National Library of Energy BETA

Sample records for transmission lines cxs

  1. Transmission Business Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Business Line Non-Federal Financing of Transmission Projects - March 2004 Critical paths on the Northwest transmission grid are congested and the system is near or at...

  2. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  3. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  4. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  5. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  6. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  7. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, Hiroyuki (Rancho Santa Fe, CA); Lin-Liu, Yuh-Ren (San Diego, CA); DeGrassie, John S. (Encinitas, CA)

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  8. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  9. Electric Transmission Line Siting Compact

    Office of Environmental Management (EM)

    Electric Transmission Line Siting Compact 1 ______________________________________________________________________________ 2 ARTICLE I 3 PURPOSE 4 5 Siting electric transmission lines across state borders and federal lands is an issue for states, the 6 federal government, transmission utilities, consumers, environmentalists, and other stakeholders. 7 The current, multi-year application review process by separate and equal jurisdictions constitutes 8 a sometimes inefficient and redundant process

  10. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  11. Proposed Project: Plains & Eastern Clean Line Transmission Line...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 1222 of the Energy Policy Act 2005 Proposed Project: Plains & Eastern Clean Line Transmission Line Proposed Project: Plains & Eastern Clean Line Transmission Line On ...

  12. Plains and Eastern Clean Line Transmission Line: Federal Register...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Federal Register Notice, Volume 80, No. 81 - April 28, 2015 Plains and Eastern Clean Line Transmission Line: Federal Register ...

  13. Electrical transmission line diametrical retainer

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  14. Plains and Eastern Clean Line Transmission Line: Comment from Chantel |

    Energy Savers [EERE]

    Department of Energy from Chantel Plains and Eastern Clean Line Transmission Line: Comment from Chantel Comment submitted on updated Part 2 application. PDF icon Comment from Chantel 06-09-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Mr. Garrett Plains and Eastern Clean Line Transmission Line: Comment from Ms. Rutherford Plains and Eastern Clean Line Transmission Line: Comment from Ms. Campbell

  15. Plains and Eastern Clean Line Transmission Line: Comment from Marshall

    Energy Savers [EERE]

    Hughes | Department of Energy from Marshall Hughes Plains and Eastern Clean Line Transmission Line: Comment from Marshall Hughes Comment submitted on updated Part 2 application. PDF icon Comment from Marshall Hughes 07-10-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line Transmission Line: Comment from Patti McCutchen

  16. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  17. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  18. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  19. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Comment submitted on updated Part 2 application. PDF icon ...

  20. Proposed Project: Plains & Eastern Clean Line Transmission Line |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Eastern Clean Line Transmission Line Proposed Project: Plains & Eastern Clean Line Transmission Line On June 10, 2010, the Department of Energy published in the Federal Register a Request for Proposals (RFP) for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act (EPAct) of 2005. In response, Clean Line Energy Partners, LLC submitted an application for its

  1. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Comment submitted on updated Part 2 application. PDF icon Comment from Dr. Contreras ...

  2. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Marshall Hughes Plains and Eastern Clean Line Transmission Line: Comment from Marshall Hughes Comment submitted on updated Part 2 application. PDF icon Comment from Marshall ...

  3. Plains and Eastern Clean Line Transmission Line: Comment from...

    Broader source: Energy.gov (indexed) [DOE]

    Comment submitted on updated Part 2 application. Comment from Lewis Cain 6-8-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from...

  4. Plains and Eastern Clean Line Transmission Line: Federal Register Notice,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume 80, No. 81 - April 28, 2015 | Department of Energy Plains and Eastern Clean Line Transmission Line: Federal Register Notice, Volume 80, No. 81 - April 28, 2015 Plains and Eastern Clean Line Transmission Line: Federal Register Notice, Volume 80, No. 81 - April 28, 2015 The Department of Energy (DOE) requests public comment on the first complete application submitted in response to its June 10, 2010 Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222

  5. Plains & Eastern Clean Line Transmission Line - Part 2 Application |

    Energy Savers [EERE]

    Department of Energy Transmission Line - Part 2 Application Plains & Eastern Clean Line Transmission Line - Part 2 Application In addition to conducting a NEPA review of the proposed Plains & Eastern Clean Line Transmission Line project, DOE will also conduct due diligence on non-NEPA factors such as the project's technical and financial feasibility and whether the project is in the public interest. DOE will conduct a thorough review that includes making all required statutory

  6. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, Kenneth E. (Naperville, IL)

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  7. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  8. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  9. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  10. Transmission Line Security Monitor: Final Report

    SciTech Connect (OSTI)

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  11. Detonator comprising a nonlinear transmission line

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  12. Northern Pass Transmission Line Project Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September ...

  13. Supervisory Transmission Lines and Substation Maintenance Manager

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Transmission Lines and Substation Maintenance (G5200) 615...

  14. Single transmission line data acquisition system

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV)

    1984-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

  15. Electrical Transmission Line Diametrical Retention Mechanism

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  16. Electrician - Foreman II (Transmission Lines & Substations) ...

    Broader source: Energy.gov (indexed) [DOE]

    Region Transmission Lines and Substation Maintenance (G5200) 615 S. 43rd Avenue Phoenix, AZ 85009 Duty Location is Page, AZ Find out more about living conditions at this...

  17. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  18. Load-resistant coaxial transmission line

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  19. Self-Aligning Mirror Mechanism for Transmission Line Offset Correction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Aligning Mirror Mechanism for Transmission Line Offset Correction The Self-Aligning Mirror Mechanism for Transmission Line Offset Correction is a self-aligning mechanism which...

  20. EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    514: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and Sutter Counties, California EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and Sutter ...

  1. EC Transmission Line Risk Identification and Analysis

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-04-01

    The purpose of this document is to assist in evaluating and planning for the cost, schedule, and technical project risks associated with the delivery and operation of the EC (Electron cyclotron) transmission line system. In general, the major risks that are anticipated to be encountered during the project delivery phase associated with the implementation of the Procurement Arrangement for the EC transmission line system are associated with: (1) Undefined or changing requirements (e.g., functional or regulatory requirements) (2) Underperformance of prototype, first unit, or production components during testing (3) Unavailability of qualified vendors for critical components Technical risks associated with the design and operation of the system are also identified.

  2. EIS-0499: Great Northern Transmission Line Project, Minnesota...

    Broader source: Energy.gov (indexed) [DOE]

    and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220 mile transmission line would cross the border near Roseau,...

  3. EIS-0325: Schultz-Hanford Area Transmission Line Project, WA

    Broader source: Energy.gov [DOE]

    BPA proposes to construct a new 500-kilovolt (kV) transmission line in central Washington. This project would increase transmission system capacity north of Hanford.

  4. Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras

    Energy Savers [EERE]

    | Department of Energy from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Comment submitted on updated Part 2 application. PDF icon Comment from Dr. Contreras 6-10-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras

  5. Plains and Eastern Clean Line Transmission Line: Comment from Ms. Callahan

    Energy Savers [EERE]

    | Department of Energy Ms. Callahan Plains and Eastern Clean Line Transmission Line: Comment from Ms. Callahan Comment submitted on updated Part 2 application. PDF icon Comment from Ms. Callahan 07-13-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Cynthia Blansett (COE) Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Simon Mahan (SWEA)

  6. Plains and Eastern Clean Line Transmission Line: Comment from Downwind, LLC

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Downwind, LLC 6-11-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Downwind, LLC Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line Transmission Line: Comment from Crystal Yarbrough

  7. Plains and Eastern Clean Line Transmission Line: Comment from Mr. Eubanks

    Broader source: Energy.gov (indexed) [DOE]

    (OAG) | Department of Energy OAG 07-13-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Downwind, LLC Plains and Eastern Clean Line Transmission Line: Comment from Ms. Alinda Baker

  8. Plains and Eastern Clean Line Transmission Line: Comment from Mr. Zuniga |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Juan Zuniga 6-9-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Change.org Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean Line Transmission Line: Comment from Leslie Mahoney

  9. Plains and Eastern Clean Line Transmission Line: Comment from Ms. Schroeder

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Schroeder 6-08-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Ms. Shaw Plains and Eastern Clean Line Transmission Line: Comment from Mr. Burningham Plains and Eastern Clean Line Transmission Line: Comment from Fallon Sanford

  10. Dispersion-free radial transmission lines

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA)

    2011-04-12

    A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.

  11. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, ...

  12. EIS-0421: Big Eddy-Knight Transmission Line

    Broader source: Energy.gov [DOE]

    BPA is proposing to build a new 500 kilovolt (kV) transmission line in Wasco County, Oregon and Klickitat County, Washington and a new substation in Klickitat County. The new BPA transmission line...

  13. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    Line Siting Committee Jump to: navigation, search Name: Arizona Transmission Line Siting Committee Abbreviation: TLSC Address: 1200 West Washington Street Place: Phoenix, Arizona...

  14. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  15. EIS-0463: Northern Pass Transmission Line Project, New Hampshire |

    Energy Savers [EERE]

    Department of Energy 463: Northern Pass Transmission Line Project, New Hampshire EIS-0463: Northern Pass Transmission Line Project, New Hampshire Summary This EIS will evaluate the potential environmental impacts from DOE's proposed Federal action of granting a Presidential permit to Northern Pass Transmission, LLC, to construct, operate, maintain, and connect a new electric transmission line across the U.S.-Canada border in northern New Hampshire. The U.S. Environmental Protection Agency

  16. DOE Seeking Information on Transmission Line Permitting | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Seeking Information on Transmission Line Permitting DOE Seeking Information on Transmission Line Permitting February 27, 2012 - 3:25pm Addthis The Department of Energy's Office of Electricity Delivery and Energy Reliability is seeking information on the questions related to permitting of transmission lines. Infrastructure projects - such as high voltage, long distance, electric transmission facilities - often involve multiple Federal, State, local, and Tribal authorizations and are

  17. Comments on RFI on Permitting of Transmission Lines Available | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Comments on RFI on Permitting of Transmission Lines Available Comments on RFI on Permitting of Transmission Lines Available April 3, 2012 - 2:12pm Addthis On October 5, 2011, the White House announced the creation of a Rapid Response Team for Transmission (RRTT). In support of the RRTT the Department of Energy's Office of Electricity Delivery and Energy Reliability released a Federal Register Notice seeking information on questions related to permitting of transmission lines. The

  18. EIS-0474: Southline Transmission Line Project; Arizona and New Mexico |

    Office of Environmental Management (EM)

    Department of Energy 74: Southline Transmission Line Project; Arizona and New Mexico EIS-0474: Southline Transmission Line Project; Arizona and New Mexico Summary The Bureau of Land Management and Western Area Power Administration are preparing an EIS as joint lead agencies to evaluate the potential environmental impacts of the proposed Southline Transmission Project and address associated potential land use plan amendments. The project would consist of a new 225-mile transmission line

  19. EIS-0499: Great Northern Transmission Line Project, Minnesota | Department

    Office of Environmental Management (EM)

    of Energy 9: Great Northern Transmission Line Project, Minnesota EIS-0499: Great Northern Transmission Line Project, Minnesota Summary This EIS will evaluate the potential environmental impacts of a DOE proposal to grant a Presidential permit to Minnesota Power to construct, operate, maintain, and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220 mile transmission line would cross the border near Roseau, Minnesota, and continue to Grand

  20. Plains and Eastern Clean Line Transmission Line: Comment from Save The

    Energy Savers [EERE]

    Ozarks | Department of Energy Save The Ozarks Plains and Eastern Clean Line Transmission Line: Comment from Save The Ozarks Comment submitted on updated Part 2 application. PDF icon Comment by Save the Ozarks 07-13-15.pdf More Documents & Publications Plains & Eastern Clean Line Transmission Line - Part 2 Application Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains and Eastern

  1. Radio frequency communication system utilizing radiating transmission lines

    DOE Patents [OSTI]

    Struven, Warren C. (San Carlos, CA)

    1984-01-01

    A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

  2. Plains and Eastern Clean Line Transmission Line: Comment from Block Plains

    Energy Savers [EERE]

    and Eastern Clean Line: Arkansas and Oklahoma | Department of Energy from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Comment submitted on updated Part 2 application. PDF icon Comment from Block Plains & Eastern Clean Line Arkansas and Oklahoma 06-08-15.pdf More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from

  3. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: Boardman-Hemingway Transmission Line, Oregon and Idaho EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho Summary The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE's Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct about 305 miles of 500-kV transmission line from northeast Oregon to southwest Idaho. BPA's proposed action is

  4. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project,

    Office of Environmental Management (EM)

    Montana | Department of Energy 2: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana Summary DOE's Bonneville Power Administration (BPA) is preparing an EIS that will analyze the potential environmental impacts of a proposal to rebuild approximately 120 miles of existing transmission line in Sanders, Lake, Missoula, Granite, Powell, and Deer Lodge Counties in Montana. EIS-0502: Hot Springs to

  5. Appendix S-51 - Transmission Line Approval - Public Utilities...

    Open Energy Info (EERE)

    from "http:en.openei.orgwindex.php?titleAppendixS-51-TransmissionLineApproval-PublicUtilitiesCommission&oldid800735" Feedback Contact needs updating Image needs...

  6. Notice of Availability of Plains & Eastern Clean Line Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of Plains & Eastern Clean Line Transmission Project Draft Environmental Impact Statement and Public Hearings: Federal Register Notice, Volume 79, No. 242 - Dec. 17, ...

  7. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  8. Proposed Southline Transmission Line Project - Volume 4 of 4...

    Office of Environmental Management (EM)

    2 Appendix J J-1 Southline Transmission Line Project Draft Environmental Impact Statement and Draft Resource Management Plan Amendment BLM LAND USE AUTHORIZATIONS 1...

  9. EIS-0317: Kangley-Echo Lake Transmission Line Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to build a new transmission line to accommodate increasing demand for electricity and ensure reliability in the Puget Sound area.

  10. Hawaii Clean Energy Initiative - Transmission Line Approval Permit...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative - Transmission Line Approval Permit PacketPermittingRegulatory...

  11. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...

    Energy Savers [EERE]

    Springs to Anaconda Transmission Line Rebuild Project, Montana SUMMARY DOE's Bonneville Power Administration (BPA) is preparing an EIS that will analyze the potential environmental...

  12. Guide to Permitting Electric Transmission Lines in Wyoming |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Guide to Permitting Electric Transmission Lines in WyomingPermitting...

  13. Green Power Transmission Line Given New Life | Department of Energy

    Office of Environmental Management (EM)

    Power Transmission Line Given New Life Green Power Transmission Line Given New Life March 11, 2010 - 4:34pm Addthis Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Stephen Graff Former Writer & editor for Energy Empowers, EERE Thanks to funds from the American Recovery and Reinvestment Act, construction of a green power

  14. Southline Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    Analysis Type EIS Applicant Southline Transmission, LLC, a subsidiary of Hunt Power L.P. Consultant SWCA Environmental Consultants Geothermal Area Project Location Project...

  15. Single transmission line interrogated multiple channel data acquisition system

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Keech, Jr., Thomas W. (Morgantown, WV)

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  16. Request for Proposals for New or Upgraded Transmission Line Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 Request for ...

  17. EA-1891: Alvey-Fairview Transmission Line Rebuild Project, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to rebuild DOE’s Bonneville Power Administration’s Alvey-Fairview No. 1 230-kV transmission line located between Eugene, Oregon, and Coquille, Oregon.

  18. EIS-0106: Great Falls-Conrad Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

  19. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect (OSTI)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  20. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  1. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  2. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  3. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Larimer County, Colorado | Department of Energy 83: Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado SUMMARY Western Area Power Administration (Western) - with USDA Forest Service, Arapaho and Roosevelt National Forest, as a cooperating agency - is preparing an EIS that analyzes the potential environmental impacts of a proposal to rebuild and upgrade

  4. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct about 305 miles of 500-kV transmission line from northeast Oregon to southwest Idaho. BPA’s proposed action is to partially fund part the transmission line.

  5. Northern Pass Transmission Line Project Environmental Impact Statement:

    Energy Savers [EERE]

    Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September 18, 2013 | Department of Energy Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September 18, 2013 Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 -

  6. Stand-off transmission lines and method for making same

    DOE Patents [OSTI]

    Tuckerman, David B. (Livermore, CA)

    1991-01-01

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress.

  7. Stand-off transmission lines and method for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1991-05-21

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress. 16 figures.

  8. NOVEL SIGNAL PROCESSING WITH NONLINEAR TRANSMISSION LINES

    SciTech Connect (OSTI)

    D. REAGOR; ET AL

    2000-08-01

    Nonlinear dielectrics offer uniquely strong and tunable nonlinearities that make them attractive for current devices (for example, frequency-agile microwave filters) and for future signal-processing technologies. The goal of this project is to understand pulse propagation on nonlinear coplanar waveguide prototype devices. We have performed time-domain and frequency-domain experimental studies of simple waveguide structures and pursued a theoretical understanding of the propagation of signals on these nonlinear waveguides. To realistically assess the potential applications, we used a time-domain measurement and analysis technique developed during this project to perform a broadband electrodynamics characterization in terms of nonlinear, dispersive, and dissipative effects. We completed a comprehensive study of coplanar waveguides made from high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric single-crystal SrTiO{sub 3} substrates. By using parameters determined from small-signal (linear) transmission characteristics of the waveguides, we develop a model equation that successfully predicts and describes large-signal (nonlinear) behavior.

  9. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, Arizona EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, ...

  10. Self-monitoring high voltage transmission line suspension insulator

    DOE Patents [OSTI]

    Stemler, Gary E. (Vancouver, WA); Scott, Donald N. (Vancouver, WA)

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  11. EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with Western Area Power Administration as a cooperating agency, prepared an EA to evaluate potential impacts of a proposal to build and operate a 180-MW photovoltaic facility; a 220, 230, or 500 kV transmission line; and associated facilities in Clark County, Nevada.

  12. High voltage gas insulated transmission line with continuous particle trapping

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  13. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  14. Electric and magnetic field reduction by alternative transmission line options

    SciTech Connect (OSTI)

    Stewart, J.R. (Power Technologies, Inc., Schenectady, NY (United States)); Dale, S.J. (Oak Ridge National Lab., TN (United States)); Klein, K.W. (Energetics, Inc., Columbia, MD (United States))

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  15. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect (OSTI)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8).

  16. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  17. Wireless Sensor Network for Electric Transmission Line Monitoring

    Office of Scientific and Technical Information (OSTI)

    Wireless Sensor Network for Electric Transmission Line Monitoring Final Technical Report DOE Award: DE-FC26-06NT42795 January 2010 Revised March 2010 University of Louisville, Genscape Inc. Principle Investigator: Bruce Alphenaar PhD George Lin PhD, Bill Brown BE, Deirdre Alphenaar PhD, Walter Jones PhD, Chris Pettus ME, Yang Xu PhD, Devin Phinney BS 2 Contents Executive Summary

  18. EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    952: Lane-Wendson No. 1 Transmission Line Rebuild Project; Lane County, Oregon EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project; Lane County, Oregon SUMMARY Bonneville ...

  19. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect (OSTI)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  20. Southline Transmission Line Project - Volume 1 Front Matter

    Energy Savers [EERE]

    WESTERN BLM/NM/PL-14-01-1610 * DOE/EIS-0474 Southline Transmission Line Project Final Environmental Impact Statement Volume 1 of 4 October 2015 MISSION STATEMENT The Bureau of Land Management is responsible for stewardship of our public lands. The BLM is committed to manage, protect, and improve these lands in a manner to serve the needs of the American people. Management is based upon the principles of multiple use and sustained yield of our Nation's resources within the framework of

  1. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  2. Monolithic high voltage nonlinear transmission line fabrication process

    DOE Patents [OSTI]

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  3. Monolithic high voltage nonlinear transmission line fabrication process

    DOE Patents [OSTI]

    Cooper, Gregory A. (346 Primrose Dr., Pleasant Hill, CA 94523)

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  4. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hood River Counties, Oregon | Department of Energy 81: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon Summary Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville

  5. EIS-0486: Plains & Eastern Clean Line Transmission Project | Department of

    Office of Environmental Management (EM)

    Energy 6: Plains & Eastern Clean Line Transmission Project EIS-0486: Plains & Eastern Clean Line Transmission Project SUM MARY This EIS evaluates the potential environmental impacts of DOE participating with Clean Line Energy Partners LLC (Clean Line) in the proposed Plains & Eastern Project. The proposed project would include an overhead ± 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver

  6. Polar On-Line Acquisition Relay and Transmission System (POLARATS)

    SciTech Connect (OSTI)

    Yuracko, K.

    2004-07-15

    POLARATS (Polar On-Line Acquisition Relay And Transmission System) is being developed by YAHSGS LLC (YAHSGS) and Oak Ridge National Laboratory (ORNL) to provide remote, unattended monitoring of environmental parameters under harsh environmental conditions. In particular, instrumental design and engineering is oriented towards protection of human health in the Arctic, and with the additional goal of advancing Arctic education and research. POLARATS will obtain and transmit environmental data from hardened monitoring devices deployed in locations important to understanding atmospheric and aquatic pollutant migration as it is biomagnified in Arctic food chains. An Internet- and personal computer (PC)-based educational module will provide real time sensor data, on-line educational content, and will be integrated with workbooks and textbooks for use in middle and high school science programs. The educational elements of POLARATS include an Internet-based educational module that will instruct students in the use of the data and how those data fit into changing Arctic environments and food chains. POLARATS will: (1) Enable students, members of the community, and scientific researchers to monitor local environmental conditions in real time over the Internet; and (2) Provide additional educational benefits through integration with middle- and high-school science curricula. Information will be relayed from POLARATS devices to classrooms and libraries along with custom-designed POLARATS teaching materials that will be integrated into existing curricula to enhance the educational benefits realized from the information obtained.

  7. EIS-0256: Sierra Pacific Power Company Alturas Transmission Line Project (adopted from BLM)

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental setting and consequences of the construction and operation of the proposal Alturas Transmission Line Project. Sierra Pacific Power Company (SPPCO) has proposed this electric power transmission line to improve the existing operational capacity and reliability of its power transmission system and provide for anticipated growth in demand for electric power.

  8. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  9. USFS Electric Transmission Line Easement Form FS-2700-31 | Open...

    Open Energy Info (EERE)

    USFS Electric Transmission Line Easement Form FS-2700-31 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: USFS Electric Transmission...

  10. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polson, Montana | Department of Energy 1: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana SUMMARY Bonneville Power Administration is preparing an EA to evaluate potential environmental impacts of rebuilding its 41-mile long 115 kilovolt (kV) wood-pole Kalispell-Kerr transmission line between Kalispell and Polson, Montana. Additional information is available on the project

  11. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oregon | Department of Energy 967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon. The project

  12. EA-1880: Big Bend to Witten Transmission Line Project, South Dakota |

    Office of Environmental Management (EM)

    Department of Energy 880: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary DOE's Western Area Power Administration (Western) is preparing this EA to evaluate the potential environmental impacts of a proposal by Basin Electric Power Cooperative to construct, own, and operate an approximately 70-mile long 230-kV single-circuit transmission line that would connect a new switchyard with the existing Witten

  13. EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project; Lane County,

    Office of Environmental Management (EM)

    Oregon | Department of Energy 52: Lane-Wendson No. 1 Transmission Line Rebuild Project; Lane County, Oregon EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project; Lane County, Oregon SUMMARY Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 41.3-mile Lane-Wendson No. 1 transmission line between Eugene and Florence, Oregon. Additional information is available at the project website:

  14. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project; Kalispell and

    Office of Environmental Management (EM)

    Polson, Montana | Department of Energy 1: Kalispell-Kerr Transmission Line Rebuild Project; Kalispell and Polson, Montana EA-1961: Kalispell-Kerr Transmission Line Rebuild Project; Kalispell and Polson, Montana SUMMARY Bonneville Power Administration is preparing an EA to evaluate potential environmental impacts of rebuilding its 41-mile long 115 kilovolt (kV) wood-pole Kalispell-Kerr transmission line between Kalispell and Polson, Montana. The proposed action is to replace wood-pole

  15. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild;

    Office of Environmental Management (EM)

    Pinal County, Arizona | Department of Energy 2: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, Arizona EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, Arizona SUMMARY Western Area Power Administration prepared an EA that assesses the potential environmental impacts of the proposed rebuild of a 35.6-mile transmission line that Western operates and maintains under an agreement with the Central Arizona Project. Additional

  16. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland

    Office of Environmental Management (EM)

    and Delaware | Department of Energy 5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, 2011 EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware February 4, 2011 EIS-0465: Announcement of Public Scoping Meetings Construction of Phase II of

  17. Requirements for self-magnetically insulated transmission lines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.

    2015-03-01

    Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closuremore » and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.« less

  18. Radial transmission line analysis of multi-layer structures

    SciTech Connect (OSTI)

    Hahn, H.; Hammons, L.

    2011-03-28

    The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

  19. Requirements for self-magnetically insulated transmission lines

    SciTech Connect (OSTI)

    VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.

    2015-03-01

    Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closure and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.

  20. Electron flow stability in magnetically insulated vacuum transmission lines

    SciTech Connect (OSTI)

    Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Stygar, W. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-03-15

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  1. Electron flow stability in magnetically insulated vacuum transmission lines.

    SciTech Connect (OSTI)

    Genoni, Thomas C. (Voss Scientific, LLC, Albuquerque, NM); Stygar, William A.; Welch, Dale Robert (Voss Scientific, LLC, Albuquerque, NM); Clark, R. E. (Voss Scientific, LLC, Albuquerque, NM); Rose, David V. (Voss Scientific, LLC, Albuquerque, NM)

    2010-11-01

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  2. EIS-0344: Grand Coulee-Bell 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action for the construction and operation of the proposed Grand Coulee-Bell 500-kV Transmission Line Project.

  3. EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project...

    Energy Savers [EERE]

    No. 1 Transmission Line Rebuild Project; Lane County, Oregon SUMMARY Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the...

  4. Request for Information on Permitting of Transmission Lines:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure projects - such as high voltage, long distance, electric transmission facilities - often involve multiple Federal, State, local and Tribal authorizations and are ...

  5. EIS-0486: Plains & Eastern Clean Line Transmission Project |...

    Broader source: Energy.gov (indexed) [DOE]

    Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the...

  6. Principles of ground relaying for high voltage and extra high voltage transmission lines

    SciTech Connect (OSTI)

    Griffin, C.H.

    1983-02-01

    This paper is a tutorial discussion of the basic principles of ground relaying for high voltage and extra high voltage transmission lines. Three different HV configurations are considered: Long lines, lines with a weak mid-point station, and mutually-coupled lines. Application criteria for EHV circuits are also discussed, and specific setting calculations are included where appropriate.

  7. EIS-0317-S1: Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives.

  8. THE COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT

    Energy Savers [EERE]

    COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT LEGISLATIVE BRIEFING Background and Summary Background and Need The siting of interstate transmission lines has long been a problem that has vexed both states and the federal government. With the expected growth in electricity demand, coupled with the need to bring renewable energy to market and the necessity to enhance and secure the nation's energy infrastructure, the need for added transmission capacity has never been

  9. From: Laurie Smith To: Congestion Study Comments Subject: Taking of Private Property for Overhead Transmission Lines

    Office of Environmental Management (EM)

    Taking of Private Property for Overhead Transmission Lines Date: Friday, September 19, 2014 9:18:01 AM Scores of people in my area are opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons: First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. The easements prevent the landowner from

  10. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  11. Comments on RFI on Permitting of Transmission Lines Available...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On October 5, 2011, the White House announced the creation of a Rapid Response Team for Transmission (RRTT). In support of the RRTT the Department of Energy's Office of...

  12. Sensor, method and system of monitoring transmission lines

    DOE Patents [OSTI]

    Syracuse, Steven J.; Clark, Roy; Halverson, Peter G.; Tesche, Frederick M.; Barlow, Charles V.

    2012-10-02

    An apparatus, method, and system for measuring the magnetic field produced by phase conductors in multi-phase power lines. The magnetic field measurements are used to determine the current load on the conductors. The magnetic fields are sensed by coils placed sufficiently proximate the lines to measure the voltage induced in the coils by the field without touching the lines. The x and y components of the magnetic fields are used to calculate the conductor sag, and then the sag data, along with the field strength data, can be used to calculate the current load on the line and the phase of the current. The sag calculations of this invention are independent of line voltage and line current measurements. The system applies a computerized fitter routine to measured and sampled voltages on the coils to accurately determine the values of parameters associated with the overhead phase conductors.

  13. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  14. Montana ARM 17.20.1606, Electric Transmission Lines, Need Standard...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana ARM 17.20.1606, Electric Transmission Lines, Need StandardLegal Abstract Need...

  15. EIS-0078: Jonesboro-Hergett 161-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Southwestern Power Administration developed this statement to assess the environmental and socioeconomic impacts of a 161-kilovolt transmission line in Craighead County, Arkansas, including its proposed and alternate routes.

  16. EIS-0399: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE, jointly with the Montana Department of Environmental Quality (MDEQ), prepared an EIS that evaluated the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana.

  17. EIS-0332: McNary-John Day Transmission Line Project, OR

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to construct, operate, and maintain a 79-mile-long 500-kilovolt transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman counties, Oregon.

  18. EIS-0447: Champlain Hudson Power Express Transmission Line Project, New York

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of a DOE proposal to grant a Presidential permit to Champlain Hudson Power Express, Inc., to construct, operate, maintain, and connect a new 1000-megawatt (MW) electric transmission system across the U.S.-Canada border in northeastern New York State. The proposed transmission line would run from the Canadian Province of Quebec to New York City.

  19. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  20. EA-1665: Davis-Kingman 69-kV Transmission Line Rebuild Project, Arizona

    Broader source: Energy.gov [DOE]

    Western plans to rebuild a 26.6-mile-long portion of the existing 27.3-mile-long Davis–Kingman Tap 69-kV Transmission Line within the existing ROW in order to improve the reliability of the transmission service.

  1. EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and

    Energy Savers [EERE]

    Sutter Counties, California | Department of Energy 14: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and Sutter Counties, California EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and Sutter Counties, California Summary Western Area Power Administration (Western) and the Sacramento Municipal Utility District (SMUD) are preparing a joint EIS/environmental impact report (EIR) -under, respectively, NEPA and the California Environmental Quality Act - that

  2. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yakima, Grant, Benton, and Kittitas Counties, Washington | Department of Energy 5: Vantage to Pomona Heights 230 kV Transmission Line Project; Yakima, Grant, Benton, and Kittitas Counties, Washington EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project; Yakima, Grant, Benton, and Kittitas Counties, Washington SUMMARY The Bureau of Land Management is preparing, with DOE's Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential

  3. Notice of Availability of Plains & Eastern Clean Line Transmission Project

    Energy Savers [EERE]

    Draft Environmental Impact Statement and Public Hearings: Federal Register Notice, Volume 79, No. 242 - Dec. 17, 2014 | Department of Energy Availability of Plains & Eastern Clean Line Transmission Project Draft Environmental Impact Statement and Public Hearings: Federal Register Notice, Volume 79, No. 242 - Dec. 17, 2014 Notice of Availability of Plains & Eastern Clean Line Transmission Project Draft Environmental Impact Statement and Public Hearings: Federal Register Notice, Volume

  4. EIS-0118: Proposed Eugene-Medford 500-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Interior developed this statement to assess the environmental impact of a proposed 500-kilovolt transmission line linking Eugene and Medford, Oregon, that would cross through public lands. The Bonneville Power Administration (BPA) would provide service to the proposed line and is a cooperating agency in the statement. BPA adopted the EIS on 7/10/1985.

  5. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  6. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect (OSTI)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  7. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    SciTech Connect (OSTI)

    Russell, Steven J.; Carlsten, Bruce E.

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  8. Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Keyser, D.

    2013-10-01

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data contained in the model.

  9. Investigation of conductor swinging by wind and its application for design of compact transmission line

    SciTech Connect (OSTI)

    Tsujimoto, K.; Fujii, K.; Kubokawa, H.; Okomura, T.; Simojima, K.; Yoshioka, V.

    1982-11-01

    In Japan it has recently become necessary to shorten the interphase spacing in overhead transmission lines because of land limitations and economical considerations. In this connection, the authors have attempted to analyze, in-depth, the possibilities of shortened interphase spacing via conductor swinging caused by wind effects: one of the important factors in the design of more compact overhead lines. This paper describes not only the investigative results of conductor swinging that were obtained both through computer simulation and in 3 years of full scale field line testing, but also design methodology for compact overhead lines based on these results.

  10. Plains & Eastern Clean Line Transmission Line- Part 2 Application: Comments Received on the Updated Application

    Broader source: Energy.gov [DOE]

    In December 2014, DOE requested additional information from Clean Line Energy Partners, LLC to supplement and update its original Plains and Eastern Clean Line application. The updated Part 2 application and other documentation were available for a public comment period that closed on July 13, 2015. Comments were posted as they were received.

  11. Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

    SciTech Connect (OSTI)

    Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab

    2008-06-01

    Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.

  12. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOEs Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Services construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  13. Request for Proposals for New or Upgraded Transmission Line Projects Under

    Energy Savers [EERE]

    Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 | Department of Energy Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 PDF icon FRN Request

  14. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  15. Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-09

    BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.

  16. Canby Area Service Project substation and associated transmission line. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp`s substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC`s Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC`s substation can accommodate only about 10 percent of the expected additional electric load. BPA`s proposed action is intended to meet SVEC`s increasing electric load. BPA proposes to meet SVEC`s increasing energy load by tapping into BPA`s existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC`s Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no ``environmental impact statement`` is not required.

  17. Canby Area Service Project : Substation and Associated Transmission Line : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp's substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC's Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC's substation can accommodate only about 10 percent of the expected additional electric load. BPA's proposed action is intended to meet SVEC's increasing electric load. BPA proposes to meet SVEC's increasing energy load by tapping into BPA's existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC's Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no environmental impact statement'' is not required.

  18. EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared this EA to evaluate potential environmental impacts of rebuilding approximately 28 miles of the Grand Coulee-Creston No. 1 115-kilovolt (kV) transmission line between Coulee Dam in Grant County and Creston in Lincoln County, Washington.

  19. EIS-0103: New England/Hydro-Quebec 450-kV Direct Current Transmission Line Interconnection

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to evaluate the environmental impacts of the construction, maintenance, and operation of a 57-mile transmission line from Monroe, New Hampshire, to the U.S./Canadian border for the purpose of economic exchange of power and increased reliability. Phase 2 of this project is detailed in EIS-0129.

  20. EA-1946: Salem-Albany Transmission Line Rebuild Project; Polk, Benton, Marion, and Linn Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 24-mile Salem-Albany No. 1 and 28-mile Salem-Albany No. 2 transmission lines between Salem and Albany, Oregon.

  1. Amended Notice of Intent for the Northern Pass Transmission Line Project Published in the Federal Register

    Broader source: Energy.gov [DOE]

    The Department of Energy announces its intent to modify the scope of the Northern Pass Transmission Line Project Environmental Impact Statement and to conduct additional public scoping meetings. The Federal Register Notice, which is now available for downloading, includes information on how to submit comments and participate in the additional public scoping meetings.

  2. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  3. Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38- Feb. 27, 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energys Office of Electricity Delivery and Energy Reliability requested information on questions related to permitting of transmission lines. Infrastructure projects such as...

  4. Sidney-North Yuma 230-kV Transmission Line Project, Colorado and Nebraska

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    This report describes the need for a 230-kV overhead transmission line to supply power from Sidney, Nebraska to eastern Colorado. The alternative scenario compared to construction of the line is No Action. Rejected alternatives include underground lines and different routing paths, with a possible extension to the Sterling area. Both scenarios are evaluated for environmental effects, cost, and consequences for the eastern Colorado region. The proposed route is determined to be the environmentally preferred choice. 120 refs., 6 figs., 13 tabs. (MHB)

  5. Revenue metering error caused by induced voltage from adjacent transmission lines

    SciTech Connect (OSTI)

    Hughes, M.B. )

    1992-04-01

    A large zero sequence voltage was found to have been induced onto a 138 kV line from adjacent 500 kV lines where these share the same transmission right-of-way. This zero sequence voltage distorted the 2-1/2-element revenue metering schemes used for two large industrial customer supplied directly from the affected 138 kV line. As a result, these two customers were overcharged, on average, approximately 3.5% for 15 years. This paper describes the work done to trace the origins of the zero sequence voltage, quantify the metering error, and calculate customer refunds which, in the end, totalled $4 million.

  6. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    DOE Patents [OSTI]

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  7. From: Laurie Smith To: Congestion Study Comments Subject: High Voltage Transmission Lines

    Office of Environmental Management (EM)

    High Voltage Transmission Lines Date: Sunday, September 21, 2014 10:02:26 AM To Whom it May Concern DOE: For the following reasons I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's): Before the authority of eminent domain should be granted to an energy corp., that corp. should have to prove necessity to the exact locations that the energy is to be transported and that the recipients NEED and WANT that energy and that the region cannot produce their own

  8. Great Northern Transmission Line Project Draft Environmental Impact Statement_Volume II

    Office of Environmental Management (EM)

    O Agricultural Impact Mitigation Plan (AIMP) Example ITCM Minnesota - Iowa 345 kV Transmission Line Project: Final Environmental Impact Statement Appendix O Agricultural Impact Mitigation Plan O-1 ITC Midwest LLC Agricultural Impact Mitigation Plan Minnesota - Iowa 345 kV Transmission Project and Associated Facilities in Jackson, Martin, and Faribault Counties Docket Nos. ET6675/CN-12-1053 & ET6675/TL-12-1337 April 29, 2014 ITC Midwest's DEIS Comment Letter E X A M P L E ITCM Minnesota -

  9. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or conductors, and two neutral ground wires that would provide both lightning protection and fiber optic communications, on a single set of support structures. The transmission line would originate at TEP's existing South Substation (which TEP would expand), in the vicinity of Sahuarita, Arizona, and interconnect with the Citizens Communications (Citizens) system at a Gateway Substation that TEP would construct west of Nogales, Arizona. The double-circuit transmission line would continue from the Gateway Substation south to cross the U.S.-Mexico border and extend approximately 60 miles (mi) (98 kilometers [km]) into the Sonoran region of Mexico, connecting with the Comision Federal de Electricidad (CFE, the national electric utility of Mexico) at CFE's Santa Ana Substation.

  10. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project; Yakima, Grant, Benton, and Kittitas Counties, Washington

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management is preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct a 230-kV transmission line in Washington State. BPA’s proposed action is to interconnect the proposed transmission line to an existing BPA substation.

  11. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  12. Hybrid particle traps and conditioning procedure for gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA); Cookson, Alan H. (Churchill, PA)

    1982-01-01

    A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.

  13. Craig-Bonanza 345-kV Transmission Line Project: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Department of Energy (DOE), and the Western Area Power Administration (Western) proposes to construct and maintain a 345- kilovolt (kV) transmission line between Craig, Colorado, and Bonanza in eastern Utah. The project began in 1986 and construction is scheduled to be completed in 1989. The project, known as the Craig-Bonanza 345-kV Transmission Line Project (Project), will be located in Moffat and Rio Blanco counties in Colorado and Uintah County in Utah. Western has the lead role for project development and management, including environmental studies and construction. Cooperating federal agencies include the Bureau of Land Management (BLM), Rural Electrification Administration, US Fish and Wildlife Service, and Bureau of Indian Affairs. This environmental assessment was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ), the DOE and the BLM. 360 refs., 33 figs., 21 tabs.

  14. Effect of asphaltene deposition on the internal corrosion in transmission lines

    SciTech Connect (OSTI)

    Morales, J.L.; Viloria, A.; Palacios T, C.A.

    1996-12-31

    Crude oil from Norte de Monagas field, in Venezuela, contains large amounts of asphaltenes, some of them are very unstable with tendency to precipitate. Because liquid is carried over from the separation process in the flow stations, asphaltenes are also present in the gas gathering and transmission lines, precipitating on inner wall of pipelines. The gas gathering and transmission lines contain gas with high partial pressures of CO{sub 2}, some H{sub 2}S and are water saturated; therefore inhibitors are used to control the internal corrosion. There is uncertainty on how inhibitors perform in the presence of asphaltene deposition. To protect the pipelines from external corrosion, cathodic protection is used. Since asphaltenes have polar properties, there exists an uncertainty on whether it enhances asphaltene precipitation and deposition. The purpose of this paper to describe the causes that enhance asphaltene deposition on gas and some of the preliminary result from an ongoing research project carried out by Intevep and Corpoven.

  15. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    SciTech Connect (OSTI)

    Blanco-Redondo, Andrea E-mail: r.hillenbrand@nanogune.eu; Dpto. Electronica y Telecom., E.T.S. Ingeniera Bilbao, UPV Sarriugarte, Paulo; Garcia-Adeva, Angel; Zubia, Joseba; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  16. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  17. Transmission line relay mis-operation detection based on time-synchronized field data

    SciTech Connect (OSTI)

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such, it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.

  18. EIS-0365: Imperial-Mexicali 230-kV Transmission Lines

    Broader source: Energy.gov [DOE]

    On February 27, 2001, Baja California Power, Inc. (hereafter referred to as Intergen), InterGen Aztec Energy, V.B.V., filed an application with DOE, Office of Fossil Energy, for a Presidential permit that would allow construction and connection of a double-circuit, 230-kV transmission line extending from the Imperial Valley Substation in California for a distance of about 6 mi (10 km) to a point west of Calexico at the U.S.-Mexico border.

  19. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, Colorado

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) – with USDA Forest Service, Arapaho and Roosevelt National Forest, as a cooperating agency – is preparing an EIS that analyzes the potential environmental impacts of a proposal to rebuild and upgrade two 115-kilovolt single-circuit transmission lines between the Flatiron Substation and the intersection of Mall Road and U.S. Highway 36 in Estes Park, Larimer County, Colorado.

  20. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOE Patents [OSTI]

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  1. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  2. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  3. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  4. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  5. DOE Environmental Impact Statement Public Scoping Meeting on Champlain Hudson Power Express Transmission Line Project

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is hosting seven meetings for public participation as part of its Environmental Impact Statement (EIS) preparation process pursuant to the National Environmental Policy Act (NEPA) to assess the potential environmental impacts from its proposed action of granting a Presidential permit to Champlain Hudson Power Express, Inc., to construct, operate, maintain, and connect a new electric transmission line across the U.S.- Canada border in northeastern New York.

  6. EA-1551: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE started to prepare, jointly with the Montana Department of Environmental Quality (MDEQ), an EA that would also serve as a state EIS. The document would evaluate the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana. Based on comments received on the DOE Draft EA/MDEQ Draft EIS, DOE cancelled preparation of the EA and announced preparation of DOE/EIS-0399 (of the same title).

  7. Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project: Draft Environmental Assessment

    Office of Environmental Management (EM)

    B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project Draft Environmental Assessment July 2015 DOE/EA-1951 This page left intentionally blank Table of Contents Page List of Appendices ................................................................................................................................. vi List of Tables

  8. Draft Northern Pass Transmission Line Project Environmental Impact Statement Volume 1: Impact Analyses

    Office of Environmental Management (EM)

    VOLUME 1: IMPACT ANALYSES JULY 2015 DOE/EIS-0463 U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY WASHINGTON, DC Department of Energy Washington, DC 20585 July 2015 Dear Sir/Madam: Enclosed for your review and comment is the Draft Northern Pass Transmission Line Project Environmental Impact Statement (DOE/EIS-0463) prepared by the Department of Energy (DOE) pursuant to the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. The U.S.

  9. Draft Northern Pass Transmission Line Project Environmental Impact Statement_Summary

    Office of Environmental Management (EM)

    SUMMARY JULY 2015 DOE/EIS-0463 U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY WASHINGTON, DC Department of Energy Washington, DC 20585 July 2015 Dear Sir/Madam: Enclosed for your review and comment is the Draft Northern Pass Transmission Line Project Environmental Impact Statement (DOE/EIS-0463) prepared by the Department of Energy (DOE) pursuant to the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. The U.S. Forest Service -

  10. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    SciTech Connect (OSTI)

    Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  11. EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE’s Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior’s Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011.

  12. Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 (July 2010)

    Broader source: Energy.gov (indexed) [DOE]

    PROJECT PROPOSAL FOR NEW OR UPGRADED TRANSMISSION LINE PROJECTS UNDER SECTION 1222 OF THE ENERGY POLICY ACT OF 2005 JULY 2010 TABLE OF CONTENTS INTRODUCTION 1. The Challenge ....................................................................................................................................... 1 2. The Solution .......................................................................................................................................... 1 SECTION I: STATUTORY CRITERIA

  13. EIS-0107: Mead-Phoenix +500-kV Direct Current Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration (WAPA) prepared this statement to analyze the potential environmental and socioeconomic impacts arising from WAPA and regional project sponsors’ proposal to construct a 500 kilovolt (kV) alternating current (AC) transmission line with the capability to be upgraded later to 500kV direct current (DC), connecting the Westwing Substation, located north of Phoenix, Arizona, with a new McCullough II Substation, located approximately 14 miles west of Boulder City, Nevada. This statement modifies a previously prepared federal statement from which the participants' election to proceed had not occurred at the time this statement was prepared.

  14. EA-1931: Keeler to Tillamook Transmission Line Rebuild Project, Washington and Tillamook Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared this EA to assess the potential environmental impacts of the proposed rebuild of the Keeler-Forest Grove and Forest Grove-Tillamook 115-kilovolt (kV) transmission lines between the cities of Hillsboro and Tillamook, in Washington and Tillamook Counties, Oregon. The 58-mile-long rebuild would include replacement of all wood-pole structures over 10 years in age. Some existing access roads would be improved to accommodate construction equipment and some new road access would be acquired or constructed in areas where access is not available.

  15. EIS-0112: Rifle to San Juan 345-kV Transmission Line and Associated Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture - Rural Electrification Administration developed this statement to evaluate the environmental impacts of the Colorado-Ute Electric Association Inc. and the U.s. Department of Energy's Western Area Power Administration (WAPA) constructing and operating a 345-kilovolt transmission line from Rifle, Colorado, to the San Juan Generating Station near Farmington, New Mexico. WAPA served as a cooperating agency in the preparation of this statement and adopted it on 10/30/1984. WAPA assumed the lead role for project implementation after issuance of the final statement.

  16. EIS-0414: Presidential Permit Application, Energia Sierra Juarez Transmission Line, California

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts from DOE’s proposed Federal action of granting a Presidential permit to Energia Sierra Juarez U.S. Tranmssion, LLC (ESJ-U.S.), a subsidiary of Sempra Generation, to construct, operate, maintain, and connect a 1.7-mile transmission line (0.65 miles in the U.S.) across the international border between the U.S. and Mexico, near the town of Jacumba, California. The County of San Diego is a cooperating agency in the preparation of this EIS.

  17. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  18. A short model excitation of an asymmetric force free superconducting transmission line magnet

    SciTech Connect (OSTI)

    Wake, M.; Sato, H.; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V.; Oleck, A.; Piekarz, H.; Rabehl, R,; /Fermilab

    2005-09-01

    A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.

  19. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA); Cookson, Alan H. (Pittsburgh, PA); Yoon, Kue H. (Pittsburgh, PA)

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  20. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOE Patents [OSTI]

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  1. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOE Patents [OSTI]

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  2. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  3. Transmission

    Energy Savers [EERE]

    ~ Transmission ,... ,...vc- "' ""'\ S I r;. Dr. Jerry Pell, CCM Principal NEP A Document Manager Permitting, Siting, and Analysis (OE-20) Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1 000 Independence A venue SW Washington, D.C. 20585-0001 Subject: Champlain Hudson Power Express Project Submittal of Amendment Application Dear Dr. Pell: February 28, 2012 On January 25, 2010, Transmission Developers, Inc. ("TDI") submitted on behalf of

  4. The commercial development of water repellent coatings for high voltage transmission lines

    SciTech Connect (OSTI)

    Hunter, S. R.; Daniel, A.

    2013-10-31

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  5. The commercial development of water repellent coatings for high voltage transmission lines

    SciTech Connect (OSTI)

    Hunter, Scott Robert

    2013-10-01

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  6. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

    Broader source: Energy.gov [DOE]

    Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

  7. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  8. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.

  9. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, Prasad R. (Westboro, MA)

    1983-02-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section.

  10. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  11. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  12. Apparatus and method for routing a transmission line through a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael; Reynolds, Jay

    2006-07-04

    A method for routing a transmission line through a tool joint having a primary and secondary shoulder, a central bore, and a longitudinal axis, includes drilling a straight channel, at a positive, nominal angle with respect to the longitudinal axis, through the tool joint from the secondary shoulder to a point proximate the inside wall of the centtral bore. The method further includes milling back, from within the central bore, a second channel to merge with the straight channel, thereby forming a continuous channel from the secondary shoulder to the central bore. In selected embodiments, drilling is accomplished by gun-drilling the straight channel. In other embodiments, the method includes tilting the tool joint before drilling to produce the positive, nominal angle. In selected embodiments, the positive, nominal angle is less than or equal to 15 degrees.

  13. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect (OSTI)

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the effective cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  14. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA); Yoon, Kue H. (Pittsburgh, PA)

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  15. Announcement of Change in Public Meeting Location for the Northern Pass Transmission Line Project Published in the Federal Register

    Broader source: Energy.gov [DOE]

    The Department announces a change of location for the September 26, 2013 public scoping meeting for the Northern Pass Transmission Line Project to Colebrook Elementary School, 27 Dumont Street, Colebrook, NH. The meeting will be from 5 to 8 p.m.

  16. OE Issues Notice of Intent to Prepare an Environmental Impact Statement for the Plains & Eastern Clean Line Transmission Project

    Broader source: Energy.gov [DOE]

    On December 21, 2012, DOEs Office of Electricity Delivery and Energy Reliability (OE) issued a Notice of Intent (NOI) to Prepare an Environmental Impact Statement (EIS) for the Plains & Eastern Clean Line Transmission Project on behalf of the Department and Southwestern Power Administration

  17. The U.S. Department of Energy is reopening the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS).

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy is reopening the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS).

  18. Transportation properties of a high-current magnetically insulated transmission line and dynamics of the electrode plasma

    SciTech Connect (OSTI)

    Anan'ev, S. S.; Bakshaev, Yu. L.; Bartov, A. V.; Blinov, P. I.; Dan'ko, S. A.; Zhuzhunashvili, A. I.; Kazakov, E. D.; Kalinin, Yu. G.; Kingsep, A. S.; Korolev, V. D.; Mizhiritskii, V. I.; Smirnov, V. P.; Tkachenko, S. I.; Chernenko, A. S.

    2008-07-15

    Results are presented from experimental studies of a section of a magnetically insulated transmission line (MITL) with a current density of up to 500 MA/cm{sup 2} and linear current density of up to 7 MA/cm (the parameters close to those in a fast-Z-pinch-driven fusion reactor projected at Sandia Laboratories). The experiments were performed in the S-300 facility (3 MA, 0.15 {Omega}, 100 ns). At high linear current densities, the surface of the ohmically heated MITL electrode can explode and a plasma layer can form near the electrode surface. As a result, the MITL can lose its transmission properties due to the shunting of the vacuum gap by the plasma produced. In this series of experiments, the dynamics of the electrode plasma and the dependence of the transmission properties of the MITL on the material and cleanness of the electrode surface were studied. It is shown experimentally that, when the current with a linear density of up to 7 MA/cm begins to flow along a model MITL, the input and output currents differ by less than 10% over a time interval of up to 230 ns for nickel electrodes and up to 350 ns for a line with a gold central electrode. No effect of the oil film present on the electrode surface on the loss of the transmission properties of the line was observed. It is also shown that electron losses insignificantly contribute to the total current balance. The experimental results are compared with calculations of the electrode explosion and the subsequent expansion of the plasma layer. A conclusion is made that the life-time of the model MITL satisfies the requirements imposed on the transmission lines intended for use in the projected thermonuclear reactor.

  19. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  20. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOE Patents [OSTI]

    Kommineni, Prasad R. (Westboro, MA)

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  1. Design and performance of the Z magnetically-insulated transmission lines

    SciTech Connect (OSTI)

    Stygar, W.A.; Spielman, R.B.; Allshouse, G.O.

    1997-08-01

    The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of the vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.

  2. Particle trap to sheath non-binding contact for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA)

    1984-04-24

    A non-binding particle trap to outer sheath contact for use in gas insulated transmission lines having a corrugated outer conductor. The non-binding feature of the contact according to the teachings of the invention is accomplished by having a lever arm rotatably attached to a particle trap by a pivot support axis disposed parallel to the direction of travel of the inner conductor/insulator/particle trap assembly.

  3. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  4. Seasonal Patterns of Melatonin, Cortisol, and Progesterone Secretion in Female Lambs Raised Beneath a 500-kV Transmission Line.

    SciTech Connect (OSTI)

    Lee, Jack M.

    1992-06-01

    Although several kinds of biological effects of electric and magnetic fields have been reported from laboratory studies, few have been independently replicated. When this study was being planned, the suppression of nighttime melatonin in rodents was thought to represent one of the strongest known effects of these fields. The effect had been replicated by a single laboratory for 60-Hz electric fields, and by multiple laboratories for d-c magnetic fields. The primary objective of this study was to determine whether the effect of electric and magnetic fields on melatonin would also occur in sheep exposed to a high voltage transmission line. The specific hypothesis tested by this experiment was as follows: The electrical environment produced by a 60-Hz, 500-kV transmission line causes a depression in nocturnal melatonin in chronically exposed female lambs. This may mimic effects of pinealectomy or constant long-day photoperiods, thus delaying the onset of reproductive cycles. Results of the study do not provide evidence to support the hypothesis. Melatonin concentrations in the sheep exposed to the transmission line showed the normal pattern of low daytime and high nighttime serum levels. As compared to the control group, there were no statistically significant group differences in the mean amplitude, phase, or duration of the nighttime melatonin elevation.

  5. EIS-0011: New Melones 230-kV Electrical Transmission Line, Central Valley Project, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration prepared this statement to evaluate the environmental impacts of proposed development of an electrical transmission system for the New Melones Power Plant.

  6. EIS-0100: Liberty-Coolidge 230-kV Transmission Line, Arizona

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of various alternatives associated with an upgrade of electrical transmission capability between the Liberty and Coolidge Substations.

  7. EIS-0129: New England/Hydro-Quebec 450 kV Transmission Line Interconnection- Phase II

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration issued this EIS to explore the impacts of amending Presidential Permit PP-76 to allow the Vermont Electrical Company to operate at power levels above those stipulated in the permit and to build additional transmission facilities to distribute the increased power. Phase I of this project is detailed in EIS-0103.

  8. Development of NS-TACSR with extremely suppressed aeolian noise and its application to 500 kV overhead transmission lines

    SciTech Connect (OSTI)

    Tsujimoto, K.; Furukawa, S. (Kansai Electric Power Co., Inc., Osaka (Japan)); Shimojima, K.; Yamamoto, K. (Hitachi Cable, Ltd., Hitachi (JP))

    1991-10-01

    Recently in Japan, with the unprecedented advance of residential area development in the suburbs of large cities, it has become quite difficult to secure the routes of EHV transmission lines from nuclear power plants in remote places to the suburbs of large cities, urging resolution of environmental problems related to transmission lines. In Japan, aerodynamic sound produced by conductors and insulators frequently caused noise problems. Having an opportunity of constructing a 500 kV transmission line through a residential are, we made a research to resolve this noise problem. This paper describes the characteristics of aeolian noise and preventive measures against it.

  9. Environmental assessment: Warren Air Force Base 115-kV transmission line, Cheyenne, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1986-03-01

    The Western Area Power Administration (Western), is propsoing to construct a new electrical tranmission line and substation in southeastern Wyoming. This proposed line, called the Warren Air Force Base Tranmission Line, will supply power for Western's system to Francis E.Warren Air Force Base (F.E. Warren AFB) near Cheyenne. It would allow for increased tranmission capacity to the air base. F.E. Warren AFB currently is served electrically be Western via a 13.8-kv line. It is a wood-pole, double-circuit line without an overhead ground wire, which extends from Western's Cheyenne Substation, through an urban area, and onto the air base. The Cheyenne Substation is located on the south side of the city of Cheyenne. The electrical load on the base is increasing from 4 megawatts (MW) to 11 or 12 MW, an approximate three-fold increase. Voltage problems occasionally occur at the base due to the present electrial loads and to the age and inadequacy of the 13.8-kv line, which was placed in service in 1941. The existing line has served beyond its designed service life and requires replacement. Replacement would be necessary even without an increasing load. F.E. Warren AFB has several new and expanding programs, including additional housing, shopping centers, and the Peacekeeper Missile Program. Part of this expansion already has occured; the remainder is expected by early 1988. This expansion has created the need for additional electrical service. The present 13.8-kV line is not capable of supporting the additional load. 28 refs., 4 figs., 2 tabs.

  10. Influence of the airflow speed along transmission lines on the DC corona discharge loss, using finite element approach

    SciTech Connect (OSTI)

    Shemshadi, A.; Akbari, A.; Niayesh, K.

    2012-07-15

    Corona discharge is of great interest from the physical point of view and due to its numerous practical applications in industry and especially one of the most important sources of loss in the high voltage transmission lines. This paper provides guidelines for the amount of electric loss caused by corona phenomenon occurred around a DC high voltage wire placed between two flat plates and influence of wind speed rate on the amount of corona loss using COMSOL Multiphysics. So electric potential distribution patterns and charge density diffusion around the wire are studied in this article.

  11. EIS-0365: Draft Environmental Impact Statement for the Imperial-Mexicali 230-kV Transmission Lines, EIS-0365 (May 2004)

    Broader source: Energy.gov [DOE]

    A U.S. Department of Energy (DOE) Presidential permit is required to construct an electric transmission line across the U.S. international border. On February 27, 2001, Baja California Power, Inc. ...

  12. EIS-0032: 500 kV International Transmission Line NSP-TR-1, Forbes, Minnesota to Manitoba, Canada, Northern States Power Company

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts of a 500-kilovolt transmission line proposed by the Northern States Power Company to provide a transmission facility for the exchange of electrical energy between Canada and the United States.

  13. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  14. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator

    SciTech Connect (OSTI)

    Ju, J.-C. Fan, Y.-W.; Shu, T.; Zhong, H.-H.

    2014-10-15

    We present a gigawatt (GW)-class magnetically insulated transmission line oscillator (MILO) which is capable of generating dual-band high power microwaves (HPMs). The proposed device, deriving from previously studied complex MILO and dual-frequency MILO, is designed to produce two HPMs in L-band and Ku-band, respectively. It is found in particle-in-cell (PIC) simulation that when the diode voltage is 610?kV, HPMs with frequencies of 1.72 GHz and 14.6?GHz can be achieved with powers of 3.3?GW and 2.4?GW, respectively. The corresponding total power conversion efficiency is approximately 12.8%. Power difference of the two generated HPMs is approximately 1.4?dB, and frequency difference of them reaches a level as high as ?10?dB.

  15. Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope

    SciTech Connect (OSTI)

    Policht, Veronica; /Loyola U., Chicago /SLAC

    2012-08-27

    There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

  16. Curecanti-Blue Mesa-Salida 115-kV transmission lines access roads rehabilitation, maintenance, and construction project. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    Western Area Power Administration (Western) is a power marketing agency of the US Department of Energy, with jurisdiction in 15 western states. The Salt Lake City Area (SLCA) of Western performs the agency`s mission in parts of Colorado, New Mexico, Texas, Utah, Arizona, Wyoming, and Nevada. As part of its mission, Western owns, operates, and maintains a system of transmission lines for transmitting bulk electrical energy from points of generation to and between delivery points. Part of that system in southwestern Colorado includes the Blue Mesa-Curecanti and Blue Mesa-Salida 115-kV transmission lines. Western proposes to conduct maintenance and improve its access roads for these two transmission lines. This paper discusses the impacts to the existing environment as well as the environmental consequences resulting from the maintenance and construction that is proposed.

  17. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  18. ,"Table 6. Proposed High-voltage Transmission Line Additions Filed Covering Calendar Year 2010, by North American Electric Reliability Corporation, 2011 Through 2020"

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Annual 2010" ,"Released: December 2011 " ,"Next Update: November 2012" ,"Table 6. Proposed High-voltage Transmission Line Additions Filed Covering Calendar Year 2010, by North American Electric Reliability Corporation, 2011 Through 2020" ,"(Various)" ,,"Geographic Area",,,"Voltage",,,"Capacity ","In-Service",,"Electrical Connection Locations",,"Line

  19. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOE Patents [OSTI]

    Fischer, William H. (Pittsburgh, PA)

    1984-01-01

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly.

  20. EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western’s Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona.

  1. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  2. EIS-0067: 230-kV International Transmission Line San Diego County, California to Tijuana, Mexico, San Diego Gas and Electric Company

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration and the California Public Utilities Commission jointly prepared this EIS to evaluate the environmental impacts of the construction, maintenance and operation of a 10-mile, 230-kilovolt transmission line across the U.S./Mexico border for the purpose of economic exchange of power and increased reliability.

  3. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line, Pima County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Indian Affairs (BIA), as joint lead agencies, prepared an EA that evaluates the potential environmental impacts of a proposal for BIA to grant Western a 150-foot right-of-way across tribal land along the existing Tucson-Apache Transmission Line to replace the previous 100-foot right-of-way, which has expired.

  4. Psychoacoustic evaluation of transmission line audible noise: building attenuation effects, methodology comparison, and field study feasibility. January 1, 1979 to December 31, 1979, Volume 1

    SciTech Connect (OSTI)

    Molino, J.A.; Zerdy, G.A.; Tremaine, S.G.

    1980-01-01

    Research on evaluating the effects of corona noise from EHV and UHV power transmission lines on humans inside buildings is described. The corona noise from transmission lines was recorded, reproduced for human listeners in a simulated living room and the human response to the noise was measured in the room. It was found that: despite its low sound level, corona noise is somewhat more adversive to people than might be expected on the basis of physical measurements of the sound; corona noise may not be a problem inside a well-constructed and insulated house with the windows closed; high frequency hissing and crackling noises are more aversive than low-frequency humming and buzzing noise components; and more data is needed to evaluate the human response to corona sounds. (LCL)

  5. EA-1899: Rerouting and Renovating of Estes-Flatiron Three Transmission Lines to Double Circuit 115-kV, Larimer County, Colorado

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration started to prepare an EA to evaluate the environmental impacts of a proposal to reroute and renovate the Estes-Flatiron Three Transmission Lines in Larimer County, Colorado. Based on comments received during the scoping period, Western ended preparation of DOE/EA-1899 and announced its intent to prepare and environmental impact statement, DOE/EIS-0483.

  6. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  7. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  8. Letter from Deputy Secretary Poneman to Clean Line Energy Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Line: Comment from Ms. Schroeder Plains and Eastern Clean Line Transmission Line: Comment from Mr. Zuniga Plains and Eastern Clean Line Transmission Line: Comment from Mr. Cain...

  9. Heavy duty insulator assemblies for 500-kV bulk power transmission line with large diameter octagonalbundled conductor

    SciTech Connect (OSTI)

    Tsujimoto, K.; Hayase, I.; Hirai, J.; Inove, M.; Naito, K.; Yukino, T.

    1982-11-01

    This paper describes the design procedure and the results of field tests on mechanical performances of insulator assemblies newly developed to support octagonal-bundled conductors for 500-kV bulk power transmission. Taking account of conductor-motion-induced peak tensile load, fatigue, torsional torque and others, a successful design has been achieved in two prototype assemblies for such heavy mechanical duties as encountered during conductor galloping or swing. This has been proved throughout three years of the field tests.

  10. EIS-0379- Rebuild of the Libby (FEC) to Troy Section of BPA’s 115-kilovolt Transmission Line in Libby, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action on the proposed rebuilding, operation, and maintenance of a 17-mile-long portion of BPA’s Libby to Bonners Ferry 115-kilovolt (kV) Transmission Line in Lincoln County, Montana. The portion to be rebuilt would start at Flathead Electric Cooperative’s (FEC) Libby Substation, in the town of Libby, Montana, and proceed west along an existing right-of-way for about 17 miles, terminating at BPA’s Troy Substation just east of the town of Troy, Montana.

  11. Notice of Availability (NOA) for the Draft Environmental Impact Statement (EIS) and Announcement of Public Hearings for the Proposed New England Clean Power Link (NECPL) Transmission Line: Federal Register Notice, Volume 80, No. 113- Jun. 12, 2015

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces the availability of the “Draft Environmental Impact Statement for the New England Clean Power Link Transmission Line Project” (DOE/EIS-0503) for public review and comment.

  12. Bordertown to California Transmission | Open Energy Information

    Open Energy Info (EERE)

    Transmission EIS Bordertown to California 120kV Transmission Line Project Environmental Impact Statement General NEPA Document Info Energy Sector Transmission Environmental...

  13. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Facility Construction of a 219-mile, 230 kilovolt transmission line from Great Falls, Montana to Lethbridge, Alberta to facilitate delivery of Naturenr Rim Rock wind project. ...

  14. System for routing messages in a vertex symmetric network by using addresses formed from permutations of the transmission line indicees

    DOE Patents [OSTI]

    Faber, Vance (Los Alamos, NM); Moore, James W. (Los Alamos, NM)

    1992-01-01

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs .GAMMA..sub.d (k) with degree d, diameter k, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k and .GAMMA..sub.d (k,-1) with degree 3-1, diameter k+1, and (d+1)!/(d-k+1)! processors for each d.gtoreq.k.gtoreq.4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network .GAMMA..sub.d (k,-1) is provided, no processor has a channel connected to form an edge in a direction .delta..sub.1. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations.

  15. Electrically tunable coplanar transmission line resonators using YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}}/SrTiO{sub 3} bilayers

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Jia, Q.X.; Campbell, I.H.; Wu, X.D.; Reagor, D.; Mombourquette, C.B.; McMurry, D.

    1995-06-26

    We have prepared electrically tunable microwave resonators incorporating superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO) and paraelectric SrTiO{sub 3} (STO) layers on LaAlO{sub 3} substrates. The top YBCO layer for each sample was patterned into a 8 mm long coplanar transmission line with a 40 {mu}m gap and a 20 {mu}m center line width. The microwave transmission through the coplanar transmission line exhibits resonances corresponding to standing microwaves along the coplanar transmission line. These resonances are modulated by applying a bias voltage between the center line and the ground planes. Samples with a 0.5 {mu}m thick (2 {mu}m thick) bottom STO layer show, for a resonance at around 8 GHz (5 GHz), a frequency modulation of about 4% (24%) and a quality factor {ital Q} of about 200 (50) under 100 V bias at 80 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  17. Lumped transmission line avalanche pulser

    DOE Patents [OSTI]

    Booth, R.

    1995-07-18

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse. 8 figs.

  18. Lumped transmission line avalanche pulser

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA)

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  19. Electric Transmission Siting | Open Energy Information

    Open Energy Info (EERE)

    OtherOther: Electric Transmission SitingLegal Abstract Brief overview of the California Public Utilities Commission's process for siting of electric transmission lines. Published...

  20. DOE Transmission Capacity Report | Department of Energy

    Office of Environmental Management (EM)

    Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise

  1. NREL: Transmission Grid Integration - Transmission Planning and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for

  2. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  3. Ecological benefits of dc power transmission

    SciTech Connect (OSTI)

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  4. ONE NEVADA LINE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE ONE NEVADA LINE PROJECT SUMMARY In February 2011, the Department of Energy issued a $343 million loan guarantee to finance the One Nevada Transmission Line (ON Line) project, a 235-mile, 500 kV AC transmission line capable of carrying 600 MW of power to the grid running

  5. EIS-0116-S1: Final Supplemental Environmental Impact Statement for the Blue River-Gore Pass Portion of the Hayden-Blue River Transmission Line Project, Grand and Summit Counties, Colorado

    Broader source: Energy.gov [DOE]

    This supplemental environmental impact statement by the Western Area Power Administration assesses the environmental effects of constructing, operating, and maintaining about 30 miles of 230/345-kV transmission line between the existing Gore Pass Substation northwest of Kremmling, Colorado, and a proposed new substation (not part of this action) near the Ute Pass Road. Alternatives assessed included routing and design alternatives plus the alternatives addressed in the Hayden-Blue River Final EIS, issued by the Rural Electrification Administration in July 1982 and adopted by DOE in June 1985 (see DOE/EIS-0116).

  6. Chapter 4 Transmission Adequacy | Department of Energy

    Office of Environmental Management (EM)

    4 Transmission Adequacy Chapter 4 Transmission Adequacy Transmission lines are the critical link between the point of electricity generation and consumers. The U.S. transmission grid infrastructure is owned and operated by approximately 3,000 distribution utilities and 500 transmission owners. This structure presents a distinct set of challenges in transmission planning, siting, cost allocation, grid operations and management, technological innovation, financing and construction. The development

  7. CX-012645: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wenatchee District 2014 Transmission Line Maintenance - Multiple Lines CX(s) Applied: B1.3Date: 41862 Location(s): WashingtonOffices(s): Bonneville Power Administration

  8. CX-012647: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell District 2014 Transmission Line Maintenance - Multiple Lines CX(s) Applied: B1.3Date: 41862 Location(s): MontanaOffices(s): Bonneville Power Administration

  9. Microsoft Word - DOE RFI on Transmission Planning - PGE Comments...

    Broader source: Energy.gov (indexed) [DOE]

    major new transmission lines can take significantly longer to develop than some types of generation to which the transmission would connect. This Request for Information...

  10. Energy Department, Arizona Utilities Announce Transmission Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Energization | Department of Energy Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February 12, 2015 - 2:30pm Addthis News Media Contact 202 586 4940 DOENews@hq.doe.gov Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization Transmission Line Increases Reliability, Access to Affordable Energy in Southwest States WASHINGTON

  11. Transmission Workshop

    Broader source: Energy.gov [DOE]

    On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC.

  12. EIS-0231: Navajo Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise, to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned...

  13. Transmission decisions

    SciTech Connect (OSTI)

    Ellison, C.T. )

    1993-03-01

    As the US FERC moves forward to implement the transmission access provisions of the National Energy Policy Act of 1992, the debate over Regional Transmission Groups continues. Independent energy producers have much at stake in this debate and their reaction to the general RTG concept and to specific RTG proposals will weigh heavily in determining the fate of these proposals.

  14. Coherent soliton communication lines

    SciTech Connect (OSTI)

    Yushko, O. V. Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K.

    2014-11-15

    The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.

  15. Transmission/Resource Library | Open Energy Information

    Open Energy Info (EERE)

    electric transmission systems, including in-depth discussion direct current, below-ground, and high-temperature superconductor lines. Includes sections on design features as...

  16. Proponent's Environmental Assessment (PEA) Checklist for Transmission...

    Open Energy Info (EERE)

    Proponent's Environmental Assessment (PEA) Checklist for Transmission Line and Substation Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  17. Richard Shaheen named Senior VP of Transmission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission lines and initiated upgrades to Celilo Substation and the Pacific Direct Current Intertie. "Richard is an excellent leader, and his 25-plus years of experience at a...

  18. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect (OSTI)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  19. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Broader source: Energy.gov (indexed) [DOE]

    miles of transmission lines, 72,000 miles of distribution lines, and 6,300 miles of natural gas pipelines. Our over 8,600 employees are committed to our mission to deliver...

  20. Gateway West Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    surveys and literature review; (b) the federal and state laws regarding protection of plants and wildlife; (c) the importance of these resources; (d) the purpose and necessity...

  1. Grand Coulee Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    on and near the ROW during construction to limit the potential for nuisance shocks. Air Quality "NEPAResourceAnalysis" is not in the list of possible values (Not Present,...

  2. HVDC power transmission technology assessment

    SciTech Connect (OSTI)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  3. Transmission Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Services BPA Clarifications on the DSO216 1 Document updated on 2242015 at 3:29:25 PM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA Clarifications on...

  4. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 21, 2014 CX-012764: Categorical Exclusion Determination Kayenta-Navajo 230 Kilovolt Transmission Line Access Road Maintenance Coconini and Navajo Counties, Arizona CX(s) ...

  5. CX-012791: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grizzly Captain Jack Transmission Line Access Road Acquisition CX(s) Applied: B1.24Date: 41935 Location(s): OregonOffices(s): Bonneville Power Administration

  6. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 CX-006298: Categorical Exclusion Determination Interconnection of the Letcher to Mitchell 115 Kilovolt Transmission Line to Western's Letcher Substation CX(s) Applied: B4.11...

  7. Data transmission system with distributed microprocessors

    DOE Patents [OSTI]

    Nambu, Shigeo (Fuchu, JP)

    1985-01-01

    A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

  8. Plains & Eastern Clean Line Transmission Line - Part 2 Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... J. Moreels 060815 Comment from Zachary Moore 060815 Comment from Dylan Moreels 0608... Holmesley 061015 Comment from Jeffrey Moore 061015 Comment from Thomas Zimmerman 06...

  9. Transmission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Transmission Below are resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on transmission technology, costs, and how to plan the system. Transmission on Tribal Land Basics The Tribal Energy and Environmental Information Clearinghouse provides resources for development on tribal lands. Topics covered include transmission technology basics, potential impacts,

  10. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  11. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  12. Small passenger car transmission test: Chevrolet Luv transmission

    SciTech Connect (OSTI)

    Bujold, M.P.

    1980-06-01

    The small passenger car transmission test was initiated to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions. This information would enable EV manufacturers to design a more energy efficient vehicle. With this information the manufacturers would be able to estimate vehicle driving range as well as speed and torque requirements for specific roadload performance characteristics. This report covers the 1978 Chevrolet Luv Truck manual transmission. This transmission was tested per a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. The portion of the test code which involved the throttle valve modulation and line pressure were deleted since they did not apply to the manual transmission. Under these test conditions the transmission attained maximum efficiencies in the upper 90% range at rated load for both drive performance tests and coast performance tests. The major results of this test are the torque speed and efficiency curves which are located in the data section of this report. These graphs map the complete performance characteristics for the Chevrolet Luv Truck Manual transmission. This information will facilitate the vehicle manufacturer in the design of a more energy efficient vehicle.

  13. Bonneville upgrades lines

    SciTech Connect (OSTI)

    Not Available

    1993-08-30

    A stretch of Bonneville Power Administration transmission line between Spokane and the Grand Coulee Dam is an 82-mile bottleneck as it is the last 115-kv section of [open quotes]road[close quotes] along a 500-kv transmission [open quotes]highway[close quotes]. Soon the administration will change all that. A number of independent and utility powerplants have been proposed in Idaho, Montana and the Spokane, Wash., area during the 1990s. As the operators will need to move their power, Bonneville is planning to build a $144-million, 500-kv line to upgrade the 115-kv section. The agency is planning to use its existing right-of-way.

  14. DOE Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Order No. 1000 Transmission Ratemaking Enabling New Resources - Demand Response - Variable Generation - Storage 2 Stages of Transmission Planning - Local, ...

  15. Advance Funding and Development Agreement: Plains & Eastern Clean Line

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Project (September 20, 2012) | Department of Energy Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) PDF icon Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains and Eastern Clean Line

  16. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

  17. EIS-0285: Transmission System Vegetation Management Program

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (Bonneville) is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations. This...

  18. SunZia Southwest Transmission Project Comments

    Broader source: Energy.gov (indexed) [DOE]

    SunZia Southwest Transmission Project Comments Provided to the US Department of Energy Office of Electricity Delivery and Energy Reliability Request for Information Relating to the Permitting of Transmission Lines Submitted as of March 28, 2012 2 1.0 Background. SunZia Southwest Transmission Project (SunZia or the Project) is a joint development effort currently underway in Arizona and New Mexico. The Project definition includes licensing, permitting, financing, constructing and operating up to

  19. RAPID/BulkTransmission/Environment/Arizona | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  20. RAPID/BulkTransmission/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  1. RAPID/BulkTransmission/Environment/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  2. RAPID/BulkTransmission/Environment/New Mexico | Open Energy Informatio...

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  3. RAPID/BulkTransmission/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  4. RAPID/BulkTransmission/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  5. RAPID/BulkTransmission/Environment/California | Open Energy Informatio...

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  6. RAPID/BulkTransmission/Environment/Montana | Open Energy Information

    Open Energy Info (EERE)

    and Magnetic Field Regulations Electric and magnetic fields (EMF) are invisible areas of energy that surround any electrical device including transmission lines, electrical...

  7. Final EIS for Champlain Hudson Power Express Transmission Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Line Project CEQ Releases Two Handbooks on Improving Efficiency of Federal Environmental Reviews CEQ Extends Comment Period on Revised Draft Guidance on...

  8. Department of Energy Finalizes Loan Guarantee for New Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and capable of delivering low-cost renewable energy to market," said Nevada Senator Harry Reid. "This transmission line is a major step toward unlocking Nevada's vast clean ...

  9. EIS-0451: Hooper Springs Transmission Project, Caribou County...

    Broader source: Energy.gov (indexed) [DOE]

    DOE's Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's...

  10. RAPID/Geothermal/Transmission Siting & Interconnection/Utah ...

    Open Energy Info (EERE)

    of 230 kV. The line must be located on state land for this to apply. Public Utility Definition for Transmission Facility: "Public utilities" include "electric corporations,"...

  11. Low Loss Conductor for AC or DC Power Transmission

    DOE Patents [OSTI]

    Sampson, W. B.; Garber, M.

    1973-03-13

    The patent describes a compact, easy to fabricate, noninductive, low surface magnetic field superconductor transmission line that has minimal stray fields.

  12. Low loss conductor for ac or dc power transmission

    DOE Patents [OSTI]

    Sampson, W.B.; Garber, M.

    1973-03-13

    The patent describes a compact, easy to fabricate, noninductive, low surface magnetic field superconductor transmission line that has minimal stray fields.

  13. HEADLINE: BPA RAISES RATES TO BOLSTER FEDERAL POWER AND TRANSMISSION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-voltage transmission lines that serve Northwest public utilities." For Bonneville's utility power customers, the wholesale rate increase will be an average of 9 percent...

  14. Plains & Eastern Clean Line Project Proposal for New or Upgraded

    Energy Savers [EERE]

    Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 | Department of Energy Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 PDF icon Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the

  15. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    Open Energy Info (EERE)

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  16. National Transmission Grid Study

    Office of Environmental Management (EM)

    Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures

  17. Transmission Capacity Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Address: Name: Organization Entity Type: Select the best fit for your role... Energy Trader Transmission Provider Employee Transmission Purchaser Energy Scheduler...

  18. Electricity Generation, Transmission ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and ...

  19. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  20. EIS-0390: Eastern Plains Transmission Project, Colorado and Kansas.

    Broader source: Energy.gov [DOE]

    This EIS is for Western Area Power Administration's proposal to participate with Tri-State Generation and Transmission Association, Inc. (Tri-State), to construct the proposed Eastern Plains Transmission Project (Project). Westerns participation with Tri-State would be in exchange for capacity rights on the transmission lines.

  1. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  2. Wind Concurrent Cooling Could Increase Power Transmission Potential by as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Much as 40% | Department of Energy Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% Wind Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% May 18, 2015 - 5:40pm Addthis Researchers at the U.S. Department of Energy's (DOE's) Idaho National Laboratory (INL) are working with industry to model wind's cooling effects on power transmission lines to dynamically couple transmission systems with concurrent cooling processes. In areas

  3. Updating the Electric Grid: An Introduction to Non-Transmission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternatives for Policymakers | Department of Energy Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Throughout the United States a consensus has emerged that an improved transmission system is in the interest of the country as a whole.1 However, decisions to implement new transmission lines may face significant cost, environmental, and public acceptance

  4. Career Map: Power Systems/Transmission Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems/Transmission Engineer Career Map: Power Systems/Transmission Engineer A stretch of wind turbines and power lines at dusk. Power Systems/Transmission Engineer Position Title Power Systems/Transmission Engineer Alternate Title(s) Electric Power Engineer, Electrical Interconnection Engineer, Electrical Design Engineer Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Power Systems Engineers typically have a

  5. 2006 Final Transmission Proposal: Revenue Requirements Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-06-01

    The purpose of the Revenue Requirement Study (Study) is to establish the level of revenues needed from rates for Bonneville Power Administration's (BPA's) transmission and ancillary services to recover, in accordance with sound business principles, costs associated with the transmission of electric power over the Federal Columbia River Transmission System (FCRTS). The FCRTS is part of the larger Federal Columbia River Power System (FCRPS) which also includes the hydroelectric, multipurpose facilities constructed and operated by the U.S. Army Corps of Engineers and the Bureau of Reclamation in the Pacific Northwest. The FCRPS costs that are not included in the FCRTS costs are funded and repaid through BPA power rates. The transmission revenue requirements herein include: recovery of the Federal investment in transmission and transmission-related assets; the operations and maintenance (O&M) and other annual expenses associated with the provision of transmission and ancillary services; the cost of generation inputs for ancillary services and other between business-line services necessary for the transmission of power; and all other transmission-related costs incurred by the Administrator. The cost evaluation period for this rate proposal includes Fiscal Years (FYs) 2005-2007, the period extending from the last year for which historical information is available through the proposed rate test period. The Study includes the transmission revenue requirements for the rate test period, FYs 2006-2007 (Rate Period) and the results of transmission repayment studies. This Study outlines the policies, forecasts, assumptions, and calculations used to determine BPA's transmission revenue requirements. Legal requirements are summarized in Chapter 5 of this Study. The Revenue Requirement Study Documentation (Documentation), TR-06-FS-BPA-01A, contains key technical assumptions and calculations, the results of the transmission repayment studies, and a further explanation of the repayment inputs and its outputs.

  6. State action in regional transmission groups

    SciTech Connect (OSTI)

    Rokach, J.Z.

    1994-12-01

    States should participate in coordinated transmission planning through regional transmission groups, while reserving their right to pass upon transmission planning. This would smooth an otherwise difficult transition, as FERC and state regulators seek to facilitate a competitive bulk power market that ignores arbitrary jurisdiction lines. Since the Federal Energy Regulatory Commission issued its Policy Statement on Regional Transmission Groups, two RTG`s, the Western Regional Transmission Association and the Southwest Regional Transmission Association, have gained conditional approval from FERC. A third, the Northwest Regional Transmission Association, files its governing agreement with the Commission, seeking FERC`s approval. Price setting within RTGs and information exchanges involved in planning the grid raise questions of the legality of these collective actions under the antitrust laws. All three agreements allow for exchanges of commercial and planning information, but, conspicuously, do not set transmission prices. For the moment, therefore, antitrust liability for RTGs would arise out of the information exchanges involved in planning the grid. In addition, with FERC pushing for `restructuring` at the wholesale level through open access and the states becoming aggressive in trying to institute competition at the consumer level through retail wheeling, issues of federal-state jurisdiction in transmission have come to the fore.

  7. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Line; Benton and Yakima Counties, Washington | Department of Energy 51: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line; Benton and Yakima Counties, Washington EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line; Benton and Yakima Counties, Washington SUMMARY Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the

  8. CX-011183: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Upgrade on Bonneville Power Administration’s Walla Walla-Pendleton Number 1 Transmission Line CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): Washington, Oregon Offices(s): Bonneville Power Administration

  9. CX-011996: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Tap Construction on the East Ellensburg Tap to Columbia-Ellensburg Transmission Line CX(s) Applied: B4.6 Date: 04/11/2014 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  10. CX-011717: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line 3002 and 3002A Electrical Transmission Line Reconductoring Project CX(s) Applied: B2.5 Date: 05/22/2013 Location(s): Missouri, Missouri Offices(s): Southwestern Power Administration

  11. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Jr., Richard G. (Royal Oak, MI); Bernier, David R. (Rochester Hills, MI)

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  12. HVDC transmission: a path to the future?

    SciTech Connect (OSTI)

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  13. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  14. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  15. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  16. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  17. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information-Transmission Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  18. Plains & Eastern Clean Line Project Proposal for New or Upgraded...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project Proposal for New or Upgraded ...

  19. Coordinating Interstate ElectricTransmission Siting: An Introduction to the

    Energy Savers [EERE]

    Debate | Department of Energy Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate In recent years, experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased energy demand that suggests a need for new electric transmission and the challenge of connecting

  20. Moving Beyond Paralysis: How States and Regions Are Creating Innovative Transmission Projects

    SciTech Connect (OSTI)

    Schumacher, A.; Fink, S.; Porter, K.

    2009-10-01

    This report profiles certain state and regional transmission policy initiatives aimed at promoting transmission development, mainly to access renewable resources including renewable energy zones, location-constrained tariffs, open seasons, and balanced portfolio plans. In particular, this article focuses on transmission initiatives intended to plan and build transmission in advance of new generation, instead of waiting for enough planned new generation to justify the development of a new transmission line of sufficient capability.

  1. Microsoft Word - Broadband Over Power Lines_FINAL.06.01.10.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband over Powerlines Can Accelerate the Transmission Smart Grid May 25, 2010 DOE/NETL-2010/1418 Broadband Over Power Lines Could Accelerate the Transmission Smart Grid Broadband Over Power Lines Could Accelerate the Transmission Smart Grid 1 Prepared by: Booz Allen Hamilton (BAH) Bruce Renz Renz Consulting, LLC DOE Contract number: DE-FE000400 Broadband Over Power Lines Could Accelerate the Transmission Smart Grid 2 Acknowledgements This report was prepared by Booz Allen Hamilton, Inc.

  2. mhtml:file://H:\CATX\APPROVED-CXS\EERE FOA 1201 - Rankine Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eaton Corporation STATE: WI PROJECT TITLE : Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0001201 DE-EE0007286 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: B3.6 Small-scale research and

  3. Transmission Grid Integration

    Broader source: Energy.gov [DOE]

    The levels of solar energy penetration envisioned by the DOE SunShot Initiative must be interconnected effectively onto the transmission grid. This interconnection requires an in-depth...

  4. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  5. Down hole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  6. Transmission Developers Inc.

    Energy Savers [EERE]

    ' % ~ Transmission Developers Inc. July 7, 2011 Mr. Anthony J. Como Director, Permitting and Siting Office ofElectricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence A venue SW, Room 8G-024 Washington, D.C. 20585 Subject: Champlain Hudson Power Express Project U.S. Department of Energy Presidential Permit Application PP-362 Dear Mr. Como: On January 25, 2010, Transmission Developers, Inc. ("TDI'' or "Applicants") submitted on behalf of

  7. Transmission Infrastructure Program

    Energy Savers [EERE]

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  8. Electricity Transmission, A Primer

    Office of Environmental Management (EM)

    Transmission A Primer National Council on Electricity Policy National Council on Electricity Policy i Electricity Transmission A Primer By Matthew H. Brown, National Conference of State Legislatures Richard P. Sedano, The Regulatory Assistance Project National Council on Electric Policy The National Council on Electricity Policy is a joint venture among the National Conference of State Legislatures (NCSL), the National Association of Regulatory Utility Commissioners (NARUC) and the National

  9. EIS-0411: Transmission Agency of Northern California Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS is for the Western Area Power Administration construction, operation, and maintenance of the proposed transmission agency of Northern California Transmission Project, California.

  10. National transmission grid study

    SciTech Connect (OSTI)

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  11. FRN Request for Proposals for New or Upgraded Transmission Line...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For assistance with any FERC Online service, please e-mail FERCOnlineSupport@ferc.gov. or ... Administration (Western), both power marketing administrations (PMAs) within the ...

  12. Proposed Southline Transmission Line Project - Volume 4 of 4...

    Office of Environmental Management (EM)

    These resources include recreation, rangelands, timber, minerals, watershed, fish and wildlife habitat, wilderness, air, and scenic quality, as well as scientific and...

  13. Dual design resistor for high voltage conditioning and transmission lines

    DOE Patents [OSTI]

    Siggins, Timothy Lynn; Murray, Charles W.; Walker, Richard L.

    2007-01-23

    A dual resistor for eliminating the requirement for two different value resistors. The dual resistor includes a conditioning resistor at a high resistance value and a run resistor at a low resistance value. The run resistor can travel inside the conditioning resistor. The run resistor is capable of being advanced by a drive assembly until an electrical path is completed through the run resistor thereby shorting out the conditioning resistor and allowing the lower resistance run resistor to take over as the current carrier.

  14. Sun Valley to Morgan Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    Construction areas, including storage yards, would be free of waste material and trash accumulations, unless stored in appropriate containers. All unused materials and solid...

  15. Cleaning process for corrugated aluminum electrical transmission line enclosure

    DOE Patents [OSTI]

    Bowman, Gary K. (Westborough, MA)

    1984-07-24

    A process for preparing the interior of a corrugated pipe or sheath comprises the steps of placing a predetermined amount of a tumbling abrasive material into the sheath, and then rotating the sheath.

  16. Proposed Southline Transmission Line Project - Volume 4 of 4...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bureau of Land Management 3 The Arizona State Historic Preservation Officer 4 The New Mexico State Historic Preservation Officer 5 The Advisory Council on Historic Preservation 6...

  17. Guide to Permitting Electric Transmission Lines in Utah | Open...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract Guide to permitting requirements of federal, state, and local agencies. Author Utah Office of Energy Development Published Utah Office of Energy...

  18. RAPID/Best Practices/Transmission Line Siting and Permitting...

    Open Energy Info (EERE)

    roadmap. Separately, the Wyoming Infrastructure Authority (WIA) and the Utah Office of Energy Development, have developed regulatory flowcharts (federal, state and county level)...

  19. Proposed Southline Transmission Line Project - Volume 2 of 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    would contribute to cumulative impacts on wildlife resources include the 27 Sapphire Energy Algae Facility, Lightning Dock Geothermal Power Plant, and Bowie Power Station. 28...

  20. Proposed Southline Transmission Line Project - Volume 3 of 4...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right-of-Way ... G-1 11 12 13 VOLUME SUMMARY 14 15 Volume 1 - Executive Summary, Chapters 1, 2, and 3 16 Volume 2 -...

  1. Volume 1 Great Northern Transmission Line Project FEIS Part 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement 7.0 Cumulative and Other Impacts 667 7.2.1 Past Actions Past actions are those actions and their associated impacts that occurred within or influenced the geographic region of influence (ROI) of each resource and have shaped the current affected environment of the proposed Project area. For the purposes of this Environmental Impact Statement (EIS), actions that have occurred in the past and their associated impacts are now part of the existing environment and

  2. EIS-0463: Northern Pass Transmission Line Project, New Hampshire...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Forest Service, White Mountain National Forest, the U.S. Army Corps of Engineers, New England District, and the New Hampshire Office of Energy and Planning are cooperating...

  3. ,"Table 6. Proposed High-voltage Transmission Line Additions...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."151-199",161,296,6,2012,"Prentiss","Jeff Davis SS",7,"OH","single pole","concrete",795,"A...,"AC","100-120",115,88,5,2019,"Gilman","Patterson",0,"OH","H-frame","wood",477,"ACSR","Sin...

  4. Southline Transmission Line Project - Volume 3 Chapter 3

    Energy Savers [EERE]

    629 Chapter 4 ENVIRONMENTAL CONSEQUENCES 4.1 INTRODUCTION This chapter presents the results of the environmental impact analysis for the various resources introduced in chapter 3 of this EIS. The analysis of potential environment impacts has been updated since the Draft EIS to a discussion of the route variations new to the Final EIS (P7a-d and U3aPC). 4.1.1 Impact Assessment The proposed Project and alternatives outlined in chapter 2 may cause, directly or indirectly, changes in the human

  5. PP-398 Great Northern Transmission Line Amended FRN.pdf

    Energy Savers [EERE]

  6. ITC Transmission | Open Energy Information

    Open Energy Info (EERE)

    ITC Transmission Jump to: navigation, search Name: ITC Transmission Place: Michigan Phone Number: Western Michigan Office: (269) 792-7223 -- Northern Michigan Office: (989)...

  7. CX-008704: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grand Coulee-Bell No. 3 Double Circuit 230 Kilovolt Transmission Line Reconductoring Project CX(s) Applied: B1.3 Date: 05/31/2012 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration

  8. CX-011619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Muddy Pass-Walden 69-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-012764: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kayenta-Navajo 230 Kilovolt Transmission Line Access Road Maintenance Coconini and Navajo Counties, Arizona CX(s) Applied: B1.3Date: 41872 Location(s): ArizonaOffices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-012084: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Snowy Range-Happy Jack 115-Kilovolt Transmission Line Structure Replacements CX(s) Applied: B1.3 Date: 03/10/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-012085: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Hazard Tree Management CX(s) Applied: B1.3 Date: 03/06/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-012078: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on the Great Cut Tap 115-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 02/20/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-012077: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Craig to Hayden 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 04/21/2014 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-011205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lost Canyon-Shiprock 230-Kilovolt Transmission Line Road Maintenance CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-012736: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ED2-ED4 Transmission Line Rebuild Project CX(s) Applied: B1.3Date: 41648 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  16. CX-011235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wood Pole Inspection and Treatment - Routine Transmission Line Maintenance CX(s) Applied: B1.3 Date: 10/24/2013 Location(s): CX: none Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-012741: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liberty-Westwing 230 Kilovolt Transmission Line Insulator Replacement CX(s) Applied: B1.3Date: 41795 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  18. CX-012092: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tucson-Apache 115-Kilovolt Transmission Line Structure Stabilization Project CX(s) Applied: B1.3 Date: 09/06/2013 Location(s): Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  19. CX-011210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bridgeport-Gering 115-Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 09/12/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-009409: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gering-Gering Valley 34.5 Kilovolt Transmission Line Underground Installation CX(s) Applied: B4.13 Date: 10/02/2012 Location(s): Nebraska Offices(s): Western Area Power Administration

  1. CX-007750: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Highlands Trail in the Longview-Cowlitz Number 1 Transmission Line Right-of-Way CX(s) Applied: B4.9 Date: 12/21/2011 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-011653: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Saguaro-Tucson 115 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 12/03/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  3. CX-011179: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alvey-Lane #1 Transmission Line Access Road Maintenance CX(s) Applied: B1.3 Date: 09/12/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  4. CX-012086: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wray-Wray Tap 115-Kilovolt Transmission Line Construction CX(s) Applied: B4.12 Date: 02/28/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-011648: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis-Parker 230 Kilovolt Transmission Line- Marker Ball(s) Replacement CX(s) Applied: B1.3 Date: 12/17/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  6. CX-008709: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wood Pole Replacements As Needed on the Shelton-Fairmount No. 1, 115 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 05/24/2012 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  7. CX-010545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila Knob Transmission Line Crossarm Replacement at Structure 18/3 CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  8. CX-008380: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer to Ault 230 Kilovolt Transmission Line Structure Replacement, Weld County, Colorado CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-008687: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bandon-Rogue Transmission Line Rebuild Project - Fiscal Year 2012 Culvert Replacement and Associated Access Road Reconstruction CX(s) Applied: B1.3 Date: 07/06/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  10. CX-008685: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Eddy – Troutdale No. 1 230 Kilovolt Transmission Line Upgrade CX(s) Applied: B4.13 Date: 07/11/2012 Location(s): Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  11. CX-012072: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Cheyenne North/South 115-kilovolt Transmission Line Structure Replacement CX(s) Applied: B4.13 Date: 03/18/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-012734: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bouse Hills Pumping Plant to Harcuvar 115 Kilovolt Transmission Line, Inset Structure Installation CX(s) Applied: B4.6Date: 41878 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  13. CX-008406: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Structure Replacement Flaming Gorge-Vernal No.3 138 Kilovolt Transmission Line CX(s) Applied: B4.6 Date: 03/06/2012 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-008400: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Estes Park to Mary's Lake West 115 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/02/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-009801: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-009800: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 01/15/2013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-011618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kremmling-Windy Gap 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-011208: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Malta-Mount Elbert 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 09/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-011209: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-North Park 230-Kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 09/10/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-011616: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Kremmling 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-012342: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liberty Parker #2 Transmission Line - Erosion Repair at Structure 53/1 CX(s) Applied: B4.6 Date: 06/09/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  2. CX-010439: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Routine Maintenance on the Colville-Republic Number 1 Transmission Line CX(s) Applied: B1.3 Date: 05/30/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  3. CX-011650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parker-Gila 161 Kilovolt Transmission Line - Structure 109-8 Relocation CX(s) Applied: B1.3 Date: 12/18/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  4. CX-007791: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idalia to Asherville Transmission Line Reconductoring Project CX(s) Applied: B4.6 Date: 10/13/2011 Location(s): Missouri Offices(s): Southwestern Power Administration

  5. CX-008381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Thompson to Flatiron 13.8 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-010105: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 03/26/2013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-008377: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcova-Casper North 115 Kilovolt Transmission Line Pole Replacements CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-010887: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Sidney 115-Kilovolt Transmission Line Structure Replacement CX(s) Applied: B4.13 Date: 08/08/2013 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-012748: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Spring-Sydney 115 Kilovolt Transmission Line Pole Replacement Project, Deuel County, Nebraska CX(s) Applied: B1.3Date: 41845 Location(s): NebraskaOffices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-012762: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Kremmling 138 Kilovolt Transmission Line Maintenance Grand County, Colorado CX(s) Applied: B1.3Date: 41834 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-012404: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Palisades-Swan Valley Transmission Line Rebuild CX(s) Applied: B4.13 Date: 06/30/2014 Location(s): Idaho Offices(s): Bonneville Power Administration

  12. CX-012740: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Insulator Replacements for the Flagstaff to Pinnacle Peak #1 and #2 345 Kilovolt Transmission Lines CX(s) Applied: B1.3Date: 41821 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  13. CX-010098: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Phoenix to Lone Butte 230 Kilovolt Transmission Line, Bird Diverter Installation CX(s) Applied: B1.3 Date: 04/08/2013 Location(s): CX: none Offices(s): Western Area Power Administration-Desert Southwest Region

  14. CX-011211: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Box Butte-Chadron 115-Kilovolt Transmission Line Structure Replacements CX(s) Applied: B1.3 Date: 09/26/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-011689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fence Replacement on the Latham Tap Transmission Line Corridor CX(s) Applied: B1.3 Date: 11/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-011651: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hazard Tree Removal Along the Prescott Peacock 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 11/22/2013 Location(s): Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  17. CX-012744: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prescott Peacock Transmission Line- Insulator Repair at 3 Structures CX(s) Applied: B1.3Date: 41851 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  18. CX-010737: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Insulator Replacement on Bonneville Power Administration's (BPA) North Bonneville-Midway No. 1 Transmission Line CX(s) Applied: B4.6 Date: 07/16/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-010109: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Poncha 230 Kilovolt Transmission Line Cross Bar Ranch Project CX(s) Applied: B1.3 Date: 04/25/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-008408: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Torrington-Wildcat 69 Kilovolt Transmission Line Rebuild Project CX(s) Applied: B4.13 Date: 04/02/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-008386: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Bridgeport to Sydney 115 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 04/11/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-011852: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Blythe-Knob 161 Kilovolt Transmission Line, Structure Maintenance Project CX(s) Applied: B1.3 Date: 01/21/2014 Location(s): California, California Offices(s): Western Area Power Administration-Desert Southwest Region

  3. CX-010430: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington-Delameter 115-kilovolt (kV) Transmission Line Sale CX(s) Applied: B1.24 Date: 06/20/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-007985: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Acquisition of Cowlitz County Public Utility District's 115-Kilovolt Transmission Line CX(s) Applied: B1.24 Date: 02/24/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-011529: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Usk-Boundary No. 1 Transmission Line Impairment Remediation CX(s) Applied: B1.3 Date: 10/15/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-011614: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Blue Mesa 115-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 12/04/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-008693: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wood Pole Structure Replacements on the Chehalis-Centralia No. 2 115 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  8. CX-009534: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Construct New Transmission Line and Footings, Garrison Switchyard CX(s) Applied: B4.13 Date: 12/03/2012 Location(s): North Dakota Offices(s): Western Area Power Administration-Upper Great Plains Region

  9. CX-008160: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wood Pole Replacement on The Dalles-Discovery Number 1 Transmission Line CX(s) Applied: B1.3 Date: 04/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  10. 2009 National Electric Transmission Congestion Study Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Planning Congestion Studies 2009 Congestion Study 2009 National Electric Transmission Congestion Study Workshops 2009 National Electric Transmission...

  11. Transmission-LessInk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subtitle Re-balancing BPA's Investment Portfolio Prioritization Cycle 3 Quarterly Business Review November 2014 On-line access to Investment Summaries The nature, purpose, costs,...

  12. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study

  13. EIS-0496: San Luis Transmission Project; Alameda, Merced, San Joaquin and Stanislaus Counties, California

    Broader source: Energy.gov [DOE]

    Western Area Power Administration and the San Luis & Delta-Mendota Water Authority (Authority) as joint federal and state lead agencies, are preparing an EIS/Environmental Impact Report that assesses the potential environmental impacts of the proposed San Luis Transmission Project. Western proposes to construct, own, operate, and maintain a new 230-kilovolt transmission line between its Tracy and San Luis Substations and a new 70-kV transmission line between the San Luis and O'Neill Substations.

  14. From: Alex Free To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors

    Office of Environmental Management (EM)

    05:34 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for transmission lines in one state to transport electricity to another is a violation of property rights

  15. From: Alex Free To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors

    Office of Environmental Management (EM)

    10:45 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for transmission lines in one state to transport electricity to another is a violation of property rights

  16. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  17. Borehole data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (1739 Grandview #2, Idaho Falls, ID 83402)

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  18. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  19. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  20. 2006 Final Transmission Proposal: Revenue Requirement Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-06-01

    The purpose of the Revenue Requirement Study (Study) is to establish the level of revenues needed from rates for Bonneville Power Administration's (BPA's) transmission and ancillary services to recover, in accordance with sound business principles, costs associated with the transmission of electric power over the Federal Columbia River Transmission System (FCRTS). The FCRTS is part of the larger Federal Columbia River Power System (FCRPS) which also includes the hydroelectric, multipurpose facilities constructed and operated by the U.S. Army Corps of Engineers and the Bureau of Reclamation in the Pacific Northwest. The FCRPS costs that are not included in the FCRTS costs are funded and repaid through BPA power rates. The transmission revenue requirements herein include: recovery of the Federal investment in transmission and transmission-related assets; the operations and maintenance (O&M) and other annual expenses associated with the provision of transmission and ancillary services; the cost of generation inputs for ancillary services and other between business-line services necessary for the transmission of power; and all other transmission-related costs incurred by the Administrator. The cost evaluation period for this rate proposal includes Fiscal Years (FYs) 2005-2007, the period extending from the last year for which historical information is available through the proposed rate test period. The Study includes the transmission revenue requirements for the rate test period, FYs 2006-2007 (Rate Period) and the results of transmission repayment studies. This Study outlines the policies, forecasts, assumptions, and calculations used to determine BPA's transmission revenue requirements. Legal requirements are summarized in Chapter 5 of this Study. The Revenue Requirement Study Documentation (Documentation), TR-06-FS-BPA-01A, contains key technical assumptions and calculations, the results of the transmission repayment studies, and a further explanation of the repayment inputs and its outputs.

  1. Type B Accident Investigation Board Report on the July 25, 1997, Contract Brush Cutter Injury on the Ashe-Marion #2 500 kV Line

    Broader source: Energy.gov [DOE]

    On July 25, 1997, at 1205 hours, a contract hand brush cutter was seriously injured when he felled a tree close to a Bonneville Power Administration energized transmission power line, located within a BPA transmission-line corridor.

  2. Letter box line blackener for the HDTV/conventional-analog hybrid system

    DOE Patents [OSTI]

    Wysocki, Frederick J.; Nickel, George H.

    2006-07-18

    A blackener for letter box lines associated with a HDTV/conventional-analog hybrid television transmission where the blackener counts horizontal sync pulses contained in the HDTV/conventional-analog hybrid television transmission and determines when the HDTV/conventional-analog hybrid television transmission is in letter-box lines: if it is, then the blackener sends substitute black signal to an output; and if it is not, then the blackener sends the HDTV/conventional-analog hybrid television transmission to the output.

  3. EIS-0451: Hooper Springs Transmission Project, Caribou County, Idaho

    Broader source: Energy.gov [DOE]

    DOEs Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's proposed Hooper Springs Substation near Soda Springs, Idaho, to either an existing Lower Valley Energy (LVE) substation or a proposed BPA connection with LVE's existing transmission system in northeastern Caribou County. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HooperSprings/.

  4. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission

    Energy Savers [EERE]

    Line Project; Benton and Yakima Counties, Washington | Department of Energy 51: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington SUMMARY Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee

  5. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. Transmission Siting_071508.indd

    Energy Savers [EERE]

    Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate The National Council on Electricity Policy 2 DISCLAIMER: The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the authors and may not necessarily agree with the positions of the National Council on Electricity Policy, its committ ee members or the organizations they

  7. Transmission and Storage Operations

    Energy Savers [EERE]

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 Agenda * DTE Gas Snapshot * NOx & CO - Combustion stability * Methane - Packing - Blowdowns * Capture vs Flare 2 SNAPSHOT * DTE Gas - 41 Units * Age Range: 8-59yrs (Average 45yrs) - 118,200HP * 1,000-15,000HP - 7 different manufacturers * Cooper-Bessemer, Solar, Waukesha, DeLaval, IR, CAT, Ariel - Complete Mixture *

  8. Tribal Renewable Energy Webinar: Transmission and Grid Basics for Tribal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic and Energy Development | Department of Energy Transmission and Grid Basics for Tribal Economic and Energy Development Tribal Renewable Energy Webinar: Transmission and Grid Basics for Tribal Economic and Energy Development March 30, 2016 11:00AM to 12:30PM MDT According to DOE, the U.S. electric energy industry comprises more than 7,000 power plants representing 1,151,812 megawatts (MW) of generation connected to more than 360,000 miles of high-voltage transmission lines. The

  9. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  10. Value-based reliability transmission planning

    SciTech Connect (OSTI)

    Dalton, J.G. III; Garrison, D.L.; Fallon, C.M.

    1996-08-01

    This paper presents a new value-based reliability planning (VBRP) process proposed for planning Duke Power Company`s (DPC) regional transmission system. All transmission served customers are fed from DPC`s regional transmission system which consists of a 44-kV predominantly radial system and a 100-kV predominantly non-radial system. In the past, any single contingency that could occur during system peak conditions and cause a thermal overload required the overloaded facility to be upgraded, regardless of the costs or the likelihood of the overload occurring. The new VBRP process is based on transmission system reliability evaluation and includes the following important elements: (1) a ten-year historical data base describing the probabilities of forced outages for lines and transformers; (2) a five-year average load duration curve describing the probability of an overload should a contingency occur; (3) a customer outage cost data base; (4) and probabilistic techniques. The new process attempts to balance the costs of improving service reliability with the benefits or value that these improvements bring to these customers. The objective is to provide the customers their required level of reliability while minimizing the Total Cost of their electric service.

  11. Building a Better Transmission Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Transmission Tower Building a Better Transmission Tower May 20, 2011 - 9:41am Addthis A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower – one of hundreds on the McNary-John Day line saving BPA big bucks. | Photo courtesy of Bonneville Power Administration A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower - one of hundreds on the McNary-John Day line saving BPA big

  12. Geothermal Resources and Transmission Planning

    Broader source: Energy.gov [DOE]

    This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

  13. National Electric Transmission Congestion Study

    Office of Environmental Management (EM)

    Electric Transmission Congestion Study September 2015 United States Department of Energy Washington, DC 20585 U.S. Department of Energy | September 2015 National Electric Transmission Congestion Study | Page i Message from the Secretary In this study, the U.S. Department of Energy (DOE, the Department) seeks to provide information about transmission congestion by focusing on specific indications of transmission constraints and congestion and their consequences. The study focuses primarily on a

  14. Fiber-Optic Long-Line Position Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Find More Like This Return to Search Fiber-Optic Long-Line Position Sensor Sandia National Laboratories Contact SNL About This Technology Publications: PDF...

  15. CX-011989: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Categorical Exclusion Determination CX-011989: Categorical Exclusion Determination Wind Tests of Transmission Line Towers: One Nevada Transmission Project CX(s) Applied: B4.6 Date: 03/14/2012 Location(s): Nevada, Nevada Offices(s): Loan Guarantee Program Office The Department of Energy proposed action is to support the temporary erection and monitoring of transmission line towers being used for the One Nevada Transmission Line Project (ON Line), formerly known as the Southwest Intertie

  16. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Broader source: Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  17. Plains and Eastern Clean Line Transmission Line: Comment from Change.org |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 42) Supporters & Comments from Change.org 05-18

  18. Plains and Eastern Clean Line Transmission Line: Comment from Change.org |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 24) Supporters & Comments from Change.org 06-11

  19. Temperature-based Instanton Analysis: Identifying Vulnerability in Transmission Networks

    SciTech Connect (OSTI)

    Kersulis, Jonas; Hiskens, Ian; Chertkov, Michael; Backhaus, Scott N.; Bienstock, Daniel

    2015-04-08

    A time-coupled instanton method for characterizing transmission network vulnerability to wind generation fluctuation is presented. To extend prior instanton work to multiple-time-step analysis, line constraints are specified in terms of temperature rather than current. An optimization formulation is developed to express the minimum wind forecast deviation such that at least one line is driven to its thermal limit. Results are shown for an IEEE RTS-96 system with several wind-farms.

  20. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  1. Automated manual transmission clutch controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (9375 Kearney Rd., Whitmore Lake, MI 48189); Reed, Jr., Richard G. (3003 Bembridge, Royal Oak, MI 48073); Rausen, David J. (519 S. Gaylord St., Denver, CO 80209)

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  2. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  3. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the...

  4. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  5. EIS-0114: Fall River/Lower Valley Transmission System Reinforcement

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore reinforcing the electrical transmission system in southeastern Idaho by adding a 161-kilovolt partly single- and double-circuit line from the Goshen to Drummond Substations in order to maintain reliable electric service in the area.

  6. Joint HVAC transmission EMF environmental study

    SciTech Connect (OSTI)

    Stormshak, F.; Thompson, J. )

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration's Ostrander Substation near Estacada, Oregon.

  7. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February ...

  8. 2012 National Electric Transmission Congestion Study: Presentation...

    Energy Savers [EERE]

    2012 National Electric Transmission Congestion Study: Presentation from Congestion Study Webinar Series 2012 National Electric Transmission Congestion Study: Presentation from...

  9. Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study made clear that without dramatic improvements and upgrades over the next decade our nation's transmission system will fall short of the reliability standards our economy requires, and will result in higher electricity costs to consumers. The Department's research into a variety of tools that will improve advanced system

  10. Vice President, Transmission System Operations

    Broader source: Energy.gov [DOE]

    The VP for Transmission System Operations provides strategic leadership, direction, and oversight of the people, business processes, and systems that are responsible for the safe, reliable, and...

  11. Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Load as a Resource Program Peer Review 2012 Reliability & Markets Peer Review 2012 Advanced Applications Research & Development Peer Review 2010 Transmission Reliability ...

  12. AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION

    Broader source: Energy.gov [DOE]

    The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

  13. Transmission Expansion in the Midwest

    Broader source: Energy.gov [DOE]

    At this unique forum, participants will hear top executives from the area's RTOs, utilities, transmission developers, and state regulatory agencies discuss and debate the most critical issues...

  14. Bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  15. 17 NMAC 9.592 - Location of Large Capacity Plants and Transmission...

    Open Energy Info (EERE)

    NMAC 9.592 - Location of Large Capacity Plants and Transmission Lines Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 17...

  16. Soliton production with nonlinear homogeneous lines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less

  17. Soliton production with nonlinear homogeneous lines

    SciTech Connect (OSTI)

    Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.

    2015-11-24

    Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated output voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.

  18. Sensor Technologies for a Smart Transmission System An EPRI White Paper

    Energy Savers [EERE]

    Technologies for a Smart Transmission System An EPRI White Paper December 2009 December 2009 Page 2 An EPRI White Paper Sensor Technologies for a Smart Transmission System Aging equipment and tight O&M budgets are putting the squeeze on transmission line and substation managers. A new gen- eration of low-cost sensors can help diag- nose equipment health to optimize mainte- nance and prevent catastrophic failures. Power delivery systems are among the largest and most diverse, remotely located

  19. From: Carl Daffron To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors

    Office of Environmental Management (EM)

    Carl Daffron To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors Date: Monday, September 22, 2014 12:47:15 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undue burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that

  20. From: Carol Johnson To: Congestion Study Comments Subject: Re: National Interest Energy Transmission Corridors

    Office of Environmental Management (EM)

    Johnson To: Congestion Study Comments Subject: Re: National Interest Energy Transmission Corridors Date: Sunday, October 19, 2014 8:20:41 AM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. I am a landowner in the path

  1. From: Noralie Crow To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors (NIETC)

    Office of Environmental Management (EM)

    Noralie Crow To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors (NIETC) Date: Monday, September 22, 2014 6:50:56 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe

  2. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  3. CX-010110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hesperus-Montrose (Project No. 3) 345 Kilovolt (kV) Transmission Line and Curecanti-Lost Canyon 230-kilovolt Transmission Line Routine Maintenance of Right-of-Way Roads CX(s) Applied: B1.3 Date: 04/26/2013 Location(s): Colorado, Colorado, Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  5. Application for presidential permit OE Docket No. PP-371 Northern Pass Transmission LLC: Public Scoping Period Reopened: Federal Register Volume 73, No. 183- Jun. 15, 2011

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy reopened the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS).

  6. Soliton communication lines based on spectrally efficient modulation formats

    SciTech Connect (OSTI)

    Yushko, O V; Redyuk, A A

    2014-06-30

    We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of a coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)

  7. Increasing the Capacity of Existing Power Lines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects. The difference in time and cost between using existing transmission lines or the construction of new ones can make or break plans for new wind or solar farms. PDF icon inl_powerline_cooling_factsheet.pdf More Documents & Publications EIS-0183: Record of

  8. Transmission Services Product Pricing Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 09:00 PPT on the above effective date. On October 15, 2013, at 08:00 (PPT), Transmission Services will be updating the OASIS default product prices to reflect the 2014...

  9. Transmission Services Product Pricing Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 12:00 PPT on the above effective date. On October 1, 2015, at 11:00 (PPT), Transmission Services will be updating the OASIS default product prices to reflect the 2016...

  10. March 30 Tribal Webinar to Focus on Transmission and Grid Basics |

    Energy Savers [EERE]

    Department of Energy March 30 Tribal Webinar to Focus on Transmission and Grid Basics March 30 Tribal Webinar to Focus on Transmission and Grid Basics March 15, 2016 - 10:35am Addthis According to the U.S. Department of Energy (DOE), the U.S. electric energy industry comprises more than 7,000 power plants representing 1,151,812 megawatts of generation connected to more than 360,000 miles of high-voltage transmission lines. Understanding the basics of this industry, specifically transmission,

  11. Transmission Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will

  12. Increasing the Capacity of Existing Power Lines

    Energy Savers [EERE]

    ENERGY AND ENVIRONMENT Continued next page In the continental United States, some 500 power companies operate a complex network of more than 160,000 miles of high-voltage trans- mission lines known as "the grid." The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects. The difference in time and cost between using existing transmission lines or the construction of new ones can make or break plans

  13. Transmission SEAB Presentation | Department of Energy

    Energy Savers [EERE]

    Transmission SEAB Presentation Transmission SEAB Presentation PDF icon Transmission SEAB Presentation More Documents & Publications Before House Natural Resources Committee QER - Comment of American Public Power Association 5 Before the House Committee on Natural Resources

  14. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect (OSTI)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  15. Midwest Independent Transmission System Operator | Open Energy...

    Open Energy Info (EERE)

    Midwest Independent Transmission System Operator Jump to: navigation, search Name: Midwest Independent Transmission System Operator Place: Carmel, IN References: SGIC1 This...

  16. Transmission Losses Product (pbl/products)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Smoothing and Intertie Service (Pilot) Firstgov Pricing for Transmission Losses Product Bonneville Power Administration (BPA) Power Services offers to sell transmission...

  17. Southwest Transmission Cooperative, Inc. Smart Grid Project ...

    Open Energy Info (EERE)

    syntax: * Display map References ARRA Smart Grid Investment Grants1 Southwest Transmission Cooperative Award2 Southwest Transmission Cooperative, Inc., located in Benson,...

  18. 2006 National Electric Transmission Congestion Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Electric Transmission Congestion Study 2006 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act...

  19. 2006 National Electric Transmission Congestion Study Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Electric Transmission Congestion Study Federal Register Notice & Comments 2006 National Electric Transmission Congestion Study Federal Register Notice & Comments The...

  20. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the...