and consultants Kondoleon, Chuck Najarian. 2007 Strategic Transmission Investment Plan. California Energy Commission

6

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2005............................................................................................ 5 Project Investment Recommendations ............................................................... 6 Actions to Implement Investments

7

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2005............................................................................................ 5 Project Investment Recommendations ............................................................... 5 Actions to Implement Investments

8

Transmission Planning | Department of Energy  

Office of Environmental Management (EM)

Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study made...

9

10-Yr. Transmission Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Marketing Rates Power Marketing Rates 10-Yr Transmission Plan 2012 Customer Meeting Announcement Agenda 120611 CRSP South Projects CRSP South PowerPoint Presentation CRSP South 2009-2011 Capitalized Execution CRSP North Projects CRSP North PowerPoint Presentation CRSP North 2009-2011 Capitalized Execution About Power Marketing Transmission Newsroom Business Policies Products Plan contents OASIS News features Careers No FEAR act Organization chart Plan processes Functions News releases Doing business Privacy policy History General power contract provisions OATT Revisions Fact sheets Energy Services Accessibility Financial information Rates and Repayment Interconnection Publications EPTC Adobe PDF Power projects EPAMP Infrastructure projects Federal Register Notices

10

Transmission Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study (PDF 2.0 MB) made clear that without dramatic improvements and upgrades over the next decade our nation's transmission system will fall short of the reliability standards our economy requires, and will result in higher electricity costs to consumers. The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security. The next generation supervisory control and data acquisition (SCADA) and

11

NREL: Transmission Grid Integration - Transmission Planning and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Planning and Analysis Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for and construct new generation and transmission lines. However, variable generation such as solar and wind power plants are often located far from the loads they serve. They depend on transmission lines to transport the electricity they produce to load centers. NREL is working with industry and utilities to address issues related to

12

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network [OSTI]

stakeholders in transmission-line route planning and sitingan “optimal” transmission line route-finding tool. This tool

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

13

Marketing Plan for Transmission Planning Services  

E-Print Network [OSTI]

not specifically related to transmission planning and not to outside companies who may require the help in transmission planning. It is essential that we take the market opportunity that currently exists to expand our services to our existing and new clients...

Tu, Linh

2006-12-15T23:59:59.000Z

14

Electric Transmission System Workshop  

Broader source: Energy.gov (indexed) [DOE]

Lauren Azar Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System Workshop We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Visions for the Future Artist: Paolo Frattesi Artist: Paolo Frattesi Uncertainty = changing industry Changes in technology, threats and policies Can we make decisions in the face of change? .......How can we not? Can we agree on several key design attributes for the future grid? Taking Action in the Face of Uncertainty Step 1: Establish common ground on key design attributes GTT's Proposed Key Design Attributes:

15

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bulk Electric Power Systems: Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

16

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

17

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network [OSTI]

California Energy Commission Transmission Planning Analysis92, No. 5, Dec. CEC (California Energy Commission). 2004.of MCPs. California Energy Commission. Nov. CERTS PIER

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

18

Biennial Assessment of the Fifth Power Plan Transmission Issues  

E-Print Network [OSTI]

by the partners in the Colstrip 500 kV transmission lines (Northwestern Energy, Puget Sound Energy, Portland unscheduled electricity flows over transmission lines leading to increased risks to electric systemBiennial Assessment of the Fifth Power Plan Transmission Issues INTRODUCTION The Fifth Power Plan

19

Recovery Act Interconnection Transmission Planning  

Broader source: Energy.gov [DOE]

Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the transportation sector. OE is helping to strengthen the capabilities for long-term analysis and planning in the three interconnections serving the lower 48 United States.

20

Regional Transmission Planning Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regional Transmission Planning Webinar Regional Transmission Planning Webinar Regional Transmission Planning Webinar May 29, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration (WAPA) are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. As part of a process to develop interconnection-based transmission plans for the Eastern and Western Interconnections and the Electric Reliability Council of Texas (ERCOT), the eight U.S. regional reliability organizations are expanding existing regional transmission planning activities and broadening stakeholder involvement. Hear about the status of the organizations' plans and evaluations of long-term regional transmission

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EA-1982: Parker-Davis Transmission System Routine Operation and Maintenance Project and Proposed Integrated Vegetation Management Plan  

Broader source: Energy.gov [DOE]

Western Area Power Administration (Western) is preparing an EA to assess potential environmental impacts of the proposed continuation of operations and maintenance activities and implementation of a vegetation management program on Western’s Parker-Davis Transmission System. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system.

22

Planning and processing of new or upgraded electric transmission systems in New Mexico  

SciTech Connect (OSTI)

RETA has been requested to identify and prioritize renewable energy resource zones in New Mexico that have a potential to support industry development among renewable energy developers for renewable resource generation projects. Moreover, Senate Memorial 44 requests that RETA identify and prioritize the best viable options for potential transmission corridors to accommodate renewable energy export from New Mexico in accordance with a defined time-line and to convene a working group to submit recommendations to the legislature for establishing a process to streamline procedures for establishing renewable energy transmission projects in New Mexico. RETA's July 9, 2009 request for comments outlined seven topical areas of specific value to Senate Memorial 44. This document addresses Topics 1, 3 and 4.

Toole, Gasper Loren [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

23

Plan to Conduct Electric Transmission Congestion Study: Federal...  

Broader source: Energy.gov (indexed) [DOE]

Plan to Conduct Electric Transmission Congestion Study: Federal Register Volume 76, No. 218 - Nov. 10, 2011 Plan to Conduct Electric Transmission Congestion Study: Federal Register...

24

Audio Transmission Systems  

Science Journals Connector (OSTI)

Audio transmission systems are the means by which audio signals are routed, processed, and assigned to the desired monitor and recording output channels. In the early days of electrical recording, rarely more ...

John Eargle

1986-01-01T23:59:59.000Z

25

Interconnection-Wide Transmission Planning Initiative - Meeting Calendars |  

Broader source: Energy.gov (indexed) [DOE]

Technology Development » Transmission Planning » Technology Development » Transmission Planning » Recovery Act Interconnection Transmission Planning » Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to access each awardee's meeting and events calendar. Eastern Interconnection Topic A Awardee: Eastern Interconnection Planning Collaborative Topic B Awardee: Eastern Interconnection States' Planning Council Western Interconnection Topic A Awardee: Western Electricity Coordinating Council Topic B Awardee: Western Governors' Association Texas Interconnection Topic A and B Awardee: Electric Reliability Council of Texas Electricity Advisory Committee Technology Development Transmission Planning

26

Dynamic simulation method for transmission and distribution planning  

Science Journals Connector (OSTI)

Under the conditions of liberalised market development optimisation role is not to be decreasing but even increasing. Basic definitions and model structure of optimisation system under market conditions is discussed in a paper, as well the experience ... Keywords: development optimisation, liberalised electricity market, power generation, power system planning, power system simulation, power transmission, risk analysis, uncertainty

Z. Krishans; I. Oleinikova; A. Mutule; J. Runcs

2006-12-01T23:59:59.000Z

27

Interconnection-Wide Transmission Planning Initiative: Topic A,  

Broader source: Energy.gov (indexed) [DOE]

Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the requirements for Topic A for all Interconnections under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning More Documents & Publications Microsoft Word - yDE-FOA-0000068.rtf Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

28

10 Year Transmission Plan for the Western Electricity Interconnection  

Broader source: Energy.gov (indexed) [DOE]

10 Year Transmission Plan for the Western Electricity 10 Year Transmission Plan for the Western Electricity Interconnection Released 10 Year Transmission Plan for the Western Electricity Interconnection Released October 3, 2011 - 8:11am Addthis Western Electricity Coordinating Council releases its first-ever transmission plan for the Western Interconnection. The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements, including transmission

29

California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning  

E-Print Network [OSTI]

TVA. Battery and compressed air energy storage systems haveenergy storage devices/methods include batteries, pumped hydro, and compressed air.

Eto, Joseph; Stovall, John P.

2003-01-01T23:59:59.000Z

30

Interconnection-Wide Transmission Planning Initiative: Topic A,  

Broader source: Energy.gov (indexed) [DOE]

A, A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the requirements for Topic A for all Interconnections under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning More Documents & Publications Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities Microsoft Word - yDE-FOA-0000068.rtf Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western Interconnection on Electric Resource Planning

31

Interconnection-Wide Transmission Planning Initiative: Topic B, State  

Broader source: Energy.gov (indexed) [DOE]

State Agency Input Regarding Electric Resource and Transmission Planning in State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection A description of the requirements for Topic B for the Texas Interconnect under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. The fundamental purpose of the awards under Topic B is to facilitate dialogue and collaboration among the states in the respective interconnections (or among state agencies, in the Texas Interconnection). Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the

32

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

33

Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Interconnection-Wide Transmission Planning Initiative: Topic B, Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities A description of the requirements for Topic B for the Eastern Interconnection under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. The fundamental purpose of the awards under Topic B is to facilitate dialogue and collaboration among the states in the respective interconnections (or among state agencies, in the Texas Interconnection). Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

34

Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Interconnection-Wide Transmission Planning Initiative: Topic B, Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern Interconnection on Electric Resource Planning and Priorities A description of the requirements for Topic B for the Eastern Interconnection under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. The fundamental purpose of the awards under Topic B is to facilitate dialogue and collaboration among the states in the respective interconnections (or among state agencies, in the Texas Interconnection). Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

35

Microsoft Word - DOE RFI on Transmission Planning - PGE Comments...  

Energy Savers [EERE]

approach to guiding development toward appropriate locations within the southern California deserts, while also providing a road map for transmission planning in these regions....

36

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Planning (Xcel). 2006. Wind Integration Study Report OfTransmission Vision for Wind Integration. White Paper.Charles Smith (Utility Wind Integration Group), Lynn Coles (

Mills, Andrew D.

2009-01-01T23:59:59.000Z

37

Direct current power transmission systems  

SciTech Connect (OSTI)

This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

Padiyar, K.R.

1991-01-01T23:59:59.000Z

38

Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models  

SciTech Connect (OSTI)

The extra-high-voltage transmission network is the bulk transport network of the electric power system. To understand how the future power system may react to planning decisions today, wide-area transmission models are increasingly used to aid decision makers and stakeholders. The goal of this work is to illuminate these models for a broader audience that may include policy makers or relative newcomers to the field of transmission planning. This paper explains the basic transmission expansion planning model formulation. It highlights six of the major simplifications made in transmission expansion planning models and the resulting need to contextualize model results using knowledge from other models and knowledge not captured in the modeling process.

Donohoo, P.; Milligan, M.

2014-06-01T23:59:59.000Z

39

Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Cooperation Among States in the Western Interconnection on Electric Cooperation Among States in the Western Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western Interconnection on Electric Resource Planning and Priorities A description of the requirements for Topic B for the Western Interconnection under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. The fundamental purpose of the awards under Topic B is to facilitate dialogue and collaboration among the states in the respective interconnections (or among state agencies, in the Texas Interconnection). Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western Interconnection on Electric Resource Planning

40

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect (OSTI)

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Abstract--The transmission system plays an essential role in the new deregulated scenario. Aspects such as planning are  

E-Print Network [OSTI]

in the electrical market is reflected in some characteristics [3] such as: · Being the link between generators generators. · Allowing competition in the electrical market thanks to the electrical systems' interconnection. INTRODUCTION uring the last decade, the electrical sector around the world has gone through a dramatic

Catholic University of Chile (Universidad Católica de Chile)

42

Environmental Management System Plan  

E-Print Network [OSTI]

R-3 • Environmental Management System Plan References 30.of Energy, Safety Management System Policy, DOE P 450.4 (E), Environmental Management Systems ? Requirements with

Fox, Robert

2009-01-01T23:59:59.000Z

43

DOE Transmission System Integration Workshop  

Broader source: Energy.gov (indexed) [DOE]

Heyeck, AEP, Sr. Vice President, Transmission Heyeck, AEP, Sr. Vice President, Transmission and Chair, EPRI Power Delivery & Utilization Sector Council November 01-02, 2012 DoubleTree Hotel, Crystal City Washington D.C. DOE Transmission System Integration Workshop 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Near-Zero Emissions Long-Term Operations Renewable Integration Water Management Electric Vehicles Demand Response & Efficiency Renewable Energy Energy Storage Sensors & Control Cyber Security Supply = Demand The Power System Supply to Demand Requires a full portfolio of innovative technologies. Tomorrow's Power System One size does not fit all 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. Grid Transformation to Ensure Reliability, Efficiency, Resiliency and Security

44

Downhole Data Transmission System  

DOE Patents [OSTI]

A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

2004-04-06T23:59:59.000Z

45

Downhole Data Transmission System  

DOE Patents [OSTI]

A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

2003-12-30T23:59:59.000Z

46

Federal Register Notice: Plan for Conduct of 2012 Electric Transmission  

Broader source: Energy.gov (indexed) [DOE]

Notice: Plan for Conduct of 2012 Electric Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study November 10, 2011 - 1:42pm Addthis The Department has issued a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study. The Department is seeking comments on what publicly-available data and information should be considered, and what types of analysis should be performed to identify and understand the significance and character of transmission congestion. DOE will host four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the study. Addthis Related Articles 2012 Congestion Study Workshops to be Held in December; Agendas Now

47

Career Map: Power Systems/Transmission Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Power Systems and Transmission Engineer positions.

48

Recovery Act Interconnection Transmission Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act Interconnection Act Interconnection Transmission Planning Recovery Act Interconnection Transmission Planning View a Map of the Interconnections View a Map of the Interconnections Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the transportation sector. Pursuant to Title IV of the American Reinvestment and Recovery Act (2009), the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability is helping to strengthen the capabilities for long-term analysis and planning in the three interconnections serving the lower 48

49

Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.  

SciTech Connect (OSTI)

The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

United States. Bonneville Power Administration.

1992-04-01T23:59:59.000Z

50

DOE Electricity Transmission System Workshop  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION SYSTEM WORKSHOP TRANSMISSION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years DoubleTree Crystal City, 300 Army Navy Drive, Arlington, VA November 1-2, 2012 AGENDA Thursday, November 1, 2012 8:00-8:10 Welcome and Kickoff David Sandalow, Acting Undersecretary of Energy 8:10-8:30 Introduction to the Grid Tech Team (GTT), Vision, and Framework Distribution Workshop Summary Dr. Anjan Bose, Grid Tech Team Lead 8:30-8:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 8:50-9:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE)

51

Abstract --Under a context of transmission open access, a methodology to define a common transmission trunk system  

E-Print Network [OSTI]

Terms--Transmission systems, Transmission pricing, Cooperative games, Shapley value, Transmission open

Catholic University of Chile (Universidad Católica de Chile)

52

Dynamic sub-transmission substation expansion planning using learning automata  

Science Journals Connector (OSTI)

This paper presents a new method to solve the dynamic sub-transmission substation expansion planning (SSEP) in electric power distribution networks. The method employs a new algorithm based on learning automata for optimization process. The developed algorithm includes different electrical constraints such as voltage drops, thermal limits, power flow and radial flow constraints. Moreover, prevalent cost indices are taken into consideration. The proposed method is used to solve the dynamic SSEP for Birjand city, center of South-Khorasan province of Iran, up to the year 2024. In addition, effects of the dynamic and pseudo-dynamic planning models are investigated at the study region and the obtained results are compared to those of genetic algorithm. Detailed numerical results and comparisons presented in the paper show that the proposed approach leads to proper solutions and can be used as an effective tool for the dynamic sub-transmission substation expansion planning in an actual large scale distribution network.

Seyed Mahdi Mazhari; Hassan Monsef

2013-01-01T23:59:59.000Z

53

Electric Transmission Line Flashover Prediction System  

E-Print Network [OSTI]

Center since 1996 PSERC #12;Power Systems Engineering Research Center Electric Transmission LineElectric Transmission Line Flashover Prediction System Ph.D. Thesis and Final Project Report Power@asu.edu Power Systems Engineering Research Center This is a project report from the Power Systems Engineering

54

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

55

Abstract-Electricity transmission planning does not have a common solution worldwide, with most countries trusting on  

E-Print Network [OSTI]

Abstract- Electricity transmission planning does not have a common solution worldwide, with most-growing conditions of the Chilean energy market, driven by private agents, meant the need to introduce changes issue in the restructuring of the electricity market all over the world. Transmission systems costs

Catholic University of Chile (Universidad Católica de Chile)

56

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Equipment Transmission Lines 765 kV (no description) 500Montana-Alberta Tie 230 kV Transmission Line: TransmissionMontana-Alberta Tie 230 kV Transmission Line: Transmission

Mills, Andrew D.

2009-01-01T23:59:59.000Z

57

Mobile systems capability plan  

SciTech Connect (OSTI)

This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

NONE

1996-09-01T23:59:59.000Z

58

Energy-water analysis of the 10-year WECC transmission planning study cases.  

SciTech Connect (OSTI)

In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

2011-11-01T23:59:59.000Z

59

Abstract --The need to determine adequate regulations in the transmission activity in deregulated environments does not  

E-Print Network [OSTI]

be followed. Index Terms--Transmission expansion, Transmission planning, Transmission systems, Transmission pricing, Open access. I INTRODUCTION he presence of economies of scale and the specificity

Dixon, Juan

60

Randomized discrepancy bounded local search for transmission expansion planning  

SciTech Connect (OSTI)

In recent years the transmission network expansion planning problem (TNEP) has become increasingly complex. As the TNEP is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the TNEP. Existing approaches are often tightly coupled to the approximation choice. Until recently these approximations have produced results that are straight-forward to adapt to the more complex (real) problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing this question. DBLS encapsulates the complexity of power flow modeling in a black box that may be queried for information about the quality of proposed expansions. In this paper, we propose a randomization strategy that builds on DBLS and dramatically increases the computational efficiency of the algorithm.

Bent, Russell W [Los Alamos National Laboratory; Daniel, William B [Los Alamos National Laboratory

2010-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimizing Storages for Transmission System Operation  

Science Journals Connector (OSTI)

Abstract A growing amount of congestions is expected for future operation of electrical transmission grids in Europe. Within this context, storages can be used to assist transmission system operators in daily operation and to avoid costly redispatch measures. In this paper, a research methodology to evaluate impact and interdependencies between market operation of storages and participation in redispatch measures is presented. Furthermore, a methodology for the evaluation of benefits by storages solely administrated by TSO is introduced. The methods are evaluated in a case study for the German electricity system in the year 2020.

Jonas Eickmann; Tim Drees; Jens D. Sprey; Albert Moser

2014-01-01T23:59:59.000Z

62

EIS-0285: Transmission System Vegetation Management Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

February 20, 2003 February 20, 2003 EIS-0285-SA-123: Supplement Analysis Transmission System Vegetation Management Program February 19, 2003 EIS-0285-SA-126: Supplement Analysis Transmission System Vegetation Management Program February 18, 2003 EIS-0285-SA-125: Supplement Analysis Transmission System Vegetation Management Program February 18, 2003 EIS-0285-SA-124: Supplement Analysis Transmission System Vegetation Management Program February 12, 2003 EIS-0285-SA-121: Supplement Analysis Transmission System Vegetation Management Program February 10, 2003 EIS-0285-SA-120: Supplement Analysis Transmission System Vegetation Management Program, Benton County, Washington January 16, 2003 EIS-0285-SA-117: Supplement Analysis Transmission System Vegetation Management Program December 24, 2002

63

EIS-0285: Transmission System Vegetation Management Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

July 19, 2002 July 19, 2002 EIS-0285-SA-96: Supplement Analysis Transmission System Vegetation Management Program, Snohomish District Substations July 19, 2002 EIS-0285-SA-70: Supplement Analysis Transmission System Vegetation Management Program July 9, 2002 EIS-0285-SA-81: Supplement Analysis Transmission System Vegetation Management Program July 1, 2002 EIS-0285-SA-84: Supplement Analysis Transmission System Vegetation Management Program July 1, 2002 EIS-0285-SA-80: Supplement Analysis Transmission System Vegetation Management Program July 1, 2002 EIS-0285-SA-78: Supplement Analysis Transmission System Vegetation Management Program June 21, 2002 EIS-0285-SA-75: Supplement Analysis Transmission System Vegetation Management Program May 31, 2002 EIS-0285-SA-58: Supplement Analysis

64

Steps to Establish a Real-Time Transmission Monitoring System...  

Broader source: Energy.gov (indexed) [DOE]

that must be taken to establish a system to make available to all transmission owners and Regional Transmission Organizations (RTOs) within the Eastern and Western Interconnections...

65

EA-1982: Parker-Davis Transmission System Programmatic Operations...  

Energy Savers [EERE]

on Western's Parker-Davis Transmission System. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance...

66

Methods and systems for micro transmissions  

DOE Patents [OSTI]

Methods and systems for micro transmissions for a micro machine may comprise an input shaft assembly coupled to a micro actuator, an output shaft assembly coupled to a micro shaft, and one or more power conversion elements operable to convert a first type of movement from the micro actuator into a second, disparate type of movement for the micro shaft.

Stalford, Harold L

2014-12-23T23:59:59.000Z

67

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

SEC). 2008. Form 10-K: Xcel Energy Inc. http://www.sec.gov/cost of transmission proposed in Xcel Energy 2001). SouthernApril. http://www.ftloutreach.com Xcel Energy Transmission

Mills, Andrew D.

2009-01-01T23:59:59.000Z

68

A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS  

E-Print Network [OSTI]

at: http://www.ftloutreach.com Xcel Energy, TransmissionCBED CapX Utilities Midwest Xcel Energy Voluntary UtilityElectric Transmission Study Xcel-31A Southwest Power Pool (

Mills, Andrew; Wiser, Ryan; Porter, Kevin

2007-01-01T23:59:59.000Z

69

Electric utility system master plan  

SciTech Connect (OSTI)

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

70

Downhole transmission system comprising a coaxial capacitor  

DOE Patents [OSTI]

A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Hall, Jr., H. Tracy (Provo, UT); Rawle, Michael (Springville, UT)

2011-05-24T23:59:59.000Z

71

Data transmission system with distributed microprocessors  

DOE Patents [OSTI]

A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

Nambu, Shigeo (Fuchu, JP)

1985-01-01T23:59:59.000Z

72

Single transmission line data acquisition system  

DOE Patents [OSTI]

A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

73

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

NREL/CP-500-35969. Global WindPower Conference. Chicago,Transmission Projects. ” Windpower 2007 Conference. Los

Mills, Andrew D.

2009-01-01T23:59:59.000Z

74

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

Mills, Andrew D.

2009-01-01T23:59:59.000Z

75

Incorporating Energy Efficiency into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Columbia Transmission Corporation BPA – Bonneville Powerthis treatment vary. For BPA and most of the northwesternPACW broader adjustment BPA, CHPD, DOPD, GCPD, TPWR: Impact

Barbose, Galen

2014-01-01T23:59:59.000Z

76

SES Performance Management System Plan Training | Department...  

Broader source: Energy.gov (indexed) [DOE]

Management System Plan Training SES Performance Management System Plan Training Overview of the DOE SES Performance Management System. Senior Executive Service Performance...

77

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

SciTech Connect (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

78

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Estimates of Congestion Costs. The Electricity Journal 17,Incremental Transmission Costs Due to Wind Power. Rockville,and Intermittency Really Cost? Supply Curves for Electricity

Mills, Andrew D.

2009-01-01T23:59:59.000Z

79

Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering and Process Planning  

E-Print Network [OSTI]

PENNSTATE Department of Industrial Engineering Fall 2011 Transmission Component Reverse Engineering to fabricate the parts in the Industrial Engineering Department Factory for Advanced Manufacturing Education of the transmission to reverse engineer and develop process plans for efficient fabrication in a low volume setting

Demirel, Melik C.

80

Incorporating Energy Efficiency into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Springs Utilities Demand-Side Management Potential Study and2009. Idaho Power Demand Side Management Potential Study.2012 Long-Term Demand Side Management Plan. Pending further

Barbose, Galen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

River Protection Project System Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gallons (Mgal) 1 closure of radioactive waste contained in the Hanford Site waste tanks and 2 This version of the RPP System Plan (Rev. 6) is a major update of the previous...

82

Planning support systems for spatial planning through social learning  

E-Print Network [OSTI]

This dissertation examines new professional practices in urban planning that utilize new types of spatial planning support systems (PSS) based on geographic information systems (GIS) software. Through a mixed-methods ...

Goodspeed, Robert (Robert Charles)

2013-01-01T23:59:59.000Z

83

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

of incremental wind development. At the extreme, still otherextreme assumption, the implied unit cost of transmission for windon wind power in their analysis. On one extreme, a number of

Mills, Andrew D.

2009-01-01T23:59:59.000Z

84

Transmission | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission Transmission Below are resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on transmission technology, costs, and how to plan the system. Transmission on Tribal Land Basics The Tribal Energy and Environmental Information Clearinghouse provides resources for development on tribal lands. Topics covered include transmission technology basics, potential impacts, law and regulations, and tribal incentives. Transmission Pre-Feasibility Study for Tribes Presentation on the components of a pre-feasibility study including generation location, sizing, and desirability, ability and cost to deliver, capacity versus energy, time of delivery versus peak, request for

85

GTO thyristor applications for HVDC transmission systems  

SciTech Connect (OSTI)

The development of a large capacity gate turn off thyristor (GTO) has made it possible to manufacture self-commutated convertors employing GTO for power applications. In this paper, conceptual designs for convertor station equipment for a HVDC transmission system employing current as well as voltage source type GTO convertors (simply referred to as VSTGC and CSTGC) are presented. The study result indicates that the VSTGC is preferable over the CSTGC. Also presented in this paper is a preliminary economic comparison between two HVDC system alternatives for applying power to a weak ac system, one employing a self-commutated GTO convertor and the other employing a combination of line-commutated convertor and a synchronous condenser. The result indicates that the two HVDC convertor station alternatives cost about the same.

Yamada, H.; Sampei, M. (Electric Power Development Co. Ltd., Tokyo (Japan)); Kashiwazaki, H.; Tanaka, C. (Hitachi Ltd., Tokyo (Japan)); Takahashi, T.; Horivchi, T. (Toshiba Corp., Tokyo (JP))

1990-07-01T23:59:59.000Z

86

Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area of An InterconnectedSystem  

E-Print Network [OSTI]

stations and then deliver that energy through the interconnected transmission and distribution systems are important factors for electricity enterprises to consider in their planning activities. One new important Abstract: Electric power systems of today are experiencing a difficulty of constrained transmission lines

Gross, George

87

Multi-transmission-line-beam interactive system  

SciTech Connect (OSTI)

We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.

Figotin, Alexander; Reyes, Guillermo [Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875 (United States)] [Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875 (United States)

2013-11-15T23:59:59.000Z

88

Multi-transmission-line-beam interactive system  

E-Print Network [OSTI]

We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.

Alexander Figotin; Guillermo Reyes

2013-04-19T23:59:59.000Z

89

NREL: Energy Analysis: Transmission Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Infrastructure Transmission Infrastructure Grid expansion and planning to allow large scale deployment of renewable generation Large scale deployment of renewable electricity generation will require additional transmission to connect renewable resources, which are wide-spread across the US, but regionally-constrained, to load centers. Long-term transmission planning, based on potential future growth in electric loads and generation resource expansion options, is critical to maintaining the necessary flexibility required for a reliable and robust transmission system. NREL's analyses support transmission infrastructure planning and expansion to enable large-scale deployment of renewable energy in the future. NREL's transmission infrastructure expansion and planning analyses show

90

Category:Smart Grid Projects - Electric Transmission Systems | Open Energy  

Open Energy Info (EERE)

Transmission Systems category. Transmission Systems category. Pages in category "Smart Grid Projects - Electric Transmission Systems" The following 10 pages are in this category, out of 10 total. A American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project D Duke Energy Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project N New York Independent System Operator, Inc. Smart Grid Project P PJM Interconnection, LLC Smart Grid Project W Western Electricity Coordinating Council Smart Grid Project Retrieved from "http://en.openei.org/w/index.php?title=Category:Smart_Grid_Projects_-_Electric_Transmission_Systems&oldid=214227

91

Microsoft PowerPoint - FY12 RMR - CRSP TRANSMISSION PLANNING MEETING_Final.PPT [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRANSMISSION TRANSMISSION PLANNING MEETING PLANNING MEETING December 6, 2011 December 6, 2011 1 Agenda g Introductions CRSP North (Loveland) Program CRSP South (Phoenix) Program CRSP South (Phoenix) Program Open Forum 2 CRSP North (Loveland) ( ) Capital Program Transmission Lines Substations Communications Communications Control, Protection and Metering M bil & H E i t Mobile & Heavy Equipment Programmatic Improvements 3 Transmission Lines Line Equipment Replacements 50k in FY12 & every year after Pleasant View 24.9-kV Line Replacement Estimated Project Cost (EPC) $ 1,000k FY15 $200K FY16 $800K 4 Substations Annual Equipment Replacement Program Substation Test Equipment Combined all test equipment categories under movable property, "Test Equipment Replacements"

92

Environmental Management System Plan  

E-Print Network [OSTI]

Water Discharges) of Introduction Environmental Managementmanagement Water conservation LBNL’s approach to sustainable environmentalEnvironmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: Protect the air, water,

Fox, Robert

2009-01-01T23:59:59.000Z

93

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

500 and 230 kV 765 kV and 800 kV HVDC 500 and 230 kV 500 kVmi) 138 and 345 kV 345 kV 345 kV 345 kV and HVDC 345kV and HVDC 345 kV 345 kV Note: Total transmission cost is

Mills, Andrew D.

2009-01-01T23:59:59.000Z

94

Boost type PWM HVDC transmission system  

SciTech Connect (OSTI)

This paper reports that conventional HVdc is built around the mercury arc rectifier or the thyristor which requires line commutation. The advances of fast, high power GTO's and future devices such as MCT's with turn off capabilities, are bringing PWM techniques within the range of HVdc applications. By combining PWM techniques to the boost type bridge topology, one has an alternate system of HVdc Transmission. On the ac side, the converter station has active controls over: the voltage amplitude, the voltage angle and the frequency. On the dc side, parallel connections facilitate multi-terminal load sharing by simple local controls so that redundant communication channels are not required. Bidirectional power through each station is accomplished by the reversal of the direction of dc current flow. These claims have been substantiated by experimental results from laboratory size multi-terminal models.

Ooi, B.T.; Wang, X. (McGill Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering)

1991-10-01T23:59:59.000Z

95

Planning for an Energy Management System  

Broader source: Energy.gov [DOE]

This presentation discusses the Planning step as part of an Energy Management System. Planning involves establishing your energy picture, defining the scope and boundary, setting an energy baseline, and developing action plans.

96

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

97

Plan to Conduct Electric Transmission Congestion Study: Federal Register Volume 76, No. 218- Nov. 10, 2011  

Broader source: Energy.gov [DOE]

Section 216(a)(1) of the Federal Power Act (FPA) requires the Department of Energy to complete a study of electric transmission congestion every three years. On November 10, 2011, the Department issued a plan to conduct the current Congestion Study.

98

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

large, but conceptual, transmission lines such as the C/PNW-very conceptual transmission lines that resemble radialand voltage of transmission lines added in the study, as

Wiser, Ryan

2014-01-01T23:59:59.000Z

99

Microsoft Word - DOE RFI on Transmission Planning - PGE Comments.DOC  

Broader source: Energy.gov (indexed) [DOE]

Comments of Pacific Gas & Electric Company Comments of Pacific Gas & Electric Company Department of Energy Request for Information on Transmission Permitting [OE Docket No. RRTT-IR-001] Pacific Gas & Electric Company (PG&E) appreciates the opportunity to respond to the questions from the Department of Energy (DOE) in its Request for Information (RFI) related to the permitting of transmission lines. The RFI lists six (6) questions, several of them with subparts. PG&E responds to the questions sequentially as they are listed in the RFI. As discussed in more detail below, increased alignment across the federal, state and local agencies for permitting and improved planning coordination would improve the development time for transmission and generation. Improved focus on planning would result in a more

100

Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.  

SciTech Connect (OSTI)

Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOCS System Configuration Management Plan | Department of Energy  

Energy Savers [EERE]

DOCS System Configuration Management Plan DOCS System Configuration Management Plan The DOCS Systems Configuration Management Plan (SCMP), from an actual DOE systems engineering...

102

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

wind with transmission alternative 7b (500 kV AC line fromkV line CAISO - A4 Central California Clean Energy TransmissionTransmission Line: Transmission Development Facilities Application Volume One MATL New 230 kV

Wiser, Ryan

2014-01-01T23:59:59.000Z

103

Definition: Transmission Line Monitoring System | Open Energy Information  

Open Energy Info (EERE)

Monitoring System Monitoring System Jump to: navigation, search Dictionary.png Transmission Line Monitoring System Hardware, software, including sensors for voltage, current, temperature, mechanical load, wind speed, or other electrical or environmental parameters, including synchrophasors. These systems are designed to provide precise information that determine the operating conditions and ratings of transmission lines. Such a system can monitor line conditions and alert grid operators of trouble.[1] Related Terms transmission lines, transmission line References ↑ https://www.smartgrid.gov/category/technology/transmission_line_monitoring_system [[Ca LikeLike UnlikeLike You like this.Sign Up to see what your friends like. tegory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid,

104

American Transmission Systems Inc | Open Energy Information  

Open Energy Info (EERE)

for 2010 - File1a1 EIA Form 861 Data Utility Id 56162 Utility Location Yes Ownership T NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes This article is a...

105

Radio frequency communication system utilizing radiating transmission lines  

DOE Patents [OSTI]

A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

Struven, Warren C. (San Carlos, CA)

1984-01-01T23:59:59.000Z

106

1 Introduction Danish transmission system operator  

E-Print Network [OSTI]

a new 400 kV transmission line between the cities Aarhus and Aalborg, app 90 km. This line at the 150 kV transmission level and intended to be used at 400 kV more than just for this line. Can of the dynamic behavior of a shunt reactor compensated 400 kV combined cable/overhead line. This is accomplished

Bak, Claus Leth

107

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network [OSTI]

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

108

EIS-0285: Transmission System Vegetation Management Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

285: Transmission System Vegetation Management Program 285: Transmission System Vegetation Management Program EIS-0285: Transmission System Vegetation Management Program SUMMARY Bonneville Power Administration (Bonneville) is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations. This electric transmission system operates in seven states of the Pacific Northwest. (See Figure I-1). The seven states offer a great diversity of vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and neighboring members of the public, and interfere with our ability to maintain these facilities. We need to keep vegetation a safe distance away from our electric power facilities and control noxious weeds at our

109

Business System Planning Project, Preliminary System Design  

SciTech Connect (OSTI)

CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time.

EVOSEVICH, S.

2000-10-30T23:59:59.000Z

110

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

111

1 Introduction Danish transmission system operator  

E-Print Network [OSTI]

400 kV transmission line between the cities Aarhus and Aalborg, app. 90 km. This line is constructed reactor compensated 400 kV combined cable/overhead line. This is accomplished by means of theoretical-phase autoreclosure ARC in such a combined cable/OHL line. Keywords -- 400 kV cable, single-phase autoreclosure, shunt

Bak, Claus Leth

112

Application for presidential permit OE Docket No. PP-230-4 International Transmission Company: Supplemental Comments of the Midwest Independent Transmission System Operator  

Broader source: Energy.gov [DOE]

Supplemental comments of the Midwest Independent Transmission System Operaton on the application from International Transmission Company to construct, operate, and maintain electric transmission...

113

Power electronics in electric utilities: HVDC power transmission systems  

SciTech Connect (OSTI)

High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

Nozari, F.; Patel, H.S.

1988-04-01T23:59:59.000Z

114

Integrated System Transmission and Ancillary Services Rate Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Rate 10 4.00 MillsKWh (L5 * 1000) 730 hours per month 7 RATE FOR SCHEDULING, SYSTEM CONTROL AND DISPATCH SERVICE FOR 2015 A. Fixed Charge Rate 21.652% (1)...

115

THE PUSH TOWARD GRID REGIONALIZATION IN OPEN ACCESS TRANSMISSION SYSTEMS  

E-Print Network [OSTI]

THE PUSH TOWARD GRID REGIONALIZATION IN OPEN ACCESS TRANSMISSION SYSTEMS ProfessorGeorge Gross Universityof Illinois atUrbana-Champaign USA E-mail:gross@uiuc.edu ExtendedSummary Keywords:RTO, ISO

Gross, George

116

///COUNTER : an artistic system for the transmission of cultural energy  

E-Print Network [OSTI]

My thesis introduces ///COUNTER as an artistic system for the transmission of cultural energy. The underlying concepts of ///COUNTER are derived directly from my work on energy access as developed through the eWheel and ...

Vincent de Paul, Jegan Joyston

2009-01-01T23:59:59.000Z

117

HLW system plan - revision 2  

SciTech Connect (OSTI)

The projected ability of the Tank Farm to support DWPF startup and continued operation has diminished somewhat since revision 1 of this Plan. The 13 month delay in DWPF startup, which actually helps the Tank Farm condition in the near term, was more than offset by the 9 month delay in ITP startup, the delay in the Evaporator startups and the reduction to Waste Removal funding. This Plan does, however, describe a viable operating strategy for the success of the HLW System and Mission, albeit with less contingency and operating flexibility than in the past. HLWM has focused resources from within the division on five near term programs: The three evaporator restarts, DWPF melter heatup and completion of the ITP outage. The 1H Evaporator was restarted 12/28/93 after a 9 month shutdown for an extensive Conduct of Operations upgrade. The 2F and 2H Evaporators are scheduled to restart 3/94 and 4/94, respectively. The RHLWE startup remains 11/17/97.

Not Available

1994-01-14T23:59:59.000Z

118

Transmission  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission ,... ,...vc- "' ""'\ S I r;. Dr. Jerry Pell, CCM Principal NEP A Document Manager Permitting, Siting, and Analysis (OE-20) Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1 000 Independence A venue SW Washington, D.C. 20585-0001 Subject: Champlain Hudson Power Express Project Submittal of Amendment Application Dear Dr. Pell: February 28, 2012 On January 25, 2010, Transmission Developers, Inc. ("TDI") submitted on behalf of Champlain Hudson Power Express, Inc. ("CHPEI") an application to the U.S. Department of Energy ("DOE") for a Presidential Permit ("Application) in connection with the Champlain Hudson Power Express project ("Project"). The Application proposed to connect clean sources

119

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

120

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Registration Contact List: Electricity Transmission System Workshop  

Broader source: Energy.gov (indexed) [DOE]

11/2/2012 11/2/2012 First Name Last Name Title Company Address1 Address2 City State/Province Zip Country Work Phone Sandy Aivaliotis , Valley Group, a Nexans 3A Trowbridge Drive Bethel CT 6801 United States 416-648-4382 Robert Anders Management U.S. Department of Energy / EERE Rm 6A-067 1000 Independence Ave., SW Washington DC 20585 United States 202-586-4716 Phillip Anderson g g Project Leader Idaho Power 1221 W. Idaho St. Boise ID 83702 United States 208-484-2024 Mihai Anitescu Dr. Argonne National Laboratory 9700 S Cas Avenue Argonne IL 60439 United States 16302524172 Sam Baldwin Officer USDOE/EERE 1000 Independence Ave., SW Washington DC 20585 United States 202-586-0927 Thomas Baldwin Energy Lead Idaho National Laboratory P.O. Box 1655 Idaho Falls ID 83415-3810 United States 208-526-1864 Venkat Banunarayanan g Transmission Department of Energy

122

Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)  

SciTech Connect (OSTI)

This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

2011-11-01T23:59:59.000Z

123

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

SEC). 2008. Form 10-K: Xcel Energy Inc. http://www.sec.gov/cost of transmission proposed in Xcel Energy 2001). SouthernApril. http://www.ftloutreach.com Xcel Energy Transmission

Wiser, Ryan

2014-01-01T23:59:59.000Z

124

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project Big Horn and Carbon Counties, Montana and Big Horn County, Wyoming MITIGATION ACTION IDENTIFIER RESPONSIBLE PARTY FOR IMPLEMENTING MITIGATION ACTION LOCATION IF AVAILABLE/ STRUCTURE NUMBERS PARTY RESPONSIBLE FOR MONITORING AND ENSURING COMPLIANCE 1 Construction Contractor Western Maintenance Standard Construction Project Practices will be implemented through Phases I of Project construction and operation (Table 2.1-3 in the Final EA.) Western Construction (during Construction Phase) Western Maintenance (During maintenance of facility) NPS - WESTERN INTERAGENCY AGREEMENT FOR BIGHORN CANYON NRA 2 NPS, Western The Interagency Agreement between United

125

Wind Mills and Transmission System Interaction.  

E-Print Network [OSTI]

??This thesis report focuses on different kinds of power system disturbances and their impact on voltage profile at the point of wind power connection. The… (more)

Akwarandu, John

2006-01-01T23:59:59.000Z

126

HTWOS and System Planning Briefing to DOE-HQ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management Plan Waste Feed Delivery Projects Plan ORP-Approved System Plan Assumptions Technology Development Roadmap WTP Contract WTP PMB WTP Flowsheet and Design Tank...

127

High Level Waste System Plan Revision 9  

SciTech Connect (OSTI)

Revision 9 of the High Level Waste System Plan documents the current operating strategy of the HLW System at SRS to receive, store, treat, and dispose of high-level waste.

Davis, N.R.; Wells, M.N.; Choi, A.S.; Paul, P.; Wise, F.E.

1998-04-01T23:59:59.000Z

128

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy â–  Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

129

Single transmission line interrogated multiple channel data acquisition system  

DOE Patents [OSTI]

A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

Fasching, George E. (Morgantown, WV); Keech, Jr., Thomas W. (Morgantown, WV)

1980-01-01T23:59:59.000Z

130

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-11)  

SciTech Connect (OSTI)

BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. Also, access road clearing will be conducted. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA's overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD).

N /A

2001-05-15T23:59:59.000Z

131

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-12)  

SciTech Connect (OSTI)

BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. Also, access road clearing will be conducted. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA's overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD).

N /A

2001-05-15T23:59:59.000Z

132

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-13)  

SciTech Connect (OSTI)

BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. Also, access road clearing will be conducted. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA's overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD).

N /A

2001-06-06T23:59:59.000Z

133

DRAFT Parker-Davis Transmission System  

Office of Environmental Management (EM)

system. 3.13.1.1 Sensitive Receptors Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved....

134

Cryogenic System for a High Temperature Superconducting Power Transmission Cable  

SciTech Connect (OSTI)

High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

1999-07-12T23:59:59.000Z

135

Data Transmission System For A Downhole Component  

DOE Patents [OSTI]

The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Fox, Joe (Spanish Fork, UT); Briscoe, Michael (Lehi, UT)

2005-01-18T23:59:59.000Z

136

Commutation failures in HVDC transmission systems  

SciTech Connect (OSTI)

This paper provides a formulation for the initiation or onset mechanism of commutation failures in line-commutated thyristor converters, assuming infinite (zero impedance) ac systems. A theoretical development and a parametric analysis is given. Theory validation by simulation and comparison to actual field experience data is also given.

Thio, C.V.; Davies, J.B.; Kent, K.L. [Manitoba Hydro, Winnipeg, Manitoba (Canada)] [Manitoba Hydro, Winnipeg, Manitoba (Canada)

1996-04-01T23:59:59.000Z

137

Electricity Transmission System Workshop: EERE Issues and Opportunities  

Broader source: Energy.gov (indexed) [DOE]

Electricity Transmission System Electricity Transmission System Workshop: EERE Issues and Opportunities November 1, 2012 Dr. David Danielson Assistant Secretary for the Office of Energy Efficiency and Renewable Energy eere.energy.gov "If you can't solve a problem, expand it." - Dwight D. Eisenhower eere.energy.gov eere.energy.gov Stationary Energy Demand Transport Energy Supply Deploy Clean Electricity Deploy Alternative Hydrocarbon Fuels Modernize the Grid Electrify the Fleet Increase Building and Industrial Efficiency Increase Vehicle Efficiency Source: DOE ,Quadrennial Technology Review, September 2011 eere.energy.gov Rapid Growth in Renewable Electricity Since 2008, the U.S. has doubled renewable energy generation from wind, solar, and

138

A reliability cost-benefit analysis for HVDC transmission expansion planning  

SciTech Connect (OSTI)

A major portion of Manitoba Hydro's generation is located in the North on the Nelson River. The lower Nelson River generation is brought into the load centre in Southern Manitoba through an HVDC transmission system consisting of two bipoles, the first rated at 1680 MW at the rectifier and the second at 2000 MW. This paper presents the methodology used in arriving at the optimum Bipole 3 size using a reliability cost-benefit analysis. The analysis considers the forced outages of the generation and transmission systems using system outage statistics. The generator and valve group maintenance and the reduction in capability of thyristor valve groups during the summer season were also incorporated in the analysis. The load model used in the study was based on system data for the period 1980-1984. The criterion used in choosing the Bipole 3 size is to optimize the present worth value of the annual energy curtailment due to the HVDC system forced outages and the incremental installation cost of the transmission as the capacity of Bipole 3 is increased. The optimum Bipole 3 size based on the study is 2200 MW. This value is significantly lower than that based on a pole spare criterion used in the earlier development of the HVDC system. Finally, the need for validation of the outage data in evaluating future HVDC projects and the need for data collection and classification is indicated.

Kuruganty, P.R.S. (Manitoba Hydro, Winnipeg, Manitoba (CA)); Woodford, D.A. (Manitoba HVDC Research Centre, Winnipeg, Manitoba (CA))

1988-07-01T23:59:59.000Z

139

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch  

E-Print Network [OSTI]

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch...

Ilic, Marija; Hsieh, Eric; Remanan, Prasad

2004-06-16T23:59:59.000Z

140

Reliability modeling and evaluation of HVDC power transmission systems  

SciTech Connect (OSTI)

The objective of this paper is to present an improved computational method for evaluating the reliability indices of HVdc transmission systems. The developed models and computational techniques are described. These can be used to simulate the operational practices and characteristics of a system under study efficiently and realistically. This method is based on the failure modes and effects analysis and uses the event tree method and the minimal cut set approach to represent the system's operational behavior and deduce the appropriate system's failure modes. A set of five reliability indices is evaluated for each output node being analyzed together with the probability and frequency of encountering particular regions of system performance levels. The analysis of an assumed HVdc bipolar transmission system is also included.

Dialynas, E.N.; Koskolos, N.C. (National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integrating Renewable Energy into the Transmission and Distribution System  

Broader source: Energy.gov (indexed) [DOE]

Integrating Renewable Energy into the Transmission and Distribution Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid. 51294.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands

142

(DOE/EIS-0285/SA-127): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/19/03  

Broader source: Energy.gov (indexed) [DOE]

KEP/4 KEP/4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-127- Eugene-Alvey#2 Benjamin Tilley - TFE/Alvey Proposed Action: Vegetation Management for the Eugene-Alvey 115 kV transmission line from structure 7/1 through structure 12/2m, and along portions of the following adjacent transmission lines: Hawkins-Alvey 115KV and Alvey-Lane 115KV. Location: The project is located in the BPA Eugene Region in Lane County, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, access roads, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to

143

Massachusetts state airport system plan forecasts.  

E-Print Network [OSTI]

This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

Mathaisel, Dennis F. X.

144

Audit Report - Department of Energy's Interconnection Transmission Planning Program Funded through the American Recovery and Reinvestment Act of 2009  

Broader source: Energy.gov (indexed) [DOE]

Audit Report Department of Energy's Interconnection Transmission Planning Program Funded through the American Recovery and Reinvestment Act of 2009 OAS-RA-13-26 June 2013 Department of Energy Washington, DC 20585 June 19, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ELECTRICITY DELIVERY AND ENERGY RELIABILITY FROM: Rickey R. Hass Deputy Inspector General for Audit and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Interconnection Transmission Planning Program Funded through the American Recovery and Reinvestment Act of 2009" BACKGROUND Under the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of

145

Complex dynamics of blackouts in power transmission systems  

Science Journals Connector (OSTI)

In order to study the complex global dynamics of a series of blackouts in power transmission systems a dynamical model of such a system has been developed. This model includes a simple representation of the dynamical evolution by incorporating the growth of power demand the engineering response to system failures and the upgrade of generator capacity. Two types of blackouts have been identified each having different dynamical properties. One type of blackout involves the loss of load due to transmission lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackout over the other depends on operational conditions and the proximity of the system to one of its two critical points. The model displays characteristics such as a probability distribution of blackout sizes with power tails similar to that observed in real blackout data from North America.

B. A. Carreras; V. E. Lynch; I. Dobson; D. E. Newman

2004-01-01T23:59:59.000Z

146

National Transmission Grid Study  

Broader source: Energy.gov (indexed) [DOE]

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

147

DOE Action Plan Addressing the Electricity Distribution System  

Broader source: Energy.gov (indexed) [DOE]

ACTION PLAN ACTION PLAN ADDRESSING THE ELECTRICITY DISTRIBUTION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Distribution System 1 Table of Contents INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ................................................................................................ 2 Focus on Distribution .............................................................................................. 3 Roadmap Goals ....................................................................................................... 3 PROCESS OVERVIEW ........................................................................................................... 4

148

Green field planning of distribution systems  

Science Journals Connector (OSTI)

It as an evident that the everyday life is basically based on electric power. Electric power networks provide the required power to the customers. However as greater amounts of power are daily demanded, the need for the construction of new networks or ... Keywords: energy transmission, green field approach, power demand, power loss, power system modelling, voltage drop

S. Hadjiionas; D. S. Oikonomou; G. P. Fotis; V. Vita; L. Ekonomou; C. Pavlatos

2009-05-01T23:59:59.000Z

149

Midwest Independent Transmission System Operator Smart Grid Project | Open  

Open Energy Info (EERE)

Operator Smart Grid Project Operator Smart Grid Project Jump to: navigation, search Project Lead Midwest Independent Transmission System Operator Country United States Headquarters Location Carmel, Indiana Additional Benefit Places Iowa, Illinois, Michigan, Minnesota, Missouri, Montana, North Dakota, Ohio, Pennsylvania, South Dakota, Wisconsin Recovery Act Funding $17,271,738.00 Total Project Value $34,543,476.00 Coverage Area Coverage Map: Midwest Independent Transmission System Operator Smart Grid Project Coordinates 39.978371°, -86.1180435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study  

SciTech Connect (OSTI)

Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (?2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ?2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the original plan fluence map as the starting stage reduced OAR dose at the mid-dose region, but increased the monitor units by 17%. Differences of only 2cc or less in OAR V50%/V70Gy/V76Gy were observed between 100 and 50 iterations.Conclusions: It is feasible to perform automatic online reoptimization in ?2 min using a clinical treatment planning system. Selecting optimal sets of input parameters is the key to achieving high quality reoptimized plans, and should be based on the individual patient's daily anatomy, delivery efficiency, and time allowed for plan adaptation.

Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie [Duke Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Duke Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

2013-11-15T23:59:59.000Z

151

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-70)  

Broader source: Energy.gov (indexed) [DOE]

(8-89) memorandum DATE: 7/19/02 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-70) Bill Erickson - TFP/Walla Walla Natural Resource Specialist TO: Proposed Action: Vegetation Management on sections of the McNary-Ross, McNary-Horse Heaven, Horse Heaven-Harvarlum, Harvarlum-Big Eddy, and Hanford-John Day Transmission lines. The treatment areas are identified in Step 1 of the Planning Steps shown below. The work will involve the control of noxious weeds in the subject rights-of-ways (ROWs). Location: The ROWs are located in Umatilla and Sherman Counties, Oregon and Benton and Klickitat Counties, Washington, all being in the Walla Walla and Redmond Regions.

152

Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov [DOE]

Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

153

STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE  

Broader source: Energy.gov (indexed) [DOE]

STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE EASTERN AND WESTERN INTERCONNECTIONS A REPORT TO CONGRESS PURSUANT TO SECTION 1839 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy & Federal Energy Regulatory Commission February 3, 2006 Report to Congress Joint Report by the Department of Energy and Federal Energy Regulatory Commission on Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections February 2006 Executive Summary In August 2003, an electrical outage in one state precipitated a cascading blackout across seven other states and as far north as a province in Canada, leaving more than 50 million

154

Tank waste remediation system engineering plan  

SciTech Connect (OSTI)

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

155

Tank waste remediation system program plan  

SciTech Connect (OSTI)

This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

Powell, R.W.

1998-01-09T23:59:59.000Z

156

Analysis of the ITER LFS Reflectometer Transmission Line System  

SciTech Connect (OSTI)

A critical issue in the design of the ITER Low Field Side (LFS) reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ~42 m of corrugated waveguide and up to 10 miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing mode conversion and reflections in the waveguide are critical to minimizing standing waves and phase errors in the reflectometer-measured phase. The performance of the corrugated waveguide and miter bends is analyzed and recommendations given.

Hanson, Gregory R [ORNL; Wilgen, John B [ORNL; Bigelow, Tim S [ORNL; Diem, Stephanie J [ORNL; Biewer, Theodore M [ORNL

2010-01-01T23:59:59.000Z

157

(DOE/EIS-0285/SA-122): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/19/03  

Broader source: Energy.gov (indexed) [DOE]

CSB-2 CSB-2 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-122- Bonneville-Alcoa Ed Tompkins, TFO/LMT Proposed Action: Vegetation Management for the Bonneville-Alcoa 115kV transmission line Location: The project is located in the BPA Olympia Region in Skamania and Clark Counties, Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, along access roads and around tower structures along the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans

158

DOE/EIS-0285-SA-62: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (4/16/02)  

Broader source: Energy.gov (indexed) [DOE]

DATE April 16, 2002 REPLY TO ATTN OF: KEPR/Covington SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-62) Don Atkinson - TFN/Snohomish Proposed Action: Vegetation Management along the Rocky Reach - Maple Valley No. 1 Transmission Line ROW from structure 98/2 to structure 110/1. The transmission line is a 500 kV line. Location: The ROW is located King County, WA. Proposed by: Snohomish Regional Headquarters, Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and

159

(DOE/EIS-0285-126): Supplement Analysis for the Transmission System Vegetation Management Program 2/19/03  

Broader source: Energy.gov (indexed) [DOE]

KEP-4 KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-126- Alvey Fairview Benjamin Tilley - TFE/Alvey Proposed Action: Vegetation Management for the Alvey Fairview 230kV transmission line from structure 1/1 through structure 64/7. Location: The project is located in the BPA Eugene Region in Coos, Douglas, and Lane Counties, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, along access roads and around tower structures along the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently

160

ECEN 720 High-Speed Links Circuits and Systems Lab1 -Transmission Lines  

E-Print Network [OSTI]

1 ECEN 720 High-Speed Links Circuits and Systems Lab1 - Transmission Lines Objective To learn transmission lines and time-domain refectometer (TDR). Introduction Wires are used to transmit clocks and data data communication chip design, the wires are often treated as transmission lines. Proper transmission

Palermo, Sam

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Number and propagation of line outages in cascading events in electric power transmission systems  

E-Print Network [OSTI]

Number and propagation of line outages in cascading events in electric power transmission systems of transmission lines. We estimate from observed utility data how transmission line outages propagate, and obtain of transmission lines. The multiple mechanisms involved these cascading outages are many and varied, and the power

Dobson, Ian

162

Transmission of the size of units of quantities and verification conditions as applied to measurement systems  

Science Journals Connector (OSTI)

The meaning of “transmission of the size of units of quantities” and “verification conditions” applied to measurement systems is considered.

A. A. Danilov

2007-05-01T23:59:59.000Z

163

Report: Impacts of Demand-Side Resources on Electric Transmission Planning  

Broader source: Energy.gov [DOE]

Demand for new transmission can be driven by different factors, including connection of new generation, reliability, economics, environmental policy compliance and replacement of retiring infrastructure. This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new transmission or utilization of existing transmission.

164

Transmission planning for Indian power grid: a mixed integer programming approachp  

E-Print Network [OSTI]

) time-block (peak, intermediate, base) l index for transmission line voltage level (400, 220 and 132 kV transmission line, Rs/km LCAP power carrying capacity of an inter-state tie line for a particular voltage class, MW LF transmission loss factor per unit power transfer per km line length, MWh/MWh- km LGTH length

Dragoti-Ã?ela, Eranda

165

US Recovery Act Smart Grid Projects - Electric Transmission Systems | Open  

Open Energy Info (EERE)

American_Transmission_Company_LLC_II_Smart_Grid_Project\" American_Transmission_Company_LLC_II_Smart_Grid_Project\" title=\"American Transmission Company LLC II Smart Grid Project\">American Transmission Company LLC II Smart Grid Project","title":"American Transmission Company LLC II Smart Grid Project","link":null,"lat":43.0116784,"lon":-88.2314813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""},{"text":"Transmission_Company_LLC_Smart_Grid_Project\" title=\"American Transmission Company LLC Smart Grid Project\">American

166

Office Safety System Oversight Staffing Plan - Filled  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos Site Office Safety System Oversight Staffing Plan" Los Alamos Site Office Safety System Oversight Staffing Plan" "December 2008" "ACTIVITIES","Days for Activity in each Fiscal Year",,,,,,"Notes" ,"FY09","FY10","FY11","FY12","FY13","FY14" "Task Based",,,,,,,"Integrated Assessment Schedule items, SET lead, 15 days per assessment for team leader, based on 8 hour days, 7 days for team member (30 SC, 82 SS systems). Formal assessments can be reduced as CAS matures & Shadow assessments increased. (NA-1 SD 226.1A)" "7 SC Assessments",154,154,154,132,132,110 "10 SS System Assessments",220,220,220,198,198,176 "12 Shadow Assessments",48,48,48,68,68,92,"4 days per normal shadow assessment (NA-1 SD 226.1A)"

167

Superconductivity for electric systems program plan, FY 1996--FY 2000  

SciTech Connect (OSTI)

This describes a comprehensive, integrated approach for the development of HTS (high-temperature superconductivity) technology for cost-effective use in electric power applications. This approach supports the program`s mission: to develop the technology that could lead to industrial commercialization of HTS electric power applications, such as fault-current limiters, motors, generators, transmission cables, superinductors, and superconducting energy storage. The vision is that, by 2010, the US power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition; and in US, the power grid will gain increased efficiency and stability by incorporating many kinds of HTS devices. After an overview and a discussion of the program plan (wires, systems technology, partnership initiative), this document discusses technology status, stakeholders, and the role of US DOE.

NONE

1996-03-01T23:59:59.000Z

168

Current conflicts in U.S. Electric transmission planning, cost allocation and renewable energy policies: More heat than light?  

SciTech Connect (OSTI)

To surmount obstacles to expanding and upgrading the nation's transmission system that are impeding development of the renewables sector, it is critical that these issues be resolved quickly and on a consistent rather than ad hoc basis. (author)

Bloom, David; Forrester, J. Paul; Klugman, Nadav

2010-12-15T23:59:59.000Z

169

Steps to Establish a Real-Time Transmission Monitoring System for  

Broader source: Energy.gov (indexed) [DOE]

Steps to Establish a Real-Time Transmission Monitoring System for Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections Steps to establish a real-time transmission monitoring system for transmission owners and operators within the Eastern and Western interconnections: a report to congress pursuant to section 1839 of the Energy Policy Act of 2005. Section 1839 of the Energy Policy Act of 2005 (EPAct 2005) directs the Secretary of Energy (DOE) and the Federal Energy Regulatory Commission (Commission) to study and report to Congress on the steps that must be taken to establish a system to make available to all transmission owners

170

AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES  

E-Print Network [OSTI]

AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES TIMO REIS Abstract. In this paper a model of linear electrical circuits with transmission lines is de-coupled with the telegraph equations who describe the behavior of the transmission lines. The resulting system of equations

Reis, Timo

171

Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint  

SciTech Connect (OSTI)

The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

Ibanez, E.; Milligan, M.

2012-09-01T23:59:59.000Z

172

Planning a Microhydropower System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Microhydropower System Microhydropower System Planning a Microhydropower System July 15, 2012 - 4:11pm Addthis To see if a microhydropower system would work for you, determine the vertical distance (head) available and flow (quantity) of the water. To see if a microhydropower system would work for you, determine the vertical distance (head) available and flow (quantity) of the water. What are the key facts? A microhydropower system requires access to flowing water on your property; usually hilly or mountainous sites are best. Hiring professionals will determine the most accurate measurements of your site's head and flow, but you can get initial measurements yourself. To build a microhydropower system [11050], you need access to flowing water on your property. A sufficient quantity of falling water must be available,

173

The Electricity Transmission System Future Vision & Grid Challenges  

Broader source: Energy.gov (indexed) [DOE]

Future Vision & Grid Challenges Future Vision & Grid Challenges Summary Results of Breakout Group Discussions Electricity Transmission Workshop Double Tree Crystal City, Arlington, Virginia November 1, 2012 Breakout Group Discussion Overview Future Vision and Grid Challenges Each of the four breakout groups identified the key challenges facing the grid as it integrates all of the various technologies that are (or will be) deployed while ensuring a safe, reliable, and cost-effective system as described in the Future Vision. Utilizing the Grid Tech Team framework, each group identified integration challenges through a systems-based discussion that addressed all of the following topics: * Grid Visibility What challenges in the informational domain (sensors and relays, AMIs, PMUs, end-use energy

174

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

Wiser, Ryan

2014-01-01T23:59:59.000Z

175

Abstract--This paper proposes an optimization based method of planning reactive power control for electric transmission  

E-Print Network [OSTI]

Research under the Electric Power Networks Efficiency and Security (EPNES) program, award ECS0323734. H for electric transmission systems to endow them with the capability of being reconfigured to a secure. The modified New England 39-bus system and a North American power system with 6358 buses are adopted

Kumar, Ratnesh

176

Strategic Planning System for Exotic Game Management  

E-Print Network [OSTI]

. Jerry Stuth The paradigm of indiscriminate introduction of exotic ungulates has escalated the need for ecological and biological understanding of nonindigenous species. Management of any species or animal enterprise is a dynamic process..., and requires ecological considerations as well as economic constraints. The initial framework of Strategic Planning System for Exotic Game (SPSEG) may allow proactive management of animal enterprises and help mediate the often conflicting short term needs...

Lubbering, Jeanne Marie Petrofes

2012-06-07T23:59:59.000Z

177

Radioisotope thermoelectric generator transportation system subsystem 143 software development plan  

SciTech Connect (OSTI)

This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

King, D.A.

1994-11-10T23:59:59.000Z

178

A Spatial Planning and Analysis System for Wildland Fire Management  

E-Print Network [OSTI]

STARFIRE 11/29/2011 A Spatial Planning and Analysis System for Wildland Fire Management Welcome is an advanced and powerful spatial fire management planning and analysis system which is designed to provide visual and analytic support for fire management planning, decisions and communication. The system

179

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-28)(9/5/01)  

Broader source: Energy.gov (indexed) [DOE]

September 5, 2001 September 5, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-28) James Jellison - TFO/Olympia Natural Resource Specialist Proposed Action: Vegetation Management along the Port Angeles - Sappo No.1 Transmission Line ROW, from struture 1/1 to structure 42/10. Location: The ROW is located in Clallum County, WA, all in the Olympia Region. Proposed by: Bonneville Power Administration (BPA), Olympia Region. Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is

180

(DOE/EIS-0285/SA-75): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (06/21/02)  

Broader source: Energy.gov (indexed) [DOE]

June June 21, 2002 REPLY TO ATTN OF: KEP/Z-992 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA- 75-Ross-Lexington. Jim Jellison -- - TFO/Olympia Ed Tompkins -- - TFO/Ross Proposed Action: Vegetation Management for the Ross Lexington Transmission Line. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove danger trees as well as unwanted vegetation in the rights-of-ways, along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. See Section 1.4 of the attached checklist for a complete description of the proposed action. Analysis: Please see the attached checklist for the resources present. Applicable findings and mitigation measures are discussed below. Planning Steps: 1. Identify facility and

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-22)(8/17/01)  

Broader source: Energy.gov (indexed) [DOE]

August 17, 2001 August 17, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-22) Donald F. Atkinson - TFN/Snohomish Natural Resource Specialist Proposed Action: Vegetation Management along the Chief Joseph - Snohomish No.3 and 4 Transmission Line ROW. From STR 94/1 to STR 113/1 Location: The ROW is located in King and Snohomish Counties, WA, in the Snohomish Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is

182

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-26)(9/11/01)  

Broader source: Energy.gov (indexed) [DOE]

11, 2001 11, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-26) Ben Tilley - TFE/Alvey Natural Resource Specialist Proposed Action: Vegetation Management on Reedsport-Fairview #1 Transmission Line Structure 1/5 to 39/4. Location: All ROW are located in Coos and Douglas Counties, OR, all being in the Eugene Region. Proposed by: Bonneville Power Administration (BPA), Eugene Region. Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently

183

ECEN 720 High-Speed Links: Circuits and Systems Lab1 -Transmission Lines  

E-Print Network [OSTI]

1 ECEN 720 High-Speed Links: Circuits and Systems Lab1 - Transmission Lines Objective To learn about transmission lines and time-domain reflectometer (TDR). Introduction Wires are used to transmit. In high speed data communication chip design, the wires are often treated as transmission lines. Proper

Palermo, Sam

184

Transmission Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Grid Tech Team » Activities/Outreach » GTT DOE Grid Tech Team » Activities/Outreach » GTT Activities » Transmission Workshop Transmission Workshop Transmission Workshop GTT Transmission Workshop - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action Plan Addressing the Electricity Transmission System was discussed during the workshop, which addressed the challenges and opportunities presented by the integration of 21st century energy technologies into the electricity transmission system. Parallel sessions addressed the challenges and opportunities of modernizing the grid and drilled down into key technology areas associated with each of these: System visibility: what advances are needed to "see" the state of

185

Production System Planning for Natural Resource Conservation in a Micro-Watershed  

E-Print Network [OSTI]

Production System Planning for Natural Resource Conservationa case study watershed. Production Systems Planning (PSP) isWatershed Management, Production Systems Planning (PSP)

Ramakrishna, Nallathiga

2003-01-01T23:59:59.000Z

186

Linkages between demand-side management and congestion in the European electricity transmission system  

Science Journals Connector (OSTI)

Abstract We evaluate the possibility to reduce congestion in the transmission grid through large-scale implementation of demand-side management (DSM) in the form of load shifting for the EU-27 countries, Norway, and Switzerland for Year 2020. A linear, cost-minimising, dispatch model that includes a DC load-flow description of the transmission system and a general representation of load shifting is used. It is assumed that the EU Member States fulfil the targets for Year 2020 in their national renewable energy action plans. In the model calculations, a reference case without load shifting is compared with cases in which the load shifting is 5%, 10%, 15% or 20% of the load. The possibility to shift load in time is added exogenously and economic incentives for DSM are not evaluated. Three types of congestion are identified: peak-load-hour congestion, low-load-hour congestion and all-hour congestion. Peak-load-hour congestion is reduced as the DSM share of the load increases, whereas low-load-hour congestion, which is typically associated with a high level of wind generation, persists at all the DSM penetration levels investigated. We show that all-hour congestion occurs between systems that have large differences in supply structure, and that the impact of DSM on all-hour congestion is low.

Lisa Göransson; Joel Goop; Thomas Unger; Mikael Odenberger; Filip Johnsson

2014-01-01T23:59:59.000Z

187

Tank waste remediation system systems engineering management plan  

SciTech Connect (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation Systems (TWRS) implementation of U.S. Department of Energy (DOE) Systems Engineering (SE) policy provided in Tank Waste Remediation System Systems Engineering Management Policy, DOE/RL letter, 95-RTI-107, Oct. 31, 1995. This SEMP defines the products, process, organization, and procedures used by the TWRS Program to accomplish SE objectives. This TWRS SEMP is applicable to all aspects of the TWRS Program and will be used as the basis for tailoring SE to apply necessary concepts and principles to develop and mature the processes and physical systems necessary to achieve the desired end states of the program.

Peck, L.G.

1996-02-06T23:59:59.000Z

188

Mitigation Action Plan for Los Banos - Gates (Path 15) Transmission Project (DOE/EIS-0128) (12/3/03)  

Broader source: Energy.gov (indexed) [DOE]

2 Date: December 3, 2003 1 2 Date: December 3, 2003 1 Western Area Power Administration Mitigation Action Plan for the Los Banos - Gates (Path 15) Transmission Project 1.0 INTRODUCTION 1.1 HISTORY AND BACKGROUND In May 2001, Secretary of Energy Spencer Abraham directed the Western Area Power Administration (Western) to take the first steps, including the preparation of environmental studies, toward developing the Los Banos - Gates Transmission Project, also known as the Path 15 Project. This directive was issued to carry out a recommendation in the May 2001 National Energy Policy. Western is a power marketing administration within the Department of Energy (DOE) whose role is to market and transmit electricity from multi-use water projects in the western United States, including California. The Path 15 Project, located in California's western

189

(DOE/EIS-0128): Mitigation Action Plan for the Los Banos-Gates Transmission project 1/28/03  

Broader source: Energy.gov (indexed) [DOE]

Date: ____________________________ 1 Date: ____________________________ 1 Western Area Power Administration Mitigation Action Plan for the Los Banos - Gates (Path 15) Transmission Project 1.0 INTRODUCTION 1.1 HISTORY AND BACKGROUND In May 2001, Secretary of Energy Spencer Abraham directed the Western Area Power Administration (Western) to take the first steps, including the preparation of environmental studies, toward developing the Los Banos - Gates Transmission Project, also known as the Path 15 Project. This directive was issued to carry out a recommendation in the May 2001 National Energy Policy. Western is a Power Marketing Administration within the Department of Energy (DOE) whose role is to market and transmit electricity from multi- use water projects in the western United States, including California. The

190

Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect (OSTI)

Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-09-01T23:59:59.000Z

191

HIGH-POWER MILLIMETREWAVE TRANSMISSION SYSTEMS AND COMPONENTS FOR ELECTRON CYCLOTRON HEATING OF FUSION PLASMAS  

Science Journals Connector (OSTI)

At the Institute for Plasma Research at the University of Stuttgart, high-power millimetre wave transmission systems for electron cyclotron heating (ECRH) and current drive (ECCD)...

W. Kasparek; G. Dammertz; V. Erckmann…

2005-01-01T23:59:59.000Z

192

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid  

Broader source: Energy.gov [DOE]

The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

193

Monitoring the execution of temporal plans for robotic systems  

E-Print Network [OSTI]

To achieve robustness in dynamic and uncertain environments, robotic systems must monitor the progress of their plans during execution. This thesis develops a plan executive called Pike that is capable of executing and ...

Levine, Steven James

2012-01-01T23:59:59.000Z

194

Monitoring the Execution of Temporal Plans for Robotic Systems  

E-Print Network [OSTI]

To achieve robustness in dynamic and uncertain environments, robotic systems must monitor the progress of their plans during execution. This thesis develops a plan executive called Pike that is capable of executing and ...

Levine, Steven J.

2012-10-04T23:59:59.000Z

195

Control system and method for a power delivery system having a continuously variable ratio transmission  

DOE Patents [OSTI]

A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

Frank, Andrew A. (1034 Hillside Ave., Madison, WI 53705)

1984-01-01T23:59:59.000Z

196

Abstract--Three known use-based allocation methods for payments of electricity transmission systems are compared.  

E-Print Network [OSTI]

, transmission pricing, transmission use, wheeling allocation, distribution factors. I. INTRODUCTION he worldwide to relate transmission pricing to use of system factors was made by Hugh Rudnick, Rodrigo Palma and Enrique

Catholic University of Chile (Universidad Católica de Chile)

197

Planning a Small Wind Electric System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Wind Electric System Small Wind Electric System Planning a Small Wind Electric System July 15, 2012 - 4:11pm Addthis Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | Photo courtesy of Bergey WindPower. Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | Photo courtesy of Bergey WindPower. What are the key facts? Careful planning helps to ensure that your small wind electric system project goes smoothly and is economical at your location. During planning, you will find out if there is enough wind to operate the system, if the location is appropriate, if wind systems are

198

Supplement Analysis for the Transmission System Vegetation Management Program FEIS DOE/EIS-0285/SA-08  

SciTech Connect (OSTI)

Clearing C-trees along the south side of the right-of-way. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). The project involves controlling all tall growing trees (C-Trees) within the right-of-way. All work is to be done on the south side of centerline. Target vegetation is the tall growing Firs along the edge of the ROW, all of which is located within the back yards of the property owners along the right-of-way. The density of vegetation is low and consists of C-Trees located within backyards, with the branches growing towards the lines. Due to lack of access and past verbal agreements with the landowners, permission/agreement has been difficult to obtain from the property owners. Permission has now been obtained to remove the C-Trees within their back yards which, will soon be a hazard to our transmission line facility. We are working with the landowners to get them to plant low growing scrubs and ornamentals within the right-of-way and adjacent to the right-of-way. A follow up herbicide treatment is not planned because the trees being cut will not re-sprout. This right-of-way or project area is on a three to four year maintenance schedule. Little or no treatment should be required in the immediate future.

N /A

2001-04-23T23:59:59.000Z

199

EA-1982: Parker-Davis Transmission System Programmatic Operations and Maintenance Project; Arizona, California, and Nevada  

Broader source: Energy.gov [DOE]

Western Area Power Administration (Western) is preparing an EA to assess potential environmental impacts of the proposed continuation of operations and maintenance activities and implementation of a vegetation management program on Western’s Parker-Davis Transmission System. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system.

200

Installation of PV systems in Greece—Reliability improvement in the transmission and distribution system  

Science Journals Connector (OSTI)

Photovoltaic (PV) power systems are becoming one of the most developing investment areas in the field of Renewable Energy Sources (RES). A statement of the status quo of PV power systems in Greece, and their contribution towards the improvement of power system reliability, is the scope of the present paper. Siting and installation of PV power systems is performed according to a recent Greek law, along with environmental and geographical constraints. Meteorological data are computed, formulated and imported to appropriate software in order to simulate the PV units and generate their power output. Data for unserved loads, resulting from load shedding during peak hours, are compared to the above estimated power production. Assuming that a proportion of the eventually unsupplied power could be provided by the accessed power generation of the PV units, the reliability of both transmission and distribution system is improved. The impact on the transmission system is shown by an improvement of LOLP and LOEP indices, whereas peak shaving for the Interconnected Greek Transmission System (IGTS) is also illustrated. For the distribution system the impact is quantified using the distribution system reliability indices SAIDI, SAIFI, and CAIDI. Finally, the resulting improvement is also expressed in financial terms.

Aggelos S. Bouhouras; Antonios G. Marinopoulos; Dimitris P. Labridis; Petros S. Dokopoulos

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE/EIS-0285; Bonneville Power Administration Transmission System Vegetation Management Program Final Environmental Impact Statement (May 2000)  

Broader source: Energy.gov (indexed) [DOE]

Purpose, Need and Issues Purpose, Need and Issues S-1 Summary In this summary: ΠPurpose, Need, and Issues ΠMethods and Their Impacts ΠPlanning Steps ΠProgram Alternatives and Their Impacts Purpose, Need and Issues Bonneville Power Administration (Bonneville) is responsible for maintaining a network of 15,000 miles of electric transmission lines and 350 substations. This electric transmission system operates in seven states of the Pacific Northwest. (See Figure S-1.) Those states offer a great diversity of vegetation (from trees to brush to grasses), which can interfere with electric power flow, pose safety problems for us and neighboring members of the public, or interfere with our ability to maintain our system. We need to keep vegetation a safe distance away from our electric power facilities and control

202

(DOE/EIS-0285/SA-08): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/23/01  

Broader source: Energy.gov (indexed) [DOE]

23, 2001 23, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS DOE/EIS-0285/SA-08 Don Atkinson - TFN/Snohomish Natural Resource Specialist Proposed Action: Clearing C-trees along the south side of the right-of-way. Location: Raver - Covington Line 1, between towers 6/5 and 7/2. Work will be performed in the State of Washington. Proposed by: BPA Snohomish Region. Analysis: This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). Planning Steps 1. Identify facility and the vegetation management need. The project involves controlling all tall growing trees (C-Trees) within the right-of-way. All

203

EIS-0484: Montana-to-Washington Transmission System Upgrade Project in  

Broader source: Energy.gov (indexed) [DOE]

4: Montana-to-Washington Transmission System Upgrade Project 4: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana SUMMARY This EIS will evaluate the environmental impacts of a proposal to replace roughly 12 miles of transmission line on the Taft-Dworshak 500-kV transmission line, install new series capacitors on the Garrison-Taft 500-kV transmission line, and perform various upgrades to Bell, Hatwai, Dworshak, Garrison, and Hot Springs substations. The project website is http://efw.bpa.gov/environmental_services/Document_Library/M2W/. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVALABLE FOR DOWNLOAD May 3, 2012 EIS-0484: Notice of Intent to Prepare an Environmental Impact Statement

204

Commercialization plan laser-based decoating systems  

SciTech Connect (OSTI)

F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

Freiwald, J.; Freiwald, D.A.

1998-01-01T23:59:59.000Z

205

Testing of the Data Transmission System Monika Grothe, Ariane Frey, Massimiliano Turri, Max Wilder  

E-Print Network [OSTI]

Testing of the Data Transmission System Components Monika Grothe, Ariane Frey, Massimiliano Turri August 1999 Abstract This note provides a description of the set­up for testing the data transmission system electronics for the BaBar Silicon Vertex Tracker. #12; Contents 1 List of tested Components 3 2

California at Santa Cruz, University of

206

Tank waste remediation system systems engineering management plan  

SciTech Connect (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

Peck, L.G.

1998-01-08T23:59:59.000Z

207

EMTP modeling of CIGRE benchmark based HVDC transmission system operating with weak AC systems  

SciTech Connect (OSTI)

An EMTP based study of a CIGRE benchmark based HVDC system operating with weak ac systems is carried out. The modeled system provides a starting point for (a) educators teaching HVDC transmission courses and (b) for utility planners to develop their own low-cost dedicated digital simulators for training purposes. In this paper, modeling details of the ac-dc system, dc converters and control are presented. To validate the control schemes presented, the HVDC system is tested under ac-dc fault conditions. Results obtained from an EMTP-based study under these fault conditions are also presented in this paper.

Sood, V.K. [Hydro-Quebec, Varennes, Quebec (Canada); Khatri, V.; Jin, H. [Concordia Univ., Montreal, Quebec (Canada). Dept. of Electrical and Computer Engineering

1995-12-31T23:59:59.000Z

208

On Planning and Design of Logistics Systems for Uncertain Environments  

E-Print Network [OSTI]

On Planning and Design of Logistics Systems for Uncertain Environments Carlos F. Daganzo Department and design of logistics systems when the environment in which they are to be operated cannot be modeled introduced by uncertainty in the planning and design of logistics systems, and (ii) to suggest approximate

Daganzo, Carlos F.

209

GIS and Location Theory Based Bioenergy Systems Planning.  

E-Print Network [OSTI]

??This research is concerned with bioenergy systems planning and optimization modelling in the context of locating biomass power plants and allocating available biomass feedstock to… (more)

Dong, Jingyuan

2008-01-01T23:59:59.000Z

210

Systems Engineering Management Plan for the Tank Farm Contractor  

SciTech Connect (OSTI)

This plan describes the systems engineering process to develop and manage the technical baseline. It defines the documents, interfaces, and procedures used by the Tank Farm Contractor.

O'TOOLE, S.M.

2000-04-20T23:59:59.000Z

211

Economic Operation and Planning of Distribution System Sources.  

E-Print Network [OSTI]

??This thesis presents the findings of some research carried out pertaining to economic operation and planning distribution systems. An optimal capacitor switching algorithm is developed… (more)

Li, KaiYu

2010-01-01T23:59:59.000Z

212

Sensor Technologies for a Smart Transmission System An EPRI White Paper  

Broader source: Energy.gov (indexed) [DOE]

Sensor Technologies for a Smart Transmission System Sensor Technologies for a Smart Transmission System An EPRI White Paper December 2009 December 2009 Page 2 An EPRI White Paper Sensor Technologies for a Smart Transmission System Aging equipment and tight O&M budgets are putting the squeeze on transmission line and substation managers. A new gen- eration of low-cost sensors can help diag- nose equipment health to optimize mainte- nance and prevent catastrophic failures. Power delivery systems are among the largest and most diverse, remotely located investments. There are a num- ber of challenges that utilities face with their transmis- sion line and substation assets: * Existing transmission lines and substations are aging while the required reliability is increasing and the availability of clearance to perform maintenance is

213

DOE/EIS-0285; Bonneville Power Administration Transmission System Vegetation Management Program Final Environmental Impact Statement (May 2000)  

Broader source: Energy.gov (indexed) [DOE]

Statement - Appendices Statement - Appendices DOE/EIS-0285 Arrow-leaf Balsamroot Cooperating Agencies Bonneville Power Administration Transmission System Vegetation Management Program Final Environmental Impact Statement DOE/EIS-0285 APPENDICES May 2000 Table of Contents Appendix A - Public Involvement: Publications Appendix B - Biological Weed Control Agents Appendix C - Bonneville Pesticide Applicator Certification Plan Appendix D - Sample Educational Information Appendix E - Clearance Criteria Appendix F - FS Mitigation Measures and Background Appendix G - BLM Mitigation Measures and Background Appendix H - Herbicide Fact Sheets 2,4-D Azafenidin Bromacil Chlorsulfuron Clopyralid Dicamba Dichlobenil Diuron Fosamine Ammonium Glyphosate Halosulfuron-methyl Hexazinone Imazapyr Isoxaben Mefluidide Metsulfuron-methyl

214

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect (OSTI)

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

215

Planning for Home Renewable Energy Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Planning for Home Renewable Energy Systems Planning for Home Renewable Energy Systems Planning for Home Renewable Energy Systems November 11, 2013 - 8:49pm Addthis Planning for a home renewable energy system is a process that includes analyzing your existing electricity use, looking at local codes and requirements, deciding if you want to operate your system on or off of the electric grid, and understanding technology options you have for your site. | Photo by Francis Fine Art Photography. Planning for a home renewable energy system is a process that includes analyzing your existing electricity use, looking at local codes and requirements, deciding if you want to operate your system on or off of the electric grid, and understanding technology options you have for your site. | Photo by Francis Fine Art Photography.

216

(DOE/EIS-0285/SA-123): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/20/03  

Broader source: Energy.gov (indexed) [DOE]

20, 2003 20, 2003 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-123 Malin-Hilltop Elizabeth Johnson - TFR/The Dalles Natural Resource Specialist Proposed Action: Vegetation Management on Malin-Hilltop (Structures 20/5-29/1). Location: The project area lies to the southeast of Klamath Falls, OR, and is located in Modoc County, California. Proposed by: Bonneville Power Administrationn (BPA) Description of the Proposed Action: Trees are located under and adjacent to conductors. Should a fire occur, these trees are a hazard to the line and could cause serious damage to the conductors, resulting in significant problems for the transmission grid. BPA plans on

217

Frequency selection of an inductive contactless power transmission system for ocean observing  

Science Journals Connector (OSTI)

Inductive Contactless Power Transmission (ICPT) may suffer considerable power loss due to eddy currents in seawater when applied undersea rather than on land. The loss of power, which is harmful to transmission efficiency, is closely related to the transmission frequency. However, the relationship between the transmission frequency and the efficiency has rarely been studied. In this paper, we analytically deduce the power transmission efficiency in air and the power loss of ICPT in seawater. Based on the theoretical calculation and analysis, guidelines are provided to select the optimum frequency to maximise the efficiency. A case study is then performed to numerically determine the optimum frequency for an undersea ICPT system. Laboratory experiments are conducted to confirm the theoretical results. A prototype ICPT system power is designed and built. A lake trial demonstrates that the designed system is able to transmit power contactless to actual undersea observation network equipment underwater with an efficiency of approximately 85% and a 5 mm gap distance.

Jie Zhou; De-jun Li; Ying Chen

2013-01-01T23:59:59.000Z

218

Transmission | Open Energy Information  

Open Energy Info (EERE)

Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at...

219

Planning Motions for Robotic Systems Subject to Differential Constraints  

E-Print Network [OSTI]

Planning Motions for Robotic Systems Subject to Differential Constraints Alessandro De Luca of planning point-to-point motion for general robotic systems subject to non-integrable differential feedback linearization, are illustrated with the aid of four case studies: the plate-ball manipulation

De Luca, Alessandro

220

(DOE/EIS-0285/SA-82): Supplemental Analysis for Transmission System Vegetation Management Program FEIS (August 13, 2002)  

Broader source: Energy.gov (indexed) [DOE]

3,2002 3,2002 REPLY TO ATTN OF: KEPR-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-82 Jeffrey Hathhorn Redmond Deputy Regional Manager - TFI/IDAHO FALLS Proposed Action: Vegetation Management for twenty-four Substations in the Burley District. See list of facilities under planning step 1). Location: See list of facilities under Planning Step 1. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes total vegetation management (bare ground) in the electrical substations, and, noxious weed management and maintenance of landscaping within the property boundaries of the listed facilities. These facilities are all located within the Burley District of the Idaho Falls Region. Analysis: The attached checklist shows the resources that were found during this analysis and what

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Transmission and Distribution Future R&D Needs Planning, Operation, Control, and Visualization  

Broader source: Energy.gov (indexed) [DOE]

27-28, 2013 27-28, 2013 Washington, DC FY13 DOE/CERTS Transmission Reliability R&D Internal Program Review Research Projects Reliability Standards Analysis and Assessments  Frequency Response Event Collection and Analysis  NERC Interconnections 2012 Annual Grid Reliability Performance Analysis and Report Page 1 Reliability Standards Analysis and Assessment  Objective: Collect grid data and conduct grid reliability performance analysis to support the NERC committees/groups (Resources Subcommittee and RS- Frequency Working Group) in the following ways: - Perform grid reliability metrics analysis using data collected in CERTS applications as requested by the RS - Analyze collected data to assess reliability performance at different levels - Interconnection, Reliability Coordinator, Balancing Authority

222

Wien Automatic System Planning (WASP) Package | Open Energy Information  

Open Energy Info (EERE)

Wien Automatic System Planning (WASP) Package Wien Automatic System Planning (WASP) Package Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wien Automatic System Planning (WASP) Package Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways analysis Resource Type: Software/modeling tools Website: www-pub.iaea.org/MTCD/publications/PDF/CMS-16.pdf Cost: Free References: WASP[1] "The WASP-IV code permits finding the optimal expansion plan for a power generating system over a period of up to thirty years, within constraints given by the planner." References ↑ "WASP" Retrieved from "http://en.openei.org/w/index.php?title=Wien_Automatic_System_Planning_(WASP)_Package&oldid=403685

223

Transmission Reliability | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Reliability Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security. The Transmission Reliability Program is aligned with this strategic plan

224

Technology Portfolio Planning by Weighted Graph Analysis of System Architectures  

E-Print Network [OSTI]

Technology Portfolio Planning by Weighted Graph Analysis of System Architectures Peter Davison and Bruce Cameron Massachusetts Institute of Technology, Cambridge, MA 02139 Edward F. Crawley Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia Abstract5 Many systems undergo significant

de Weck, Olivier L.

225

Program plan for research and development of HVDC power systems and components  

SciTech Connect (OSTI)

The Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) has formulated a program for research and development (R and D) of high-voltage direct-current (HVDC) power transmission and delivery systems and associated dc components. The program includes analysis of future utility system applications, development of new HVDC control and protection concepts, and advanced dc component research. The structure of this program will provide an appropriate balance between mid- and long-term options for the enhancement of HVDC power transmission and delivery for future electric power systems. This HVDC research program is intended to further develop and improve an important energy transport technology, one that will offer many opportunities to reduce future energy costs. The economics and operating constraints in alternating-current (ac) solutions strongly indicate that new HVDC technology options will be advantageous and will provide an enhanced ability to use generation and transmission system resources efficiently and economically in existing electric energy systems. Studies show that further development of this technology will lead to significant integration of new HVDC techniques into existing electric energy systems with appreciable economic and technical benefit. The R and D proposed in this HVDC Program Plan will be of substantial value to future electric power systems.

Not Available

1984-01-01T23:59:59.000Z

226

Systems Approaches and CommunitySystems Approaches and Community Approaches for Coastal PlanningApproaches for Coastal Planning  

E-Print Network [OSTI]

and Communities · Social/Economic/Cultural Environment · The Resource Management System: · Policy and Planning · Integrated Coastal Management · Development and Research #12;External Environment Policy and Planning Resource Management Resource Development Resource Research NATURAL ECOSYSTEM Community MANAGEMENT SYSTEM

Charles, Anthony

227

Eastern Interconnection Planning Collaborative News Release | Department of  

Broader source: Energy.gov (indexed) [DOE]

Eastern Interconnection Planning Collaborative News Release Eastern Interconnection Planning Collaborative News Release Eastern Interconnection Planning Collaborative News Release The Eastern Interconnection Planning Collaborative (EIPC) today announced that its diverse array of stakeholders has reached consensus on the final set of "resource expansion futures" to be studied as part of the electric system transmission planning effort funded by the U.S. Department of Energy (DOE). Eastern Interconnection Planning Collaborative News Release More Documents & Publications Electricity Advisory Committee Meeting Presentations October 2011 - Interconnection-Wide Transmission Planning Processes 2012 National Electric Transmission Congestion Study - Philadelphia Workshop EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning

228

Adaptive neurofuzzy inference system-based pollution severity prediction of polymeric insulators in power transmission lines  

Science Journals Connector (OSTI)

This paper presents the prediction of pollution severity of the polymeric insulators used in power transmission lines using adaptive neurofuzzy inference system (ANFIS) model. In this work, laboratory-based pollution performance tests were carried out ...

C. Muniraj; S. Chandraseka

2011-01-01T23:59:59.000Z

229

On the Efficiency of the New York Independent System Operator Market for Transmission  

E-Print Network [OSTI]

-8061, USA, Chris Marnay, Staff Scientist, Electricity Market Studies, Environmental Energy Technologies 947208061, USA.; Emily S. Bartholomew, Senior Research Associate, Electricity Market Studies, EnvironmentalOn the Efficiency of the New York Independent System Operator Market for Transmission Congestion

230

Security analysis of the interaction between the UK gas and electricity transmission systems   

E-Print Network [OSTI]

Natural gas has become the UK’s foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

Whiteford, James Raymond George

2012-06-25T23:59:59.000Z

231

On adaptive transmission, signal detection and channel estimation for multiple antenna systems  

E-Print Network [OSTI]

This research concerns analysis of system capacity, development of adaptive transmission schemes with known channel state information at the transmitter (CSIT) and design of new signal detection and channel estimation schemes with low complexity...

Xie, Yongzhe

2004-11-15T23:59:59.000Z

232

100 Meter Time of Flight System for Transmission Experiments Michael Rapp, Yaron Danon, Robert Block  

E-Print Network [OSTI]

100 Meter Time of Flight System for Transmission Experiments Michael Rapp, Yaron Danon, Robert of the detectors was chosen to take advantage of the neutron beam geometry at the detector location, 100 meters

Danon, Yaron

233

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation operator  

Science Journals Connector (OSTI)

In order to improve the safety management of urban gas transmission and distribution system, failure mode and effects analysis (FMEA) was used to construct the reliability analysis ... the risk priority number (R...

Su Li; Weiguo Zhou

2014-12-01T23:59:59.000Z

234

Comments from the Virginia Department of Environmental Quality on PEPCO's Intention to Commence Planned Transmission Outages  

Broader source: Energy.gov (indexed) [DOE]

COMMONWEALTH of VIRGINIA COMMONWEALTH of VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY Street address: 629 East Main Street, Richmond, Virginia 23219 Mailing address: P.O. Box 10009, Richmond, Virginia 23240 Fax (804) 698-4500 TDD (804) 698-4021 www.deq.virginia.gov W. Tayloe Murphy, Jr. Secretary of Natural Resources Robert G. Burnley Director (804) 698-4000 1-800-592-5482 January 5, 2006 The Honorable Samuel W. Bodman Secretary of Energy United States Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Re: District of Columbia Public Service Commission Docket No. EO-05-01 Dear Secretary Bodman: The Virginia Department of Environmental Quality (DEQ) strongly opposes the Potomac Electric Power Company's (PEPCO) intention to commence planned maintenance outages of the

235

Low pressure electrospray ionization system and process for effective transmission of ions  

DOE Patents [OSTI]

A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

Tang, Keqi (Richland, WA); Page, Jason S. (Kennewick, WA); Kelly, Ryan T. (Wet Richland, WA); Smith, Richard D. (Richland, WA)

2010-03-02T23:59:59.000Z

236

Low pressure electrospray ionization system and process for effective transmission of ions  

DOE Patents [OSTI]

Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

Tang, Keqi (Richland, WA); Page, Jason S (Kennewick, WA); Kelly, Ryan T (West Richland, WA); Smith, Richard D (Richland, WA)

2012-05-08T23:59:59.000Z

237

The Electricity Transmission System Opportunities to Overcome Key Challenges  

Broader source: Energy.gov (indexed) [DOE]

Opportunities to Overcome Key Challenges Opportunities to Overcome Key Challenges Summary Results of Breakout Group Discussions Electricity Transmission Workshop Double Tree Crystal City, Arlington, Virginia November 2, 2012 Breakout Group Discussion Overview Opportunities to Overcome Key Challenges Each of the four breakout groups prioritized the critical issues facing the grid from the list of synthesized challenges identified in the first breakout session of the workshop. Focusing on these top priorities, each group proposed specific R&D activities and initiatives that DOE can pursue to overcome these challenges and address existing gaps. Summary of Synthesized Challenges A. Need improved understanding of the availability, utility, maintenance, exchange, and security of data and associated requirements.

238

1406 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 Market-Based Coordination of Transmission  

E-Print Network [OSTI]

with competitive generation capacity planning in electricity markets. The purpose of the model is a holistic simulation of generation and transmission capacity expansion in the market environment. The solution a joint energy and transmission auction market and a capacity mechanism. The joint auction market enables

Fu, Yong

239

SYSTEM PLANNING WITH THE HANFORD WASTE OPERATIONS SIMULATOR  

SciTech Connect (OSTI)

At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

CRAWFORD TW; CERTA PJ; WELLS MN

2010-01-14T23:59:59.000Z

240

July 31 Webinar to Provide Guidance on Transmission Feasibility and System  

Broader source: Energy.gov (indexed) [DOE]

July 31 Webinar to Provide Guidance on Transmission Feasibility and July 31 Webinar to Provide Guidance on Transmission Feasibility and System Impact Studies July 31 Webinar to Provide Guidance on Transmission Feasibility and System Impact Studies July 24, 2013 - 10:32am Addthis The U.S. Department of Energy (DOE) Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Conducting Transmission Feasibility and System Impact Studies," on Wednesday, July 31, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. The development of more renewable energy resources raises challenges and opportunities for the electric grid relating to upgrades and potential new construction. Likewise, commercial-scale renewable energy development

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System (Redirected from LEAP) Jump to: navigation, search Tool Summary Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

242

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

243

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Broader source: Energy.gov (indexed) [DOE]

precipitation with spatial and temporal flow variations in CO2brinerock systems Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)...

244

Building Energy Software Tools Directory: AEPS System Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AEPS System Planning AEPS System Planning ASC logo The Alternative Energy Product Suite (AEPS) System Planning tool is a software application for the design, modeling, and simulation of electrical power systems with an emphasis on renewable energy sources (solar, wind, and hydro). The application calculates power generation, consumption, and storage for modeled systems. Power and cost data can be analyzed to optimize the modeled system based on user objectives and priorities. The Modeling capability supports graphically constructing an electrical power/alternative energy system consisting of site, generation, storage, and load components, including electrical conversion and control hardware. Models can support on-grid and off-grid systems. The Simulation capability generates, consumes, and uses grid and

245

RPP Computer Automated Surveillance System (CASS) to Tank Monitor and Control System (TMACS) transfer project plan  

SciTech Connect (OSTI)

Management plan to ensure the orderly, systematic transfer of alarms from the retired Computer Automated Surveillance System (CASS) to the Tank Monitor and Control System (TMACS).

SHIPLER, C.E.

1999-07-13T23:59:59.000Z

246

January 4, 2007 Planning in Multiagent Systems  

E-Print Network [OSTI]

· Local more efficient reaction on incidents (when communication limited) & no central point of failure of MAP problems Four ways to look at multiagent planning problems · Strongly related Independent actions ­ Limited shared resources Requires crisp coordination Examples ­ Lift a box together ­ Car

de Weerdt, Mathijs

247

Planned Changes to the LBNL Shuttle Bus System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planned Changes to the LBNL Shuttle Bus System Planned Changes to the LBNL Shuttle Bus System Speaker(s): Steve Black Date: December 5, 2006 - 12:00pm Location: 90-3122 BACKGROUND: Several recent issues of Today At Berkeley Lab, including for today, December 1, have called our attention to the planned changes to the Lab's shuttle bus system. If you have not yet viewed the description of the planned new system and the maps showing the new routes it is advisable for you to do so as the changes are significant, not just a "fine tuning". Several EETD staff members and shuttle bus riders have expressed serious concerns about the changes, which has prompted us to set up this special seminar. DESCRIPTION: Steve Black, who is fairly new to the Lab, has responsibility for a number of Laboratory support services

248

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect (OSTI)

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01T23:59:59.000Z

249

Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint  

SciTech Connect (OSTI)

The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

2007-03-01T23:59:59.000Z

250

Application of multi-variable control for automatic frequency controller of HVDC transmission system  

SciTech Connect (OSTI)

In an HVDC transmission system that links two ac power systems, the automatic frequency controller (AFC) calculates power to be interchanged between the two ac systems according to their frequencies thereby improving the frequency characteristics of the two power systems. This paper introduces a newly developed dc AFC system, which applies a multi-variable control to the dc system-based frequency control. It is capable of controlling the frequencies of the two ac systems optimally while maintaining their stability. This system was developed for one of Japan's HVDC transmission facilities and produced good results in a combined test using a power system simulator. The field installation will be completed in March 1993, when the AFC system will enter service.

Sanpei, Masatoshi (Electric Power Development Co., Tokyo (Japan)); Kakehi, Atsuyuki; Takeda, Hideo (Toshiba Corp., Tokyo (Japan))

1994-04-01T23:59:59.000Z

251

Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations  

SciTech Connect (OSTI)

This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

Brancucci Martinez-Anido, C.; Hodge, B. M.

2014-09-01T23:59:59.000Z

252

Analysis of transmission system faults in the phase domain  

E-Print Network [OSTI]

the zero, positive and negative sequences. d) Calculate the post-fault line current ij 2 2 2 ij j ij z VI ?= (2.15) where ij is the primitive impedance element between nodes i and j. After all these sequence quantities... in Figure 5. The data of this system is listed in Tables 1, 2, and 3. Figure 5. System diagram for the 3-bus system Table 1 Generator data (3 Bus system) Generator impedance(p.u.) # Gen. connection P N Z 1 Y-grounded 0.05j 0.05j 0.15j 2...

Zhu, Jun

2004-11-15T23:59:59.000Z

253

Definition: Transmission Planner | Open Energy Information  

Open Energy Info (EERE)

Planner Planner Jump to: navigation, search Dictionary.png Transmission Planner The entity that develops a long-term (generally one year and beyond) plan for the reliability (adequacy) of the interconnected bulk electric transmission systems within its portion of the Planning Authority Area.[1] Related Terms transmission lines, transmission line, planning authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transmission_Planner&oldid=502606" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

254

The Reliability Investigation on ACSR Splice Connector Systems Used in Overhead Power transmission Lines  

SciTech Connect (OSTI)

Due to material discontinuity and inherited forming mechanism from a crimped-type splice connector, the associated conductor-connector system is highly sensitive to system components aging, especially during high-temperature operations. Furthermore, due to the increase in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than the original designed values. This has led to the accelerated aging and degradation of conductor-connector systems. The implications of connector aging are two-fold: (1) significant increase in resistivity of the splice connector and (2) significant reduction in the connector clamping strength. Therefore, splice connectors are one of the weakest links in the electric power transmission infrastructure. In this paper we will discuss the reliability of splice connector systems, including both single stage and two stage splice connectors, used in ACSR conductor of transmission lines under high temperature operations.

Wang, Jy-An John [ORNL] [ORNL; Jiang, Hao [ORNL] [ORNL; Ren, Fei [ORNL] [ORNL

2012-01-01T23:59:59.000Z

255

Lessons Learned: Planning and Operating Power Systems with Large  

E-Print Network [OSTI]

flow) run-of-river hydro plant. While there are plans for large size photovoltaic (PV) installations on both islands, small residential roof-mounted PV systems have already proliferated, and an almost exponential growth of these small systems is forecasted. Figure 1 Small Net Metered PV Systems Installed

256

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-35)  

Broader source: Energy.gov (indexed) [DOE]

14, 2001 14, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-35) James Jellison - TFO/Olympia Natural Resource Specialist Proposed Action: Vegetation Management along the Chehalis-Mayfield No. 1 230 kV Transmission Line ROW and the Mossy Rock-Chehalis Transmission Line ROW, between 7/1 to 27/10. The proposed work will be accomplished in the indicated sections of the transmission line corridor with an average corridor width of 162 feet. Location: The ROW is located in Lewis County, WA, being in the Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways

257

Multiannual patterns of influenza A transmission in Chinese live bird market systems  

E-Print Network [OSTI]

Multiannual patterns of influenza A transmission in Chinese live bird market systems Kim M. Pepin and emergence in humans is confounded by insufficient empirical data on the ecology and dynamics of AIV in poultry systems. To address this gap, we quantified incidence patterns for 13 hemagglutinin subtypes

Webb, Colleen

258

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Broader source: Energy.gov (indexed) [DOE]

study heat extraction from hot porous systems by injection of cold CO 2 . * Reactive chemistry experiments for CO 2 -brine-rock are being assembled (INL). 6 | US DOE Geothermal...

259

New Mexico/Transmission | Open Energy Information  

Open Energy Info (EERE)

New Mexico/Transmission New Mexico/Transmission < New Mexico Jump to: navigation, search NewMexicoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in New Mexico is part of the Southwest Area Transmission power grid which is part of the WestConnect Transmission Planning area, and covers the desert southwest of the United States. The Western Electricity Coordinating Council (WECC) is the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in New Mexico. In addition, WECC provides an environment for coordinating the operating and planning

260

Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line  

E-Print Network [OSTI]

with a transmission line Jamal Daafouz, Marius Tucsnak and Julie Valein Avril 2014 Abstract We consider an infinite dimensional system modeling a boost converter connected to a load via a transmission line. The governing.tucsnak@univ-lorraine.fr, julie.valein@univ-lorraine.fr 1 #12;converters connected to transmission lines is a very difficult task

Valein, Julie - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CRAD, Pressurized Systems and Cryogens Assessment Plan  

Broader source: Energy.gov [DOE]

Assure personnel health and safety through regularly scheduled inspections and maintenance on pressure vessels and equipment, compressed gases and gas cylinders, vacuum equipment and systems, hydraulics, and cryogenic materials and systems.

262

Sensor, method and system of monitoring transmission lines  

SciTech Connect (OSTI)

An apparatus, method, and system for measuring the magnetic field produced by phase conductors in multi-phase power lines. The magnetic field measurements are used to determine the current load on the conductors. The magnetic fields are sensed by coils placed sufficiently proximate the lines to measure the voltage induced in the coils by the field without touching the lines. The x and y components of the magnetic fields are used to calculate the conductor sag, and then the sag data, along with the field strength data, can be used to calculate the current load on the line and the phase of the current. The sag calculations of this invention are independent of line voltage and line current measurements. The system applies a computerized fitter routine to measured and sampled voltages on the coils to accurately determine the values of parameters associated with the overhead phase conductors.

Syracuse, Steven J.; Clark, Roy; Halverson, Peter G.; Tesche, Frederick M.; Barlow, Charles V.

2012-10-02T23:59:59.000Z

263

(DOE/EIS-0285/SA-81): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 7/9/02  

Broader source: Energy.gov (indexed) [DOE]

July 9,2002 July 9,2002 REPLY TO ATTN OF: KEPR-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-81) Randy Melzer Redmond Deputy Regional Manager - TFR/REDMOND Proposed Action: Vegetation Management for fifteen Substations in The Dalles District. (See list of facilities under planning step 1). Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes total vegetation management (bare ground) in the electrical substations, and, noxious weed management and maintenance of landscaping within the property boundaries of the listed facilities. These facilities are all located within The Dalles District of the Redmond Region. Analysis: The attached checklist shows the resources that were found during this analysis and what

264

(DOE/EIS-0285/SA-74): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 7/1/02  

Broader source: Energy.gov (indexed) [DOE]

2002 2002 REPLY TO ATTN OF: KEPR-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-74) Randy Melzer Redmond Deputy Regional Manager - TFR/REDMOND Proposed Action: Vegetation Management for five Substations in the Malin District. (See list of facilities under planning step 1). Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes total vegetation management (bare ground) in the electrical substations, and, noxious weed management and maintenance of landscaping within the property boundaries of the listed facilities. These facilities are all located within the Malin District of the Redmond Region. Analysis: The attached checklist shows the resources that were found during this analysis and what mitigation measures are required to protect those resources. In addition,

265

(DOE/EIS-0285/SA-78): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (07/01/02)  

Broader source: Energy.gov (indexed) [DOE]

2002 REPLY TO ATTN OF: KEPR-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-78) Randy Melzer Redmond Deputy Regional Manager - TFR/REDMOND Proposed Action: Vegetation Management for ten Substations in the Redmond District. (See list of facilities listed under planning step 1). Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes total vegetation management (bare ground) in the electrical substations, and, noxious weed management and maintenance of landscaping within the property boundaries of the listed facilities. These facilities are all located within the Redmond District of the Redmond Region. Analysis: The attached checklist shows the resources that were found during this analysis and what mitigation measures are required to protect those resources. In

266

Generic planning and control of automated material handling systems  

Science Journals Connector (OSTI)

This paper discusses the problem to design a generic planning and control architecture for automated material handling systems (AMHSs). We illustrate the relevance of this research direction, and then address three different market sectors where AMHSs ... Keywords: Automated material handling systems, Generic control architecture, Real-time scheduling

S. W. A. Haneyah; J. M. J. Schutten; P. C. Schuur; W. H. M. Zijm

2013-04-01T23:59:59.000Z

267

Water Supply Planning Using an Expert Geographic Information System  

E-Print Network [OSTI]

An expert geographic information system (expert GIS) for long-term regional water supply planning has been developed. This system has been evaluated through a case study examining a l9-county study region in South Texas with several water supply...

McKinney, Daene C.; Burgin, John F.; Maidment, David R.

268

Configuration management program plan for Hanford site systems engineering  

SciTech Connect (OSTI)

This plan establishes the integrated management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford Site Technical Baseline.

Kellie, C.L.

1996-03-28T23:59:59.000Z

269

Reliability modeling of transmission and distribution systems including dependent failures  

E-Print Network [OSTI]

is considered. Therefore, the trans i t ion rate mat r i x of the entire system need not be generated. Th i s method is compared wi th the sequential method for normal and stormy weather condit ions, and is then extended to include m weather conditions... . 9 E . Cut -Set Equations 10 III M A R K O V C U T - S E T M E T H O D 13 A . Basic Approach 13 B . Markov Cut -Set Me thod 13 C . Examp le 18 D . Compar ison wi th the Sequential Me thod 22 E . Cut-Sets w i th m Weather States 24 F . Extens...

Beydoun, Rami Sami

2012-06-07T23:59:59.000Z

270

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network [OSTI]

applied to the case of hydroelectric facilities with large3. For comparison, the hydroelectric system in California asas droughts which reduce hydroelectric energy availability,

Kahn, E.

2011-01-01T23:59:59.000Z

271

An optimally designed stack effluent sampling system with transpiration for active transmission enhancement  

E-Print Network [OSTI]

for which there is no true real-time measurement is particulate mass. A light attenuation system that is based on the opacity of the stack gas is used in an attempt to fill this void. Though this system provides monitoring on a real time basis...AN OPTIMALLY DESIGNED STACK EFFLUENT SAMPLING SYSTEM WITH TRANSPIRATION FOR ACTIVE TRANSMISSION ENHANCEMENT TROY J. SCHROEDER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Schroeder, Troy J.

1995-01-01T23:59:59.000Z

272

Open Access Transmission Tariff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission | OATT Transmission | OATT Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Western Open Access Transmission Service Tariff Revision Western Area Power Administration submitted its revised Open Access Transmission Service Tariff with the Federal Energy Regulatory Commission on Sept. 30, 2009. The tariff became effective on Dec. 1, 2009, as modified by Western's March 2, 2011 compliance filing. The revised tariff was developed to comply with FERC Order No. 890 and to be consistent with Western's statutory and regulatory requirements. It addresses changes in transmission services and planning. FERC issued an order on Dec. 2, 2010, granting Western's petition for a Declaratory Order approving the tariff as an acceptable reciprocity tariff, subject to Western making a compliance filing within 30 days to address items in Attachment C, Attachment P and Attachment Q. Western made its compliance filing on March 2, 2010, addressing FERC's Dec. 2, 2010, order. FERC accepted Western's March 2, 2011 compliance filing on April 25, 2011. Western has made several ministerial filings to its OATT as part of FERC's eTariff viewer system, the last of these was approved on March 29, 2013. Further detail can be found in the links below.Current OATT

273

300 Area waste acid treatment system closure plan  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17T23:59:59.000Z

274

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network [OSTI]

mean value of load and its variance as follows: where W =as a function of load for a given system. This follows fromto some load W. We can write this as follows: LOLP = Prob [

Kahn, E.

2011-01-01T23:59:59.000Z

275

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

SciTech Connect (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

276

Site Office Safety System Oversight Staffing Plan - Blank  

Broader source: Energy.gov (indexed) [DOE]

Site Office Safety System Oversight Staffing Plan" Site Office Safety System Oversight Staffing Plan" "Date" "ACTIVITIES","Days for Activity in each Fiscal Year",,,,,,"Notes" ,"FY09","FY10","FY11","FY12","FY13","FY14" "Program Tasks" "Total Task Days",0,0,0,0,0,0,"Number of days required for activities that need to be completed regardless of number of staff" "Individual Tasks" "Qualification Training" "Continuing Training" "Collateral Duties" "Administrative" "Leave, Holidays" "Total Individual Days",0,0,0,0,0,0,"Number of days required for activities that need to be completed by each individual"

277

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-09)  

SciTech Connect (OSTI)

BPA proposes to clear unwanted vegetation from the rights of way and access roads for BPA's McNary-Santiam No. 1 Transmission Line, beginning in the summer of 2000 and ending in July, 2001. This Supplemental Analysis finds that: (1) the proposed actions are substantially consistent with the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285) and ROD; and (2) there are no new circumstances or information relevant to environmental concerns and bearing on the proposed actions or their impacts. Therefore, no further NEPA documentation is required.

N /A

2001-05-01T23:59:59.000Z

278

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-40)  

Broader source: Energy.gov (indexed) [DOE]

9, 2002 9, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-40) William T. Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Vegetation Management along the Allston-Keeler 500 kV Transmission Line ROW exclusive to BLM lands between 8/4 through 27/4. The proposed work will be accomplished in the indicated sections of the transmission line corridor with an average corridor width of 150 feet. Location: The ROW is located in Washington and Columbia County, in the State of Oregon, Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways

279

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-06)  

SciTech Connect (OSTI)

BPA proposes to apply selected herbicides to control annual weeds that are competing with native grasses that were seeded two years ago. Herbicides will also be applied at the base of the existing wooden transmission line poles located in the pasture area. BPA would conduct the vegetation control with the goal of promoting native grass growth and to provide fire protection for the wooden transmission line poles. The pasture area is, for the most part, flat with elevation increasing towards the northwest corner. Slopes are not steep in that area. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD).

N /A

2001-04-13T23:59:59.000Z

280

2010 IREP Symposium-Bulk Power System Dynamics and Control VIII (IREP), August 1-6, 2010, Buzios, RJ, Brazil Probabilistic Resource Planning With Explicit Reliability Considerations  

E-Print Network [OSTI]

for designing new planning procedures in a competitive environment and paves the way to a fully probabilistic]. In a vertically integrated environment, these two aspects are addressed by two distinct but coordinated processes, an Independent System Operator (ISO) or Regional Transmission Organization (RTO) who bears the responsibility

Gross, George

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vice President, Transmission Marketing & Sales  

Broader source: Energy.gov [DOE]

Within Transmission Services at Bonneville Power Administration (BPA), Transmission Marketing and Sales (TS) provides open access to the Federal Transmission System (FTS) consistent with...

282

Evaluation of power system security and development of transmission pricing method  

E-Print Network [OSTI]

benefits in transmission services. The proposed method shows the transmission transaction cost of reliability benefits when transmission line capacities are considered. The ratio between allocation by transmission line capacity-use and allocation...

Kim, Hyungchul

2004-11-15T23:59:59.000Z

283

Genome Rearrangement and Planning Institute of Information Systems  

E-Print Network [OSTI]

Genome Rearrangement and Planning Esra Erdem Institute of Information Systems Vienna University Avenue, Toronto, Canada e.tillier@utoronto.ca Abstract The genome rearrangement problem is to find the most eco­ nomical explanation for observed differences between the gene orders of two genomes

Erdem, Esra

284

Planning in the JAVELIN QA System Laurie S. Hiyakumoto  

E-Print Network [OSTI]

Planning in the JAVELIN QA System Laurie S. Hiyakumoto May 2004 CMU-CS-04-132 School of Computer and controlling their execution. This document describes the current implementation of the Planner Module based (ARDA)'s Advanced Question Answering for Intelligence (AQUAINT) Program under contract MDA908-02-C-0009

285

Visopt ShopFloor System: Integrating Planning into Production Scheduling  

E-Print Network [OSTI]

Visopt ShopFloor System: Integrating Planning into Production Scheduling Roman Barták Charles, the first machine pre-processes the item (3 time units) that is finished in the second machine (additional 3 in parallel and a worker is required (left) or via a serial production when the item is pre- processed

Bartak, Roman

286

Making space for reconciliation in Canada's planning system  

E-Print Network [OSTI]

.........................282 APPENDIX E. OFFSHORE OIL GOVERNANCE TIMELINE............................................ 286 APPENDIX F. HISTORY OF ENVIRONMENTAL ASSESSMENT IN CANADA................289 Making space for reconciliation in Canada's planning system vi TABLE... tightly together. Because of our isolation, unique forms of life have evolved — birds, mammals, fish, plants and insects — in plenty. The forests are renowned for growing trees of high quality, for large seabird nesting colonies, unique salmon...

Galbraith, Lindsay

2014-10-07T23:59:59.000Z

287

Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint  

SciTech Connect (OSTI)

This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

Zhang, Y.; Allen, A.; Hodge, B. M.

2014-02-01T23:59:59.000Z

288

Tank waste remediation system multi-year work plan  

SciTech Connect (OSTI)

The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

Not Available

1994-09-01T23:59:59.000Z

289

The design of high-speed data transmission method for a small nuclear physics DAQ system  

E-Print Network [OSTI]

A large number of data need to be transmitted in high-speed between Field Programmable Gate Array (FPGA) and Advanced RISC Machines 11 micro-controller (ARM11) when we design a small data acquisition (DAQ) system for nuclear experiments. However, it is a complex problem to beat the target. In this paper, we will introduce a method which can realize the high-speed data transmission. By this way, FPGA is designed to acquire massive data from Front-end electronics (FEE) and send it to ARM11, which will transmit the data to other computer through the TCP/IP protocol. This paper mainly introduces the interface design of the high-speed transmission between FPGA and ARM11, the transmission logic of FPGA and the driver program of ARM11. The research shows that the maximal transmission speed between FPGA and ARM11 by this way can reach 50MB/s theoretically, while in nuclear physics experiment, the system can acquire data with the speed of 2.2MB/s.

Zhou, Wenxiong; Nan, Gangyang; Zhang, Jianchuan

2013-01-01T23:59:59.000Z

290

The electric delivery system-a complex network of transmission and distribu  

Broader source: Energy.gov (indexed) [DOE]

electric delivery system-a complex network of transmission and distribu- electric delivery system-a complex network of transmission and distribu- tion lines, substations, and electrical components-is aging. To deliver more electricity and ensure reliability, the grid needs to be modernized. As the grid is being upgraded, it is also being challenged by increased needs to integrate variable renewable energy resources such as solar and wind, the potential growth of electric vehicles and related charging infrastructure, and the potential development of new electricity market designs and operating practices. To help decision makers better understand how these changes and challenges are shaping electricity delivery systems, as well as provide the industry with the tools necessary to cope with the new designs, the Reliability and Markets activ-

291

Electricity Transmission, A Primer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system,...

292

Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy  

SciTech Connect (OSTI)

A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

Akatay, M. Cem [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Zvinevich, Yury; Ribeiro, Fabio H., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Forney Hall of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Baumann, Philipp [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States)] [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States); Stach, Eric A., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2014-03-15T23:59:59.000Z

293

Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint  

SciTech Connect (OSTI)

Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.

Ibanez, E.; Milligan, M.

2012-02-01T23:59:59.000Z

294

Modeling Interregional Transmission Congestion in the NationalEnergy Modeling System  

SciTech Connect (OSTI)

Congestion analysis using National Energy Modeling National Energy Modeling System (NEMS) or NEMS-derivatives, such as LBNL-NEMS, is subject to significant caveats because the generation logic inherent in NEMS limits the extent to which interregional transmission can be utilized and intraregional transmission is not represented at all. The EMM is designed primarily to represent national energy markets therefore regional effects may be simplified in ways that make congestion analysis harder. Two ways in particular come to mind. First, NEMS underutilizes the capability of the traditional electric grid as it builds the dedicated and detached grid. Second, it also undervalues the costs of congestion by allowing more transmission than it should, due to its use of a transportation model rather than a transmission model. In order to evaluate benefits of reduced congestion using LBNL-NEMS, Berkeley Lab identified three possible solutions: (1) implement true simultaneous power flow, (2) always build new plants within EMM regions even to serve remote load, and (3) the dedicated and detached grid should be part of the known grid. Based on these findings, Berkeley Lab recommends the following next steps: (1) Change the build logic that always places new capacity where it is needed and allow the transmission grid to be expanded dynamically. (2) The dedicated and detached grid should be combined with the traditional grid. (3) Remove the bias towards gas fired combine cycle and coal generation, which are the only types of generation currently allowed out of region. (4) A power flow layer should be embedded in LBNL-NEMS to appropriately model and limit transmission.

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-05-25T23:59:59.000Z

295

Configuration management program plan for Hanford site systems engineering  

SciTech Connect (OSTI)

This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline.

Hoffman, A.G.

1994-11-14T23:59:59.000Z

296

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-15)  

SciTech Connect (OSTI)

BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission lines. Work also includes clearing of a small (<1/4 mile) section of access road. All work will be in accordance with the National Electrical Safety Code and BPA standards. See Section 1.1 of the attached checklist for detailed information on each section of the referenced transmission lines. BPA will conduct the vegetation control with the goal of removing tall-growing vegetation that is currently or will soon be a hazard to the transmission lines and where possible to promote low-growing plant communities in the right-of-way. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). The vegetation needing control is mainly Douglas Fir, Alder, and blackberries as indicated in Section 1.2 of the attached checklist. The work involved in the ROW includes: clearing tall growing vegetation that is currently or will soon pose a hazard to the lines; treating the associated stumps and re-sprouts with herbicide to ensure that the roots are killed preventing new sprouts; and selectively eliminating tall growing vegetation before it reaches a height or density to begin competing with low-growing vegetation. All work will take place in existing rights-of-ways and around transmission structures. All work will be accomplished by selective vegetation control methods to assure that there is little potential harm to non-target vegetation and to low-growing plants. The work will provide system reliability and fire protection. Also, all off right-of-way trees that are potentially unstable and will fall within a minimum distance or into the zone where the conductors swing will be removed. Access roads will be treated using mowing and herbicide applications. The work will provide system reliability. The subject transmission lines range from 115kV to 230kV and are made up of accompanying access roads, steel and wooden transmission line structures and associated switching platforms. The minimum clearance ranges from 21 feet for 115kV lines to 23 feet for 230kV lines. ROW easement widths vary along the length of the project. Vegetation control for this project is designed to provide a 3 year maintenance free interval. In summary, the overall vegetation management scheme will be to selectively remove tall growing vegetation then apply selective herbicide treatment using cut stump applications.

N /A

2001-06-19T23:59:59.000Z

297

Tank waste remediation system privatization phase 1 infrastructure project, systems engineering implementation plan  

SciTech Connect (OSTI)

This Systems Engineering Implementation Plan (SEIP) describes the processes, products, and organizational responsibilities implemented by Project W-519 to further define how the project`s mission, defined initially by the Tank Waste Remediation System Phase 1 Privatization Infrastructure Project W-503 Mission Analysis Report (Hoertkorn 1997), will be accomplished using guidance provided by the Tank Waste Remediation System Systems Engineering Management Plan (SEMP) (Peck 1998). This document describes the implementation plans for moving from a stated mission to an executable cost, schedule, and technical baseline and to help ensure its successful completion of those baselines.

Schaus, P.S.

1998-08-19T23:59:59.000Z

298

National Ignition Facility Cryogenic Target Systems Interim Management Plan  

SciTech Connect (OSTI)

Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety & Health (ES&H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for delivering this system will be decided at the national level, based on experiment campaign requirement dates that will be derived through this process. The current milestone date for achieving indirect-drive ignition on the NIF is December 2010. Maintaining this milestone requires that the cryogenic systems be complete and available for fielding experiments early enough that the planned experimental campaigns leading up to ignition can be carried out. The capability of performing non-ignition cryogenic experiments is currently required by March 2006, when the NIF's first cluster of beams is operational. Plans for cryogenic and non-cryogenic experiments on the NIF are contained in NNSA's Campaign 10 Program Plans for Ignition (MTE 10.1) and High Energy Density Sciences (MTE 10.2). As described in this document, the NCTS Program Manager is responsible for managing NIF Cryogenic Target Systems development, engineering, and deployment. Through the NIF Director, the NCTS Program Manager will put in place an appropriate Program Execution Plan (draft attached) at a later time consistent with the maturing and funding these efforts. The PEP will describe management methods for carrying out these activities.

Warner, B

2002-04-25T23:59:59.000Z

299

Reliability evaluation for large-scale bulk transmission systems: Volume 1, Comparative evaluation, method development, and recommendations: Final report  

SciTech Connect (OSTI)

This volume (1 of 2) contains a comparative evaluation of existing transmission system reliability programs (SYREL, GATOR, RECS) and relevant mathematical methods for transmission reliability analysis. Several new and enhanced methods in the areas of network analysis, contingency selection, remedial action, and reliability index calculation, developed and tested during the project, are described. Recommendations for methods to be used in a production grade transmission reliability assessment program are presented. 69 figs., 41 tabs.

Lam, B.P.; Lawrence, D.J.; Reppen, N.D.; Ringlee, R.J.

1988-01-01T23:59:59.000Z

300

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Technical Report NREL/TP-7A20-51294 September 2011 Integrating Renewable Energy into the Transmission and Distribution System of the

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of a thyristor valve for next generation 500kV HVDC transmission systems  

SciTech Connect (OSTI)

A high voltage thyristor valve is the basic component of an HVDC transmission system. Development of a 500kV valve for next generation HVDC transmission systems is described. First, the power loss of the valve is analyzed to decide a reasonable wafer size for the light triggered thyristor. From these results, a six inch diameter wafer size is selected. The light triggered thyristor, with ratings of 8kV and 3.5kA, is developed using the six inch wafer. The designing of the valve employing the thyristor and test results with the prototype valve prove that a 500kV valve can be realized by the design method.

Hasegawa, T. [Kansai Electric Power Co., Inc., Osaka (Japan)] [Kansai Electric Power Co., Inc., Osaka (Japan); Yamaji, K. [Shikoku Electric Power Co., Inc., Takamatsu (Japan)] [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Irokawa, H. [Electric Power Development Co., Ltd., Tokyo (Japan)] [Electric Power Development Co., Ltd., Tokyo (Japan); Shirahama, H.; Tanaka, C.; Akabane, K.

1996-10-01T23:59:59.000Z

302

Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid  

Open Energy Info (EERE)

with CO2 as Heat Transmission Fluid with CO2 as Heat Transmission Fluid Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Previous and current attempts to develop EGS in the U.S., Japan, Europe and Australia have all employed water as a heat transmission fluid. Water has many properties that make it a favorable medium for heat extraction, but it also has serious drawbacks. The use of supercritical CO2 (scCO2) instead of water as heat extraction fluid was suggested by Donald Brown of Los Alamos National Laboratory as a "game changing" alternative that can avoid the problems of aqueous fluids, make heretofore inaccessible energy resources available for human use, and provide ancillary benefits by using and storing CO2.

303

A robust coordinated control scheme for HVDC transmission with parallel AC systems  

SciTech Connect (OSTI)

This paper introduces a practical control philosophy for HVDC transmission in parallel operation to an AC system with particular emphasis on coordination of both transient and dynamic stability. Systematic development of the control scheme on the basis of on-line identification, optimal control and rule-based bang-optimal coordination principles is presented. Verification tests of the scheme on a physical HVDC/AC system simulator show that the simple control computer algorithm is practical and robust. The controller can successfully distinguish between different system fault severities and adapts its output signals to provide maximum synchronizing torque and ensure optimal damping of power oscillations.

To, K.W.V.; David, A.K. (Hong Kong Polytechnic (Hong Kong). Dept. of Electrical Engineering); Hammad, A.E. (N.E. Swiss Power Co., Baden (Switzerland))

1994-07-01T23:59:59.000Z

304

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-141- SalemAlbany #2)  

Broader source: Energy.gov (indexed) [DOE]

1- SalemAlbany #2) 1- SalemAlbany #2) Mark Newbill Natural Resource Specialist- TFE/Chemawa Proposed Action: Vegetation Management for the Salem Albany #2 115 kV transmission line from Salem Substation to Albany Substation. Location: The project is located in the BPA Eugene Region, within Marion, Polk, and Benton Counties, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, access roads, switch platforms, microwave beam paths, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission

305

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-140- SalemAlbany1)  

Broader source: Energy.gov (indexed) [DOE]

0- SalemAlbany1) 0- SalemAlbany1) Mark Newbill Natural Resource Specialist- TFE/Chemawa Proposed Action: Vegetation Management for the Salem Albany #1 115 kV transmission line from Salem Substation to Albany Substation. Location: The project is located in the BPA Eugene Region, Marion, Linn, and Benton County, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, access roads, switch platforms, microwave beam paths, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission

306

Transmission Design at the National Level: Benefits, Risks and Possible Paths Forward  

E-Print Network [OSTI]

Electric Energy System #12;Transmission Design at the National Level: Benefits, Risks and Possible Paths of Transmission and Distribution, Southern Company Brad Nickell, Director of Transmission Planning, Western interconnection consisting of one (in the case of ERCOT) or more regions. The ability to move electric energy

307

Adapting the Transmission Reach in Mixed Line Rates WDM Transport Networks  

E-Print Network [OSTI]

Adapting the Transmission Reach in Mixed Line Rates WDM Transport Networks K. Christodoulopoulos, K to support the transmission at different line rates. Previously proposed planning algorithms, have used a transmission reach limit for each modulation format/line rate, mainly driven by single line rate systems

Varvarigo, Emmanouel "Manos"

308

Bibliography on transmission access issues  

SciTech Connect (OSTI)

This paper presents a bibliography on issues related to transmission access in electric power systems. There are 233 citations referenced in this bibliography. This bibliography presents a collection of selected literature on issues related to transmission access. It does not contain all of the material available on this subject or the categories contained herein. Some readers may feel that citations within this bibliography should be strictly limited to transmission system issues and not include energy pricing or reliability issues. However, it was the decision of the Subcommittee of the IEEE Task Force on Transmission Access and Nonutility Generation that selected entries relating to reliability and energy pricing, most relevant to transmission access, should be included. This decision was made because certain issues relating to reliability, transmission and energy pricing are perceived by the industry to be critical in the discussion of transmission access. The bibliography has been divided into the following sections or sub-sections: 2.0 Operational (Engineering) Issues, 3.0 Planning, 4.0 Reliability, 5.1 Economics: Costing, 5.2(a) Economics: Location-Differentiated Pricing, 5.2(b) Economics: Time-Differentiated Pricing, 5.3 Economics: Brokering, Bidding, and Auctioning, 6.0 Regulatory, and 7.0 General. Although the content of many publications spanned two or more of these sections, the desire to limit document length required that all publications be placed in the single most appropriate section. Publications are sorted according to author or publication resource.

Lankford, C.B. [Oklahoma Gas and Electric Co., Oklahoma City, OK (United States)] [Oklahoma Gas and Electric Co., Oklahoma City, OK (United States); McCalley, J.D. [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States); Saini, N.K. [Entergy Services Corp., Metairie, LA (United States)] [Entergy Services Corp., Metairie, LA (United States)

1996-02-01T23:59:59.000Z

309

HEMP emergency planning and operating procedures for electric power systems  

SciTech Connect (OSTI)

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. (Electrotek Concepts, Inc., Knoxville, TN (United States))

1991-01-01T23:59:59.000Z

310

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

311

Long-Range Energy Alternatives Planning System (LEAP) | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Long-Range Energy Alternatives Planning System (LEAP) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Long-Range Energy Alternatives Planning System (LEAP) Agency/Company /Organization: Stockholm Environmental Institute Sector: Climate, Energy Topics: Potentials & Scenarios Complexity/Ease of Use: Moderate Website: www.energycommunity.org/default.asp?action=47 Cost: Free Equivalent URI: cleanenergysolutions.org/content/long-range-energy-alternatives-planni

312

System Planning for Low-Activity Waste at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Technical Review of System Planning Technical Review of System Planning for Low-Activity Waste Treatment at Hanford November 2008 Dr. David S. Kosson, Vanderbilt University Dr. David R. Gallay, Logistics Management Institute Dr. Ian L. Pegg, The Catholic University of America Dr. Ray G. Wymer, Oak Ridge National Laboratory (ret.) Dr. Steven Krahn, U. S. Department of Energy ii ACKNOWLEDGEMENT The Review Team thanks Mr. Ben Harp, Office of River Protection (ORP), and Mr. James Honeyman, CH2M HILL, for their exceptional support during this review. Mr. Harp was the lead Department of Energy (DOE) representative responsible for organizing reviews held on-site by the Review Team. Mr. Honeyman, and his staff, provided responsive support through technical presentations, telephone conferences, and numerous reference documents.

313

Coal Power Systems strategic multi-year program plans  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

None

2001-02-01T23:59:59.000Z

314

(DOE/EIS-0285/SA-37): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 1/17/03  

Broader source: Energy.gov (indexed) [DOE]

17, 2002 17, 2002 REPLY TO ATTN OF: KEPR/Covington SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-37) Don Atkinson - TFN/Snohomish Bob Sweet - TFNF/Snohomish Proposed Action: Vegetation Management along the Monroe-Custer No.1 Transmission Line ROW from 29/1+915 to 45/4+975. The transmission line is 500 kV single circuit transmission line. Project includes adjacent Monroe-Custer No.2 and Arlington-Bellingham single circuit transmission lines having a combined ROW width of 421.5 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in Snohomish and Skagit Counties, WA. Proposed by: Snohomish Regional Headquarters, Bonneville Power Administration (BPA).

315

(DOE/EIS-0285/SA-37): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 1/17/03  

Broader source: Energy.gov (indexed) [DOE]

17, 2002 17, 2002 REPLY TO ATTN OF: KEPR/Covington SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-37) Don Atkinson - TFN/Snohomish Bob Sweet - TFNF/Snohomish Proposed Action: Vegetation Management along the Monroe-Custer No.1 Transmission Line ROW from 29/1+915 to 45/4+975. The transmission line is 500 kV single circuit transmission line. Project includes adjacent Monroe-Custer No.2 and Arlington-Bellingham single circuit transmission lines having a combined ROW width of 421.5 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in Snohomish and Skagit Counties, WA. Proposed by: Snohomish Regional Headquarters, Bonneville Power Administration (BPA).

316

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

317

Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices.  

SciTech Connect (OSTI)

Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

Phillips, Laurence R.; Tejani, Bankim; Margulies, Jonathan; Hills, Jason L.; Richardson, Bryan T.; Baca, Micheal J.; Weiland, Laura

2005-12-01T23:59:59.000Z

318

Energy systems planning and GHG-emission control under uncertainty in the province of Liaoning, China – A dynamic inexact energy systems optimization model  

Science Journals Connector (OSTI)

Abstract In this study, a dynamic interval-parameter optimization model (DIP-REM) has been developed for supporting long-term energy systems planning in association with GHG mitigation in the region of Liaoning province. The model can describe Liaoning province energy planning systems as networks of a series of energy flows, transferring extracted/imported energy resources to end users through a variety of conversion and transmission technologies over a number of periods and address the problem of GHG-emission reduction within a general energy planning systems framework under uncertainty. Two scenarios (including a reference case) are considered corresponding to different GHG-emission mitigation levels for in-depth analysis of interactions existing among energy, socio-economy and environment in the Liaoning province. Useful solutions for Liaoning province energy planning systems have been generated, reflecting trade-offs among energy-related, environmental and economic considerations. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner in the region of Liaoning province. Thus, it can be used by decision makers as an effective technique in examining and visualizing impacts of energy and environmental policies, regional development strategies and emission reduction measures within an integrated and dynamic framework.

J. Liu; Q.G. Lin; G.H. Huang; Q. Wu; H.P. Li

2013-01-01T23:59:59.000Z

319

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-42)  

Broader source: Energy.gov (indexed) [DOE]

5, 2002 5, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-42) Don Atkinson - TFN/Snohomish Bob Sweet - TFNF/Snohomish Proposed Action: Vegetation Management along the Snohomish - Murray #1 from str 1\4 to str 18\5. The proposed work will be to remove both danger and reclaim trees outside and inside the right-of-way, respectively. Right-of-way width varies from 125 to 300 feet. Location: The ROW is located in Snohomish County, WA, being in the Snohomish Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to remove both reclaim and danger trees inside and outside the transmission line right of way. BPA crews or contract crews will cut only trees that have

320

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands  

Broader source: Energy.gov (indexed) [DOE]

Integrating Renewable Energy Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Technical Report NREL/TP-7A20-51294 September 2011 Integrating Renewable Energy into the Transmission and

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Impact of dispersed solar and wind systems on electric distribution planning and operation  

SciTech Connect (OSTI)

Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

Boardman, R.W.; Patton, R.; Curtice, D.H.

1981-02-01T23:59:59.000Z

322

Project L-070, ``300 Area process sewer piping system upgrade`` Project Management Plan  

SciTech Connect (OSTI)

This document is the project management plan for Project L-070, 300 Area process sewer system upgrades.

Wellsfry, H.E.

1994-09-16T23:59:59.000Z

323

Montana-to-Washington Transmission System Upgrade Project - M2W  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an existing BPA transmission line, and the proposed addition of a new series compensation substation along other existing BPA transmission lines. To understand the potential...

324

Development Of Algorithms For Improved Planning And Operation Of Deregulated Power Systems.  

E-Print Network [OSTI]

??Transmission pricing and congestion management are two important aspects of modern power sectors working under a deregulated environment or moving towards a deregulated system (open… (more)

Surendra, S

2012-01-01T23:59:59.000Z

325

Life Cycle Assessment for Sustainable Metropolitan Water Systems Planning  

Science Journals Connector (OSTI)

Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. ... Water systems supply additional functions includ ing the following:? (1) nutrient recovery ? the treatment and land application of biosolids brings back the nutrients to the natural cycle in agriculture, horticulture, and forest systems, which can prevent the need for chemical fertilizers and thus avoid their production; (2) energy recovery ? which can include the generation of electricity or the cogeneration of thermal energy and electricity from biogas at sewage treat ment plants (STPs) or biosolids combustion off-site [This generation activity replaces the production of electrical and thermal energy from other energy sources.]; ...

Sven Lundie; Gregory M. Peters; Paul C. Beavis

2004-05-21T23:59:59.000Z

326

Integrated system dynamics toolbox for water resources planning.  

SciTech Connect (OSTI)

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

327

A distributed on-line HV transmission condition monitoring information system  

SciTech Connect (OSTI)

China Light and Power Company Ltd. (CLP) is responsible for supplying electricity to the whole of Hong Kong except Hong Kong Island and Lamma Island. In CLP`s Castle Peak power plant, 19 kV and 23 kV electric supplies are generated. The voltage is then stepped up to 400 kV for transmission. The intermediate control between those transformers and the major 400 kV overhead transmission system lies with a standard One and a half Breaker Configuration switch substations. The substation houses single phase encapsulated SF{sub 6} circuit breakers. In the urban centers, 400 kV substations are installed to step down 400 kV to 132 kV or further to 11 kV for distribution. This paper describes the development of a on-line distributed information system for monitoring the conditions of the whole HV transmission system. The system continuously monitors status of each circuit breaker (CB) together with important operational parameters, such as duration during making and breaking, operations of hydraulic pumps and SF{sub 6} gas pressure etc. Each group of CBs is monitored by a standalone microcontroller using a local area network with a baud rate of 9,600. The information can be recorded on the harddisk of an on-site microcomputer and further transmitted back to a remote computer for alarm generation and multi-station supervision. The CLP 400 kV substation and the Tsz Wan Shan 400 kV substation are among the first targets for development.

Chan, W.L. [Hong Kong Polytechnic Univ., Kowloon (Hong Kong)] [Hong Kong Polytechnic Univ., Kowloon (Hong Kong); Pang, S.L.; Chan, T.M. [China Light and Power Co. Ltd., Hong Kong (Hong Kong)] [China Light and Power Co. Ltd., Hong Kong (Hong Kong); So, A.T.P. [City Univ. of Hong Kong, Kowloon (Hong Kong)] [City Univ. of Hong Kong, Kowloon (Hong Kong)

1997-04-01T23:59:59.000Z

328

Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems  

SciTech Connect (OSTI)

This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering

1992-02-01T23:59:59.000Z

329

Regional Transmission Projects: Finding Solutions  

SciTech Connect (OSTI)

The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

The Keystone Center

2005-06-15T23:59:59.000Z

330

An integrated multivariate approach for performance assessment and optimisation of electricity transmission systems  

Science Journals Connector (OSTI)

This article introduces an integrated approach based on data envelopment analysis (DEA) and principal component analysis (PCA) for efficiency assessment, and optimisation in transmission systems that have been responsible for the transmission of electricity in Iran to show its applicability and superiority. Performance of 16 regional electricity companies was evaluated using the non-parametric technique of DEA. The result indicates that the performance of several companies is sub-optimal, suggesting the potential for significant cost reduction and reduction in employee number. The optimisation procedure in this article is followed from two different viewpoints, i.e. input efficiency and -cost. The result of DEA model is verified and validated by PCA through Spearman correlation experiment. Moreover, the proposed approach uses the measure-specific super-efficiency DEA model for sensitivity analysis to determine the critical inputs based on efficiency and cost allocation super-efficiency DEA model to determine the critical inputs based on cost. The unique feature of this study is utilisation of DEA model for assessment and determination of critical inputs and optimisation for the critical inputs from two different viewpoints, i.e. input-efficiency and -cost. This is the first study that introduces a total approach for performance assessment and optimisation of electricity transmission companies.

Ali Azadeh; Somayeh Ahmadi Movaghar

2010-01-01T23:59:59.000Z

331

Comparison of reliability performance of group connected and conventional HVDC transmission systems  

SciTech Connect (OSTI)

A group connected HVDC transmission scheme is a variant of the unit connection where instead of a single generator, a group of generators are directly connected to the converter. Studies conducted in the past indicated that significant cost reduction can be achieved using this scheme. This is mainly due to the elimination of many components which results in considerable capital and operating cost savings to the utility. Concerns regarding the reliability performance of unit connected schemes were raised, however, there has not been a detailed reliability study conducted. This paper addresses the reliability evaluation aspect of a group connected scheme and compares the reliability performance of the group connected scheme with that of the conventional common collector system. Reliability models for both schemes were developed using a hypothetical system model based on the Nelson River system. Practical system component outage data was used to examine the reliability performance of both schemes.

Kuruganty, S. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Electrical Engineering] [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Electrical Engineering

1995-10-01T23:59:59.000Z

332

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wyoming/Transmission < Wyoming Jump to: navigation, search WyomingTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Wyoming is part of the WestConnect Transmission Planning area, and covers the southwest of the United States. Within the WestConnect system, Wyoming is part of the Colorado Coordinated Planning Group (CCPG) power grid that covers Colorado and portions of Wyoming.

333

INEL test plan for evaluating waste assay systems  

SciTech Connect (OSTI)

A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

1996-09-01T23:59:59.000Z

334

Minimization of the vibration transmission through the propeller?shafting system in a submarine  

Science Journals Connector (OSTI)

Ships and submarines are efficient sources of underwater radiated noise. In the low?frequency range the main sources of ship vibration and noise are the working machinery such as the diesel engines gearboxes and generators and the propeller/propulsion system. Rotation of the propeller results in discrete tonals at the blade passing frequency and its harmonics. In addition in the case of a submarine hydrodynamic forces acting on the propeller due to the fluctuating pressure field are transmitted through the propeller?shaft and thrust bearings resulting in axial excitation of the submarine hull. A hydraulic dynamic absorber also known as a resonant changer is used to minimize the vibration transmission through the propeller?shafting system in order to prevent excitation of the hull axial resonances. The present work is concerned with minimizing the vibration transmission to the hull by optimizing the virtual spring mass and damper parameters associated with the resonant changer in a submarine. The dynamic response of the propeller?shafting system including the propeller shaft thrust bearing thrust block foundation and resonant changer are characterized using four pole parameters.

2004-01-01T23:59:59.000Z

335

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA 150 East Ellensburg Tap  

Broader source: Energy.gov (indexed) [DOE]

5, 2003 5, 2003 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA 150 East Ellensburg Tap Tom Murphy Natural Resource Specialist - TFS/Bell-1 Proposed Action: Vegetation Management for the East Ellensburg Tap, 1/6 to 3/19 Transmission Line ROW. The line is a 115 kV Single Circuit Transmission Line with no easement width. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in Kittatas County, WA being in the Spokane Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to clear unwanted vegetation in the rights-of-ways and around transmission line structures that may impede the operation and maintenance of the

336

(DOE/EIS-0285-SA-100): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 8/15/02  

Broader source: Energy.gov (indexed) [DOE]

5, 5, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-100) Joe Johnson Natural Resource Specialist TFS/Kalispell Proposed Action: Vegetation Management along the Libby-Conkelly, 1/2 to 26/4 Transmission Line ROW. The line is a 230kV Double Circuit Transmission Line having an easement width of 125 feet to 250 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in both Lincoln and Flathead County, MT, being in the Spokane Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. All work will be in

337

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-34) (12/3/01)  

Broader source: Energy.gov (indexed) [DOE]

3, 2001 3, 2001 REPLY TO ATTN OF: KEP/Z992 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-34) Bill Erickson - TFP/Walla Walla Jim Jellison - TFO/Olympia Proposed Action: Vegetation Management along the McNary-Ross Transmission Line ROW between 152/3+2120 to 153/4. The line is 345 kV Single Circuit Transmission Line (project includes adjacent N. Bonneville-Ross 230 kV Single Circuit Transmission Line) having a combined easement width of 300 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in Skamania County, WA, being in the Olympia Region. Proposed by: Bonneville Power Administration (BPA).

338

Designing electricity transmission auctions  

E-Print Network [OSTI]

The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

Greve, Thomas; Pollitt, Michael G.

2012-10-26T23:59:59.000Z

339

Harmonic measurements made on the upgraded New Zealand inter-island HVdc transmission system  

SciTech Connect (OSTI)

This paper introduces the recent upgrade to the New Zealand inter-island HVdc transmission system. It then details the procedure of one of several tests conducted to measure harmonic levels created by the upgraded transmission system. Harmonic levels were measured using the CHART (Continuous Harmonic Analysis in Real-Time) harmonic monitoring instrumentation. The connection of CHART to the high voltage network and its configuration during the test is discussed. A sample of results gathered while monitoring are presented, including characteristic harmonics of the converter, and maximum voltage and current levels up to the 50th harmonic for each of the three a.c. phases. During the tests one of the two a.c. harmonic filters was switched out to observe its effect on harmonic levels. It was found that with both a.c. harmonic filters operating, most harmonic levels were lower than with only one filter operating. However some harmonic levels, namely the 4th harmonic, were larger with both filters operating. The paper is concluded with a discussion of the results and of the difficulties encountered in measuring harmonics of very low level.

Miller, A.J.V.; Dewe, M.B. (Univ. of Canterbury, Christchurch (New Zealand))

1994-07-01T23:59:59.000Z

340

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Record of Decision for the Transmission System Vegetation Management Program (DOE/EIS-0285) (07/00)  

Broader source: Energy.gov (indexed) [DOE]

SYSTEM VEGETATION SYSTEM VEGETATION MANAGEMENT PROGRAM Record of Decision DOE/EIS-0285 Cooperating Agencies J U L Y 2 0 0 0 Bonneville Power Administration Transmission System Vegetation Management Program Record of Decision Table of Contents Summary of Decision .................................................................................................................................... 1 For Further Information .............................................................................................................................. 2 Background ................................................................................................................................................... 3 Decisions ........................................................................................................................................................

342

(DOE/EIS-0285/SA-41): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/27/02  

Broader source: Energy.gov (indexed) [DOE]

February 27, 2002 February 27, 2002 REPLY TO ATTN OF: KEPR-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-41) William Erickson - TPF/Walla Walla Natural Resource Specialist Proposed Action: Vegetation Management around wood poles in Transmission Line ROW's in the Walla Walla Region (see attached checklist for identification). The proposed work will be accomplished in the indicated sections of the transmission line corridors with the easement width ranging from 0 to 200 feet. Location: The ROWs are located in Walla Walla Region (see checklist). Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation around

343

Operations, Maintenance, and Replacement 10-year plan, 1990-1999 : 1989 Utility OM&R Comparison : A Comparison of BPA (Bonneville Power Administration) and Selected Utility Transmission, Operations and Maintenance Costs.  

SciTech Connect (OSTI)

For the past several years, competing resource demands within BPA have forced the Agency to stretch Operations, Maintenance and Replacement (OM R) resources. There is a large accumulation of tasks that were not accomplished when scheduled. Maintenance and replacements and outages, due to material and equipment failure, appear to be increasing. BPA has made a strategic choice to increase its emphasis on OM R programs by implementing a multi-year, levelized OM R plan which is keyed to high system reliability. This strategy will require a long-term commitment of a moderate increase in staff and dollars allocated to these programs. In an attempt to assess the direction BPA has taken in its OM R programs, a utility comparison team was assembled in early January 1989. The team included representatives from BPA's Management Analysis, Internal Audit and Financial Management organizations, and operation and maintenance program areas. BPA selected four utilities from a field of more than 250 electric utilities in the US and Canada. The selection criteria generally pertained to size, with key factors including transformation capacity, load, gross revenue, and interstate transmission and/or marketing agreements, and their OM R programs. Information was gathered during meetings with managers and technical experts representing the four utilities. Subsequent exchanges of information also took place to verify findings. The comparison focused on: Transmission operations and maintenance program direction and emphasis; Organization, management and implementation techniques; Reliability; and Program costs. 2 figs., 21 tabs.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

344

Mitigation Action Plan for the McNary-John Day Transmission Line Project,(DOE/EIS-0332)  

Broader source: Energy.gov (indexed) [DOE]

Measures Adopted Measures Adopted for the McNary-John Day Transmission Line Project Land Use and Recreation Locate towers and roads so as not to disrupt irrigation circles, where possible. Locate structures and roads outside of agricultural fields, orchards, and vineyards, where possible. Coordinate with landowners for farm operations, including plowing, crop dusting, and harvesting. Redesign irrigation equipment and compensate landowner for additional reasonable costs where new right-of-way needs to be acquired. Compensate farmers for crop damage and restore compacted soils. Control weeds around the base of the towers. Keep gates and fences closed and in good repair to contain livestock. Repair damages to access roads caused by or arising out of Bonneville use, leaving roads in good or better

345

Calculation of transmission system losses for the Taiwan Power Company by the artificial neural network with time decayed weight  

SciTech Connect (OSTI)

For energy conservation and improvement of power system operation efficiency, how to reduce the transmission system losses becomes an important topic of grave concern. To understand the cause, and to evaluate the amount, of the losses are the prior steps to diminish them. To simplify the evaluation procedure without losing too much accuracy, this paper adopts the artificial neural network, which is a model free network, to analyze the transmission system losses. As the artificial neural network with time decayed weight has the capability of learning, memorizing, and forgetting, it is more suitable for a power system with gradually changing characteristics. By using this artificial neural network, the estimation of transmission system losses will be more precise. In this paper, comparison will be made between the results of artificial neural network analysis and polynomial loss equations analysis.

Chu, W.C.; Chen, B.K.; Mo, P.C. [Tatung Inst. of Tech., Taipei (Taiwan, Province of China)

1995-12-31T23:59:59.000Z

346

Interactions between frequency–dependent and vertical transmission in host–parasite systems  

Science Journals Connector (OSTI)

...frequency-dependent transmission to the total number...population over time. Solid line represents susceptible...fected via horizontal route and dot-dash-dot line is hosts infected via...coexistence when ver- tical transmission is possible. Including...

1997-01-01T23:59:59.000Z

347

Technical Implementation Plan for the ShakeAlert Production System--An Earthquake Early Warning  

E-Print Network [OSTI]

Technical Implementation Plan for the ShakeAlert Production System--An Earthquake Early Warning.scec.org/terashake). #12;Technical Implementation Plan for the ShakeAlert Production System--An Earthquake Early Warning for the ShakeAlert production system--An Earthquake Early Warning system for the West Coast of the United States

Allen, Richard M.

348

EC Transmission Line Risk Identification and Analysis  

SciTech Connect (OSTI)

The purpose of this document is to assist in evaluating and planning for the cost, schedule, and technical project risks associated with the delivery and operation of the EC (Electron cyclotron) transmission line system. In general, the major risks that are anticipated to be encountered during the project delivery phase associated with the implementation of the Procurement Arrangement for the EC transmission line system are associated with: (1) Undefined or changing requirements (e.g., functional or regulatory requirements) (2) Underperformance of prototype, first unit, or production components during testing (3) Unavailability of qualified vendors for critical components Technical risks associated with the design and operation of the system are also identified.

Bigelow, Tim S [ORNL

2012-04-01T23:59:59.000Z

349

EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana  

Broader source: Energy.gov [DOE]

This EIS will evaluate the environmental impacts of a proposal to replace roughly 12 miles of transmission line on the Taft-Dworshak 500-kV transmission line, install new series capacitors on the Garrison-Taft 500-kV transmission line, and perform various upgrades to Bell, Hatwai, Dworshak, Garrison, and Hot Springs substations.

350

OBSERVERS BASED SYNCHRONIZATION AND INPUT RECOVERY FOR A CLASS OF CHAOTIC SYSTEMS. APPLICATION TO IMAGE TRANSMISSION  

E-Print Network [OSTI]

TO IMAGE TRANSMISSION Estelle Cherrier, , Jos´e Ragot , CRAN UMR 7039 / Nancy-Universit´e, CNRS 2 Avenue transmission as an application of a chaotic cryptosystem. The underlying problem concerns nonlinear state on the message. Efficiency of the proposed approach is shown through an image transmission. 1. INTRODUCTION

Boyer, Edmond

351

State of the art analysis of online fault location on AC cables in underground transmission systems  

E-Print Network [OSTI]

, such as 400 kV transmission lines, will also be undergrounded gradually as more experience is gath- ered of underground cables for the transmission level. In Denmark, as a leading country, the entire 150 kV and 132 kV on transmission level fault location methods have been focused on overhead lines. Because of the very different

Bak, Claus Leth

352

Customer system efficiency improvement assessment: Supply curves for transmission and distribution conservation options  

SciTech Connect (OSTI)

This report documents the results of Task 6 in the Customer System Efficiency Improvement (CSEI) Assessment Project. A principal objective of this project is to assess the potential for energy conservation in the transmission and distribution (TandD) systems of electric utilities in the BPA service area. The scope of this assessment covers BPA customers in the Pacific Northwest region and all non-federal TandD systems, including those that currently place no load on the BPA system. Supply curves were developed to describe the conservation resource potentially available from TandD-system efficiency improvements. These supply curves relate the levelized cost of upgrading existing equipment to the estimated amount of energy saved. Stated in this form, the resource represented by TandD loss reductions can be compared with other conservation options and regional electrical generation resources to determine the most cost-effective method of supplying power to the Pacific Northwest. The development of the supply curves required data acquisition and methodology development that are also described in this report. 11 refs., 11 figs., 16 tabs.

Tepel, R.C.; Callaway, J.W.; De Steese, J.G.

1987-11-01T23:59:59.000Z

353

Optimal planning of distributed generation systems in distribution system: A review  

Science Journals Connector (OSTI)

This paper attempts to present the state of art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects. There are number of important issues to be considered while carrying out studies related to the planning and operational aspects of DG. The planning of the electric system with the presence of DG requires the definition of several factors, such as: the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc. The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. For that reason, the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer, when dealing with the increase of DG penetration that is happening nowadays. The selection of the best places for installation and the preferable size of the DG units in large distribution systems is a complex combinatorial optimization problem. This paper aims at providing a review of the relevant aspects related to DG and its impact that DG might have on the operation of distributed networks. This paper covers the review of basics of DG, DG definition, current status of DG technologies, potential advantages and disadvantages, review for optimal placement of DG systems, optimizations techniques/methodologies used in optimal planning of DG in distribution systems. An attempt has been made to judge that which methodologies/techniques are suitable for optimal placement of DG systems based on the available literature and detail comparison(s) of each one.

Rajkumar Viral; D.K. Khatod

2012-01-01T23:59:59.000Z

354

A Planning, Scheduling and Control Architecture for Advanced Life Support Systems  

E-Print Network [OSTI]

A Planning, Scheduling and Control Architecture for Advanced Life Support Systems V. Jorge Leon 77058 Abstract This paper describes an integrated planning, schedul- ing and control architecture and the requirements for plan- ning, scheduling and control architectures are pre- sented. Next, the main components

Kortenkamp, David

355

The next wave of sustainable planning: green neighbourhood assessment systems  

Science Journals Connector (OSTI)

Since the 1970s, seeking solutions for global environmental problems have been on the agenda of both national and international debates where quantifying and measuring 'sustainability' have been an emerging foci. Within this perspective, analysis of areas through new methods and measurable parameters is among recent research fields in both academia and practice. To this end, in the literature, studies on 'green building rating and assessment systems' aiming more liveable places through less carbon emissions and more environmentally friendly construction materials gained significant importance. Among such rating systems, leadership in energy and environmental design (LEED) and Building Research Establishment environmental assessment method (BREEAM) are the two well-known 'building' rating systems both in the literature and practice. On the other hand, these parameters based on the 'building' scale are now on the pursuit of 'neighbourhood' or even 'regional' scale applications. The subject of re-questioning these rating systems with the focus of 'neighbourhood' level rather than only 'building' scale is a new research field in the literature with few cases in practice. Having started in the early 1990s, the UK-based BREEAM and US-based LEED systems have responded to these needs by formulating BREEAM-communities and LEED-ND (LEED-neighbourhood design) in 2007. This paper aims to perform a comparative analysis of the parameters covered by assessment systems (LEED-ND and BREEAM-communities) through literature survey and evaluate how they can contribute in urban planning studies with an emphasis on the state of these assessment systems in Turkey.

Mehmet Doruk Ã?zügül; Tuba Ä°nal Ã?ekiç; AyÅ?egül Ã?zbakır

2014-01-01T23:59:59.000Z

356

(DOE/EIS-0285/SA-120): Supplement Analysis for the Transmission System Vegetation Management Program FEISq 2/10/03  

Broader source: Energy.gov (indexed) [DOE]

0, 2003 0, 2003 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-120 Hanford-Ostrander Corridor Maintenance William Erickson TFP/Walla Walla Natural Resource Specialist Proposed Action: Vegetation Management for the Hanford-Ostrander Transmission Line Corridor from Tower 10/4 to Tower 17/2 + 770. The line is a 500kV Single Circuit Transmission Line having an easement width of 300 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor as referenced on the attached checklist. Location: The subject right-of-way is located in Benton County, WA. In the Walla Walla Region. Proposed by: Bonneville Power Administration (BPA).

357

(DOE/EIS-0285/SA-119): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 1/29/03  

Broader source: Energy.gov (indexed) [DOE]

9, 2003 9, 2003 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-119 Snohomish-Murray No. 1 Transmission Line Don Atkinson - TFN/Snohomish Proposed Action: Vegetation Management along the Snohomish-Murray No. 1 Transmission Line from structure 2/6 through structure 18/6. Right of way width is 95 feet. Location: The project area is located within Snohomish County, Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, access roads and around tower structures along the subject transmission line corridor. Total right-of-way acreage is approximately 182.8 acres. Approximately 17 miles of access roads will

358

(DOE/EIS-0285/SA=32): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (11/15/01)  

Broader source: Energy.gov (indexed) [DOE]

November 15, 2001 November 15, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285-SA-32) Bill Erickson - TPF/Walla Walla Natural Resource Specialist Proposed Action: Re-vegetation Plot Study along the Lower Monumental-McNary Transmission Line ROW. The study area sections are located near structures 38/4 and 39/3. The line is a 500kV Single Circuit Transmission Line having an easement width of 165 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor as indicated on the attached checklist. Location: The ROW is located in Walla Walla County, WA being in the Walla Walla Region. Proposed by: Bonneville Power Administration (BPA).

359

(DOE/EIS-0285/SA-57): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/10/02  

Broader source: Energy.gov (indexed) [DOE]

0, 2002 0, 2002 REPLY TO ATTN OF: KEP/Z992 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-57) Jim Jellison - TFO/Olympia Proposed Action: Vegetation Management along the Trojan-Allston Transmission Lines 1 & 2 ROW between 1/1 and 9/1. The lines are 230 kV Single Circuit Transmission Lines having an easement width of 125 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in Columbia County, OR, being in the Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of- ways and around tower structures that may impede the operation and maintenance of the subject

360

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-20)(8/2/01)  

Broader source: Energy.gov (indexed) [DOE]

2, 2001 2, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-20) Bill Erickson - TFP/Walla Walla - Natural Resource Specialist Jim Jellison - TFO/Olympia - Natural Resource Specialist Proposed Action: Vegetation Management along the McNary-Ross 161/1 to 166/5+346 Transmission Line ROW. The line is a 345kV Single Circuit Transmission Line having an easement width of 175 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in Clark County, WA, being in the Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285-SA-33)(11/27/01)  

Broader source: Energy.gov (indexed) [DOE]

November 27, 2001 November 27, 2001 REPLY TO ATTN OF: KEP/Z992 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS- 0285/SA-33) Bill Erickson - TFP/Walla Walla Jim Jellison - TFO/Olympia Proposed Action: Vegetation Management along the St Helens-Allston Transmission Line ROW. The line is a 115 kV Single Circuit Transmission Line having an easement width of 100 feet. Location: The ROW is located in Columbia County, OR, being in the Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear danger trees from varying widths of the indicated transmission line right-of-way that are approaching electrical clearance zones in accordance

362

(DOE/EIS-0285/SA-105): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (08/22/02)  

Broader source: Energy.gov (indexed) [DOE]

2, 2, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA 105 Elbe Tap to Alder-LaGrande No. 1 James Jellison - TFO/Olympia Proposed Action: Vegetation Management along the Elbe Tap to Alder-LaGrande No.1 and 115kV transmission line from structure 1/1 through structure 7/17. Corridor width varies. The project area is located within Whatcom County, Washington. Location: Transmission line is located at and west of Elbe, Pierce County Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of-way, access roads and around tower structures along the subject transmission line corridor. The right-of-way will be treated using selective and non-selective methods that include hand cutting, mowing

363

(DOE/EIS-0285/SA-55): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/12/02  

Broader source: Energy.gov (indexed) [DOE]

2, 2002 2, 2002 REPLY TO ATTN OF: KEPR/Covington SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-55) Don Atkinson - TFN/Snohomish Proposed Action: Vegetation Management along the Raver - Paul No. 1 Transmission Line ROW from structure 15/5 to 29/3. The transmission line is a 500 kV line. Location: The ROW is located Pierce County, WA. Proposed by: Snohomish Regional Headquarters, Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of- ways and around tower structures that may impede the operation and maintenance of the subject transmission line, including both Reclaim and Danger Trees. Also, access road clearing will be

364

Power System Generation and Inter-Connection Planning Model (SUPER) | Open  

Open Energy Info (EERE)

Power System Generation and Inter-Connection Planning Model (SUPER) Power System Generation and Inter-Connection Planning Model (SUPER) Jump to: navigation, search Tool Summary Name: Power System Generation and Inter-Connection Planning Model (SUPER) Agency/Company /Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy, Hydro Topics: Resource assessment Resource Type: Software/modeling tools Website: www.olade.org/superEn.html References: SUPER website [1] "This model is useful for multi-year electricity system planning studies, making it possible to analyze, optimize, simulate and develop hydrothermal power system expansion plans." References ↑ "SUPER website" Retrieved from "http://en.openei.org/w/index.php?title=Power_System_Generation_and_Inter-Connection_Planning_Model_(SUPER)&oldid=329

365

Implementation Plans for a Systems Microbiology and Extremophile Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9073 9073 Implementation Plans for a Systems Microbiology and Extremophile Research Facility Summary of a workshop held March 26 th , 2008 Environmental Molecular Sciences Laboratory Richland, WA April 2009 Prepared for the U.S. Department of Energy's Office of Biological and Environmental Research under Contract DE-AC05- 76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

366

California/Transmission | Open Energy Information  

Open Energy Info (EERE)

California/Transmission California/Transmission < California Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in California is part of the WestConnect Transmission Planning area and the California Transmission Planning Group. The desert southwest region of California belongs to the Southwest Area Transmission power grid and the northern region of the state belongs to the Sierra Subregional Planning Group. The SWAT provides the technical forum required to complete reliability assessments, develop joint business opportunities and accomplish

367

Bonneville Power Administration Transmission System Vegetation Management Program - Final Environmental Impact Statement  

SciTech Connect (OSTI)

Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and the public, and interfere with our ability to maintain these facilities. We need to (1) keep vegetation away from our electric facilities; (2) increase our program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools we can use while minimizing environmental impact (Integrated Vegetation Management). This Final Environmental Impact Statement (FEIS) establishes Planning Steps for managing vegetation for specific projects (to be tiered to this Environmental Impact Statement (EIS)). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed manual, mechanical, herbicide, and biological. Also evaluated are 23 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, we consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would favor a management approach that fosters low-growing plant communities.

N /A

2000-06-23T23:59:59.000Z

368

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

2012-06-01T23:59:59.000Z

369

High-power microwave transmission systems for electron-cyclotron-resonance plasma heating  

SciTech Connect (OSTI)

This progress report is for the sixth year of a grant from the US Department of Energy for the design, development, and fabrication of ECRH transmission and mode conversion systems to transport microwave power from a gyrotron to a magnetically confined plasma. The design and low-power testing of new and improved components for such systems and development of underlying theory is the focus of this project. Devising and improving component testing and diagnostic techniques is also an important part of this effort. The development of possible designs for sections of gyrotrons themselves, such as tapers or Vlasov-type launchers, in support of the Varian gyrotron development program is also considered when appropriate. We also provide support to other groups working on ECR heating of magnetically confined plasmas such as the groups at General Atomics, the University of Texas at Austin, and Lawrence Livermore National Laboratory. During the last year, we designed and had fabricated a two-dimensional Vlasov antenna system for a 110 GHz TE{sub 15,2} mode gyrotron for possible use at General Atomics. The system included the launcher section, a visor, main reflector, and focusing reflector. Programs to generate the tool-path profiles to cut the General Atomics'' Vlasov components on a milling machine were developed. We have also developed state-of-the art theory and programs for three-dimensional whispering-gallery-mode Vlasov antenna systems. A design for a 110 GHz TE{sub 01}-TE{sub 15,2} mode converter system for cold testing WGM Vlasov antenna systems was developed and is currently being fabricated also.

Vernon, R.J.

1991-08-01T23:59:59.000Z

370

Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes  

SciTech Connect (OSTI)

This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

2008-11-01T23:59:59.000Z

371

Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan  

SciTech Connect (OSTI)

This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.

RIECK, C.A.

1999-02-23T23:59:59.000Z

372

(DOE/EIS-0285/SA-12): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 5/15/01  

Broader source: Energy.gov (indexed) [DOE]

2) 2) Donald F. Atkinson - TFN/Snohomish Natural Resource Specialist Proposed Action: Vegetation Management along the Olympia-Grand Coulee No.1 Transmission Line ROW. Location: The ROW is located in Pierce and King Counties, WA, being in the Snohomish Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of- ways and around tower structures that may impede the operation and maintenance of the subject transmission line. Also, access road clearing will be conducted. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the

373

(DOE/EIS-0285//SA-80): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (07/01/02)  

Broader source: Energy.gov (indexed) [DOE]

SA80 SA80 Rocky Reach - Maple Valley Don Atkinson -- - TFN/Snohomish Bill Erickson -- - TFP/Walla Walla Proposed Action: Vegetation Management for USDA Forest Service Lands Along the Rocky Reach - Maple Valley Transmission Line. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along access roads and around tower structures on USDA Forest Service lands that may impede the operation and maintenance of the subject transmission line. See Section 1of the attached checklist for a complete description of the proposal. Analysis: Please see the attached checklist for the resources present. Applicable findings and mitigation measures are discussed below. Planning Steps: 1. Identify facility and the vegetation management need. Access roads (only) and tower sites (only) will be treated using non-selective methods

374

(DOE/EIS-0285/SA-13): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 6/6/01  

Broader source: Energy.gov (indexed) [DOE]

3) 3) James Jellison - TFO/Olympia Region - Natural Resource Specialist Bill Erickson - TFP/Walla Walla Region - Natural Resource Specialist Proposed Action: Vegetation Management along the Naselle Tarlett #1 and #2 transmission line Right of Way (ROW). Location: The ROW is located in Pacific County, WA, Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. Also, access road clearing will be conducted. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of

375

(DOE/EIS-0285/SA-10): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 5/15/01  

Broader source: Energy.gov (indexed) [DOE]

0) 0) Donald F. Atkinson - TFN/Snohomish Natural Resource Specialist Proposed Action: Vegetation Management along the Covington-Duwamish No. 1 ROW from the Covington Substation to tower 10/4. Location: The ROW is located in King County, WA, being in the Snohomish Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of- ways and around tower structures that may impede the operation and maintenance of the subject transmission line. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA's overall goal is to

376

Development of a surface conductivity measurement system for ultrahigh vacuum transmission electron microscope  

SciTech Connect (OSTI)

The surface conductivity measurement system using a micro-four-point probe (M4PP) had been developed for the ultrahigh vacuum transmission electron microscope (UHV-TEM). Since the current distribution in the sample crystals during the current voltage measurement by the M4PP is localized within the depth of several micrometers from the surface, the system is sensitive to the surface conductivity, which is related with the surface superstructure. It was installed in the main chamber of the TEM and the surface conductivity can be measured in situ. The surface structures were observed by reflection electron microscopy and diffraction (REM-RHEED). REM-RHEED enables us to observe the surface superstructures and their structure defects such as surface atomic steps and domain boundaries of the surface superstructure. Thus the effects of the defects on the surface conductivity can be investigated. In the present paper we present the surface conductivity measurement system and its application to the Si(111)-{radical}(3)x{radical}(3)-Ag surface prepared on the Si(111) vicinal surfaces. The result clearly showed that the surface conductivity was affected by step configuration.

Minoda, H. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Hatano, K.; Yazawa, H. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

2009-11-15T23:59:59.000Z

377

An investigation into positron emission tomography contouring methods across two treatment planning systems  

SciTech Connect (OSTI)

Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems.

Young, Tony, E-mail: Tony.Young@sswahs.nsw.gov.au [Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Som, Seu [Department of Nuclear Medicine and PET, Liverpool Hospital, New South Wales (Australia); South Western Sydney Clinical School, University of New South Wales, New South Wales (Australia); Sathiakumar, Chithradevi [Department of Nuclear Medicine and PET, Liverpool Hospital, New South Wales (Australia); Holloway, Lois [Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Institute of Medical Physics, University of Sydney, New South Wales (Australia); Center for Medical Radiation Physics, University of Wollongong, New South Wales (Australia)

2013-04-01T23:59:59.000Z

378

Evaluation of power system security and development of transmission pricing method.  

E-Print Network [OSTI]

??The electric power utility industry is presently undergoing a change towards the deregulated environment. This has resulted in unbundling of generation, transmission and distribution services.… (more)

Kim, Hyungchul

2004-01-01T23:59:59.000Z

379

Chapter 4 Transmission Adequacy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 4 Transmission Adequacy Chapter 4 Transmission Adequacy Chapter 4 Transmission Adequacy Transmission lines are the critical link between the point of electricity generation and consumers. The U.S. transmission grid infrastructure is owned and operated by approximately 3,000 distribution utilities and 500 transmission owners. This structure presents a distinct set of challenges in transmission planning, siting, cost allocation, grid operations and management, technological innovation, financing and construction. The development and deployment of a national strategy on transmission that meets the needs of all parties is extremely complex; however, a solution is desperately needed. Chapter 4 Transmission Adequacy More Documents & Publications Draft Chapter 4: Transmission Adequacy

380

DOE/EIS-0285; Bonneville Power Administration Transmission System Vegetation Management Program Final Environmental Impact Statement (May 2000)  

Broader source: Energy.gov (indexed) [DOE]

Statement Statement DOE/EIS-0285 Arrow-leaf Balsamroot Cooperating Agencies Bonneville Power Administration Transmission System Vegetation Management Program Final Environmental Impact Statement (DOE/EIS-0285) Responsible Agency: Bonneville Power Administration (Bonneville), U.S. Department of Energy Cooperating Agencies: U.S. Forest Service (FS), U.S. Department of Agriculture; Bureau of Land Management (BLM), U.S. Department of Interior Title of Proposed Action: Transmission System Vegetation Management Program States Involved: California, Idaho, Montana, Oregon, Utah, Washington, and Wyoming Abstract: Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation.

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314  

SciTech Connect (OSTI)

The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

MCGREW, D.L.

2000-04-19T23:59:59.000Z

382

Abstract--As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern  

E-Print Network [OSTI]

stability I. INTRODUCTION arge-scale wind power plants are increasingly integrated into the transmission regulation. For variable-speed wind turbines which are connected to the power system through power electronic convertors, one advantage is that the output active power and reactive power can be controlled separately

Chen, Zhe

383

Combinatorial Path Planning for a System of Multiple Unmanned Vehicles  

E-Print Network [OSTI]

In this dissertation, the problem of planning the motion of m Unmanned Vehicles (UVs) (or simply vehicles) through n points in a plane is considered. A motion plan for a vehicle is given by the sequence of points and the corresponding angles...

Yadlapalli, Sai Krishna

2011-02-22T23:59:59.000Z

384

Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995  

SciTech Connect (OSTI)

This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

Haller, C.S.; Dove, T.H.

1994-11-01T23:59:59.000Z

385

Single x-ray transmission system for bone mineral density determination  

SciTech Connect (OSTI)

Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas s/n., C.P. 76010, Queretaro, Qro. (Mexico); Espinosa-Arbelaez, Diego G. [Posgrado en Ciencia e Ingenieria en Materiales, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Coyoacan, Mexico D.F. (Mexico); Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico); Giraldo-Betancur, Astrid L. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Libramiento Norponiente 2000, C.P. 76230, Fracc. Real de Juriquilla, Qro. (Mexico); Hernandez-Urbiola, Margarita I. [Posgrado en Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico); Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico); Rodriguez-Garcia, Mario E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico)

2011-12-15T23:59:59.000Z

386

Transmission/Resource Library/GIS Tools | Open Energy Information  

Open Energy Info (EERE)

Transmission/Resource Library/GIS Tools Transmission/Resource Library/GIS Tools < Transmission‎ | Resource Library Jump to: navigation, search ResourceLibraryHeader.png Planning Public Involvement GIS Tools and Maps Environmental Resources and Mitigation NEPA MOUs General Transmission Documents Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database ACEII.jpg ACE-II: Areas of Conservation Emphasis Provides an easily-accessible and standardized way to view the best available statewide data on California's biological richness and biodiversity CAPS.jpg CAPS: Crucial Areas Planning System Online tool that maps crucial habitat as well as key wildlife connectivity areas in Montana. The aim of the mapping system is to consider fish,

387

HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program  

SciTech Connect (OSTI)

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

388

Engineering task plan for the 241-AZ-101 waste tank color video camera system  

SciTech Connect (OSTI)

This Engineering Task Plan (ETP) is to be distributed to communicate the design basis of the 241-AZ-101 camera system and to define system requirements and associated responsibilities.

Robinson, R.S., Westinghouse Hanford

1996-07-01T23:59:59.000Z

389

(DOE/EIS-0285/SA-36): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (01/22/02)  

Broader source: Energy.gov (indexed) [DOE]

24, 2002 24, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-38) Benjamin J. Tilley - TFE/Alvey Proposed Action: Vegetation Management along the Wendson-Tahkenith #1 & #2 1/1-20/4, Tahkenitch-Gardiner #1/1-2/3 and Tahkenitch-Reedsport #1/1-4/2 Transmission Line ROW's. The proposed work will be accomplished in the indicated sections of the transmission line corridor with and average corridor width of 100 feet. Location: The ROW is located in Douglas and Lane County, OR, being in the Eugene Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways

390

(DOE/EIS-0285/SA-43): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/27/02  

Broader source: Energy.gov (indexed) [DOE]

February 27, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-43) William T. Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Vegetation Management along the Lower Monumental - McNary 57/2 to 63/5, and Radar Tap 0/4 to 0/10 Transmission Line ROW's. The proposed work will be accomplished in the indicated sections of the transmission line corridor with and average corridor width of 165 and 80 feet respectively. Location: The ROW is located in Umatilla and Franklin County, OR, being in the Walla Walla Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways

391

(DOE/EIS-0285/SA-103): Supplemental Analysis for Transmission System Vegetation Management Program FEIS (August 12, 2002)  

Broader source: Energy.gov (indexed) [DOE]

2, 2, 2002 REPLY TO ATTN OF: KEP/Z992 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-103-Keeler-Pennwalt). Jim Jellison - TFO/Olympia Ed Tompkins - TFO/Ross Proposed Action: Vegetation Management for the Keeler-Pennwalt transmission line and parts of the St. John-Keeler, Rivergate-Keeler, Keeler-Oregon City, & St. John-St. Helens lines. Location: Washington and Multnomah Counties, Oregon Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. See Section 1.4 of the attached checklist for a complete description of the proposed action. Analysis: See the attached checklist for the

392

(DOE/EIS-0285/SA-59): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/19/02  

Broader source: Energy.gov (indexed) [DOE]

April 19, 2002 April 19, 2002 REPLY TO ATTN OF: KEP SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-59) James Jellison - TFO/Olympia Natural Resource Specialist Proposed Action: Vegetation Management along the Chehalis Covington/ Raver Paul / Paul Alston 230 and 500 kV Transmission line Corridor ROW 48/2 to 70/6 and 1/1 to 13/4. The proposed work will be accomplished in the indicated sections of the transmission line corridor with a corridor width of 250 to 442 feet. Location: The ROW is located in Thurston County, WA, being in the Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways

393

(DOE/EIS-0285/SA-02): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 3/9/01  

Broader source: Energy.gov (indexed) [DOE]

3/09/01 3/09/01 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-02) Bill Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Danger tree clearing on nine ROWs. Locations are: the Franklin-Badger Canyon #2; Hedges Tap; White Bluffs-Richland; Grandview-Richland; Badger Canyon-Richland; Franklin- Riverview; Taylor Flats Tap; Walla Walla-Pendleton; and McNary-Slatt Transmission lines. Location: All ROWs are located in the Walla Walla Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear danger trees from varying widths of the indicated transmission line rights-of way that are approaching electrical clearance zones in

394

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-23)(8/17/01)  

Broader source: Energy.gov (indexed) [DOE]

DATE: August 17, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-23) Donald F. Atkinson - TFN/Snohomish Natural Resource Specialist Proposed Action: Vegetation Management along the Schultz - Raver No.1 and 2 from 60/3 to 75/5 and the Olympia - Grand Coulee from 70/2 to 70/5 Transmission Line ROW's. Location: The ROW is located in King County, WA, in the Snohomish Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways, around tower structures, and along access roads that may impede the operation and maintenance of the subject transmission line. All work will be executed in accordance with the National Electrical Safety

395

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-17)(7/24/01)  

Broader source: Energy.gov (indexed) [DOE]

DATE: July 24, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-17) Donald F. Atkinson - TFN/Snohomish Natural Resource Specialist Proposed Action: Vegetation Management along selected sections of the Schulz - Raver No.1, 2, 3 & 4, Olymplia - Grand Coulee NO. 1 Transmission Line ROW's. Location: The ROW's are located in Pierce and King Counties, WA, in the Snohomish Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. All work will be executed in accordance with the National Electrical Safety Code and BPA

396

Mitigation Action Implementation Plan To Implement Mitigation Requirements for Cheyenne-Miracle Mile and Ault-Cheyenne Transmission Line Rebuild Project, Carbon, Albany and Laramie Counties, Wyoming, and Weld County, Colorado  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan Mitigation Action Plan To Implement Mitigation Requirements for Cheyenne-Miracle Mile and Ault-Cheyenne Transmission Line Rebuild Project, Carbon, Albany, and Laramie Counties, Wyoming, and Weld County, Colorado September 2006 CH-MM and AU-CH Mitigation Action Plan Sept. 2006 1 Action Plan for Standard Project Practices and Mitigation Mitigation Action Identifier Resources for Which the Mitigation Will Be Implemented Responsible Party for Implementing Mitigation Action Party Responsible for Monitoring and Ensuring Compliance Land use, transportation Construction Contractor Western Maintenance The contractor will limit the movement of crews and equipment to the ROW, including access routes. The contractor will limit movement on the ROW to minimize damage to

397

A high speed image transmission system for ultra-wideband wireless links  

E-Print Network [OSTI]

Ultra-wideband (UWB) communication is an emerging technology that offers short range, high data rate wireless transmission, with low power consumption and low consumer cost. Operating in the 3.1 GHz - 10.6 GHz frequency ...

Liang, Helen He

2009-01-01T23:59:59.000Z

398

Effects of un-transposed UHV transmission line on fault analysis of power systems  

Science Journals Connector (OSTI)

The conventional fault analysis method based on symmetrical components supposes that the three-phase parameters of un-transposed transmission line are symmetrical in case of fault. The errors caused by the method...

Anning Wang ???; Qing Chen ? ?; Zhanping Zhou ???

2008-06-01T23:59:59.000Z

399

Transmission | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Edit History Facebook icon Twitter icon » Transmission (Redirected from Transmission) Jump to: navigation, search Transmission header.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at high voltages, typically 115 to 500 kilovolts (kV), across long distances. Networks of transmission lines transfer electricity from power plants or other interconnections to substations. At substations, the high-voltage electricity is "stepped down" to a lower voltage, which can be carried

400

Federal Register Notice: Plan for Conduct of 2012 Electric Transmissio...  

Energy Savers [EERE]

Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study...

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Definition: Advanced Transmission Applications | Open Energy Information  

Open Energy Info (EERE)

Applications Applications Jump to: navigation, search Dictionary.png Advanced Transmission Applications Software that utilizes synchrophasor information for real-time grid operations or planning and off-line analysis. These applications are aimed at providing wide-area situational awareness, grid monitoring, and detailed power system analysis and the improvement or validation of power system models.[1] Related Terms smart grid References ↑ https://www.smartgrid.gov/category/technology/advanced_transmission_applications [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssustainability, |Template:BASEPAGENAME]]sustainability, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Advanced_Transmission_Applications&oldid=502495

402

Kinematic Reduction and Planning using Symmetry for a Variable Inertia Mechanical System  

E-Print Network [OSTI]

reduction [11][7] using the system's symmetry for a simple mechanical system called the Yaw model (see FigKinematic Reduction and Planning using Symmetry for a Variable Inertia Mechanical System Ravi present controllability results and kinematic reduction for a variable inertia mechanical system. We show

403

EIS-0128: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

28: Mitigation Action Plan 28: Mitigation Action Plan EIS-0128: Mitigation Action Plan Los Banos - Gates (Path 15) Transmission Project, Revision 2 Revision 2: This MAP addresses the construction, operation, and maintenance of the new 84-mile long 500-kV transmission line. Necessary work conducted by Pacific Gas and Electric (PG&E) at their substations will occur within the previously disturbed area inside the substation boundaries. Western or Trans Electric, Inc. will also not have a role in upgrading the various existing PG&E 230-kV system components. DOE-0128-MAP-02, Western Area Power Administration, Mitigation Action Plan for Los Banos - Gates (Path 15) Transmission Project, Revision 2 (December 2003) More Documents & Publications EIS-0128: Mitigation Action Plan EA-1456: Mitigation Action Plan

404

EIS-0128: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

: Mitigation Action Plan : Mitigation Action Plan EIS-0128: Mitigation Action Plan Los Banos - Gates (Path 15) Transmission Project, Revision 2 Revision 2: This MAP addresses the construction, operation, and maintenance of the new 84-mile long 500-kV transmission line. Necessary work conducted by Pacific Gas and Electric (PG&E) at their substations will occur within the previously disturbed area inside the substation boundaries. Western or Trans Electric, Inc. will also not have a role in upgrading the various existing PG&E 230-kV system components. DOE-0128-MAP-02, Western Area Power Administration, Mitigation Action Plan for Los Banos - Gates (Path 15) Transmission Project, Revision 2 (December 2003) More Documents & Publications EIS-0128: Mitigation Action Plan EA-1456: Mitigation Action Plan

405

Eastern Interconnection Planning Collaborative News Release | Department of  

Broader source: Energy.gov (indexed) [DOE]

Eastern Interconnection Planning Collaborative News Release Eastern Interconnection Planning Collaborative News Release Eastern Interconnection Planning Collaborative News Release The Eastern Interconnection Planning Collaborative (EIPC) today announced that its diverse array of stakeholders has reached consensus on the final set of "resource expansion futures" to be studied as part of the electric system transmission planning effort funded by the U.S. Department of Energy (DOE). Eastern Interconnection Planning Collaborative News Release More Documents & Publications Electricity Advisory Committee Meeting Presentations October 2011 - Interconnection-Wide Transmission Planning Processes EAC Recommendations for DOE Action Regarding Interconnection-Wide Planning - June 6, 2013 Application to Export Electric Energy OE Docket No. EA-352 NaturEner Tie

406

DOE/EIS-0285-SA-137: Supplement Analysis for the Transmission System Vegetation Management Program FEIS - Chemawa-Salem 1&2 (4/1/03)  

Broader source: Energy.gov (indexed) [DOE]

7- Chemawa-Salem1&2) 7- Chemawa-Salem1&2) Mark Newbill Natural Resource Specialist- TFE/Chemawa Proposed Action: Vegetation Management for the Chemawa-Salem #1 115 kV and #2 230 kV transmission lines from Chemawa Substation to Salem Substation. Location: The project is located in the BPA Eugene Region, Marion County, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, access roads, switch platforms, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA's overall goal is to have low-

407

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-142- KeelerOregon City #2  

Broader source: Energy.gov (indexed) [DOE]

2- KeelerOregon City #2) 2- KeelerOregon City #2) Mark Newbill Natural Resource Specialist- TFE/Chemawa Proposed Action: Vegetation Management for the Keeler-Oregon City #2 115 kV transmission line from Keeler Substation to Oregon City Substation. Includes 5 miles of the St. Johns- Oregon City #2 69 kV transmission line. Location: The project is located in the BPA Eugene Region, Washington County, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation via hand cutting along the right-of-way, access roads, switch platforms, microwave beam paths, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with

408

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

409

(DOE/EIS-0285/SA-46): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/27/02  

Broader source: Energy.gov (indexed) [DOE]

6) 6) William T. Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Franklin County noxious weed management along BPA rights-of-ways, transmission structures, roads, and switches listed in Attachment 1. Attachment 1 identifies the ROW, ROW width, and ROW length of the proposed action. Includes all BPA 115kV, 230kV, and 500 kV ROWs in Franklin County, Washington. Location: The ROWs are all located in Franklin County, Washington in the Walla Walla Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear noxious and/or unwanted low-growing vegetation in all BPA ROWs in Franklin County, Washington. In a cooperative effort, BPA, through landowners and the Franklin County Weed Control Board, plan to eradicate noxious plants and other

410

(DOE/EIS-0285/SA-45): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 2/27/02  

Broader source: Energy.gov (indexed) [DOE]

5) 5) William T. Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Benton County noxious weed management along BPA rights-of-ways, transmission structures, roads, and switches listed in Attachment 1. Attachment 1 identifies the ROW, ROW width, and ROW length of the proposed action. Includes all BPA 115kV, 230kV, 345kV and 500 kV ROWs in Benton County, Washington. Location: The ROWs are all located in Benton County, Washington, Walla Walla Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear noxious and/or unwanted low-growing vegetation in all BPA ROWs in Benton County, Washington. In a cooperative effort, BPA, through landowners and the Benton County Weed Control Board, plan to eradicate noxious plants and other

411

Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Transmission Jump to: navigation, search Transmission header.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at high voltages, typically 115 to 500 kilovolts (kV), across long distances. Networks of transmission lines transfer electricity from power plants or other interconnections to substations. At substations, the high-voltage

412

Strategic information systems planning: A case study from the financial services industry  

Science Journals Connector (OSTI)

Strategic Information Systems Planning (SISP) is an important topic for managers and researchers alike. However, there is evidence of a gap between SISP research and practice. Taking this situation as a motivation, we conducted an in depth case study ...

R. A. Teubner

2007-03-01T23:59:59.000Z

413

Automated material handling systems: an approach to robust layout planning of AMHS  

Science Journals Connector (OSTI)

The simulation-based layout planning of automated material handling systems (AMHS) for microelectronics and semiconductor manufacturing demands adequate simulation models. An approach for measuring and quantifying the AMHS layout performance of alternative ...

Roland Sturm; Joachim Seidelmann; Johann Dorner; Kevin Reddig

2003-12-01T23:59:59.000Z

414

Production and maintenance planning for electricity generators: modeling and application to Indian power systems  

E-Print Network [OSTI]

Production and maintenance planning for electricity generators: modeling and application to Indian power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag describes the development of an optimization model to perform the fuel supply, electricity generation

Dragoti-Ã?ela, Eranda

415

Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics  

SciTech Connect (OSTI)

This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

Bebic, J.

2008-02-01T23:59:59.000Z

416

Energy-Environment-Cost Tradeoffs in Planning Energy Systems for an Urban Area  

Science Journals Connector (OSTI)

A multi-objective optimization model in which three objectives, i.e., primary energy consumption, CO2 emission and cost are considered, has been developed for planning future energy systems in an urban area. The ...

Hideharu Sugihara; Kiichiro Tsuji

2003-01-01T23:59:59.000Z

417

EIS-0128: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

128: Mitigation Action Plan 128: Mitigation Action Plan EIS-0128: Mitigation Action Plan Los Banos-Gates (Path 15) Transmission Project This MAP addresses the construction, operation, and maintenance of the new 84-mile long 500-kV transmission line. Necessary work conducted by Pacific Gas and Electric (PG&E) at their substations will occur within the previously disturbed area inside the substation boundaries. Western or Trans Elect, Inc. will also not have a role in upgrading the various existing PG&E 230-kV system components. DOE/EIS-0128, Western Area Power Administration, Mitigation Action Plan for the Los Banos-Gates (Path 15) Transmission Project (January 2003) More Documents & Publications EIS-0128: Mitigation Action Plan FAQS Gap Analysis Qualification Card - Mechanical Systems

418

National Transmission Grid Study: 2002  

Broader source: Energy.gov [DOE]

National Transmission Grid Study: The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity...

419

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 933 Discussion on "Review of Usage-Based Transmission Cost  

E-Print Network [OSTI]

of Usage-Based Transmission Cost Allocation Methods Under Open Access" Juan Zolezzi, Hugh Rudnick., IEEE Trans. Power Systems, vol. 15, no. 4, pp. 1218­1224, November 2000. Discussion of "Review of Usage comparing a variety of usage-based transmission charges. This discusser would like to make two points about

Catholic University of Chile (Universidad Católica de Chile)

420

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--II: EXPRESS BRIEFS, VOL. 55, NO. 9, SEPTEMBER 2008 927 Using Transmission Line Outage Data to  

E-Print Network [OSTI]

Using Transmission Line Outage Data to Estimate Cascading Failure Propagation in an Electric Power transmission line outages recorded over nine years in an electric power system with approx- imately 200 lines. The average amount of propagation of the line outages is estimated from the data. The distribution

Dobson, Ian

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Multiobjective electric distribution system expansion planning using hybrid energy hub concept  

Science Journals Connector (OSTI)

This paper presents a novel approach for optimal electric distribution system expansion planning (OEDSEP) using a hybrid energy hub concept. The proposed method uses an energy hub model to explore the impacts of energy carrier systems on OEDSEP procedure. This algorithm decomposes the OEDSEP problem into three subproblems to achieve an optimal expansion planning of a system in which the investment and operational costs are minimized, while the reliability of the system is maximized. The algorithm was successfully tested in the present research for an urban distribution system.

Mehrdad Setayesh Nazar; Mahmood R. Haghifam

2009-01-01T23:59:59.000Z

422

Coordination of Transmission Line Transfer Capabilities  

E-Print Network [OSTI]

Coordination of Transmission Line Transfer Capabilities Final Project Report Power Systems since 1996 PSERC #12;Power Systems Engineering Research Center Coordination of Transmission Line Summary The maximum power that can be transferred over any transmission line, called the transfer capacity

423

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-25)(9/5/01)  

Broader source: Energy.gov (indexed) [DOE]

5, 2001 5, 2001 REPLY TO ATTN OF: KEP/Z992 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-25) Elizabeth Johnson - TFR/The Dalles Jim Jellison - TFO/Olympia Proposed Action: Vegetation Management along selected ROW sections of the Ostrander-Pearl transmission line. The ROWs include sections of the Ostrander-Pearl 500 kV line; the Ostrander-McLoughlin 500 kV line; the Big Eddy-Chemawa 230 kV line and the Big Eddy- McLoughlin 230 kV line. Location: The ROW is located in Clackamas County, Oregon, within the Olympia Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights- of-way and around tower structures that may impede the operation and maintenance of the

424

(DOE/EIS-0285/SA-04): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 3/27/01  

Broader source: Energy.gov (indexed) [DOE]

March 27, 2001 March 27, 2001 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-04) Elizabeth Johnson - TFR/The Dalles Natural Resource Specialist Proposed Action: Vegetation Management on Ponderosa - Pilot Butte 18/2 to 18/4 Relocation Location: The project area is in the City of Bend, OR, in Deschutes County. Proposed by: Bonneville Power Administration Description of the Proposed Action: BPA proposes to clear unwanted vegetation from a section of BPA's Ponderosa - Pilot Butte Transmission Line Right-of-way to facilitate relocation of structure 18/3. Work would begin in mid-March and end in April, 2001. Analysis: 1. Description of right-of-way and vegetation management needed: The project involves

425

(DOE/EIS-0285/SA-52): Supplement Analysis for the Transmission System Vegetation Management Program FEIS (03/22/02)  

Broader source: Energy.gov (indexed) [DOE]

22, 2002 22, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-52) Elizabeth Johnson - TFR/The Dalles Natural Resource Specialist Proposed Action: Vegetation Management on the Ashe-Marion #2 (138/1-150/2), Buckley- Marion (12/1-24/2), McNary-Santiam (109/1-119/3), and John Day-Marion (49/4-50/5) Transmission Line Corridors. Location: The project area lies between Maupin and Pine Grove Oregon, and is in the Redmond Region. The project area begins at on the Ashe-Marion at structure 138/1 and terminates at Wapinitia Road, Pine Grove. Proposed by: Bonneville Power Administration. Description of the Proposed Action: BPA proposes to clear unwanted vegetation from the

426

(DOE/EIS-0285/SA-15): Supplement Analysis for the Transmission System Vegetation Manaement Program FEIS 6/19/01  

Broader source: Energy.gov (indexed) [DOE]

United States Government Department of Energy Bonneville Power Administration DATE: June 19, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-15) Jim Jellison - TFO/Olympia Natural Resource Specialist Proposed Action: Vegetation management on selected sections of ROWs in the Ross-St. John and Ross-Carborundum transmission line ROWs. The ROWs include sections of the Ross-St. John 230Kv line; the Ross-Rivergate 230Kv line; the Ross-Alcoa 115Kv line; the Ross-Carborundum 115Kv line and the Clark PUD 115Kv line. Location: The ROWs span sections of Vancouver Washington and Portland Oregon and are all

427

(DOE/EIS-0285/SA-07): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/18/01  

Broader source: Energy.gov (indexed) [DOE]

18, 2001 18, 2001 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-07) Bill Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Vegetation Management on section of three ROWs. The ROWs include selected sections of the McNary Powerhouse, the present and proposed new sections of the McNary-Roundup and the McNary Switchyard South Transmission lines. Location: All ROW are located east Umatilla, OR., all being in the Walla Walla Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of- ways and around tower structures that may impede the operation and maintenance of the subject

428

California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning  

E-Print Network [OSTI]

Voltage Direct Current (HVDC) 10. Underground Cables 11.E2I FACTS FERC GIL GMC GPS HVDC IEEE IOU ISO LADWP MD02 MJare minimal. High-voltage DC (HVDC) lines are not considered

Eto, Joseph; Stovall, John P.

2003-01-01T23:59:59.000Z

429

Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric  

Broader source: Energy.gov (indexed) [DOE]

Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs. Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs. The Office of Electricity Delivery and Energy Reliability (OE) is the primary organization within the U.S. Department of Energy (DOE) for research, development, demonstration, technology transfer, and policy development activities for the electric transmission and distribution system. OE has prepared this program plan pursuant to the requirements of Section 925 of the Energy Policy Act of 2005 (EPACT), as outlined below. This plan delineates research directions and priorities. Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs.

430

Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric  

Broader source: Energy.gov (indexed) [DOE]

Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs. Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs. The Office of Electricity Delivery and Energy Reliability (OE) is the primary organization within the U.S. Department of Energy (DOE) for research, development, demonstration, technology transfer, and policy development activities for the electric transmission and distribution system. OE has prepared this program plan pursuant to the requirements of Section 925 of the Energy Policy Act of 2005 (EPACT), as outlined below. This plan delineates research directions and priorities. Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs.

431

Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

432

Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications  

SciTech Connect (OSTI)

Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

Shwetha, Bondel [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Ravikumar, Manickam, E-mail: drravikumarm@gmail.com [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Supe, Sanjay S.; Sathiyan, Saminathan [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Lokesh, Vishwanath [Department of Radiotherapy, Kidwai, Memorial Institute of Oncology, Bangalore (India); Keshava, Subbarao L. [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India)

2012-04-01T23:59:59.000Z

433

Tank waste remediation system vadose zone program plan  

SciTech Connect (OSTI)

The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

Fredenburg, E.A.

1998-07-27T23:59:59.000Z

434

Design plan for development of the worldwide port system (WPS) regional integrated cargo database (ICDB)  

SciTech Connect (OSTI)

The Worldwide Port System (WPS) Regional Integrated Cargo Database (ICDB) is a major military computer system that provides visibility over international cargo. Development started in early 1993 and implementation began on the West Coast in August of 1995. The Design Plan coordinated developmental efforts for the ICDB and its related processes. A Design Plan was especially important because the ICDB was developed at multiple sites by Oak Ridge National Laboratory and Military Traffic Management Command personnel. A Design Plan was essential to ensure that a consistent design was maintained throughout all modules, that functional and technical requirements were accomplished, that all components and processes worked together successfully, and that the development schedule was met. This plan described ICDB modules and tasks within each module. It documented responsibilities and dependencies by module and presented a schedule for development, testing, and integration.

Truett, L.F.; Rollow, J.P.; Shipe, P.C.

1995-11-01T23:59:59.000Z

435

Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development  

Broader source: Energy.gov [DOE]

Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

436

Security plan for the Automated Transportation Management System  

SciTech Connect (OSTI)

The Automated Transportation Management System (ATMS) is an unclassified non-sensitive system consisting of hardware and software designed to facilitate the shipment of goods for the US Department of Energy (DOE). The system is secured against waste, fraud, abuse, misuse, and programming errors through a series of security measures that are discussed in detail in this document.

Not Available

1994-04-01T23:59:59.000Z

437

EA-1891: Mitigation Action Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Action Plan EA-1891: Mitigation Action Plan Alvey-Fairview Transmission Line Rebuild Project, Oregon This Mitigation Action Plan (MAP) is part of the Finding of No...

438

Studying Fischer-Tropsch catalysts using transmission electron microscopy and model systems of nanoparticles on planar supports.  

SciTech Connect (OSTI)

Nanoparticle model systems on planar supports form a versatile platform for studying morphological and compositional changes of catalysts due to exposure to realistic reaction conditions. We review examples from our work on iron and cobalt catalysts, which can undergo significant rearrangement in the reactive environment of the Fischer-Tropsch synthesis. The use of specially designed, silicon based supports with thin film SiO{sub 2} enables the application of transmission electron microscopy, which has furnished important insight into e.g. the mechanisms of catalyst regeneration.

Thune, P. C.; Weststrate, C. J.; Moodley, P.; Saib, A. M.; van de Loosdrecht, J.; Miller, J. T.; Niemantsverdriet, J. W. (Chemical Sciences and Engineering Division); (Eindhoven Univ. of Technology); (Sasol Technology)

2011-01-01T23:59:59.000Z

439

Issues arising with the application of optical fiber transmission in class 1E systems in nuclear power plants  

SciTech Connect (OSTI)

The application of fiber optic links and networks in safety-critical systems in the next generation of nuclear power plants, as well as in some digital upgrades in present-day plants, will mean that these links must be highly reliable and able to withstand the effect of environmental stressors present at the installation location. This paper discusses the failure modes and age-related mechanisms of fiber optic transmission components and identifies environmental stressors that could adversely affect their reliability over the long term. Some of the standards that could be used in their qualification for safety-critical applications are also discussed briefly.

Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1993-12-31T23:59:59.000Z

440

RAPID/BulkTransmission/About | Open Energy Information  

Open Energy Info (EERE)

Contribute Contact Us About Bulk Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry...

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Overhead electric power transmission line jumpering system for bundles of five or more subconductors  

DOE Patents [OSTI]

Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

Winkelman, Paul F. (Beaverton, OR)

1982-01-01T23:59:59.000Z

442

DOE/EIS-0285-SA-136: Supplement Analysis for the Transmission System Vegetation Management Program FEIS - Oregon City-Chemawal 1&2 (4/1/03)  

Broader source: Energy.gov (indexed) [DOE]

6- Oregon City-Chemawa1&2) 6- Oregon City-Chemawa1&2) Mark Newbill Natural Resource Specialist- TFE/Chemawa Proposed Action: Vegetation Management for the Oregon City-Chemawa #1 and #2 115 kV transmission lines from Oregon City Substation to Chemawa Substation. Location: The project is located in the BPA Eugene Region, Washington and Marion Counties, Oregon. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of- way, access roads, switch platforms, and around tower structures of the subject transmission line corridor that may impede the operation and maintenance of the identified transmission lines. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that

443

Interior Offers First Right-of-Way for Renewable Energy Transmission in Federal Waters  

Broader source: Energy.gov [DOE]

As part of President Obama’s Climate Action Plan to create American jobs, develop clean energy sources and cut carbon pollution, Secretary of the Interior Sally Jewell and Bureau of Ocean Energy Management (BOEM) Acting Director Walter Cruickshank today announced that BOEM has offered a right-of-way (ROW) grant to Deepwater Wind Block Island Transmission System, LLC (Deepwater Wind) for the Block Island Transmission System (BITS).

444

DOE/EIS-0285/SA-134: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (Bandon-Rogue-GoldBeach)(3/24/03)  

Broader source: Energy.gov (indexed) [DOE]

4, 2003 4, 2003 REPLY TO ATTN OF: KEP/4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-134-Bandon-Rogue-GoldBeach) Ben Tilley Natural Resource Specialist - TFE/Alvey Proposed Action: Vegetation Management for the Bandon-Rogue-Gold Beach transmission line corridor. This corridor includes the Bandon-Rogue #1 115 kV transmission line from Bandon Substation to Rogue Substation and the Rogue-Gold Beach #1 and #2 115kV transmission lines, starting at Rogue Substation and ending at Gold Beach Substation. In addition the project includes adjacent portions of the Fairview-Rogue #1 230 kV Transmission Line. Location: The project is located in the BPA Eugene Region, Coos and Curry Counties, Oregon.

445

Definition: Blackstart Capability Plan | Open Energy Information  

Open Energy Info (EERE)

Blackstart Capability Plan Blackstart Capability Plan Jump to: navigation, search Dictionary.png Blackstart Capability Plan A documented procedure for a generating unit or station to go from a shutdown condition to an operating condition delivering electric power without assistance from the electric system. This procedure is only a portion of an overall system restoration plan.[1] View on Wikipedia Wikipedia Definition A black start is the process of restoring a power station to operation without relying on the external electric power transmission network. Normally, the electric power used within the plant is provided from the station's own generators. If all of the plant's main generators are shut down, station service power is provided by drawing power from the grid through the plant's transmission line. However, during a wide-area

446

Sandia National Laboratories: Grid System Planning for Wind:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind: Wind Generator Modeling A typical wind power plant may contain hundreds of wind turbines that are interconnected through a collector system. Though the impact of...

447

SunShot Initiative: Transmission Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Grid Integration to Transmission Grid Integration to someone by E-mail Share SunShot Initiative: Transmission Grid Integration on Facebook Tweet about SunShot Initiative: Transmission Grid Integration on Twitter Bookmark SunShot Initiative: Transmission Grid Integration on Google Bookmark SunShot Initiative: Transmission Grid Integration on Delicious Rank SunShot Initiative: Transmission Grid Integration on Digg Find More places to share SunShot Initiative: Transmission Grid Integration on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation Power Electronics & Balance of System Hardware Technologies Competitive Awards

448

Development of a plan to implement enhanced geothermal system...  

Open Energy Info (EERE)

hydrothermal systems at the other. This report provides a concept for development of a Combined Technologies Project with construction and operation of a 6 MW (net) binary-cycle...

449

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

450

Transmission Access Resources  

Broader source: Energy.gov [DOE]

Historically, the addition of new electric generation facilities has been accompanied by new transmission systems. For example, large nuclear and coal plants built in the 1960s and 1970s required...

451

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

nearest transmission system substation, and are derived fromthe nearest transmission substation, the capacity factor of

Mills, Andrew D

2011-01-01T23:59:59.000Z

452

Recommended Practice: Creating Cyber Forensics Plans for Control Systems  

SciTech Connect (OSTI)

Cyber forensics has been in the popular mainstream for some time, and has matured into an information-technology capability that is very common among modern information security programs. The goal of cyber forensics is to support the elements of troubleshooting, monitoring, recovery, and the protection of sensitive data. Moreover, in the event of a crime being committed, cyber forensics is also the approach to collecting, analyzing, and archiving data as evidence in a court of law. Although scalable to many information technology domains, especially modern corporate architectures, cyber forensics can be challenging when being applied to non-traditional environments, which are not comprised of current information technologies or are designed with technologies that do not provide adequate data storage or audit capabilities. In addition, further complexity is introduced if the environments are designed using proprietary solutions and protocols, thus limiting the ease of which modern forensic methods can be utilized. The legacy nature and somewhat diverse or disparate component aspects of control systems environments can often prohibit the smooth translation of modern forensics analysis into the control systems domain. Compounded by a wide variety of proprietary technologies and protocols, as well as critical system technologies with no capability to store significant amounts of event information, the task of creating a ubiquitous and unified strategy for technical cyber forensics on a control systems device or computing resource is far from trivial. To date, no direction regarding cyber forensics as it relates to control systems has been produced other than what might be privately available from commercial vendors. Current materials have been designed to support event recreation (event-based), and although important, these requirements do not always satisfy the needs associated with incident response or forensics that are driven by cyber incidents. To address these issues and to accommodate for the diversity in both system and architecture types, a framework based in recommended practices to address forensics in the control systems domain is required. This framework must be fully flexible to allow for deployment into any control systems environment regardless of technologies used. Moreover, the framework and practices must provide for direction on the integration of modern network security technologies with traditionally closed systems, the result being a true defense-in-depth strategy for control systems architectures. This document takes the traditional concepts of cyber forensics and forensics engineering and provides direction regarding augmentation for control systems operational environments. The goal is to provide guidance to the reader with specifics relating to the complexity of cyber forensics for control systems, guidance to allow organizations to create a self-sustaining cyber forensics program, and guidance to support the maintenance and evolution of such programs. As the current control systems cyber security community of interest is without any specific direction on how to proceed with forensics in control systems environments, this information product is intended to be a first step.

Eric Cornelius; Mark Fabro

2008-08-01T23:59:59.000Z

453

(DOE/EIS-0285/SA-14): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 6/6/01  

Broader source: Energy.gov (indexed) [DOE]

4) 4) Bill Erickson - TFP/ Walla Walla Region Natural Resource Specialist Proposed Action: Vegetation Management at the Teakean Butte Microwave site. Location: Clearwater County, ID, Walla Walla Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to remove 28 danger trees and dense brush from the microwave site in order to provide a 75 -80 foot safety buffer for fire control and Microwave Beam path. The work will protect BPA's investment at the site and provide system reliability. All work will be in accordance with the National Electrical Safety Code and BPA standards. Analysis: This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision

454

Multi-objective planning of electrical distribution systems using dynamic programming  

Science Journals Connector (OSTI)

This paper presents a novel dynamic programming approach for multi-objective planning of electrical distribution systems. In this planning, the optimal feeder routes and branch conductor sizes of a distribution system are determined by simultaneous optimization of cost and reliability. The multiple planning objectives are minimization of: (i) installation and operational cost, and (ii) interruption cost. The first objective function consists of the installation cost of new feeder branches and substations, maintenance cost of the existing and new feeder branches, and the cost of energy losses. The second objective function measures the reliability of the distribution network in terms of the associated interruption costs for all the branches, which includes the cost of non-delivered energy, cost of repair, and the customer damage cost due to interruptions. A dynamic programming based planning algorithm for optimization of the feeder routes and branch conductor sizes is proposed. A set of Pareto solutions is obtained using a weighted aggregation of the two objectives with different weight settings. The proposed approach is evaluated on 21-, 54-, and 100-node distribution systems. The simulation test results are analyzed with various case studies and are compared with those of two existing planning approaches based on multi-objective evolutionary algorithm.

S. Ganguly; N.C. Sahoo; D. Das

2013-01-01T23:59:59.000Z

455

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

456

Integrated Transmission and Distribution Control  

SciTech Connect (OSTI)

Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

2013-01-16T23:59:59.000Z

457

Reinforcing Power Grid Transmission with FACTS Devices  

E-Print Network [OSTI]

We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed into the grid to relieve congestion created by load growth or fluctuations of intermittent renewable generation. We limit our selection of FACTS devices to those that can be represented by modification of the inductance of the transmission lines. Our master optimization problem minimizes the $l_1$ norm of the FACTS-associated inductance correction subject to constraints enforcing that no line of the system exceeds its thermal limit. We develop off-line heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) where at each step the constraints are linearized analytically around the current operating point. The algorithm is accelerated further with a version of the cutting plane method greatly reducing the number of active constraints during the optimization, while checking feasibility of the non-active constraints post...

Frolov, Vladimir; Chertkov, Misha

2013-01-01T23:59:59.000Z

458

A deposit planning framework at the banking system level in India  

Science Journals Connector (OSTI)

Success of an economic development plan depends on the extent to which the commitments about mobilising and utilizing resources are fulfilled. Banks play a major role in the economic development of a country by mobilising resources in the form of bank deposits and further allocating financial resources to the productive sectors. Therefore, there is a need for an appropriate comprehensive integrated deposit planning which will give a total picture of the available financial resources and plans to mobilise further resources in the form of bank deposits. This article examines the economic factors and processes determining bank deposits and its various components and suggests a planning framework at the banking system level which will give future indicators to the planner in the commercial banks about the extent to which deposits and its various components re likely to grow. The basic objective of such a planning framework would be to provide a long term perspective to the business output, viz. deposit integrated fully with other functional sub-system of the banking activities like credit and marketing and to improve our understanding of the future and prepare ourselves to cope with emerging challenges.

Biswa N. Bhattacharyay

1989-01-01T23:59:59.000Z

459

Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan  

SciTech Connect (OSTI)

The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

MITCHELL, R.L.

2000-01-10T23:59:59.000Z

460

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl  

E-Print Network [OSTI]

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl 865-946-1475 865-946-1236 Center for Transportation Analysis News Oak Ridge National, during the Chairman's Luncheon at the 92nd Annual Transportation Research Board (TRB) Meeting

Note: This page contains sample records for the topic "transmission system planning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Design and implementation of a financial planning and tracking system for the Nova Project  

SciTech Connect (OSTI)

The Nova project is a 185 million dollar DOE funded project to build an experimental facility to demonstrate the thermonuclear ignition of laser fusion targets. This paper describes the design and implementation considerations for the project's computerized performance measurement financial planning and tracking system and critiques its actual operation.

Holcomb, F.

1982-01-01T23:59:59.000Z

462

DAMAGE DETECTION STRATEGIES IN STRUCTURAL HEALTH MONITORING OF OVERHEAD POWER TRANSMISSION SYSTEM  

E-Print Network [OSTI]

part of T&D System that goes from the power plant to substations near demand points. "Distribution" refers to the low voltage part of T&D System that connects substations and consumers' switchgear boxes of 245 HV lines that gives a total of 13 053 km of HV lines distributed on the area of 312 679 km2

Boyer, Edmond

463

Cross-layer packet prioritization for error-resilient transmission of IPTV system over wireless network  

Science Journals Connector (OSTI)

This paper proposes a novel cross-layer packet prioritization scheme that overcomes the limitations of conventional video prioritization schemes for IPTV system. In the conventional schemes, the Extend profile or frame unit is used for prioritization ... Keywords: IPTV system, error-resilient video streaming, per-packet prioritization algorithm

Kyungmin Go; Sungwon Kang; Yohaan Yoon; Myungchul Kim; Ben Lee

2014-03-01T23:59:59.000Z

464

An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.  

SciTech Connect (OSTI)

References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

Litzenberger, Wayne; Lava, Val

1994-08-01T23:59:59.000Z

465

Colorado/Transmission/Local Regulations | Open Energy Information  

Open Energy Info (EERE)

Colorado/Transmission/Local Regulations Colorado/Transmission/Local Regulations < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Local Siting Process Under state law, Colorado counties and municipalities are given broad authority to plan for and regulate the use of land within their jurisdictions.[1] State statutes give local governments (counties and municipalities) the authorization to; Appoint planning commissions [2] which are required to prepare and adopt master plans or comprehensive plans for physical development within

466

Development of Web?Based Menu Planning Support System and its Solution Using Genetic Algorithm  

Science Journals Connector (OSTI)

Recently lifestyle?related diseases have become an object of public concern while at the same time people are being more health conscious. As an essential factor for causing the lifestyle?related diseases we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well?balanced menu planning system as a preventive measure of lifestyle?related diseases. The system is developed by using a Web?based frontend and it provides multi?user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software) MySQL (database management system) and PHP (scripting language for dynamic Web pages). For the menu planning a genetic algorithm is applied by understanding this problem as multidimensional 0–1 integer programming.

Tomoko Kashima; Shimpei Matsumoto; Hiroaki Ishii

2009-01-01T23:59:59.000Z

467

Tank waste remediation system immobilized high-level waste storage project configuration management implementation plan  

SciTech Connect (OSTI)

This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.

Burgard, K.G.

1998-09-24T23:59:59.000Z

468

Benchmarking transportation logistics practices for effective system planning  

SciTech Connect (OSTI)

This paper presents preliminary findings of an Office of Civilian Radioactive Waste Management (OCRWM) benchmarking project to identify best practices for logistics enterprises. The results will help OCRWM's Office of Logistics Management (OLM) design and implement a system to move spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to the Yucca Mountain repository for disposal when that facility is licensed and built. This report suggests topics for additional study. The project team looked at three Federal radioactive material logistics operations that are widely viewed to be successful: (1) the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico; (2) the Naval Nuclear Propulsion Program (NNPP); and (3) domestic and foreign research reactor (FRR) SNF acceptance programs. (authors)

Thrower, A.W. [Office of Civilian Radioactive Waste Management, U.S. Dept. of Energy, Washington, DC (United States); Dravo, A.N. [Booz Allen Hamilton, Washington, DC (United States); Keister, M. [Idaho National Laboratory, ID (United States)

2007-07-01T23:59:59.000Z

469

DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS  

SciTech Connect (OSTI)

From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

Bollinger, J; William Austin, W; Larry Koffman, L

2007-09-17T23:59:59.000Z

470

EIS(DOE/EIS-0285/SA-61) Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/15/02  

Broader source: Energy.gov (indexed) [DOE]

April 15, 2002 April 15, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-61 Tom Murphy - TFS/Bell-1 - Natural Resource Specialist Proposed Action: Vegetation Management along the Bell-Boundary No.3, 84/4 to 96/1 Transmission Line ROW. The line is a 230kV Double Circuit Transmission Line having an easement width of 100 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. Location: The ROW is located in both Stevens and Pend Oreille County, WA, being in the Spokane Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposed Action: BPA proposes to clear unwanted vegetation in the rights-of-

471

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-151-Big Eddy-Ostrander 1  

Broader source: Energy.gov (indexed) [DOE]

8, 2003 8, 2003 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-151-Big Eddy-Ostrander 1 Ed Tompkins Natural Resource Specialist-TFO/LMT Proposed Action: Removal of danger trees along the Big Eddy-Ostrander-1 transmission line corridor. This corridor also includes segments of the Big Eddy-Troutdale, Ostrander-Troutdale, Big Eddy-McLoughlin and Bid Eddy-Chemawa transmission lines. Referencing the Big-Eddy- Ostrander-1 transmission line, the project extends from tower 39/3 to 72/2. The portion of the ROW extending from 39/3 west to 44/5+313 falls within the Zigzag Ranger District of the Mt. Hood National Forest, Clackamas County, Oregon. All work conducted

472

(DOE/EIS-0285/SA 84): Supplement Analysis for the Transmission System Vegetation Management Program FEIS Monroe-Custer No.1 7/1/02  

Broader source: Energy.gov (indexed) [DOE]

July July 1, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA 84 Monroe-Custer No.l Don Atkinson -- - TFN/Snohomish Proposed Action: Vegetation Management along the Monroe-Custer No. 1500kV transmission line from structure 61/1 through structure 88/4. This project includes contemporaneous vegetation management along the Monroe-Custer No. 2 500kV and the Arlington-Bellingham 230kV transmission line corridors which run parallel to the subject transmission line. Corridor width varies from 140 to 825 feet. (All structure locations referenced in this SA refer to the Monroe-Custer No. 1.) The project area is located within Whatcom County, Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the

473

(DOE/EIS-0285/SA-06): Supplement Analysis for the Transmission System Vegetation Management Program FEIS 4/13/01  

Broader source: Energy.gov (indexed) [DOE]

4/13/01 4/13/01 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-06) Bill Erickson - TFP/Walla Walla Natural Resource Specialist Proposed Action: Vegetation Management of annual weeds on seven acres of Bonneville Power Administration (BPA) owned pastureland at the Walla Walla Substation. Location: The pastureland is adjacent to the Walla Walla Substation and is located east and north of the fenced substation, all within the BPA property boundary. Proposed by: Bonneville Power Administration. Description of the Proposed Action: BPA proposes to apply selected herbicides to control annual weeds that are competing with native grasses that were seeded two years ago. Herbicides will also