Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cryocompressed Hydrogen Storage and Liquid Delivery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cryocompressed Hydrogen Storage & Liquid Delivery Jacob Leachman, Ph.D. Assistant Professor DOE H 2 Transmission & Delivery Workshop 2262014 H Y P E R H drogen roperties for...

2

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

3

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network [OSTI]

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

4

Agenda: Natural Gas: Transmission, Storage and Distribution ...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

5

Agenda: Electricity Transmission, Storage and Distribution -...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Transmission, Storage and Distribution - West Agenda: Electricity Transmission, Storage and Distribution - West A Public Meeting on the Quadrennial Energy Review,...

6

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

7

Agenda for the Hydrogen Delivery and Onboard Storage Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and...

8

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

9

Purchase, Delivery, and Storage of Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purchase, Delivery, and Storage of Gases Print Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab Chemical Inventory All gas bottles and cylinders at the ALS must be identified with bar code and logged into the Berkeley Lab Chemical Inventory by ALS staff. The inventory will be updated periodically; for more information contact Experiment Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline 10.0.

10

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main ThemesCaveats Bulk...

11

Optimizing Storages for Transmission System Operation  

Science Journals Connector (OSTI)

Abstract A growing amount of congestions is expected for future operation of electrical transmission grids in Europe. Within this context, storages can be used to assist transmission system operators in daily operation and to avoid costly redispatch measures. In this paper, a research methodology to evaluate impact and interdependencies between market operation of storages and participation in redispatch measures is presented. Furthermore, a methodology for the evaluation of benefits by storages solely administrated by TSO is introduced. The methods are evaluated in a case study for the German electricity system in the year 2020.

Jonas Eickmann; Tim Drees; Jens D. Sprey; Albert Moser

2014-01-01T23:59:59.000Z

12

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

13

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network [OSTI]

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

14

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything not on the vehicle 10's of Tons -- End use point 50-100 Tons - Terminals/City Gates 1000's Tons - Between Production Facility and Terminal/City Gate Bulk storage requirements less restrictive and different from on-board storage Uncertainty about evolution of infrastructure requires multiple pathways to be considered Bulk storage is an economic solution to address supply/demand imbalance Breakout Session - Bulk Hydrogen Storage Targets/Objectives Hard to quantify - scenario & end-use dependent Storage Materials (solid state) and container require different targets

15

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy ■ Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

16

2012 Transmission and Energy Storage Peer Review Presentations Available |  

Broader source: Energy.gov (indexed) [DOE]

2 Transmission and Energy Storage Peer Review Presentations 2 Transmission and Energy Storage Peer Review Presentations Available 2012 Transmission and Energy Storage Peer Review Presentations Available December 3, 2012 - 1:26pm Addthis Presentations from two peer reviews in September are now available. The Consortium for Electric Reliability Technology Solutions (CERTS) Transmission Reliability R&D Load as a Resource (LAAR) Program peer review included five presentations on September 20, 2012, hosted by DOE at the Lawrence Berkeley National Lab. DOE's Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on September 26 - 28, 2012. The 3-day conference included nine sessions and two poster sessions. Addthis Related Articles 2013 Transmission Reliability R&D Peer Review Presentations Available

17

Autothermal hydrogen storage and delivery systems  

DOE Patents [OSTI]

Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

2011-08-23T23:59:59.000Z

18

Energy Storage & Delivery The goal of this project is to deliver measurement methods specific to  

E-Print Network [OSTI]

Energy Storage & Delivery Materials The goal of this project is to deliver measurement methods specific to polymeric and organic materials needed in next generation energy storage and delivery and Customers · Fuel cells and batteries are central to an array of alternative energy technologies, ranging

19

H2A Delivery: Forecourt Compression & Storage Optimization (Part II)  

Broader source: Energy.gov [DOE]

Presentation by Matthew Hooks of TIAX at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

20

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Issues for H2 Service Materials of Construction Hydrogen Embrittlement Presence of atomic hydrogen susceptible to Hydrogen Embrittlement. #12;Pipeline Transmission of Hydrogen --- 7 Copyright: H2 Induced, characteristic of hydrogen embrittlement. Photo Courtesy of NASA/Kennedy Space Center Materials Lab #12;Pipeline

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Agenda for the Hydrogen Delivery and Onboard Storage Analysis...  

Broader source: Energy.gov (indexed) [DOE]

- T. P. Chen, Nexant 2:45 pm Break 3:00 pm Hydrogen Delivery Demonstrations - Ed Kiczek, Air Products & Chemicals, Inc. 3:10 pm Pathway Cost Distributions: Fuel Pathway...

22

H2A Delivery: Forecourt Compression & Storage Optimization (Part...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the required storage to meet new demand profile 582007 11 Model Implementation MATLAB model and results used as the foundation for an Excel tool that performs these...

23

H2A Delivery: Forecourt Compression & Storage Optimization (Part...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Land Areas Forecourt Storage and Compression Options Forecourt and Gas Infrastructure Optimization Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen...

24

The electric delivery system-a complex network of transmission and distribu  

Broader source: Energy.gov (indexed) [DOE]

electric delivery system-a complex network of transmission and distribu- electric delivery system-a complex network of transmission and distribu- tion lines, substations, and electrical components-is aging. To deliver more electricity and ensure reliability, the grid needs to be modernized. As the grid is being upgraded, it is also being challenged by increased needs to integrate variable renewable energy resources such as solar and wind, the potential growth of electric vehicles and related charging infrastructure, and the potential development of new electricity market designs and operating practices. To help decision makers better understand how these changes and challenges are shaping electricity delivery systems, as well as provide the industry with the tools necessary to cope with the new designs, the Reliability and Markets activ-

25

Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov [DOE]

Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

26

A Cassette Based System for Hydrogen Storage and Delivery  

SciTech Connect (OSTI)

A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

Britton Wayne E.

2006-11-29T23:59:59.000Z

27

Control system and method for a power delivery system having a continuously variable ratio transmission  

DOE Patents [OSTI]

A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

Frank, Andrew A. (1034 Hillside Ave., Madison, WI 53705)

1984-01-01T23:59:59.000Z

28

2012 Transmission and Energy Storage Peer Review Presentations...  

Broader source: Energy.gov (indexed) [DOE]

by DOE at the Lawrence Berkeley National Lab. DOE's Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on September 26 - 28,...

29

DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop  

Broader source: Energy.gov [DOE]

On January 25, 2006, the U.S. Department of Energy, together with the FreedomCAR & Fuel Partnership, held a workshop to review and discuss ongoing hydrogen storage and delivery analysis efforts...

30

Transmission  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission ,... ,...vc- "' ""'\ S I r;. Dr. Jerry Pell, CCM Principal NEP A Document Manager Permitting, Siting, and Analysis (OE-20) Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1 000 Independence A venue SW Washington, D.C. 20585-0001 Subject: Champlain Hudson Power Express Project Submittal of Amendment Application Dear Dr. Pell: February 28, 2012 On January 25, 2010, Transmission Developers, Inc. ("TDI") submitted on behalf of Champlain Hudson Power Express, Inc. ("CHPEI") an application to the U.S. Department of Energy ("DOE") for a Presidential Permit ("Application) in connection with the Champlain Hudson Power Express project ("Project"). The Application proposed to connect clean sources

31

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect (OSTI)

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

32

Joint Meeting on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen Delivery, Storage and  

E-Print Network [OSTI]

Kelly and Matt Hooks 8:35 LH2 Pumps, Evaporators, and LH2 Storage: Forecourt and Terminals: Matt Hooks:55 Onboard Storage System Analysis for Chemical Hydrides: Rajesh Ahluwalia (ANL) 2:50 Summary of On-Board Storage Models and Analysis: Steve Lasher (TIAX LLC) 3:45 Break 4:00 Well to Pump and Well Through Tank H2

33

Joint Meeting on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen Delivery, Storage and  

E-Print Network [OSTI]

. ­ The current capital costs for the hydrogen pipelines in the model are based on 1.1X the price of steel natural that the refueling station default compressor capital costs are based on a 300 psi inlet pressure.) 2. CurrentJoint Meeting on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen

34

30-MJ superconducting magnetic energy storage for electric-transmission stabilization  

SciTech Connect (OSTI)

The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

Turner, R.D.; Rogers, J.D.

1981-01-01T23:59:59.000Z

35

Hydrogen storage and delivery mechanism of metal nanoclusters on a nanosheet.  

E-Print Network [OSTI]

??In this study, we used the Density functional theory (DFT) and Molecular dynamics (MD) to obtain the suitable hydrogen storage structure of Rh nanoclusters on (more)

Huang, Li-Fan

2012-01-01T23:59:59.000Z

36

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

37

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

38

Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen  

SciTech Connect (OSTI)

The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay-ups are needed to relieve the high stress in regions of high stress concentrations between intersecting tanks/ tank sections. Filament winding process is the most suitable way for producing both cylindrical and spherical hydrogen storage tanks with high industrial quality. However, due to the unavailability of such equipment at West Virginia University and limited funding, the composite structures within this work were produced by hand layup and bag molding techniques. More advanced manufacturing processes can significantly increase the structural strength of the tank and enhances its performance and also further increase weight saving capabilities. The concept of using a carbon composite liner seems to be promising in overcoming the low strength of the aluminum liner at internal high pressures. This could be further enhanced by using MetPreg filament winding to produce such a liner. Innovative designs for the polar boss of the storage tanks and the valve connections are still needed to reduce the high stress formed in these zones to allow for the tank to accommodate higher internal pressures. The Continuum Damage Mechanics (CDM) approach was applied for fault-tolerant design and efficient maintenance of lightweight automotive structures made of composite materials. Potential effects of damage initiation and accumulation are formulated for various design configurations, with emphasis on lightweight fiber-reinforced composites. The CDM model considers damage associated with plasticity and fatigue.

Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

2008-12-31T23:59:59.000Z

39

Metal?organic frameworks for the storage and delivery of biologically active hydrogen sulfide  

SciTech Connect (OSTI)

Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

Allan, Phoebe K.; Wheatley, Paul S.; Aldous, David; Mohideen, M. Infas; Tang, Chiu; Hriljac, Joseph A.; Megson, Ian L.; Chapman, Karena W.; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E. (St Andrews)

2012-04-02T23:59:59.000Z

40

650 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL 2011 Hourly Scheduling of DC Transmission Lines in  

E-Print Network [OSTI]

Transmission Lines in SCUC With Voltage Source Converters Azim Lotfjou, Mohammad Shahidehpour, Fellow, IEEE transmission lines, se- curity-constrained unit commitment, voltage-source converters. NOMENCLATURE Index of ac;LOTFJOU et al.: HOURLY SCHEDULING OF DC TRANSMISSION LINES 651 , Vector of real and reactive power

Fu, Yong

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

42

Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Hydrogen to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad Elgowainy Argonne National Laboratory Comparison of Delivery Pathways- V1.0 vs. V2.0 2 1 3 i delivery by a Loading, the plant Version 1.0 character zed components for 3 pathways with single mode. conditioning and storage are at or adjacent to Liquid Hydrogen (LH) Truck H2 Production 100 or 1500 kg/d Compressed H2 (CH) Truck H2 Production 3 or 7 kpsi 100 or 1500 kg/d H2 Production Gaseous H2 Pipeline 100 or 1500 kg/d HDSAM V1.0 Estimates Delivery Cost for 3 Pathways 4 H2 H2 1 2 3 H2 Distribution and Ci I. Liquid H2 Distribution: HDSAM V2.0 Simulates Nine Pathways Production Production LH Terminal LH Terminal Production LH Terminal Transmission Transmission Distribution

43

Transmission and Storage Operations  

Energy Savers [EERE]

to see minimal to none in static or dynamic mode) - Rates are dependent on size, mechanical wear and operating pressures * PM * PdM 5 Methane Release Reduction Can the gas be...

44

DOE Transmission System Integration Workshop  

Broader source: Energy.gov (indexed) [DOE]

Heyeck, AEP, Sr. Vice President, Transmission Heyeck, AEP, Sr. Vice President, Transmission and Chair, EPRI Power Delivery & Utilization Sector Council November 01-02, 2012 DoubleTree Hotel, Crystal City Washington D.C. DOE Transmission System Integration Workshop 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Near-Zero Emissions Long-Term Operations Renewable Integration Water Management Electric Vehicles Demand Response & Efficiency Renewable Energy Energy Storage Sensors & Control Cyber Security Supply = Demand The Power System Supply to Demand Requires a full portfolio of innovative technologies. Tomorrow's Power System One size does not fit all 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. Grid Transformation to Ensure Reliability, Efficiency, Resiliency and Security

45

Transmission | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission Transmission Below are resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on transmission technology, costs, and how to plan the system. Transmission on Tribal Land Basics The Tribal Energy and Environmental Information Clearinghouse provides resources for development on tribal lands. Topics covered include transmission technology basics, potential impacts, law and regulations, and tribal incentives. Transmission Pre-Feasibility Study for Tribes Presentation on the components of a pre-feasibility study including generation location, sizing, and desirability, ability and cost to deliver, capacity versus energy, time of delivery versus peak, request for

46

Delivery Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(1998) Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and...

47

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

48

QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution Meeting Date and...

49

QER Public Meeting in Portland, OR: Electricity Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Portland, OR: Electricity Transmission, Storage and Distribution - West QER Public Meeting in Portland, OR: Electricity Transmission, Storage and Distribution - West Meeting Date...

50

Office of Electricity Delivery And Energy Reliability To Hold...  

Broader source: Energy.gov (indexed) [DOE]

Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy...

51

Liguid and Solid Carriers Group- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for solid and liquid hydrogen storage and delivery materials.

52

RECIPIENT:Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Princeton Power Systems Princeton Power Systems STATE: NJ PROJECT Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000293 DE-EE0003640 GFO-000364~001 GOO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, ~terature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

53

VIA EMAIL DELIVERY  

Broader source: Energy.gov (indexed) [DOE]

VIA EMAIL DELIVERY VIA EMAIL DELIVERY March 28, 2012 Lamont Jackson Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Avenue SW Washington, D.C. 20585 Lamont.Jackson@hq.doe.gov Re: Request for Information, OE Docket No. RRTT-IR-001, Rapid Response Team for Transmission Dear Mr. Jackson: TransWest Express LLC (TransWest) appreciates the opportunity to respond to the Department of Energy's questions related to permitting transmission lines, as outlined in the February 27, 2012, Federal Register notice. Per your request, the role of our company in the electric sector is as follows. TransWest is an independent transmission developer that is focused on permitting and developing the TransWest Express Transmission Project (TWE Project). The TWE Project is one of the seven

54

An Introduction to Electric Power Transmission | Open Energy...  

Open Energy Info (EERE)

An Introduction to Electric Power Transmission Abstract An introduction to transmission lines including topics: electricity generation and delivery, ownership and funding, anatomy...

55

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

56

AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION  

Broader source: Energy.gov [DOE]

The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

57

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

58

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

SciTech Connect (OSTI)

It has been suggested that enhanced geothermal systems (EGS) may be operated with supercritical CO{sub 2} instead of water as heat transmission fluid (D.W. Brown, 2000). Such a scheme could combine recovery of geothermal energy with simultaneous geologic storage of CO{sub 2}, a greenhouse gas. At geothermal temperature and pressure conditions of interest, the flow and heat transfer behavior of CO{sub 2} would be considerably different from water, and chemical interactions between CO{sub 2} and reservoir rocks would also be quite different from aqueous fluids. This paper summarizes our research to date into fluid flow and heat transfer aspects of operating EGS with CO{sub 2}. (Chemical aspects of EGS with CO{sub 2} are discussed in a companion paper; Xu and Pruess, 2010.) Our modeling studies indicate that CO{sub 2} would achieve heat extraction at larger rates than aqueous fluids. The development of an EGS-CO{sub 2} reservoir would require replacement of the pore water by CO{sub 2} through persistent injection. We find that in a fractured reservoir, CO{sub 2} breakthrough at production wells would occur rapidly, within a few weeks of starting CO{sub 2} injection. Subsequently a two-phase water-CO{sub 2} mixture would be produced for a few years,followed by production of a single phase of supercritical CO{sub 2}. Even after single-phase production conditions are reached,significant dissolved water concentrations will persist in the CO{sub 2} stream for many years. The presence of dissolved water in the production stream has negligible impact on mass flow and heat transfer rates.

Pruess, K.; Spycher, N.

2009-05-01T23:59:59.000Z

59

SunZia Southwest Transmission Project Comments  

Energy Savers [EERE]

Transmission Project Comments Provided to the US Department of Energy Office of Electricity Delivery and Energy Reliability Request for Information Relating to the Permitting...

60

Hydrogen Delivery Infrastructure Option Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Delivery Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and Preliminary Results for Each Delivery Option Summary of Observations Next Step Project Background Project Background 4 Delivery Options Option 1* GH delivery by new pipelines Option 2 Converting NG/oil pipelines for GH delivery Option 3 Blending GH into NG pipelines Option 4* GH tube trailers

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

62

FCT Hydrogen Delivery: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

63

DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and...  

Broader source: Energy.gov (indexed) [DOE]

Technical Teams for Delivery, Storage, and Fuels Pathway Integration (including automobile and energy company representatives), analysts, and national laboratories....

64

A Brief Overview of Hydrogen Storage Issues and Needs  

Broader source: Energy.gov (indexed) [DOE]

Brief Overview of Hydrogen Storage Issues and Needs George Thomas and Sunita Satyapal Joint Tech Team Meeting Delivery, Storage and Fuels Pathway Tech Teams May 8-9, 2007 Storage...

65

Exploring the Business Link Opportunity: Transmission & Clean...  

Energy Savers [EERE]

Jennifer Weddle, Greenberg Traurig LLP Rapid Response Team for Transmission: Laura Smith Morton, DOE Energy Storage: Michael Stosser, Day Pitney LLP Centennial West Clean...

66

Potential Carriers and Approaches for Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carriers and Potential Carriers and Carriers and Potential Carriers and Approaches for Hydrogen Approaches for Hydrogen Delivery Delivery TIAX LLC 1601 S. D Anza Blvd. Cupertino CA, 95014 Tel. 408-517-1550 Reference: D0348 © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland Matthew Hooks Stefan Unnasch Stephen Lasher 1 Novel Hydrogen Carriers Project Overview Cost Density (wt. and vol.) Energy requirements Forecourt storage requirements Codes and standards H H 2 2 Plant, Liquefier, LH Plant, Liquefier, LH 2 2 storage storage H H 2 2 Tube Trailer Tube Trailer LH 2 2 Tank/ Fueling Station LH Tank/ Fueling Station The efficient delivery of hydrogen is necessary for the adoption of hydrogen as a transportation fuel, but numerous challenges must be met. 2 "Conventional" delivery options are limited by volumetric density,

67

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

68

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

SciTech Connect (OSTI)

California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

2008-07-01T23:59:59.000Z

69

Application of Hydrogen Storage Technologies for Use in Fueling  

E-Print Network [OSTI]

Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles This report describes the design, commissioning, and operation of a mobile hydrogen delivery and storage of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

70

Improvements to Hydrogen Delivery Scenario Analysis  

E-Print Network [OSTI]

­ Improved liquefier, pipeline, compressors, storage, labor, indirect capital, and O&M cost estimatesImprovements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad and storage are at or adjacent to Liquid Hydrogen (LH) TruckH2 Production 100 or 1500 kg/d Compressed H2 (CH

71

EEI/DOE Transmission Capacity Report  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

72

Activated aluminum hydride hydrogen storage compositions and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

73

Storage Related News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Related News Storage Related News Storage Related News November 1, 2013 November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. August 30, 2013 September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery

74

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

75

A Brief Overview of Hydrogen Storage Issues and Needs | Department...  

Broader source: Energy.gov (indexed) [DOE]

A Brief Overview of Hydrogen Storage Issues and Needs A Brief Overview of Hydrogen Storage Issues and Needs Presentation by George Thomas at the Joint Meeting on Hydrogen Delivery...

76

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

77

Hydrogen Delivery Options and Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Options and Issues Options and Issues Mark Paster DOE August, 2006 Scope * From the end point of central or distributed production (300 psi H2) to and including the dispenser at a refueling station or stationary power site - GH2 Pipelines and Trucks, LH2 Trucks, Carriers <$1.00/kg of Hydrogen by 2017 Hydrogen Delivery H2 Delivery Current Status * Technology - GH2 Tube Trailers: ~340 kg, ~2600 psi - LH2 Trucks: ~3900 kg - Pipelines: up to 1500 psi (~630 miles in the U.S.) - Refueling Site Operations (compression, storage dispensing): Demonstration projects * Cost (Does NOT include refueling Site Operations) - Trucks: $4-$12/kg - Pipeline: <$2/kg H2A Analysis * Consistent, comparable, transparent approach to hydrogen production and delivery cost analysis * Excel spreadsheet tools with common economic

78

SunZia Southwest Transmission Project Comments  

Broader source: Energy.gov (indexed) [DOE]

SunZia Southwest Transmission Project SunZia Southwest Transmission Project Comments Provided to the US Department of Energy Office of Electricity Delivery and Energy Reliability Request for Information Relating to the Permitting of Transmission Lines Submitted as of March 28, 2012 2 1.0 Background. SunZia Southwest Transmission Project (SunZia or the Project) is a joint development effort currently underway in Arizona and New Mexico. The Project definition includes licensing, permitting, financing, constructing and operating up to two 500 kilovolt alternating current (AC) transmission lines and up to five interconnecting substations.

79

Transmission Developers Inc.  

Broader source: Energy.gov (indexed) [DOE]

% ~ % ~ Transmission Developers Inc. July 7, 2011 Mr. Anthony J. Como Director, Permitting and Siting Office ofElectricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence A venue SW, Room 8G-024 Washington, D.C. 20585 Subject: Champlain Hudson Power Express Project U.S. Department of Energy Presidential Permit Application PP-362 Dear Mr. Como: On January 25, 2010, Transmission Developers, Inc. ("TDI'' or "Applicants") submitted on behalf of Champlain Hudson Power Express, Inc. ("CHPEI") an application to the U.S. Department of Energy ("DOE") for a Presidential Permit and an amendment on August 5, 2010 (collectively, the "Application") in connection with the Champlain Hudson Power Express

80

Transmission Siting_071508.indd  

Broader source: Energy.gov (indexed) [DOE]

Coordinating Interstate Electric Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate The National Council on Electricity Policy 2 DISCLAIMER: The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the authors and may not necessarily agree with the positions of the National Council on Electricity Policy, its committ ee members or the organizations they represent, the National Council funders, or those who commented on the paper during its draft ing. ACKNOWLEDGMENTS Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate was prepared with the fi nancial assistance of a grant from the U.S. Department of Energy (DOE) Offi ce of Electricity Delivery

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

82

A simulation study for a coal delivery system  

Science Journals Connector (OSTI)

This paper discusses a computer simulation model that was constructed to assist in evaluating alternatives for a coal delivery system. A complex system, involving unit trains, intermediate storage, transshipment and lake vessels is required to transport ...

T. C. Vorce

1982-03-01T23:59:59.000Z

83

Definition: Transmission Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Dictionary.png Transmission Service Services provided to the Transmission Customer by the Transmission Service Provider to move energy from a Point of Receipt to a Point of Delivery.[1] Related Terms transmission lines, Transmission Customer, Transmission Service Provider, transmission line References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transmission_Service&oldid=480302" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

84

Office of Electricity Delivery And Energy Reliability To Hold Technical  

Broader source: Energy.gov (indexed) [DOE]

Office of Electricity Delivery And Energy Reliability To Hold Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission February 5, 2009 - 10:57am Addthis On March 4, 2009, the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) will conduct a technical conference in the Washington, DC area to discuss the design of future electric transmission. The technical conference will discuss the likely demand for future electric transmission and whether the development of conceptual alternative extra high voltage (EHV) systems would assist generation developers, State energy policy officials, utility planners, and other

85

Fuel Cell Technologies Office: Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

86

Microsoft Word - 20140522 Petroleum Transmission Storage and...  

Energy Savers [EERE]

infrastructure; it will not at this time consider CO 2 pipelines or enhanced oil recovery (EOR). These topics will be covered in the next installment of the QER, to be...

87

Energy Storage Safety Strategic Plan Now Available  

Broader source: Energy.gov [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan also makes recommendations for near- and long-term actions.

88

Forecourt Storage and Compression Options  

E-Print Network [OSTI]

capital costs and maximize utilization NATURAL GAS & HYDROGEN FUELING STATION SIZING SOFTWARE Developed and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology Institute #12;2 Overview > Project objectives > Gaseous delivery configurations > Analysis tool: CASCADE H2

89

Recovery Act Interconnection Transmission Planning  

Broader source: Energy.gov [DOE]

Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the transportation sector. OE is helping to strengthen the capabilities for long-term analysis and planning in the three interconnections serving the lower 48 United States.

90

Hydrogen storage and supply system - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

91

Cryogenic Capable High Pressure Containers for Compact Storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

92

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

93

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

94

EC Transmission Line Risk Identification and Analysis  

SciTech Connect (OSTI)

The purpose of this document is to assist in evaluating and planning for the cost, schedule, and technical project risks associated with the delivery and operation of the EC (Electron cyclotron) transmission line system. In general, the major risks that are anticipated to be encountered during the project delivery phase associated with the implementation of the Procurement Arrangement for the EC transmission line system are associated with: (1) Undefined or changing requirements (e.g., functional or regulatory requirements) (2) Underperformance of prototype, first unit, or production components during testing (3) Unavailability of qualified vendors for critical components Technical risks associated with the design and operation of the system are also identified.

Bigelow, Tim S [ORNL

2012-04-01T23:59:59.000Z

95

US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage...  

Broader source: Energy.gov (indexed) [DOE]

DOE Hydrogen and Fuel Cell Technology - Composites in H 2 Storage & Delivery Fiber Reinforced Polymer Composite Manufacturing Workshop Washington, DC January 13, 2014 Scott...

96

Office of Electricity Delivery and Energy Reliability FY 2014 Budget Request  

Broader source: Energy.gov (indexed) [DOE]

FY 2014 Budget Request (discretionary dollars in thousands) FY 2012 Current Appropriation FY 2013 Annualized Continuing Resolution FY 2014 Request Clean Energy Transmission and Reliability 24,665 25,569 32,000 Transmission Reliability and Renewables Integration 15,482 16,049 18,000 Advanced Modeling Grid Research 9,183 9,520 10,000 Energy Systems Predictive Capability - - 4,000 Smart Grid 23,203 24,055 14,400 Smart Grid 19,336 24,055 14,400 Power Electronics 3,867 0 0 Energy Storage 19,336 20,046 15,000 Cybersecurity for Energy Delivery Systems 29,007 30,072 38,000 Electricity Systems Hub 0 0 20,000 National Electricity Delivery* 6,976 7,019 6,000 Infrastructure Security and Energy Restoration 5,981 6,018 16,000 Infrastructure Security and Energy Restoration 5,981 6,018 6,000

97

Benefit/cost framework for evaluating modular energy storage : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utility transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA)

2008-02-01T23:59:59.000Z

98

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

99

FY13 Budget Request for the Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

Current Current Appropriation FY 2012 Enacted Appropriation FY 2013 Request Research and Development Clean Energy Transmission and Reliability 25,272 25,414 24,000 Electricity Systems Hub 20,000 Smart Grid Research and Development 28,188 23,909 14,400 Energy Storage 19,440 19,924 15,000 Cyber Security for Energy Delivery Systems 29,160 29,889 30,000 SUBTOTAL Research and Development 102,060 99,136 103,400 Permitting, Siting, and Analysis 6,000 6,976 6,000 Infrastructure Security and Energy Restoration 6,100 5,981 6,000 Program Direction 27,610 27,010 27,615 SUBTOTAL, Electricity Delivery and Energy Reliability 141,770 139,103 143,015 Transfer from State Department 100 Use of Prior Year Balances/Rescission -3,700 TOTAL, Electricity Delivery and Energy Reliability 138,170 139,103 143,015

100

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report - Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivery Delivery Printable Version 2007 Annual Progress Report III. Delivery This section of the 2007 Progress Report for the DOE Hydrogen Program focuses on delivery. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Delivery Sub-Program Overview, Mark Paster, U.S. Department of Energy (PDF 182 KB) A. Analysis Hydrogen Delivery Infrastructure Options Analysis, Tan-Ping Chen, Nexant, Inc. (PDF 620 KB) B. Liquefaction Innovative Hydrogen Liquefaction Cycle, Martin A. Shimko, Gas Equipment Engineering Corp. (PDF 514 KB) C. Carriers Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen, Guido P. Pez, Air Products & Chemicals, Inc. (PDF 528 KB) D. Storage Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Carbon Storage - Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

102

National Electricity Delivery Division (NEDD) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) Timely, accurate and defensible policy and market analysis is a key ingredient to building and sustaining successful programs at DOE. The National Electricity Delivery Division coordinates OE's policy-related activities which include: Coordination of Federal Transmission Authorizations Section 1221(a) of EPACT added section 216(h) to the Federal Power Act, which requires that DOE act as the lead agency for purposes of coordinating all applicable Federal authorizations and related environmental reviews required to site an electric transmission facility. DOE and eight other Federal agencies have entered into a Memorandum of Understanding and DOE

103

Hydrogen Delivery Analysis Models  

Broader source: Energy.gov [DOE]

DOE H2A Delivery Models: Components Model (delivery system component costs and performance) and Scenario Model (for urban and rural/interstate markets and demand levels, market penetration)

104

Matt Rogers on AES Energy Storage  

SciTech Connect (OSTI)

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2010-01-01T23:59:59.000Z

105

Articulating feedstock delivery device  

DOE Patents [OSTI]

A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

Jordan, Kevin

2013-11-05T23:59:59.000Z

106

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

107

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

108

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

109

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

110

Transmission Investment: A Primer  

SciTech Connect (OSTI)

This primer highlights recent trends in transmission investment, summarizes the division of jurisdictional authority over transmission, and presents four alternative models for transmission ownership. (author)

McGarvey, Joe

2006-10-15T23:59:59.000Z

111

Transmission | Open Energy Information  

Open Energy Info (EERE)

Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at...

112

Summary of On-Board Storage Models and Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-Board Storage On-Board Storage Models and Analyses R.K. Ahluwalia, T. Q. Hua and J-K Peng Hydrogen Delivery Analysis Meeting FreedomCAR and Fuels Partnership Delivery, Storage and Hydrogen Pathways Tech Teams May 8-9, 2007 Columbia, MD 2 Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc) 1. On-Board System Configuration 2. Dehydrogenation Reactor Dehydrogenation kinetics Trickle bed hydrodynamics Dehydrogenation reactor model Reactor performance with pelletized and supported catalysts 3. System Performance Storage efficiency Storage capacity On-Board Hydrogen Storage System with a Liquid Carrier 3 Fuel Cell System with H 2 Stored in a Liquid Carrier Enthalpy Wheel Spent H 2 Fuel cell Stack Stack Coolant

113

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

114

On-Board Storage Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-Board Storage Systems Analysis On-Board Storage Systems Analysis R. K. Ahluwalia, J-K Peng and T. Q. Hua DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop Washington, DC 25 January 2006 Work sponsored by U.S. Department of Energy, Energy Efficiency, Renewable Energy: Hydrogen, Fuel Cells & Infrastructure Technologies 2 ANL ANL ' ' s Role in H s Role in H 2 2 Storage Systems Development Storage Systems Development Working with DOE contractors and Centers of Excellence researchers: Model and analyze various developmental hydrogen storage systems Analyze hybrid systems that combine features of more than one concept Develop models that can be used to "reverse-engineer" particular technologies Identify interface issues and opportunities, and data

115

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

116

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC (Redirected from Oncor Electric Delivery Company, LLC) Jump to: navigation, search Name Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

117

The Silver Bullet: Storage!  

Broader source: Energy.gov (indexed) [DOE]

West Philly High X-prize PHEV The Silver Bullet... Storage! Terry Boston President & CEO PJM Interconnection July 12, 2011 PJM©2011 2 United States PJM Eastern Interconnection PJM as Part of the Eastern Interconnection KEY STATISTICS PJM member companies 700+ millions of people served 58 peak load in megawatts 158,448 MWs of generating capacity 180,400 miles of transmission lines 61,200 GWh of annual energy 794,335 generation sources 1,365 square miles of territory 211,000 area served 13 states + DC Internal/external tie lines 142 * 24% of generation in Eastern Interconnection * 27% of load in Eastern Interconnection * 19% of transmission assets in Eastern Interconnection 20% of U.S. GDP produced in PJM www.pjm.com As of 6/1/2011 PJM©2011 3 43,623 0 5,000 10,000 15,000

118

Optoelectronics 514 Transmission Hologram Transmission Hologram  

E-Print Network [OSTI]

Optoelectronics 514 Transmission Hologram Transmission Hologram Purpose: To learn about making Procedure: 1. HeNe Laser: #12;Optoelectronics 514 Transmission Hologram Mount the laser along the long axis. Development #12;Optoelectronics 514 Transmission Hologram Put the plate in the developer emulsion side up

Collins, Gary S.

119

DOE Electricity Transmission System Workshop  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION SYSTEM WORKSHOP TRANSMISSION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years DoubleTree Crystal City, 300 Army Navy Drive, Arlington, VA November 1-2, 2012 AGENDA Thursday, November 1, 2012 8:00-8:10 Welcome and Kickoff David Sandalow, Acting Undersecretary of Energy 8:10-8:30 Introduction to the Grid Tech Team (GTT), Vision, and Framework Distribution Workshop Summary Dr. Anjan Bose, Grid Tech Team Lead 8:30-8:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 8:50-9:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE)

120

SGDP Storage System Performance Supplement  

Broader source: Energy.gov (indexed) [DOE]

Analysis for the ARRA SGDP Analysis for the ARRA SGDP Energy Storage Projects Update Conference - DOE 2010 Energy Storage Systems Program (ESS) November 3, 2010 Presenter: Jacquelyn Bean Organization: DOE-National Energy Technology Laboratory (NETL) Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 1 Background 2 Metrics and Benefits Data Flow 3 Contact Information Table of Contents 1 4 Appendix NETL's role in SGDP metrics and benefits reporting 2 NETL Energy Delivery Technologies Division SGDP Technical Project Officers (TPOs) SGDP Principal Investigators (PIs) Project Management and Performance Data Analysis NETL Project Management Center's Analysis & Support Team Data Analysis Team (DAT) Lead Contractors: Booz Allen

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

10 Year Transmission Plan for the Western Electricity Interconnection  

Broader source: Energy.gov (indexed) [DOE]

10 Year Transmission Plan for the Western Electricity 10 Year Transmission Plan for the Western Electricity Interconnection Released 10 Year Transmission Plan for the Western Electricity Interconnection Released October 3, 2011 - 8:11am Addthis Western Electricity Coordinating Council releases its first-ever transmission plan for the Western Interconnection. The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements, including transmission

122

Hydrogen Delivery: An Option to Ease the Transition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivery: Delivery: An Option to Ease the Transition Presentation at: The DOE Hydrogen and Fuel Cells Coordination Meeting Washington, D.C. June 3, 2003 John C. Winslow, Product Manager, Coal Fuels & Hydrogen National Energy Technology Laboratory Descriptor - include initials, /org#/date Hydrogen Delivery Today * Hydrogen infrastructure exists only for small merchant hydrogen markets in the chemical and refining industries * Current natural gas infrastructure consists of: - Pipelines - intermediate product storage - import terminals - rail, barge, and truck delivery U.S. Pipeline Mileage 0.7 2000 279 0 1000 2000 3000 Oil Nat Gas Hydrogen thousand miles Source: APCI, EIA, NEP Descriptor - include initials, /org#/date Comparison of Alternative Delivery Pathways Central H 2 production (coal)

123

Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate |  

Broader source: Energy.gov (indexed) [DOE]

Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Full Adoption of Energy Star (Version 2.5) Standards: $750 Vectren Gold Star - HERS rating of 70 or less: $750 Furnace: $300 Boiler: $500 Tankless Water Heater: $150 Storage Water Heater: $50-$150 Programmable Thermostat: $20 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery of Ohio offers a flat rebate to builders of residential single-family Energy Star certified homes that receive gas

124

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

125

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

126

Office of Electricity Delivery  

Energy Savers [EERE]

Office of Electricity Delivery and Energy Reliability Use of the NIST Cybersecurity Framework & DOE C2M2 CategorySubcategory CategorySubcategory CategorySubcategory Category...

127

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

128

Delivery Tech Team  

Broader source: Energy.gov (indexed) [DOE]

Purification Storage Tanks CompressionVaporization Fuel Dispensers Trucks (compressed gas, liquids) Distribution Pipelines (gas) Trucks (compressed gas, liquid) Crosscutting...

129

Energy Department Releases Strategic Plan for Energy Storage Safety  

Broader source: Energy.gov [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading, also makes recommendations for near- and long-term actions. The Energy Storage Safety Strategic Plan complements two reports released by OE earlier this year: the Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States and the Inventory of Safety-related Codes and Standards for Energy Storage Systems.

130

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

131

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

132

U.S. Department of Energy Office of Electricity Delivery & Energy  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Office of Electricity Delivery & Energy Department of Energy Office of Electricity Delivery & Energy Reliability: Transmission Reliability Program U.S. Department of Energy Office of Electricity Delivery & Energy Reliability: Transmission Reliability Program The Transmission Reliability Program was established by Congress in 1999 to support a national laboratory/electricity industry partnership to conduct research on the reliability of the nation's electricity delivery infrastructure during the transition from regulated markets to competitive markets under restructuring. Competition and market forces are creating an exponential increase in the volume of power transactions and causing the grid to be used in ways for which it was not designed. The Transmission Reliability Program is developing advanced technologies, including

133

A P2P VIDEO DELIVERY NETWORK (P2P-VDN) Kien Nguyen, Thinh Nguyen  

E-Print Network [OSTI]

A P2P VIDEO DELIVERY NETWORK (P2P-VDN) Kien Nguyen, Thinh Nguyen School of EECS Oregon State University kovchegy@science.oregonstate.edu ABSTRACT Current video streaming and storage systems such as You- per describes a Peer-to-Peer Video Delivery Network (P2P- VDN) that provides both performance

Kovchegov, Yevgeniy

134

Fuel Cell Technologies Office: Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE hydrogen storage activity focuses primarily on the applied research and development (R&D) of low-pressure, materials-based technologies to allow for a driving range of more than 300 miles (500 km) while meeting packaging, cost, safety, and performance requirements to be competitive with current vehicles. While automakers have recently demonstrated progress with some prototype vehicles traveling more than 300 miles on a single fill, this driving range must be achievable across different vehicle models and without compromising space, performance, or cost. In addition, hydrogen storage will be needed for both other niche vehicular applications and off-board uses such as for stationary power generation and for hydrogen delivery and refueling infrastructure.

135

Hydrogen storage and integrated fuel cell assembly  

DOE Patents [OSTI]

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

136

Regulatory, technical pressures prompt more U. S. salt-cavern gas storage  

SciTech Connect (OSTI)

Natural-gas storage in US salt caverns is meeting the need for flexible, high delivery and injection storage following implementation Nov. 1, 1993, of the Federal Energy Regulatory Commission's Order 636. This ruling has opened the US underground natural-gas storage market to more participants and created a demand for a variety of storage previously provided by pipelines as part of their bundled sales services. Many of these new services such as no-notice and supply balancing center on use of high-delivery natural gas storage from salt caverns. Unlike reservoir storage, nothing restricts flow in a cavern. The paper discusses the unique properties of salt that make it ideal for gas storage, choosing a location for the storage facility, cavern depth and shape, cavern size, spacing, pressures, construction, conversion or brine or LPG storage caverns to natural gas, and operation.

Barron, T.F. (PB-KBB Inc., Houston, TX (United States))

1994-09-12T23:59:59.000Z

137

Hydrogen Delivery Options and Issues  

Broader source: Energy.gov (indexed) [DOE]

Eastman Chemical Ferco AEP Thermochem Entergy GE Framatome Stuart Energy APCi Chevron Praxair Exxonmobil BOC BP H2A Delivery Goals * Develop spreadsheet database on delivery...

138

Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations  

SciTech Connect (OSTI)

The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

2011-02-01T23:59:59.000Z

139

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

140

Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Presentation - Energy Storage in State RPS - Dec. 19, 2011 Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to explore the role of energy storage in state RPS, including the integration of an increasingly higher penetration of renewables and energy storage as a generation resource. The webinar presentation slides are available below; the recorded webinar may be downloaded from CESA's website. Webinar Presentation - December 19 RPS and Energy Storage.pdf

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transmission Business Unit Manager  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Transmission Services, (J7300) Transmission Busiess Unit 615...

142

New York's Energy Storage System Gets Recharged | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

143

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

144

Energy Programs | Advanced Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

145

Office of Electricity Delivery and Energy Reliability, OE-20  

Broader source: Energy.gov (indexed) [DOE]

January, 2012 January, 2012 Office of Electricity Delivery and Energy Reliability, OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Greetings: The Wyoming Infrastructure Authority (WIA) hereby submits its initial comments on the 2012 National Electric Transmission Congestion Study (the 2012 Study). The WIA is an instrumentality of the State of Wyoming, created in 2004 by the Wyoming State Legislature and is tasked with "diversifying and expanding the Wyoming economy through improvements in the state's electric transmission infrastructure and to facilitate the consumption of Wyoming energy by planning, financing, constructing, developing, acquiring, maintaining and operating electric transmission facilities, advanced coal technology facilities, advanced energy technology facilities

146

Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

delivery of compressed hydrogen delivery of compressed hydrogen with advanced vessel technology Gene Berry Andrew Weisberg Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE and FreedomCar & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop Washington, DC January 25, 2006 LLNL is developing innovative concepts for efficient containment of hydrogen in light duty vehicles concepts may offer advantages for hydrogen delivery Conformable containers efficiently use available space in the vehicle. We are pursuing multiple approaches to conformability High Strength insulated pressure vessels extend LH 2 dormancy 10x, eliminate boiloff, and enable efficiencies of flexible refueling (compressed/cryogenic H 2 /(L)H 2 ) The PVT properties of H

147

Neutron Storage in a Longitudinally Vibrating Silicon Crystal  

Science Journals Connector (OSTI)

The storage of cold neutrons in a longitudinally vibrating silicon crystal is demonstrated by time-resolved transmission experiments on a high-resolution backscattering spectrometer. The experimental results are compared with Monte Carlo simulations.

Hock, R.

1998-04-01T23:59:59.000Z

148

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

149

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

150

Comments on RFI on Permitting of Transmission Lines Available | Department  

Broader source: Energy.gov (indexed) [DOE]

Comments on RFI on Permitting of Transmission Lines Available Comments on RFI on Permitting of Transmission Lines Available Comments on RFI on Permitting of Transmission Lines Available April 3, 2012 - 2:12pm Addthis On October 5, 2011, the White House announced the creation of a Rapid Response Team for Transmission (RRTT). In support of the RRTT the Department of Energy's Office of Electricity Delivery and Energy Reliability released a Federal Register Notice seeking information on questions related to permitting of transmission lines. The Request for Information focused on making the development times for generation and transmission more commensurate with one another. Public comments received from the following organizations are now available for review and downloading. - Allegheny Highlands Alliance - American Electric Power

151

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

152

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |  

Broader source: Energy.gov (indexed) [DOE]

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which cover a wide range of battery chemistries, sizes, locations on the grid, and applications. The deployments include the Notrees Wind Storage project, which OE supports under the Recovery Act-funded Smart Grid Energy Storage Demonstration Program. The other projects are the Rankin

153

San Luis Transmission Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Luis Transmission Project EIS/EIR Luis Transmission Project EIS/EIR San Luis Transmission Project EIS/EIR Western proposes to construct, own, operate, and maintain a new 230-kilovolt transmission line about 62 miles in length between Western's Tracy Substation and Western's San Luis Substation and a new 70-kV transmission line about 5 miles in length between the San Luis and O'Neill Substations. Western also will consider other transmission construction options including: A new 500-kV transmission line about 62 miles in length operated at 230-kV between Western's Tracy and San Luis Substations; A new 500-kV transmission line operated at 500-kV about 62 miles in length between the Tracy Substation and Pacific Gas and Electric's Los Banos Substation; and A new 230-kV transmission line about 18 miles in length between San Luis Substation and Dos Amigos Substation.

154

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

155

Hydrogen Delivery Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivery Delivery Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose

156

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

157

Hydrogen Delivery - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

158

Energy Delivery Systems Cybersecurity | Department of Energy  

Office of Environmental Management (EM)

Services Cybersecurity Energy Delivery Systems Cybersecurity Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission...

159

Energy Delivery Systems Cybersecurity | Department of Energy  

Energy Savers [EERE]

Cybersecurity Energy Delivery Systems Cybersecurity Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the...

160

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect (OSTI)

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Flow Cells for Energy Storage Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

162

National Transmission Grid Study  

Broader source: Energy.gov (indexed) [DOE]

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

163

Transmission | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Edit History Facebook icon Twitter icon » Transmission (Redirected from Transmission) Jump to: navigation, search Transmission header.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at high voltages, typically 115 to 500 kilovolts (kV), across long distances. Networks of transmission lines transfer electricity from power plants or other interconnections to substations. At substations, the high-voltage electricity is "stepped down" to a lower voltage, which can be carried

164

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2007. Blevins #12; i ACKNOWLEDGEMENTS The 2007 Strategic Transmission Investment Plan was prepared Investment Plan. California Energy Commission, Engineering Office. CEC7002007018CTF. #12; ii #12; iii

165

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2007 Investment Plan was prepared with contribution from the following Energy Commission staff and consultants Kondoleon, Chuck Najarian. 2007 Strategic Transmission Investment Plan. California Energy Commission

166

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

167

2012 National Electric Transmission Congestion Study: Preliminary Findings - updated presentation  

Broader source: Energy.gov (indexed) [DOE]

Meyer Meyer Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 2012 National Electric Transmission Congestion Study Preliminary Findings Stakeholder Consultation Webinars August 2012 Background  The Energy Policy Act of 2005 amended the Federal Power Act to require DOE to conduct a transmission congestion study every three years, in consultation with the states.  DOE published a study in 2006, and a second for 2009 (in early 2010). We are now preparing the 2012 study.  Statutory text directs DOE to seek to identify "geographic areas experiencing ... transmission capacity constraints or congestion that adversely affects consumers ...."  Statute also authorizes (but does not require) the Secretary

168

Transmission Utilization Group (TUG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Intertie Initiatives Intertie Open Season Transmission Utilization...

169

Transmission Commercial Project Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

170

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

171

Underground Power Transmission  

Science Journals Connector (OSTI)

...The type of transmission line for a particular...will force rt transmission lines to be ground near...history of power transmission shows that d-c...characteristics of a d-c line, it is easy to...Best data fit III II I...

P. H. Rose

1970-10-16T23:59:59.000Z

172

Lamont Jackson Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

March 28, 2012 March 28, 2012 Lamont Jackson Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 OE Docket No. RRTT-IR-001 Submitted via email to: Lamont.Jackson@hq.doe.gov COMMENTS OF THE AMERICAN WIND ENERGY ASSOCIATION ON THE DEPARTMENT OF ENERGY'S REQUEST FOR INFORMATION RELATED TO THE PERMITTING OF TRANSMISSION LINES Dear Mr. Jackson, The American Wind Energy Association 1 (AWEA) appreciates the opportunity to provide comments to the Department of Energy's Office of Electricity Delivery and Energy Reliability (DOE) on its request for information

173

EIS-0378: Port Angeles-Juan de Fuca Transmission Project, WA  

Broader source: Energy.gov [DOE]

This EIS assesses DOE decision to approve the Sea Breeze Transmission project for a Presidential permit for through DOE's Office of Electricity Delivery and Energy Reliability and for approval for interconnection into the federal transmission system through the Bonneville Power Administration (BPA).

174

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

175

Vice President, Transmission Marketing & Sales  

Broader source: Energy.gov [DOE]

Within Transmission Services at Bonneville Power Administration (BPA), Transmission Marketing and Sales (TS) provides open access to the Federal Transmission System (FTS) consistent with...

176

STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 2009/109/109/109/10 Annual Delivery Report  

E-Print Network [OSTI]

STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 2009/109/109/109/10 0 Annual Delivery Report 2009/10 August 2010 #12;STFC Annual Delivery Plan Report 200STFC Annual Delivery Plan Report 200STFC Annual Delivery

177

Recovery Act Interconnection Transmission Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act Interconnection Act Interconnection Transmission Planning Recovery Act Interconnection Transmission Planning View a Map of the Interconnections View a Map of the Interconnections Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the transportation sector. Pursuant to Title IV of the American Reinvestment and Recovery Act (2009), the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability is helping to strengthen the capabilities for long-term analysis and planning in the three interconnections serving the lower 48

178

Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Transmission Jump to: navigation, search Transmission header.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at high voltages, typically 115 to 500 kilovolts (kV), across long distances. Networks of transmission lines transfer electricity from power plants or other interconnections to substations. At substations, the high-voltage

179

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

180

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

182

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

183

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Payko; S. Kaka

1987-01-01T23:59:59.000Z

184

Request for Information on Permitting of Transmission Lines: Federal  

Broader source: Energy.gov (indexed) [DOE]

Request for Information on Permitting of Transmission Lines: Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38 - Feb. 27, 2012 Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38 - Feb. 27, 2012 The Department of Energy's Office of Electricity Delivery and Energy Reliability requested information on questions related to permitting of transmission lines. Infrastructure projects - such as high voltage, long distance, electric transmission facilities - often involve multiple Federal, State, local and Tribal authorizations and are subject to a wide array of processes and procedural requirements in order to obtain all necessary permits and other authorizations. Delays in securing required statutory reviews, permits, and consultations can threaten the completion

185

Notice of Technical Workshop in Support of 2009 Electric Transmission  

Broader source: Energy.gov (indexed) [DOE]

Notice of Technical Workshop in Support of 2009 Electric Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 The Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) conducted a Technical Workshop to receive input from subject matter experts on the historical transmission data in the Western and Eastern Interconnections and on studies of future transmission projections within the two Interconnections. Technical Workshop in Support of 2009 Electric Transmission Congestion Study - Federal Register Vol 74 No. 32 - Feb. 19, 2009.pdf More Documents & Publications

186

DOE Seeking Information on Transmission Line Permitting | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeking Information on Transmission Line Permitting Seeking Information on Transmission Line Permitting DOE Seeking Information on Transmission Line Permitting February 27, 2012 - 3:25pm Addthis The Department of Energy's Office of Electricity Delivery and Energy Reliability is seeking information on the questions related to permitting of transmission lines. Infrastructure projects - such as high voltage, long distance, electric transmission facilities - often involve multiple Federal, State, local, and Tribal authorizations and are subject to a wide array of processes and procedural requirements in order to obtain all necessary permits and other authorizations. Delays in securing required statutory reviews, permits, and consultations can threaten the completion projects of national and regional significance. This Request for

187

Notice of Technical Workshop in Support of 2009 Electric Transmission  

Broader source: Energy.gov (indexed) [DOE]

Notice of Technical Workshop in Support of 2009 Electric Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 Notice of Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 The Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) conducted a Technical Workshop to receive input from subject matter experts on the historical transmission data in the Western and Eastern Interconnections and on studies of future transmission projections within the two Interconnections. Technical Workshop in Support of 2009 Electric Transmission Congestion Study - Federal Register Vol 74 No. 32 - Feb. 19, 2009.pdf More Documents & Publications

188

Request for Information on Permitting of Transmission Lines: Federal  

Broader source: Energy.gov (indexed) [DOE]

Request for Information on Permitting of Transmission Lines: Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38 - Feb. 27, 2012 Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38 - Feb. 27, 2012 The Department of Energy's Office of Electricity Delivery and Energy Reliability requested information on questions related to permitting of transmission lines. Infrastructure projects - such as high voltage, long distance, electric transmission facilities - often involve multiple Federal, State, local and Tribal authorizations and are subject to a wide array of processes and procedural requirements in order to obtain all necessary permits and other authorizations. Delays in securing required statutory reviews, permits, and consultations can threaten the completion

189

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

190

Categorical Exclusion Determinations: Office of Electricity Delivery and  

Broader source: Energy.gov (indexed) [DOE]

February 9, 2010 February 9, 2010 CX-000760: Categorical Exclusion Determination Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6 Date: 02/09/2010 Location(s): Freemont, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory February 8, 2010 CX-000762: Categorical Exclusion Determination Eastern Interconnection Planning Collaborative CX(s) Applied: A9 Date: 02/08/2010 Location(s): Morristown, Pennsylvania Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory February 8, 2010 CX-000764: Categorical Exclusion Determination Dynamic Line Rating Project CX(s) Applied: B3.11, B4.6 Date: 02/08/2010 Location(s): Texas Office(s): Electricity Delivery and Energy Reliability, National Energy

191

Office of Electricity Delivery and Energy Reliability FY 2010 Budget |  

Broader source: Energy.gov (indexed) [DOE]

FY 2010 FY 2010 Budget Office of Electricity Delivery and Energy Reliability FY 2010 Budget The FY 2010 Office of Electricity Delivery and Energy Reliability (OE) budget request is $208.0 million, $71.0 million more than the FY 2009 Appropriation. This increase reflects increased investments in research and development, particularly in energy storage, smart grid technologies, and cyber security areas. OE will also establish one of the Department's multi-disciplinary Energy Innovation Hubs (Hubs) that specifically focuses on Grid Materials, Devices, and Systems. The FY 2010 budget proposes a budget structure change to better align with the Department's priorities to establish a clean, secure energy future. Office of Electricity Delivery and Energy Reliability FY 2010 Budget

192

Delivery Tech Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Team Tech Team Oak Ridge National Laboratory January, 2005 Team Members * Tony Bouza: DOE * Nick Burkhead: SC * Dan Casey: CVX * Maria Curry- Nkansah: BP* * Jim Kegerreis: XOM * George Parks: COP** * Mark Paster: DOE** * Steve Pawel: ORNL * Jim Simnick: BP * FOG Liaison ** Co-Leads Shawna McQueen (Energetics): Facilitator Mission * Provide a forum for the Partnership to help advance research aimed at developing low cost, safe, and energy efficient hydrogen delivery systems * Catalyze the development of hydrogen delivery technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power Useful Facts * 1 kg H 2 = 1 gallon gasoline * Eff FCV = 2-3 x Eff ICEV = 1.2-1.4 x Eff HEV * Energy Density - 10,000 psi H 2 = 1.3 kWhr/l

193

Office of Electricity Delivery  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery Electricity Delivery and Energy Reliability Smart Grid R&D Program DOE Microgrid Workshop Report August 30-31, 2011 San Diego, California ii Acknowledgment The U.S. Department of Energy (DOE) would like to acknowledge the support provided by the organizations represented on the workshop planning committee in developing the workshop process and sessions. The preparation of this workshop report was coordinated by Energy & Environmental Resources Group, LLC (E2RG). The report content is based on the workshop session discussions, with session summary descriptions taken from the report-out presentations by individual teams during the closing plenary. Contributions to this report by all workshop participants, via expressed viewpoints during the

194

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Metered Facilities - Company-Owned (Closed to new installations) Lighting

195

Hydrogen Storage Requirements for Fuel Cell Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

196

Series Transmission Line Transformer  

DOE Patents [OSTI]

A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

2004-06-29T23:59:59.000Z

197

U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY  

Broader source: Energy.gov (indexed) [DOE]

U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY 10 ENVIRONMENTAL ASSESSMENT PUBLIC SCOPING MEETING U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY 10 ENVIRONMENTAL ASSESSMENT PUBLIC SCOPING MEETING The entire project, as described in the presidential permit application that Sempra Generation filed with us in December and supplemented in March of -- today, is comprised of about 1250 megawatts of wind generation from -- it's constructed inside Mexico and either a 230,000-volt or 500,000-volt transmission line on about four towers inside the United States. It's about one mile, and the transmission line is to end at the San Diego Gas & Electric's proposed East County Substation. U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY

198

Stream Control Transmission Protocol  

Science Journals Connector (OSTI)

This document describes the Stream Control Transmission Protocol (SCTP). SCTP is designed to transport PSTN signaling messages over IP networks, but is capable of broader applications.

R. Stewart; Q. Xie; K. Morneault; C. Sharp; H. Schwarzbauer; T. Taylor; I. Rytina; M. Kalla; L. Zhang; V. Paxson

2000-10-01T23:59:59.000Z

199

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2005............................................................................................ 5 Project Investment Recommendations ............................................................... 6 Actions to Implement Investments

200

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2005............................................................................................ 5 Project Investment Recommendations ............................................................... 5 Actions to Implement Investments

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

202

Fuel Cell Technologies Office: Storage Systems Analysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Systems Analysis Working Group Storage Systems Analysis Working Group The Storage Systems Analysis Working Group, launched in March 2005, provides a forum to facilitate research and communication of hydrogen storage-related analysis activities among researchers actively engaged in hydrogen storage systems analyses. The working group includes members from DOE, the national laboratories, industry, and academia. Description Technical Targets Meetings Contacts Description Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in transportation, stationary, and portable power applications. One of the most challenging technical barriers known is how to efficiently store hydrogen on-board a vehicle to meet customer expectations of a driving range greater than 300 miles-as well as performance, safety, and cost-without impacting passenger or cargo space. The Department of Energy's hydrogen storage activity is coordinated through the "National Hydrogen Storage Project," with multiple university, industry, and federal laboratory partners focused on research and development of on-board vehicular hydrogen storage technologies. This research also has components applicable to off-board storage of hydrogen for refueling infrastructure and the off-board regeneration of chemical hydrogen carriers applicable to hydrogen delivery.

203

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

204

Transmission Line Security Monitor  

SciTech Connect (OSTI)

The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

None

2011-01-01T23:59:59.000Z

205

Transmission Line Security Monitor  

ScienceCinema (OSTI)

The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

206

Dish Stirling Advanced Latent Storage Feasibility  

Science Journals Connector (OSTI)

Abstract Dish-Stirling systems have been demonstrated to provide high-efficiency solar-only electrical generation, holding the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. Current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports on the technical advantages and challenges of dish Stirling with storage, to make a preliminary estimate as to the technical feasibility of such a system. The proposed system with storage incorporates high temperature latent transport and latent storage, providing an exergetic match to the isothermal input of the Stirling cycle. The transport from the receiver to the storage, and from storage to the engine, is accomplished with advanced sodium heat pipes. The storage is in a solid-liquid phase change material (PCM), likely a metallic eutectic to reduce exergy losses in thermal conduction. We model a dish Stirling system at a block level, using a combination of real data from several dish systems with and without heat pipe transport, and determine annual energy production and revenue streams based on Barstow California weather data and Southern California Edison Time of Day pricing. We optimize the system on solar multiple, capacity of storage, and several operational strategies. We find that a storage system using metallic eutectic phase change storage results in a feasible physical embodiment, with mass, volume, and complexity suitable for 25kWe dish Stirling systems. The results indicate a system with 6hours of storage and a solar multiple of 1.25 provides the optimum impact to LCOE and profit for the range of cases studied. A storage system applied to dish Stirling will leverage the current high performance systems, increasing the value to the utilities and transmission entities. A feasible embodiment has been proposed, which with sufficient development will re-establish dish Stirling as a leading energy option.

C.E. Andraka

2014-01-01T23:59:59.000Z

207

Integrated Transmission and Distribution Control  

SciTech Connect (OSTI)

Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: Develop a simulation environment for integrating transmission and distribution control, Construct reduced-order controllable models for smart grid assets at the distribution level, Design and validate closed-loop control strategies for distributed smart grid assets, and Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

2013-01-16T23:59:59.000Z

208

Technology Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advisory Committee Technology Development Smart Grid Energy Delivery Systems Cybersecurity Energy Storage Power Electronics Advanced Modeling Grid Research Transmission...

209

Microsoft Word - Energy Storage 092209 BAR.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STORAGE-A KEY STORAGE-A KEY ENABLER OF THE SMART GRID Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory September 2009 Office of Electricity Delivery and Energy Reliability Energy Storage - A Key Enabler of the Smart Grid 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any

210

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

211

NREL: Energy Storage - Energy Storage Systems Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

212

Electricity Delivery and Energy Reliability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Electricity Delivery and Energy Reliability information about the delivery of electricity and energy reliability Electricity Delivery...

213

Development of superconducting transmission cable. CRADA final report  

SciTech Connect (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Southwire Company is to develop the technology necessary to proceed to commercialization of high-temperature superconducting (HTS) transmission cables. Power transmission cables are a promising near-term electric utility application for high-temperature superconductivity. Present HTS wires match the needs for a three-phase transmission cable: (1) the wires must conduct high currents in self-field, (2) there are no high forces developed, and (3) the cables may operate at relatively low current density. The commercially-available HTS wires, in 100-m lengths, make construction of a full three-phase, alternating current (ac) transmission cable possible. If completed through the pre-commercialization phase, this project will result in a new capability for electric power companies. The superconducting cable will enable delivery with greater efficiency, higher power density, and lower costs than many alternatives now on the market. Job creation in the US is expected as US manufacturers supply transmission cables to the expanding markets in Asia and to the densely populated European cities where pipe-type cable is prevalent. Finally, superconducting cables may enable delivery of the new, diverse and distributed sources of electricity that will constitute the majority of new installed electrical generation in the world during the coming decades.

Hawsey, R.; Stovall, J.P. [Oak Ridge National Lab., TN (United States); Hughey, R.L.; Sinha, U.K. [Southwire Co., Carrollton, GA (United States)

1997-10-01T23:59:59.000Z

214

EIS-0411: Transmission Agency of Northern California Transmission Project  

Broader source: Energy.gov [DOE]

This EIS is for the Western Area Power Administration construction, operation, and maintenance of the proposed transmission agency of Northern California Transmission Project, California.

215

Capital Projects Delivery Procedures Manual  

E-Print Network [OSTI]

1 Capital Projects Delivery Procedures Manual September 4, 2008 Office of the CFO #12;2 Page I of the Capital Budget 11 B. Budget Approval 12 C. Setting Up Capital Projects 13 III. Procedures for Design ­ Office of the Chief Financial Officer Financial Policies and Procedures for the Capital Project Delivery

Alpay, S. Pamir

216

Underground Natural Gas Storage by Storage Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

217

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

218

Transmission Access Resources  

Broader source: Energy.gov [DOE]

Historically, the addition of new electric generation facilities has been accompanied by new transmission systems. For example, large nuclear and coal plants built in the 1960s and 1970s required...

219

Performance Incentives for Transmission  

E-Print Network [OSTI]

The Federal Energy Regulatory Commission's Standard Market Design Notice of Public Rule- making (SMD NOPRPerformance Incentives for Transmission FERC's Standard Market Design should accommodate of California at Berkeley. The research described in this article was supported by National Grid, USA

Oren, Shmuel S.

220

Designing electricity transmission auctions  

E-Print Network [OSTI]

The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

Greve, Thomas; Pollitt, Michael G.

2012-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric Transmission Lines (Iowa)  

Broader source: Energy.gov [DOE]

Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

222

Audio Transmission Systems  

Science Journals Connector (OSTI)

Audio transmission systems are the means by which audio signals are routed, processed, and assigned to the desired monitor and recording output channels. In the early days of electrical recording, rarely more ...

John Eargle

1986-01-01T23:59:59.000Z

223

Transmission Grid Integration  

Broader source: Energy.gov [DOE]

The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

224

Honda Transmission Technical Center  

High Performance Buildings Database

Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

225

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

226

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

227

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

228

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

229

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

230

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

231

Transmission Right Of Way  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About SNR > Right Of Way About SNR > Right Of Way Right Of Way Preferred Vegetation List - Redding & Foothills (XLS - 23K) Preferred Vegetation List - Sacramento Valley (XLS - 170K) WESTERN AREA POWER ADMINISTRATION GENERAL GUIDELINES CONCERNING THE USE OF ELECTRIC TRANSMISSION LINE RIGHTS-OF-WAY Western Area Power Administration (Western) owns a right-of-way easement along the length of the transmission line (width varies by transmission line). Western's rights within the easement include the right to construct, reconstruct, operate, maintain, and patrol the transmission line. Rights usually reserved to the landowner include the right to cultivate, occupy, and use the land for any purpose that does not conflict with Western's use of its easement. To avoid potential conflicts, it is Western's policy to review all proposed uses within the transmission line easement. We consider (1) Safety of the public, (2) Safety of our Employees, (3) Restrictions covered in the easement, (4) Western's maintenance requirements, and (5) Protection of the transmission line structures and (6) Road or street crossings.

232

Open Access Transmission Tariff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission | OATT Transmission | OATT Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Western Open Access Transmission Service Tariff Revision Western Area Power Administration submitted its revised Open Access Transmission Service Tariff with the Federal Energy Regulatory Commission on Sept. 30, 2009. The tariff became effective on Dec. 1, 2009, as modified by Western's March 2, 2011 compliance filing. The revised tariff was developed to comply with FERC Order No. 890 and to be consistent with Western's statutory and regulatory requirements. It addresses changes in transmission services and planning. FERC issued an order on Dec. 2, 2010, granting Western's petition for a Declaratory Order approving the tariff as an acceptable reciprocity tariff, subject to Western making a compliance filing within 30 days to address items in Attachment C, Attachment P and Attachment Q. Western made its compliance filing on March 2, 2010, addressing FERC's Dec. 2, 2010, order. FERC accepted Western's March 2, 2011 compliance filing on April 25, 2011. Western has made several ministerial filings to its OATT as part of FERC's eTariff viewer system, the last of these was approved on March 29, 2013. Further detail can be found in the links below.Current OATT

233

Optical fiber configurations for transmission of laser energy over great distances  

DOE Patents [OSTI]

There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

Rinzler, Charles C; Zediker, Mark S

2014-11-04T23:59:59.000Z

234

Thermochemical Energy Storage  

Broader source: Energy.gov [DOE]

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

235

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

236

Colorado/Transmission/Agencies | Open Energy Information  

Open Energy Info (EERE)

Agencies < Colorado | Transmission Jump to: navigation, search Colorado Transmission Roadmap Agency Links Local Regulations State Regulations Summary General Transmission...

237

National Electric Transmission Congestion Study Webinars | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study National Electric Transmission Congestion Study Webinars National Electric Transmission Congestion Study Webinars The Department...

238

Transmission Planning | Department of Energy  

Office of Environmental Management (EM)

Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study made...

239

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

240

Numerical simulation investigations in weapon delivery probabilities .  

E-Print Network [OSTI]

??The study of weapon delivery probabilities has historically been focused around analytical solutions and approximations for weapon delivery accuracy and effectiveness calculations. With the relatively (more)

Peterson, Kristofer A.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ELECTRICITY DELIVERY AND ENERGY RELIABILITY Appropriation Overview  

Broader source: Energy.gov (indexed) [DOE]

ELECTRICITY DELIVERY AND ENERGY RELIABILITY Appropriation Overview Electricity Delivery and Energy Reliability (OE) drives electric grid modernization and resiliency in the energy...

242

Electricity Transmission, A Primer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system,...

243

Storage Sub-committee  

Broader source: Energy.gov (indexed) [DOE]

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

244

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaseous Hydrogen Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session Name Targets/Objectives More work is needed to better define delivery target metrics Assumptions about targets for costs and energy efficiency need to be qualified Technology improvements likely to lower costs, but may not have major impact on total cost A significant impact on cost would come through permitting policy changes, e.g., use of public land Breakout Session Name Priority Barriers System Issues: need to assess delivery options in context of total system Materials: corrosion, H2 permeability Construction: welding, joining Maintenance and Operation: leak detection Pipeline Safety: odorants, flame visibility

245

Hybrid Transmission Corridor study  

SciTech Connect (OSTI)

Hybrid Transmission Corridors are areas where High Voltage Alternating Current (HVAC) transmission lines and High Voltage Direct Current (HVDC) transmission lines exist in close proximity of each other. Because of the acceptance of HVDC as a means of transporting electric power over long distances and the difficulties associated with obtaining new right-of-ways, HVDC lines may have to share the same transmission corridor with HVAC lines. The interactions between conductors energized with different types of voltages causes changes in the electrical stresses applied to the conductors and insulators. As a result, corona phenomena, field effects and insulation performance can be affected. This report presents the results of an investigation of the HVAC-HVDC interaction and its effect on corona and AC and DC electric field phenomena. The method of investigation was based on calculation methods developed at the EPRI High Voltage Transmission Research Center (HVTRC) and supported by the results of full and reduced-scale line tests. Also, a survey of existing hybrid corridors is given along with the results of measurements made at one of those corridors. A number of examples in which an existing AC corridor may be transformed into a hybrid corridor are discussed. The main result of the research is an analytical/empirical model for predicting the electrical/environmental performance of hybrid corridors, a definition of ACDC interaction and a set of criteria for specifying when the interaction becomes significant, and a set of design rules.

Clairmont, B.A.; Johnson, G.B.; Zaffanella, L.E. (General Electric Co., Lenox, MA (United States))

1992-06-01T23:59:59.000Z

246

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

247

NETL: Carbon Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

248

Performance Evaluation of Real-Time Message Delivery in RDM Algorithm Shabnam Mirshokraie1  

E-Print Network [OSTI]

and evaluating its message delivery performance by making a comparison of the result of simulated RDM and CAN. 1. Introduction Improvement in many fields of modern technology like traffic control and atomic reactors depends neck, the transmission of data is relatively simple as packets travel in one direction only and adding

Kuzmanov, Georgi

249

NREL: Energy Analysis: Electric System Flexibility and Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric System Flexibility and Storage Electric System Flexibility and Storage Options for Increasing Electric System Flexibility to Accommodate Higher Levels of Variable Renewable Electricity Increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, curtailment of some renewable generation, new transmission, and more responsive loads. NREL's electric system flexibility studies investigate the role of various electric system flexibility options on large-scale deployment of renewable energy. NREL's electric system flexibility analyses show that: Key factors in improving grid flexibility include (1) increasing the

250

Port Angeles-Juan de Fuca Transmission Project Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Port Angeles-Juan de Fuca Port Angeles-Juan de Fuca Transmission Project Final Environmental Impact Statement DOE/EIS-0378 October 2007 Port Angeles-Juan de Fuca Transmission Project Final Environmental Impact Statement DOE/EIS - 0378 D e p a r t m e n t o f E n e r g y Office of Electricity Delivery and Energy Reliability and Bonneville Power Administration October 2007 Port Angeles-Juan de Fuca Transmission Project DOE/EIS-0378 Responsible Agency: U.S. Department of Energy (DOE): Office of Electricity Delivery and Energy Reliability (OE) and Bonneville Power Administration (BPA) Title of Proposed Project: Port Angeles-Juan de Fuca Transmission Project State Affected: Washington (WA) Abstract: Sea Breeze Olympic Converter LP (Sea Breeze) has applied to DOE for authorizations and approvals

251

transmission | OpenEI  

Open Energy Info (EERE)

transmission transmission Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (9 months ago) Date Updated March 04th, 2013 (9 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

252

NREL: Energy Analysis: Transmission Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Infrastructure Transmission Infrastructure Grid expansion and planning to allow large scale deployment of renewable generation Large scale deployment of renewable electricity generation will require additional transmission to connect renewable resources, which are wide-spread across the US, but regionally-constrained, to load centers. Long-term transmission planning, based on potential future growth in electric loads and generation resource expansion options, is critical to maintaining the necessary flexibility required for a reliable and robust transmission system. NREL's analyses support transmission infrastructure planning and expansion to enable large-scale deployment of renewable energy in the future. NREL's transmission infrastructure expansion and planning analyses show

253

Printed circuit dispersive transmission line  

DOE Patents [OSTI]

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

1991-08-27T23:59:59.000Z

254

Printed circuit dispersive transmission line  

DOE Patents [OSTI]

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

Ikezi, Hiroyuki (Rancho Santa Fe, CA); Lin-Liu, Yuh-Ren (San Diego, CA); DeGrassie, John S. (Encinitas, CA)

1991-01-01T23:59:59.000Z

255

Transmission line capital costs  

SciTech Connect (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

256

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

257

Hydrogen Delivery Infrastructure Option Analysis  

Broader source: Energy.gov (indexed) [DOE]

pipes - Operating pressure is 35% rather than typical 72% of allowable stress 20-25% less energy delivered (excluding pressure de-rating): Overall, delivery capacity is de-rated by...

258

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

259

ESS 2012 Peer Review - Energy Storage Test Pad - David Rose, SNL  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Test Pad Energy Storage Test Pad Date 09/28/2012 Name David Rose The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery & Energy Reliability. Energy Storage Test Pad (ESTP)  Challenge: Unbiased, third party evaluation is a necessary step to bring new technologies to market  The equipment and expertise necessary to perform testing of energy storage systems can be cost prohibitive, especially at the MW level  Approach: Offer third party testing that provides a real picture of how energy storage systems operate  This in turn provides confidence to developers, users and adopters of energy storage  Goal: Utilize infrastructure and expertise at Sandia to perform high value testing of energy storage systems

260

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook |  

Broader source: Energy.gov (indexed) [DOE]

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 14, 2013 - 3:27pm Addthis On Tuesday, June 18 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar introducing the recently updated Electricity Storage Handbook released by Sandia National Laboratories and published by the U.S. Department of Energy. Titled "Highlights of the DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA," the webinar will be introduced by by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will highlight the various topical areas of the 2013 edition of the Electricity Storage Handbook. This is a how-to guide for utility

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Grid Energy Storage December 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grid Energy Storage December 2013 Grid Energy Storage December 2013 Grid Energy Storage December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and implementing grid expansion to meet this increased electric load face growing challenges in balancing economic and commercial viability, resiliency, cyber-security, and impacts to carbon emissions and environmental sustainability. Energy storage systems (ESS) will play a

262

Electric Transmission System Workshop  

Broader source: Energy.gov (indexed) [DOE]

Lauren Azar Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System Workshop We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Visions for the Future Artist: Paolo Frattesi Artist: Paolo Frattesi Uncertainty = changing industry Changes in technology, threats and policies Can we make decisions in the face of change? .......How can we not? Can we agree on several key design attributes for the future grid? Taking Action in the Face of Uncertainty Step 1: Establish common ground on key design attributes GTT's Proposed Key Design Attributes:

263

10-Yr. Transmission Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Marketing Rates Power Marketing Rates 10-Yr Transmission Plan 2012 Customer Meeting Announcement Agenda 120611 CRSP South Projects CRSP South PowerPoint Presentation CRSP South 2009-2011 Capitalized Execution CRSP North Projects CRSP North PowerPoint Presentation CRSP North 2009-2011 Capitalized Execution About Power Marketing Transmission Newsroom Business Policies Products Plan contents OASIS News features Careers No FEAR act Organization chart Plan processes Functions News releases Doing business Privacy policy History General power contract provisions OATT Revisions Fact sheets Energy Services Accessibility Financial information Rates and Repayment Interconnection Publications EPTC Adobe PDF Power projects EPAMP Infrastructure projects Federal Register Notices

264

Radiation delivery system and method  

DOE Patents [OSTI]

A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2002-01-01T23:59:59.000Z

265

The Application of Flywheels in Short-term Energy Storage  

Science Journals Connector (OSTI)

ABSTRACT In many alternative energy systems there is a requirement for energy storage over periods of up to 20 seconds in order to match supply and demand at times when these are changing rapidly and independently. The flywheel forms an ideal basis for such storage because of its relatively high cycle life and potential power and energy density. Wind energy conversion is taken as an example and the requirement for energy storage in WTG systems is assessed. Flywheel energy storage is compared with other forms of storage and is shown to be potentially suitable for this requirement. Power transmission between the flywheel and the WTG grid system requires a variable speed regenerative drive and associated frequency conversion. Such a scheme might permit variable speed WTG operation. A DC link converter is described.

C.M. Jefferson; N. Larsen

1984-01-01T23:59:59.000Z

266

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

267

Energia Sierra Juarez U.S. Transmission Line Draft EIS  

Broader source: Energy.gov (indexed) [DOE]

Energia Sierra Juarez U.S. Transmission Line Project Energia Sierra Juarez U.S. Transmission Line Project Draft Environmental Impact Statement Summary August 2010 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Washington, DC 20585 Cooperating Agency - County of San Diego San Diego, CA DOE/EIS-0414 Department of Energy Washington, DC 20585 August 2010 Dear Sir/Madam: Enclosed for your review and comment is the Energia Sierra Juarez U.S. Transmission Line Project Draft Environmental Impact Statement (DOE/EIS-0414), prepared by the Department of Energy (DOE) pursuant to the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. The County of San Diego, California, is a cooperating agency in the preparation of this Draft EIS.

268

National Electric Transmission Congestion Study 2012 - How to Submit  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study 2012 - How to National Electric Transmission Congestion Study 2012 - How to Submit Comments National Electric Transmission Congestion Study 2012 - How to Submit Comments You may submit written comments to Congestionstudy2012@hq.doe.gov or by mail to: Office of Electricity Delivery and Energy Reliability, OE-20 U.S. Department of Energy 1000 Independence Avenue SW. Washington, DC 20585 The Department intends to use only data that is publicly available for this study. Accordingly, please do not submit information that you believe is or should be protected from public disclosure. DOE is responsible for the final determination concerning disclosure or nondisclosure of information submitted to DOE and for treating it in accordance with the DOE's Freedom of Information regulations (10 CFR 1004.11). All comments received by DOE

269

Transmission SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

Overcoming Overcoming Institutional Barriers to Infrastructure Development Lauren Azar Senior Advisor to the Secretary U.S. Department of Energy January 31, 2012 Lauren"s Initiatives 1. Rapid Response Team for Transmission 2. Power Marketing Administrations 3. Project Development in the Southwest 4. Congestion Study and NIETC Designations 5. Miscellaneous  EPA Regulations  Market Power

270

Continuously variable transmission  

SciTech Connect (OSTI)

This patent describes a power transmission apparatus. It comprises: a body, a pinion gear, a cam means, first and second gear rack pairs, preventing means;l first and second rack support means, a rotor mounted for rotation about a rotor axis, the rotor having rotor engaging means for engaging the rack support means so as to transmit power therebetween.

Irvin, P.J.E.

1992-07-14T23:59:59.000Z

271

Autonomous data transmission apparatus  

DOE Patents [OSTI]

A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

1997-01-01T23:59:59.000Z

272

Borehole data transmission apparatus  

DOE Patents [OSTI]

A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

Kotlyar, O.M.

1993-03-23T23:59:59.000Z

273

U.S. Department of Energy Office of Electricity Delivery & Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Electricity Delivery & Energy Office of Electricity Delivery & Energy Reliability: Electric Markets Technical Assistance Program U.S. Department of Energy Office of Electricity Delivery & Energy Reliability: Electric Markets Technical Assistance Program The Electric Markets Technical Assistance Program provides quick-response analysis and technical assistance on an as-requested basis to state public utility commissions, regional bodies, state legislatures, and governors' offi ces, as well as analyses of national trends in energy effi ciency and renewable energy and transmission in electricity markets. The Program does not advocate, but instead serves as a clearinghouse for policymakers on what makes effective electricity policy at the regional or state level. U.S. Department of Energy Office of Electricity Delivery & Energy

274

Secretary of Energy Announces New Office of Electricity Delivery & Energy  

Broader source: Energy.gov (indexed) [DOE]

New Office of Electricity Delivery & New Office of Electricity Delivery & Energy Reliability Secretary of Energy Announces New Office of Electricity Delivery & Energy Reliability June 9, 2005 - 1:45pm Addthis WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the completion of the merger of the former Office of Electric Transmission and Distribution and Office of Energy Assurance into the new Office of Electricity Delivery & Energy Reliability (OE) whose goal is to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply. "DOE's new office will focus efforts on the essential mission of modernizing our electricity grid. As we saw in the blackouts of 2001 and

275

Secretary of Energy Announces New Office of Electricity Delivery & Energy  

Broader source: Energy.gov (indexed) [DOE]

Secretary of Energy Announces New Office of Electricity Delivery & Secretary of Energy Announces New Office of Electricity Delivery & Energy Reliability Secretary of Energy Announces New Office of Electricity Delivery & Energy Reliability June 9, 2005 - 9:26am Addthis WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the completion of the merger of the former Office of Electric Transmission and Distribution and Office of Energy Assurance into the new Office of Electricity Delivery & Energy Reliability (OE) whose goal is to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply. "DOE's new office will focus efforts on the essential mission of modernizing our electricity grid. As we saw in the blackouts of 2001 and

276

ESS 2012 Peer Review - Thermoelectrochemical Energy Storage - Nick Hudak, SNL  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectrochemical Thermoelectrochemical Energy Storage 27 September 2012 Nick Hudak Advanced Power Sources R&D Sandia National Laboratories The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery & Energy Reliability. Thermoelectrochemical Energy Storage  Problem: Flow batteries exhibit inefficiencies that are affected by operating temperature.  Opportunity: Power plants produce waste heat that can be recovered and applied to other processes.  We can use the heat to increase the temperature of all or part of a flow battery system.  Approach: Demonstrate the advantage of non-isothermal operation of a flow battery.  Charge at higher temperature and discharge at lower temperature

277

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

278

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

279

Sorption Storage Technology Summary  

Broader source: Energy.gov [DOE]

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

280

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

282

Mr. Lamont Jackson Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

8, 2012 8, 2012 Mr. Lamont Jackson Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Submitted via email to: Lamont.Jackson@hq.doe.gov Re: Department of Energy - Rapid Response Team for Transmission Request for Information, RRTT-IR-01, 77 Fed. Reg. 11517 (Feb. 27, 2012) Dear Mr. Jackson: Southern California Edison Company submits these comments in response to the Department of Energy's Request for Information concerning the efforts to resolve the issue of "incongruent development timelines" for the siting and permitting of electricity

283

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

284

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

285

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

286

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

287

Office of Electricity Delivery and Energy Reliability, OE-20  

Broader source: Energy.gov (indexed) [DOE]

6, 2012 6, 2012 Office of Electricity Delivery and Energy Reliability, OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 RE: Comments for Consideration in the Preparation of the 2012 National Electric Transmission Congestion (NIETC) Study. Sugarloaf Conservancy, Inc. is a registered 501 (c)(3) grassroots organization formed to protect and enhance the quality of life in Frederick County, Maryland, by education on issues related to wetlands, streams, meadows, rivers, forests, view sheds, conservation, restoration, and preservation. For the last three years, our focus has been opposing the overhead PATH high voltage power lines. Pursuant to the request for comments, as noted in a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study,

288

Lamont Jackson Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

March 28, 2012 March 28, 2012 Lamont Jackson Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, D.C. 20585 Via email to: Lamont.Jackson@hq.doe.gov Re: Comments on Questions Related to Permitting of Transmission Lines, 77 Fed. Reg. 11517 (Feb. 27, 2012) Dear Mr. Jackson: Thank you for the opportunity to submit comments on questions related to the permitting of transmission lines. We, the undersigned conservation organizations, are working to address the threat of climate change by advocating for significant increases in renewable energy and energy conservation measures. Our nation's addiction to fossil fuels, coupled with the unprecedented threats brought about by

289

Drill string transmission line  

DOE Patents [OSTI]

A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

2006-03-28T23:59:59.000Z

290

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

291

Patterns of Transmission Investment  

E-Print Network [OSTI]

long term performance contracts with a developer of an HVDC transmission link to expand interconnection capacity between TSOs with no or limited interconnections and with large sustained differences in prices. Merchant investments supported... truly separate AC networks. For example, by building HVDC inter-connectors between two separate networks, opportunities to increase trades of power from high price to low priced areas can be exploited. The HVDC link between the England and France...

Joskow, Paul

2006-03-14T23:59:59.000Z

292

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu

2009-04-01T23:59:59.000Z

293

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (120.75)m3 size was designed and constructed. The...

F. mez; R. Oskay; A. ?. er

1987-01-01T23:59:59.000Z

294

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

295

Sandia National Laboratories: evaluate energy storage opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

296

Sandia National Laboratories: implement energy storage projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

297

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

298

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

299

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

300

Boardman to Hemingway Transmission Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

302

Protein-Based Nanomedicine Platforms for Drug Delivery. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein-Based Nanomedicine Platforms for Drug Delivery. Protein-Based Nanomedicine Platforms for Drug Delivery. Abstract: Drug delivery systems have been developed for many years,...

303

Comments of Oncor Electric Delivery Company LLC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC on Implementing the National...

304

Transmission Line Circuit Alexander Glasser  

E-Print Network [OSTI]

Chaos in a Transmission Line Circuit Alexander Glasser Marshal Miller With... Prof. Edward Ott Prof times become shorter, circuit connections behave more and more like transmission lines. Theoretical(t) - Transmission Line (Zo, T) #12;5 Cf/Cr 1000 Vf Capacitance Voltage Cf Cr Model for Nonlinear Capacitor

Anlage, Steven

305

NREL: Transmission Grid Integration - Transmission Planning and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Planning and Analysis Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for and construct new generation and transmission lines. However, variable generation such as solar and wind power plants are often located far from the loads they serve. They depend on transmission lines to transport the electricity they produce to load centers. NREL is working with industry and utilities to address issues related to

306

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

turbines and compressed air energy storage for supplementalresources and compressed air energy storage (CAES). Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

307

Transmission/Photo Gallery | Open Energy Information  

Open Energy Info (EERE)

Colorado transmission 2.jpg Bird diverters.jpg Transmission insulators.jpg Retrieved from "http:en.openei.orgwindex.php?titleTransmissionPhotoGallery&oldid687595...

308

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

309

NREL: Transmission Grid Integration - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study Flexible Energy Scheduling Tool for Integration of Variable generation (FESTIV) Active power controls Forecasting Grid Simulation. NREL Publications Database NREL's publications database offers a variety of documents related to transmission integration that were written by NREL staff and

310

Electric Transmission Line Siting Compact  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission Line Siting Compact Electric Transmission Line Siting Compact 1 ______________________________________________________________________________ 2 ARTICLE I 3 PURPOSE 4 5 Siting electric transmission lines across state borders and federal lands is an issue for states, the 6 federal government, transmission utilities, consumers, environmentalists, and other stakeholders. 7 The current, multi-year application review process by separate and equal jurisdictions constitutes 8 a sometimes inefficient and redundant process for transmission companies and complicates the 9 efforts of state and federal policy-makers and other stakeholders to develop more robust 10 economic opportunities, increase grid reliability and security, and ensure the consumers have the 11 lowest cost electricity possible. 12

311

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

312

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

313

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

314

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

315

Energy Storage | Department of Energy  

Energy Savers [EERE]

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

316

Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

The Office of Electricity Delivery and Energy Reliability (OE) drives electric grid modernization and resiliency in the energy infrastructure while working to enable innovation across the energy sector, empowering American consumers, and securing our energy future. The OE mission and the leadership role OE plays in the energy industry directly support the President's effort to accelerate the transformation of America's energy system

317

California Natural Gas International Deliveries (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Deliveries (Million Cubic Feet) California Natural Gas International Deliveries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

318

Delivery Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Tech Team Delivery Tech Team Presentation by 02-Parks to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak...

319

Transmission Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Grid Tech Team » Activities/Outreach » GTT DOE Grid Tech Team » Activities/Outreach » GTT Activities » Transmission Workshop Transmission Workshop Transmission Workshop GTT Transmission Workshop - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action Plan Addressing the Electricity Transmission System was discussed during the workshop, which addressed the challenges and opportunities presented by the integration of 21st century energy technologies into the electricity transmission system. Parallel sessions addressed the challenges and opportunities of modernizing the grid and drilled down into key technology areas associated with each of these: System visibility: what advances are needed to "see" the state of

320

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Terahertz Quantum-Cascade Transmission-Line Metamaterials  

E-Print Network [OSTI]

Terahertz Transmission-Line Metamaterials . . . . . . .CRLH Transmission Lines . . . . . . . . . . . . . . . .Terahertz CRLH Transmission-Line Metamaterials . . . . . . .

Tavallaee, Amir Ali

2012-01-01T23:59:59.000Z

322

Sensor Technologies for a Smart Transmission System An EPRI White Paper  

Broader source: Energy.gov (indexed) [DOE]

Sensor Technologies for a Smart Transmission System Sensor Technologies for a Smart Transmission System An EPRI White Paper December 2009 December 2009 Page 2 An EPRI White Paper Sensor Technologies for a Smart Transmission System Aging equipment and tight O&M budgets are putting the squeeze on transmission line and substation managers. A new gen- eration of low-cost sensors can help diag- nose equipment health to optimize mainte- nance and prevent catastrophic failures. Power delivery systems are among the largest and most diverse, remotely located investments. There are a num- ber of challenges that utilities face with their transmis- sion line and substation assets: * Existing transmission lines and substations are aging while the required reliability is increasing and the availability of clearance to perform maintenance is

323

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov [DOE]

Proceedings from the Strategic Directions for Hydrogen Delivery Workshop held May 7-8, 2003 in Washington, DC. Author: Energetics

324

Analyses of Hydrogen Storage Materials and On-Board Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Analyses of Hydrogen Hydrogen Analyses of Hydrogen Storage Materials and On Storage Materials and On - - Board Systems Board Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268 © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8, 2007 Stephen Lasher Kurtis McKenney Yong Yang Bob Rancatore Stefan Unnasch Matt Hooks This presentation does not contain any proprietary or confidential information Overview 1 SL/042007/D0268 ST32_Lasher_H2 Storage_v1.ppt Start date: June 2004 End date: Sept 2009 41% Complete Timeline Barriers addressed B. Cost C. Efficiency K. System Life Cycle Assessments Barriers Total project funding DOE share = $1.5M No cost share FY06 = $275k FY07 = $300k (plan) Budget Argonne and other National

325

Sandia Researchers Develop Promising Chemical Technology for Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Researchers Develop Promising Chemical Technology for Energy Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy than today's batteries. The new family of liquid salt electrolytes, called MetILs, might enable economical and reliable incorporation of large-scale intermittent energy sources, like solar and wind, into the nation's electric grid. The research team is funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE). Imre Gyuk, OE's energy storage systems program manager, notes that the new solution could "lead to

326

Delivery and Hedging Delivery ties the futures price to the spot price.  

E-Print Network [OSTI]

Delivery and Hedging · Delivery ties the futures price to the spot price. · On the delivery date, the settlement price of the futures contract is determined by the spot price. · Hence, when the delivery period is reached, the futures price should be very close to the spot price. · Changes in futures prices usually

Lyuu, Yuh-Dauh

327

Regulatory Policy and Markets for Energy Storage in North America  

SciTech Connect (OSTI)

The last 5 years have been one of the most exciting times for the energy storage industry. We have seen significant advancements in the regulatory process to make accommodations for valuing and monetizing energy storage for what it provides to the grid. The most impactful regulatory decision for the energy storage industry has come from California, where the California Public Utilities Commission issued a decision that mandates procurement requirements of 1.325 GW for energy storage to 3 investor-own utilities in 4 stages: in 2014, 2016, 2018, and 2020. Furthermore, at the Federal level, FERCs Order 755, requires the transmission operators to develop pay for performance tariffs for ancillary services. This has had direct impact on the market design of US competitive wholesale markets and the monetization of fast responding grid assets. While this order is technology neutral, it clearly plays into the fast-responding capability of energy storage technologies. Today PJM, CAISO, MISO, NYISO, and NE-ISO have implemented Order 755 and offer new tariff for regulation services based on pay-for-performance principles. Furthermore, FERC Order 784, issued in July 2013 requires transmission providers to consider speed and accuracy in determining the requirements for ancillary services. In November 2013, FERC issued Order 972, which revises the small generator interconnection agreement which declares energy storage as a power source. This order puts energy storage on par with existing generators. This paper will discuss the implementation of FERCs Pay for Performance Regulation order at all ISOs in the U.S. under FERC regulatory authority (this excludes ERCOT). Also discussed will be the market impacts and overall impacts on the NERC regulation performance indexes. The paper will end with a discussion on the California and Ontario, Canada procurement mandates and the opportunity that it may present to the energy storage industry.

Kintner-Meyer, Michael CW

2014-05-14T23:59:59.000Z

328

Energy Tradeoffs among Content Delivery Architectures  

E-Print Network [OSTI]

Energy Trade­offs among Content Delivery Architectures Anja Feldmann Andreas Gladisch Mario Kind to incorporate var­ ious home devices such as set­top boxes into content delivery architectures using the Peer­to­Peer (P2P) paradigm. The hope is to enhance the efficiency of content delivery, e.g., in terms

Smaragdakis, Georgios

329

Iontophoretic drug delivery system: A review  

Science Journals Connector (OSTI)

Among the recent developments in the field of transdermal drug delivery, iontophoresis has emerged as a very promising tool for this purpose. Various studies have been performed on drug delivery through the skin using electric current. Iontophoresis ... Keywords: Iontophoresis, iontophoretic systems, transdermal drug delivery

Ajay Semalty; Mona Semalty; Ranjit Singh; Shailendra K. Saraf; Shubhini Saraf

2007-09-01T23:59:59.000Z

330

Transmission Benefits of Co-Locating Concentrating Solar Power and Wind  

SciTech Connect (OSTI)

In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

Sioshansi, R.; Denholm, P.

2012-03-01T23:59:59.000Z

331

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

332

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

333

Multiported storage devices  

E-Print Network [OSTI]

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

334

Abstract --Under a context of transmission open access, a methodology to define a common transmission trunk system  

E-Print Network [OSTI]

Terms--Transmission systems, Transmission pricing, Cooperative games, Shapley value, Transmission open

Catholic University of Chile (Universidad Católica de Chile)

335

Energy Storage Activities in the United States Electricity Grid. May 2011  

Broader source: Energy.gov (indexed) [DOE]

Storage Activities in the United States Electricity Grid Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair Senior Vice President, Transmission KEMA Honorable Lauren Azar Commissioner Wisconsin Public Utilities Commission Frederick Butler President & Chief Executive Officer Butler Advisory Services Richard Cowart Principal Regulatory Assistance Project and Chair, Electricity Advisory Committee Roger Duncan General Manager (Ret.) Austin Energy Robert Gramlich Senior Vice President, Public Policy American Wind Energy Association Brad Roberts Chairman Electricity Storage Association Honorable Tom Sloan Representative Kansas House of Representatives Wanda Reder Vice President

336

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Hydrogen Delivery Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Main Themes/Caveats Will be challenging (if not impossible) to meet the 2010 cost target with today's technology Without significant growth in product demand, progress will likely be slow even with incremental technology Group a little light on technical expertise, but feel captured main ideas required Less "weeding" of ideas, but more divergent thinking Targets/Objectives 2003 Status: $1.11/kg May be a bit lower than actual costs Baseline needs to be revisited 2005 Target: $1.01/kg Technically (10% improvement) could be met, but unlikely demand drivers will be present to encourage meeting target Likely no plant will be built in 2005

337

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

338

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Equipment Transmission Lines 765 kV (no description) 500Montana-Alberta Tie 230 kV Transmission Line: TransmissionMontana-Alberta Tie 230 kV Transmission Line: Transmission

Mills, Andrew D.

2009-01-01T23:59:59.000Z

339

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

340

National Electric Transmission Congestion Study: Preliminary...  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study: Preliminary Findings National Electric Transmission Congestion Study: Preliminary Findings The Department hosted three webinars in...

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations  

SciTech Connect (OSTI)

This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

Ted Barnes; William Liss

2008-11-14T23:59:59.000Z

342

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov [DOE]

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

343

Dynamic Transmission Electron Microscopy  

SciTech Connect (OSTI)

Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

2012-10-12T23:59:59.000Z

344

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

345

DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery,  

Broader source: Energy.gov (indexed) [DOE]

DOE, States Seek Closer Collaboration on Oil and Gas Supply and DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation October 1, 2009 - 1:00pm Addthis Washington, DC - An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy (DOE) and the Interstate Oil and Gas Compact Commission (IOGCC). The Memorandum of Understanding (MOU) provides a framework for states and DOE to work more closely on "responsible domestic production of oil and natural gas; carbon capture, transport and geologic storage; and other topics of mutual interest." The document was signed by DOE's Assistant

346

UNITED STATES OF AMERICA BEFORE THE DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY  

Broader source: Energy.gov (indexed) [DOE]

OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Northern Pass Transmission LLC OE Docket No. PP-371 Application for Presidential Permit COMMENTS OF CONSERVATION LAW FOUNDATION, APPALACHIAN MOUNTAIN CLUB, AND SOCIETY FOR THE PROTECTION OF NEW HAMPSHIRE FORESTS ON AMENDED APPLICATION In response to the Notice of Amended Application from the U.S. Department of Energy ("DOE"), dated August 19, 2013 (78 Fed. Reg. 50,405), Interveners Conservation Law Foundation, Appalachian Mountain Club, and Society for the Protection of New Hampshire Forests ("Environmental Interveners") file the following comments on the Amended Application ("Amended Application") of Northern Pass Transmission LLC ("Applicant") in the above-

347

Transmission Reliability | Department of Energy  

Energy Savers [EERE]

design, long-term supply and transmission investment, renewable integration, demand response, and environmental impacts. Researchers use models and simulations to assess how...

348

NREL: Transmission Grid Integration - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects NREL's transmission integration projects provide data and models that help utilities and policymakers make informed decisions about the integration of variable generation,...

349

Machine and Beam Delivery Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MAchine and Beam delivery Updates FY13 MAchine and Beam delivery Updates FY13 Summary of Beam Delivery: FACET Summary Feb_15_22.pdf FACET Summary Feb_15_22.pdf FACET Summary Feb_23_Mar_1.pdf FACET Summary Feb_23_Mar_1.pdf FACET Summary Mar_2_8.pdf FACET Summary Mar_2_8.pdf FACET Summary Mar_9_15.pdf FACET Summary Mar_9_15.pdf FACET Summary Mar_16_22.pdf FACET Summary Mar_16_22.pdf FACET Summary Mar_23_29.pdf FACET Summary Mar_23_29.pdf FACET Summary Mar_30_Apr_5.pdf FACET Summary Mar_30_Apr_5.pdf FACET Summary Apr_6_12.pdf FACET Summary Apr_6_12.pdf FACET Summary Apr_27_May_3.pdf FACET Summary Apr_27_May_3.pdf FACET Summary May_4_10.pdf FACET Summary May_4_10.pdf Emittance Stability in Sector 2_31513.pdf Emittance Stability in Sector 2_31513.pdf FACET beam operations readiness with R56.pdf FACET beam operations readiness with R56.pdf (6/19/2013)

350

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

351

Chapter 4 Transmission Adequacy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 4 Transmission Adequacy Chapter 4 Transmission Adequacy Chapter 4 Transmission Adequacy Transmission lines are the critical link between the point of electricity generation and consumers. The U.S. transmission grid infrastructure is owned and operated by approximately 3,000 distribution utilities and 500 transmission owners. This structure presents a distinct set of challenges in transmission planning, siting, cost allocation, grid operations and management, technological innovation, financing and construction. The development and deployment of a national strategy on transmission that meets the needs of all parties is extremely complex; however, a solution is desperately needed. Chapter 4 Transmission Adequacy More Documents & Publications Draft Chapter 4: Transmission Adequacy

352

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

353

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

354

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and  

Broader source: Energy.gov (indexed) [DOE]

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 12, 2013 - 10:40am Addthis On Wednesday, July 17 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar on resilient solar-storage systems for homes and commercial facilities. The webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will include basic information on battery-backed PV systems that can continue to operate in islanded mode when the grid is down, supporting critical loads. Speaker Michael Kleinberg of DNV KEMA will discuss existing solutions and opportunities for solar PV systems with

355

Identification and definition of unbundled electric generation and transmission services  

SciTech Connect (OSTI)

State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

Kirby, B.; Hirst, E.; Vancoevering, J.

1995-03-01T23:59:59.000Z

356

Flywheel Energy Storage Module  

Broader source: Energy.gov (indexed) [DOE]

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

357

NREL: Learning - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

358

Storage Ring Operation Modes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

359

HVDC power transmission technology assessment  

SciTech Connect (OSTI)

The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

1997-04-01T23:59:59.000Z

360

Hydrogen Transmission and Distribution Workshop  

Broader source: Energy.gov [DOE]

Proceedings from the Hydrogen Transmission and Distribution Workshop held February 25-26, 2014, in Golden, Colorado. The objective was to discuss and share information on the research, development, and demonstration needs and challenges for low-cost, effective hydrogen transmission and distribution from centralized production facilities to the point of use.

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Direct current power transmission systems  

SciTech Connect (OSTI)

This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

Padiyar, K.R.

1991-01-01T23:59:59.000Z

362

DOE/EIS-0197-SA-01; Delivery of the Canadian Entitlement Final Environmental Impact Statement Supplement to Record of Decision  

Broader source: Energy.gov (indexed) [DOE]

Delivery of the Canadian Entitlement Delivery of the Canadian Entitlement Final Environmental Impact Statement Supplement to Record of Decision Summary The United States Entity has decided to supplement an earlier decision regarding the Canadian Entitlement. The United States Entity issued a Delivery of the Canadian Entitlement Record of Decision (ROD) on November 8, 1996. The ROD was based on the Delivery of the Canadian Entitlement Environmental Impact Statement (DOE/EIS- 0197, issued in January 1996). The November 1996 ROD announced the United States Entity decision to fulfill its obligation under the Columbia River Treaty (Treaty) between Canada and the United States of America (United States) by delivering the full Canadian Entitlement (Entitlement) at existing transmission interconnections between the United

363

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

364

Marketing Cool Storage Technology  

E-Print Network [OSTI]

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

365

Chapter 23 - Energy Storage and the Need forFlexibility on the Grid  

Science Journals Connector (OSTI)

Abstract Energy storage technologies provide valuable flexibility on the electric grid by making the grid more efficient and by absorbing the intermittent renewable resources of tomorrows grid. But realizing the full value of this new flexibility requires holistically optimizing the unique functionalities of an energy storage system across the full spectrum of grid operations, from generation, through transmission, and to the customer, including any self-generation and demand response. The control systems, communications infrastructure, and smart energy storage devices needed to do this are just beginning to meet needed economic and technical milestones to demonstrate how energy storage will function within a fully-optimized electric grid. This chapter describes how energy storage provides valuable flexibility resources to the grid and profiles several deployed energy storage systems.

David Mohler; Daniel Sowder

2014-01-01T23:59:59.000Z

366

Transmission Reliability | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Reliability Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security. The Transmission Reliability Program is aligned with this strategic plan

367

ITC Transmission | Open Energy Information  

Open Energy Info (EERE)

ITC Transmission ITC Transmission Jump to: navigation, search Name ITC Transmission Place Michigan Utility Id 56068 Utility Location Yes Ownership T NERC RFC Yes ISO MISO Yes Activity Transmission Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=ITC_Transmission&oldid=410858" Categories: EIA Utility Companies and Aliases Utility

368

Regional Transmission Projects: Finding Solutions  

SciTech Connect (OSTI)

The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

The Keystone Center

2005-06-15T23:59:59.000Z

369

Storage Business Model White Paper  

Broader source: Energy.gov (indexed) [DOE]

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

370

Spent-fuel-storage alternatives  

SciTech Connect (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

371

Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions  

Broader source: Energy.gov [DOE]

Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

372

Transmission Asset Optimization (and) A Contrarian View of the Future of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Asset Optimization (and) A Contrarian View of the Future of Transmission Asset Optimization (and) A Contrarian View of the Future of Distributed Generation vs. Central Station Generation Speaker(s): Dale Bradshaw Date: June 5, 2000 - 10:00am Location: 90-3148 Seminar Host/Point of Contact: David Faulkner This was a two part seminar: Part One: Transmission Asset Optimization Presentation of latest technology developments that can increase the flow of power over todays transmission lines, thus potentially reducing total costs for transmitting power, while improving transmission reliability. Technologies discussed include FACTs devices, energy storage, etc.) Part Two: A Contrarian View of the Future of Distributed Generation vs. Central Station Generation: There have been a lot claims and hype concerning the relative competitive position in the future of distributed generation (DG)

373

Fiber coupled optical spark delivery system  

DOE Patents [OSTI]

A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO)

2008-08-12T23:59:59.000Z

374

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network [OSTI]

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

375

Energy Transmission and Infrastructure  

SciTech Connect (OSTI)

The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

Mathison, Jane

2012-12-31T23:59:59.000Z

376

Evaluation of Retrofit Delivery Packages  

SciTech Connect (OSTI)

Residential energy retrofit activities are a critical component of efforts to increase energy efficiency in the U.S. building stock; however, retrofits account for a small percentage of aggregate energy savings at relatively high per unit costs. This report by Building America research team, Alliance for Residential Building Innovation (ARBI), describes barriers to widespread retrofits and evaluates opportunities to improve delivery of home retrofit measures by identifying economies of scale in marketing, energy assessments, and bulk purchasing through pilot programs in portions of Sonoma, Los Angeles, and San Joaquin Counties, CA. These targeted communities show potential and have revealed key strategies for program design, as outlined in the report.

Berman, M.; Smith, P.; Porse, E.

2013-07-01T23:59:59.000Z

377

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

378

Seed Cotton Handling & Storage  

E-Print Network [OSTI]

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

379

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

380

Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West  

Broader source: Energy.gov (indexed) [DOE]

AGENDA TUESDAY, FEBRUARY 7 MEETING ROOM-WINDOWS ROOM 8:30am - 8:50am WELCOME, INTRODUCTIONS AND OPENING REMARKS CONTINENTAL BREAKFAST WILL BE SERVED Tracey A. LeBeau, Director, DOE Office of Indian Energy Lamont Jackson, Representative, DOE Office of Electricity Delivery and Energy Reliability Introductions 8:50am - 9:10am FEDERAL TRANSMISSION DISCUSSION: TRANSMISSION EXPANSION IN THE WEST Timothy Meeks, Administrator, Western Area Power Administration 9:10am - 9:30am TRANSMISSION DEVELOPMENT IN THE PACIFIC: PERSPECTIVES FROM BONNEVILLE POWER ADMINISTRATION Bill Drummond, Deputy Administrator, Bonneville Power Administration 9:30am - 10:45am TRANSMISSION POLICY AND REGULATION PRIMER: OVERVIEW OF JURISDICTIONAL AUTHORITIES & CURRENT POLICY TRENDS

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SunShot Initiative: Transmission Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Grid Integration to Transmission Grid Integration to someone by E-mail Share SunShot Initiative: Transmission Grid Integration on Facebook Tweet about SunShot Initiative: Transmission Grid Integration on Twitter Bookmark SunShot Initiative: Transmission Grid Integration on Google Bookmark SunShot Initiative: Transmission Grid Integration on Delicious Rank SunShot Initiative: Transmission Grid Integration on Digg Find More places to share SunShot Initiative: Transmission Grid Integration on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation Power Electronics & Balance of System Hardware Technologies Competitive Awards

382

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

383

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

384

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

385

Storage/Handling | Department of Energy  

Energy Savers [EERE]

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

386

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

387

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

388

Hydrogen Storage Challenges | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

389

Chemical Hydrogen Storage Research and Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage Research and Development Chemical Hydrogen Storage Research and Development DOE's chemical hydrogen storage R&D is focused on developing low-cost...

390

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

391

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

392

OE Issues Notice of Intent to Prepare an Environmental Impact Statement for the Plains & Eastern Clean Line Transmission Project  

Broader source: Energy.gov [DOE]

On December 21, 2012, DOEs Office of Electricity Delivery and Energy Reliability (OE) issued a Notice of Intent (NOI) to Prepare an Environmental Impact Statement (EIS) for the Plains & Eastern Clean Line Transmission Project on behalf of the Department and Southwestern Power Administration

393

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network [OSTI]

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

394

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

395

Bibliography on transmission access issues  

SciTech Connect (OSTI)

This paper presents a bibliography on issues related to transmission access in electric power systems. There are 233 citations referenced in this bibliography. This bibliography presents a collection of selected literature on issues related to transmission access. It does not contain all of the material available on this subject or the categories contained herein. Some readers may feel that citations within this bibliography should be strictly limited to transmission system issues and not include energy pricing or reliability issues. However, it was the decision of the Subcommittee of the IEEE Task Force on Transmission Access and Nonutility Generation that selected entries relating to reliability and energy pricing, most relevant to transmission access, should be included. This decision was made because certain issues relating to reliability, transmission and energy pricing are perceived by the industry to be critical in the discussion of transmission access. The bibliography has been divided into the following sections or sub-sections: 2.0 Operational (Engineering) Issues, 3.0 Planning, 4.0 Reliability, 5.1 Economics: Costing, 5.2(a) Economics: Location-Differentiated Pricing, 5.2(b) Economics: Time-Differentiated Pricing, 5.3 Economics: Brokering, Bidding, and Auctioning, 6.0 Regulatory, and 7.0 General. Although the content of many publications spanned two or more of these sections, the desire to limit document length required that all publications be placed in the single most appropriate section. Publications are sorted according to author or publication resource.

Lankford, C.B. [Oklahoma Gas and Electric Co., Oklahoma City, OK (United States)] [Oklahoma Gas and Electric Co., Oklahoma City, OK (United States); McCalley, J.D. [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States); Saini, N.K. [Entergy Services Corp., Metairie, LA (United States)] [Entergy Services Corp., Metairie, LA (United States)

1996-02-01T23:59:59.000Z

396

Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy sponsored a Hydrogen Delivery Workshop in Washington, DC, May 7-8, 2003. Attendees included researchers, government officials, and industry members.

397

Final Report- Hydrogen Delivery Infrastructure Options Analysis  

Broader source: Energy.gov [DOE]

This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

398

Potential Carriers and Approaches for Hydrogen Delivery  

Broader source: Energy.gov [DOE]

Presentation by Matthew Hooks of TIAX at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

399

Part IV: Section F: Deliveries and Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or the period of the order or any extension thereof expires, the Contractor shall resume work. The Contracting Officer shall make an equitable adjustment in the delivery...

400

MFRC Training Development & Delivery Program - Bloodstain & Toxicology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Center (MFRC) Training Development and Delivery Program increases access to forensic science training for publicly funded state and local forensic scientists. Its goals...

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

402

Enhanced Integrity LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years close attention has been given to increasing the integrity of LNG storage tanks. The M.W. Kellogg Company is a participant in four major LNG projects that incorporate enhanced integrity LNG storag...

W. S. Jacobs; S. E. Handman

1986-01-01T23:59:59.000Z

403

Hydrogen storage in molecular compounds  

Science Journals Connector (OSTI)

...have application for energy storage. We synthesized...automobiles, is very energy intensive; up to 40% of the energy content must be spent...concerns and logistical obstacles. Other storage methods, including...satellites of the outer solar system...

Wendy L. Mao; Ho-kwang Mao

2004-01-01T23:59:59.000Z

404

Gaseous and Liquid Hydrogen Storage  

Broader source: Energy.gov [DOE]

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

405

Storage Systems for Solar Steam  

Science Journals Connector (OSTI)

Three different basic concepts (encapsulation, composite material and fins) for isothermal energy storage systems using phase change materials in the ... the most promising concept for the design of storage syste...

Wolf-Dieter Steinmann; Doerte Laing

2009-01-01T23:59:59.000Z

406

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Zttel

2007-03-01T23:59:59.000Z

407

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

408

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

409

Energia Sierra Juarez U.S. Transmission Line Final EIS Volume 3a, part 1 of 3  

Broader source: Energy.gov (indexed) [DOE]

Energia Sierra Juarez U.S. Transmission Line Project Energia Sierra Juarez U.S. Transmission Line Project Final Environmental Impact Statement Volume 3 - Comments and Responses Document May 2012 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Washington, DC 20585 Cooperating Agency - County of San Diego San Diego, CA DOE/EIS-0414 Energia Sierra Juarez U.S. Transmission Line Final EIS i May2012 Table of Contents VOLUME 1 FINAL ENVIRONMENTAL IMPACT STATEMENT Distribution Letter Cover Sheet Summary ................................................................................................................................................... S-1 S.1 Background and Overview ............................................................................................... S-1

410

Electrical transmission line diametrical retainer  

DOE Patents [OSTI]

The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2004-12-14T23:59:59.000Z

411

Ms. Julie Smith Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

5, 2013 5, 2013 Ms. Julie Smith Office of Electricity Delivery and Energy Reliability Mail Code OE-20 U.S. Department of Energy 1000 Independence Avenue Washington, D.C. 20585 Juliea.smith@hq.doe.gov; Christopher.lawrence@hq.doe.gov Re: DOE RFI "Improving Performance of Federal Permitting and Review of Infrastructure Projects The American people support increased production and consumption of renewable energy according to credible public opinion polls. Too often the most appropriate sites for wind, solar, hydro, and other renewable generators are in rural areas that necessitate the construction of new high voltage transmission lines to deliver the energy to customer load centers. Siting such lines is a costly multi-year

412

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

413

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

414

Transmission Congestion Study COMMENTS OF CONSOLIDATED EDISION COMPANY OF NEW YORK. INC.  

Broader source: Energy.gov (indexed) [DOE]

Preparation of the 2012 National Electric Preparation of the 2012 National Electric Transmission Congestion Study COMMENTS OF CONSOLIDATED EDISION COMPANY OF NEW YORK. INC. AND ORANGE AND ROCKLAND UTILITIES, INC. Consolidated Edison Company of New York, Inc. and Orange and Rockland Utilities, Inc. ("the Companies") submit these comments in response to the Notice for Plan for Conduct of the 2012 National Electric Transmission Congestion Study ("Study") issued by the United States Department of Energy ("Department") Office of Electricity Delivery and Energy Reliability. 76 Fed. Reg.70122 (November 10, 2011) ("Notice").

415

Coordination of Transmission Line Transfer Capabilities  

E-Print Network [OSTI]

Coordination of Transmission Line Transfer Capabilities Final Project Report Power Systems since 1996 PSERC #12;Power Systems Engineering Research Center Coordination of Transmission Line Summary The maximum power that can be transferred over any transmission line, called the transfer capacity

416

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen

2014-12-01T23:59:59.000Z

417

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

418

Transmission Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study (PDF 2.0 MB) made clear that without dramatic improvements and upgrades over the next decade our nation's transmission system will fall short of the reliability standards our economy requires, and will result in higher electricity costs to consumers. The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security. The next generation supervisory control and data acquisition (SCADA) and

419

Video transmission over wireless networks  

E-Print Network [OSTI]

Compressed video bitstream transmissions over wireless networks are addressed in this work. We first consider error control and power allocation for transmitting wireless video over CDMA networks in conjunction with multiuser detection. We map a...

Zhao, Shengjie

2005-08-29T23:59:59.000Z

420

National Electric Transmission Congestion Studies  

Broader source: Energy.gov [DOE]

Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. The American Reinvestment and Recovery Act of 2009 (Recovery Act) further directed the Secretary to include in the 2009 Congestion Study an analysis of significant potential sources of renewable energy that are constrained by lack of adequate transmission capacity. Based on this study, and comments concerning it from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor).

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National Transmission Grid Study: 2002  

Broader source: Energy.gov [DOE]

National Transmission Grid Study: The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity...

422

OpenEI Community - transmission  

Open Energy Info (EERE)

black out brown out bulk power system electricity grid future grid grid history security Smart Grid transmission Smart Grid Fri, 31 Oct 2014 17:58:14 +0000 Dc 955 at...

423

Mr. Christopher Lawrence and Ms. Julie Smith Office of Electricity Delivery and Energy Reliability  

Broader source: Energy.gov (indexed) [DOE]

Mr. Christopher Lawrence and Ms. Julie Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Dear Mr. Lawrence and Ms. Smith, The Western Governors' Association (WGA) is submitting these comments in response to the Department of Energy's (DOE) Request for Information (RFI), dated August 29, 2013 1 . The RFI outlines a proposed process to establish a coordinated series of meetings and other actions for qualified transmission projects, via an Integrated, Interagency Pre-Application process (IIP). Western Governors appreciate efforts to streamline the siting and permitting process for transmission. Western Governors have a clear goal to site and permit transmission lines three years after a

424

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

425

gas cylinder storage guidelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

426

Carbon Storage Review 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

427

NSLS VUV Storage Ring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

428

Superconducting magnetic energy storage  

SciTech Connect (OSTI)

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

429

Negative differential transmission in graphene  

Science Journals Connector (OSTI)

By using the Kubo linear response theory with the Keldysh Green function approach, we investigate the mechanism leading to the negative differential transmission in a system with the equilibrium electron density much smaller than the photon-excited one. It is shown that the negative differential transmission can appear at low probe-photon energy (in the order of the scattering rate) or at high energy (much larger than the scattering rate). For the low probe-photon energy case, the negative differential transmission is found to come from the increase of the intraband conductivity due to the large variation of electron distribution after the pumping. As for the high probe-photon energy case, the negative differential transmission is shown to tend to appear with the hot-electron temperature being closer to the equilibrium one and the chemical potential higher than the equilibrium one but considerably smaller than half of the probe-photon energy. We also show that this negative differential transmission can come from both the inter- and the intraband components of the conductivity. Especially, for the interband component, its contribution to the negative differential transmission is shown to come from both the Hartree-Fock self-energy and the scattering. Furthermore, the influence of the Coulomb-hole self-energy is also addressed.

B. Y. Sun and M. W. Wu

2013-12-17T23:59:59.000Z

430

Assumptions to the Annual Energy Outlook 1999 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by obtaining market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation Report: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, DOE/EIA-MO62/1, January 1999.

431

Assumptions to the Annual Energy Outlook 2000 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, Model Documentation 2000, DOE/EIA-M062(2000), January 2000.

432

LIFE Economics and Delivery Pathway Presentation to  

E-Print Network [OSTI]

risk to acceptable levels · Quantified in terms of confidence level that an issue has been demonstrated;Delivery plan reduces risk to commercially acceptable levels ·Fusion delivery abstracted to 38 core is necessary (but not sufficient) for economic viability Minimumforeconomics Cost and risk to buy additional

433

Delivery of Hydrogen Produced from Natural Gas  

E-Print Network [OSTI]

for transportation and stationary power. DOE Milestone #12;Hydrogen Delivery Options · Gaseous hydrogen - Pipelines · Materials Development - Repair, smart pipe, liners · Operational Technologies - Compressors, modeling, corrosion Gaseous hydrogen pipeline delivery program would share similar technology R&D areas

434

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

435

AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION | Department...  

Broader source: Energy.gov (indexed) [DOE]

AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION A Public Meeting on the Quadrennial Energy Review, Hosted by the United...

436

Briefing Memo: Petroleum Product Transmission & Distribution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Briefing Memo: Petroleum Product Transmission & Distribution Briefing Memo: Petroleum Product Transmission & Distribution Click below to download a PDF of the briefing memo....

437

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and...

438

2006 National Electric Transmission Congestion Study Federal...  

Broader source: Energy.gov (indexed) [DOE]

6 National Electric Transmission Congestion Study Federal Register Notice & Comments 2006 National Electric Transmission Congestion Study Federal Register Notice & Comments The...

439

National Electric Transmission Congestion Study | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study National Electric Transmission Congestion Study National Electric Transmission Congestion Study Section 1221(a) of the Energy Policy Act of 2005, codified at 16 U.S.C....

440

2009 National Electric Transmission Congestion Study | Department...  

Broader source: Energy.gov (indexed) [DOE]

9 National Electric Transmission Congestion Study 2009 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act...

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electric Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Electric Transmission SitingLegal Abstract Electric Transmission Siting at the California...

442

2006 National Electric Transmission Congestion Study | Department...  

Broader source: Energy.gov (indexed) [DOE]

6 National Electric Transmission Congestion Study 2006 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act...

443

National Electric Transmission Congestion Study Workshops | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study Workshops National Electric Transmission Congestion Study Workshops DOE hosted four regional pre-study workshops to receive input...

444

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

445

Agenda: Electricity Transmission and Distribution - East | Department...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Transmission and Distribution - East Agenda: Electricity Transmission and Distribution - East A Public Meeting on the Quadrennial Energy Review, Hosted by the United...

446

Southline Transmission Line | Open Energy Information  

Open Energy Info (EERE)

Impact Statement for the Southline Transmission Line Project General NEPA Document Info Energy Sector Transmission Environmental Analysis Type EIS Applicant Southline...

447

Directly correlated transmission electron microscopy and atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary Directly correlated transmission electron microscopy...

448

Solar energy storage: A demonstration experiment  

Science Journals Connector (OSTI)

Solar energy storage: A demonstration experiment ... A demonstration of a phase transition that can be used for heat storage. ...

Howard S. Kimmel; Reginald P. T. Tomkins

1979-01-01T23:59:59.000Z

449

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Broader source: Energy.gov (indexed) [DOE]

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

450

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

451

Fiber laser coupled optical spark delivery system  

DOE Patents [OSTI]

A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

2008-03-04T23:59:59.000Z

452

Grid Applications for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

453

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

454

Tissue-Specific Gene Delivery via Nanoparticle Coating  

E-Print Network [OSTI]

The use of biomaterials for gene delivery can potentially avoid many of the safety concerns with viral gene delivery. However, the efficacy of polymeric gene delivery methods is low, particularly in vivo. One significant ...

Harris, Todd J.

455

Suborbital freight delivery concept exploration  

SciTech Connect (OSTI)

Suborbital Freight, sometimes called Fast Freight, is delivery of high priority packages over intercontinental distances in periods of approximately one hour. The vehicles required are usually rocket-powered and have total ideal velocities of around 7.5 km/second. Analysis of this market indicates that there are niches where commercial operations are possible and might even be profitable using today{close_quote}s state-of-the-art technologies. The key requirements to capture this market are low nonrecurring costs, quick turnaround ({lt}9hours), and high reliability (0.999). This draft is a report on work in progress. The Fast Freight study will be completed before the STAIF-97 conference and results will be presented at that time. {copyright} {ital 1997 American Institute of Physics.}

Andrews, D.; Paris, S.; Rubeck, M. [Boeing Defense Space Group Seattle, Washington98124 (United States)

1997-01-01T23:59:59.000Z

456

Determining the Lowest-Cost Hydrogen Delivery Mode  

E-Print Network [OSTI]

liquefaction and liquid hydrogen storage tanks are needed.low cost of liquid hydrogen storage is offset by the highrefueling pressure. Hydrogen storage requirements vary among

Yang, Christopher; Ogden, Joan M

2008-01-01T23:59:59.000Z

457

Determining the lowest-cost hydrogen delivery mode  

E-Print Network [OSTI]

liquefaction and liquid hydrogen storage tanks are needed.low cost of liquid hydrogen storage is offset by the highrefueling pressure. Hydrogen storage requirements vary among

Yang, Christopher; Ogden, Joan M

2007-01-01T23:59:59.000Z

458

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

459

Electric Power Delivery Testing Feasibility Study Task 6 Final Report  

SciTech Connect (OSTI)

This Final Report is covers the completion of the Electric Power Delivery Testing Feasibility Study. The objective of this project was to research, engineer, and demonstrate high-power laboratory testing protocols to accurately reproduce the conditions on the electric power grid representing both normal load switching and abnormalities such as short-circuit fault protection. Test circuits, equipment, and techniques were developed and proven at reduced power levels to determine the feasibility of building a large-scale high-power testing laboratory capable of testing equipment and systems at simulated high-power conditions of the U.S. power grid at distribution levels up through 38 kiloVolts (kV) and transmission levels up through 230 kV. The project delivered demonstrated testing techniques, high-voltage test equipment for load testing and synthetic short-circuit testing, and recommended designs for future implementation of a high-power testing laboratory to test equipment and systems, enabling increased reliability of the electric transmission and distribution grid.

Thomas Tobin

2009-07-01T23:59:59.000Z

460

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivery and Delivery and Fueling (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on AddThis.com... Publications Program Publications

462

Apoferritin-based nanomedicine platform for drug delivery: equilibrium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apoferritin-based nanomedicine platform for drug delivery: equilibrium binding study of daunomycin with DNA. Apoferritin-based nanomedicine platform for drug delivery: equilibrium...

463

Special Delivery for Sustainability: Clean Cities Supports UPS...  

Broader source: Energy.gov (indexed) [DOE]

Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding...

464

Energy-Efficient Melting and Direct Delivery of High Quality...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

465

H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and...

466

Hydrogen Delivery R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Activities Hydrogen Delivery R&D Activities Hydrogen delivery technology may encompass several options over the short and long terms. The transportation and distribution...

467

Hydrogen Distribution and Delivery Fact Sheet | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Distribution and Delivery Fact Sheet Hydrogen Distribution and Delivery Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen...

468

Hydrogen Delivery Options and Issues | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Options and Issues Hydrogen Delivery Options and Issues Presentation by DOE's Mark Paster at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

469

Office of Electricity Delivery and Energy Reliability Recovery...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

470

Secretary of Energy Announces New Office of Electricity Delivery...  

Office of Environmental Management (EM)

New Office of Electricity Delivery & Energy Reliability Secretary of Energy Announces New Office of Electricity Delivery & Energy Reliability June 9, 2005 - 1:45pm Addthis...

471

The Office of Electricity Delivery and Energy Reliability is...  

Broader source: Energy.gov (indexed) [DOE]

The Office of Electricity Delivery and Energy Reliability is Closely Monitoring Hurricane Irene (2011) The Office of Electricity Delivery and Energy Reliability is Closely...

472

Office of Electricity Delivery & Energy Reliability FY 2012 Budget...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request Presentation Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request Presentation...

473

Office of Electricity Delivery and Energy Reliability Cyber Security...  

Broader source: Energy.gov (indexed) [DOE]

Office of Electricity Delivery and Energy Reliability Cyber Security Project Selections Office of Electricity Delivery and Energy Reliability Cyber Security Project Selections On...

474

High power fiber delivery for laser ignition applications  

Science Journals Connector (OSTI)

The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit...

Yalin, Azer P

2013-01-01T23:59:59.000Z

475

ESS 2012 Peer Review - Energy Storage Controls for Grid Stability - Ray Byrne, SNL  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Controls for Energy Storage Controls for Grid Stability Wednesday, September 26, 2012 Ray Byrne, Ph.D. Jason Neely, Ph.D. Cesar Monroy, Ph.D. David Schoenwald, Ph.D. * Dan Trudnowski, Ph.D. * Matt Donnelly, Ph.D. * Montana Tech University Acknowledgements 2  The work was performed under funding from the DOE Energy Storage Program managed by Dr. Imre Gyuk of the DOE Office of Electricity. Energy Storage Controls for Grid Stability  Power systems are susceptible to low frequency oscillations caused by generators separated by long transmission lines that oscillate against each other  These oscillations are not as well damped as higher frequency "local" oscillations  Energy storage-based damping controllers can mitigate these oscillations 3

476

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

477

Flywheel energy and power storage systems  

Science Journals Connector (OSTI)

For ages flywheels have been used to achieve smooth operation of machines. The early models where purely mechanical consisting of only a stone wheel attached to an axle. Nowadays flywheels are complex constructions where energy is stored mechanically and transferred to and from the flywheel by an integrated motor/generator. The stone wheel has been replaced by a steel or composite rotor and magnetic bearings have been introduced. Today flywheels are used as supplementary UPS storage at several industries world over. Future applications span a wide range including electric vehicles, intermediate storage for renewable energy generation and direct grid applications from power quality issues to offering an alternative to strengthening transmission. One of the key issues for viable flywheel construction is a high overall efficiency, hence a reduction of the total losses. By increasing the voltage, current losses are decreased and otherwise necessary transformer steps become redundant. So far flywheels over 10kV have not been constructed, mainly due to isolation problems associated with high voltage, but also because of limitations in the power electronics. Recent progress in semi-conductor technology enables faster switching and lower costs. The predominant part of prior studies have been directed towards optimising mechanical issues whereas the electro technical part now seem to show great potential for improvement. An overview of flywheel technology and previous projects are presented and moreover a 200kW flywheel using high voltage technology is simulated.

Bjrn Bolund; Hans Bernhoff; Mats Leijon

2007-01-01T23:59:59.000Z

478

Career Map: Power Systems/Transmission Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Power Systems and Transmission Engineer positions.

479

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

480

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission storage deliveries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

482

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

483

Transmission Lines Emulating Moving Media  

E-Print Network [OSTI]

In this paper, we show how the electromagnetic phenomena in moving magnetodielectric media can be emulated using artificial composite structures at rest. In particular, we introduce nonreciprocal periodically loaded transmission lines which support waves obeying the same rules as plane electromagnetic waves in moving media. Because the actual physical structure is at rest, in these transmission lines there are no fundamental limitations on the velocity values, which may take values larger than the speed of light or even complex values (considering complex amplitudes in the time-harmonic regime). An example circuit of a unit cell of a "moving" transmission line is presented and analyzed both numerically and experimentally. The special case of composite right/left handed host line is also studied numerically. Besides the fundamental interest, the study is relevant for potential applications in realizing engineered materials for various transformations of electromagnetic fields.

Vehmas, Joni; Tretyakov, Sergei

2014-01-01T23:59:59.000Z

484

California/Transmission | Open Energy Information  

Open Energy Info (EERE)

California/Transmission California/Transmission < California Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in California is part of the WestConnect Transmission Planning area and the California Transmission Planning Group. The desert southwest region of California belongs to the Southwest Area Transmission power grid and the northern region of the state belongs to the Sierra Subregional Planning Group. The SWAT provides the technical forum required to complete reliability assessments, develop joint business opportunities and accomplish

485

Hydrogen Storage Materials Database Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

486

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

Peng, Dan

2013-01-01T23:59:59.000Z

487

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

488

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

489

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

490

Underground Storage Tank Program (Vermont)  

Broader source: Energy.gov [DOE]

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

491

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov (indexed) [DOE]

Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

492

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

493

Energy storage in carbon nanoparticles.  

E-Print Network [OSTI]

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

494

Powertech: Hydrogen Expertise Storage Needs  

Broader source: Energy.gov [DOE]

This presentation by Angela Das of Powertech was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

495

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

496

Microsoft Word - Accommodates All Generation Storage Options_Approved_2009_07_01_DISCLAIMER.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACCOMMODATES ALL ACCOMMODATES ALL GENERATION AND STORAGE OPTIONS Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology Laboratory June 2009 Office of Electricity Delivery and Energy Reliability v 3.0 Accommodates All Generation and Storage Options 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any

497

H2A Delivery: GH2 and LH2 Forecourt Land Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GH2 and LH2 Forecourt GH2 and LH2 Forecourt GH2 and LH2 Forecourt Land Areas Land Areas Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland TIAX LLC Matthew Hooks 1601 S. D Anza Blvd. hooks.matthew@TIAXLLC.com Cupertino CA, 95014 Tel. 408-517-1550 Reference: D0348 © 2007 TIAX LLC General Assumptions ƒ Forecourt stations with fewer than 6 hydrogen dispensers will have both hydrogen and gasoline dispensers on-site (6 total) ƒ Forecourt area (not including convenience store) will be allocated based on relative number of hydrogen/gasoline dispensers ƒ All stations with more than 6 hydrogen dispensers will only dispense hydrogen ƒ 100% of forecourt area (not including convenience store) will be allocated to hydrogen delivery ƒ Area allocated to hydrogen storage will be in excess of the

498

The Inherent Inefficiency of Simultaneously Feasible Financial Transmission Rights Auctions  

E-Print Network [OSTI]

transmission right, electricity auction, simultaneous feasibility, transmission pricing. I. INTRODUCTION POINT

499

The Inherent Inefficiency of Simultaneously Feasible Financial Transmission Rights Auctions  

E-Print Network [OSTI]

, transmission pricing. I. INTRODUCTION POINT-TO-POINT financial transmission rights (FTRs) (see [2] and [7

500

TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. HEADQUARTERS: P.O  

Broader source: Energy.gov (indexed) [DOE]

TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC. HEADQUARTERS: P.O . BOX 33695 DENVER, COLORADO 80233-0695 October 31, 2013 Ms. Julie A. Smith and Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to : juliea.smith@hq.doe.gov and christopher.lawrence@hq.doe.gov 303-452-6111 Re: Department of Energy-Improving Performance of Federal Permitting and Review of Infrastructure Projects, Request for Information, 78 Fed. Reg. 53436 (Aug. 29, 2013) Dear Ms. Smith and Mr. Lawrence: Tri-State Generation and Transmission Assoc. , Inc. (Tri-State) appreciates the opportunity to provide comments regarding the proposed draft Integrated Interagency Pre-