National Library of Energy BETA

Sample records for transmission line right-of-ways

  1. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line, Pima County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Indian Affairs (BIA), as joint lead agencies, prepared an EA that evaluates the potential environmental impacts of a proposal for BIA to grant Western a 150-foot right-of-way across tribal land along the existing Tucson-Apache Transmission Line to replace the previous 100-foot right-of-way, which has expired.

  2. Interior Offers First Right-of-Way for Renewable Energy Transmission in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Waters | Department of Energy Interior Offers First Right-of-Way for Renewable Energy Transmission in Federal Waters Interior Offers First Right-of-Way for Renewable Energy Transmission in Federal Waters November 17, 2014 - 2:42pm Addthis As part of President Obama's Climate Action Plan to create American jobs, develop clean energy sources and cut carbon pollution, Secretary of the Interior Sally Jewell and Bureau of Ocean Energy Management (BOEM) Acting Director Walter Cruickshank

  3. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV...

    Broader source: Energy.gov (indexed) [DOE]

    the potential environmental impacts of a proposal for BIA to grant Western a 150-foot right-of-way across tribal land along the existing Tucson-Apache Transmission Line to...

  4. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  5. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  6. ANUEADflM-31 Electric Power High-Voltage Transmission Lines:

    Office of Scientific and Technical Information (OSTI)

    ... design options to reduce human exposure to EMFs from high-voltage transmission lines. ... assumed for the 345-kV designs: 150-R rights-of-way for overhead lines, 50-ft ...

  7. Landowner’s Guide for Compatible Use of BPA Rights-of-Way

    SciTech Connect (OSTI)

    2011-02-01

    Keeping transmission lines safe and reliable is a critical priority for the Bonneville Power Administration. The key element in achieving those objectives is BPA’s ability to construct, operate and maintain its transmission lines and rights-of-way — the area under and around the lines. You can help BPA keep these rights-of-way clear of trees, brush and structures that could affect the safety or reliability of the transmission system. Prior to planting, digging, or constructing within BPA’s rights-of-way, fill out BPA’s Land Use Application Form. The information you provide on the application helps BPA understand your proposed use and the potential impacts to public safety, and the safety of our crews. BPA also reviews the application to determine whether a proposed use of land is compatible with the construction, operation and maintenance of BPA transmission lines. Coordinating with BPA early in your planning process can keep you safe and avoid wasting time and money.

  8. Transmission Business Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Business Line Non-Federal Financing of Transmission Projects - March 2004 Critical paths on the Northwest transmission grid are congested and the system is near or at...

  9. Electric and magnetic field reduction by alternative transmission line options

    SciTech Connect (OSTI)

    Stewart, J.R. ); Dale, S.J. ); Klein, K.W. )

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  10. Application & Checklist for Highway Right of Way Lease | Open...

    Open Energy Info (EERE)

    & Checklist for Highway Right of Way Lease Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Application & Checklist for Highway Right of Way Lease...

  11. Arizona Right-of-Way Instruction Sheet | Open Energy Information

    Open Energy Info (EERE)

    Right-of-Way Instruction Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Arizona Right-of-Way Instruction...

  12. BPA recognized for stewardship in rights-of-way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for vegetation management, accepts the accreditation plaque for a "Right-of-Way Steward" from the Right-of-Way Stewardship Council. BPA was recognized earlier this week for...

  13. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  14. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  16. Vermont Agency of Transportation Right of Way Manual | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Agency of Transportation Right of Way ManualPermittingRegulatory...

  17. Montana - Application for Right of Way Easement for Utilities...

    Open Energy Info (EERE)

    Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Application for Right of Way Easement for Utilities Through State Lands Abstract...

  18. Montana - Right-of-Way Checklist | Open Energy Information

    Open Energy Info (EERE)

    Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Right-of-Way Checklist Author Montana Department of Transportation Published...

  19. Idaho Right-of-Way Encroachment Application and Permit - Other...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit - Other Encroachments Form Type...

  20. Colorado - Rights of Way on State Trust Lands - General Information...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Colorado - Rights of Way on State Trust Lands - General InformationPermitting...

  1. Waiver of Preferential Right to Lease Highway Right of Way |...

    Open Energy Info (EERE)

    Waiver of Preferential Right to Lease Highway Right of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Waiver of Preferential Right to Lease...

  2. Texas GLO Rights of Way Forms | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Texas GLO Rights of Way Forms Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. WSDNR Rights-of-Way Forms | Open Energy Information

    Open Energy Info (EERE)

    (WSDNR) provides various links to forms and information related to access across state trust lands in the form of Rights-of-Way. Published NA Year Signed or Took Effect 2014...

  4. Colorado State Land Board: Right-of-Way General Information ...

    Open Energy Info (EERE)

    Colorado State Land Board: Right-of-Way General Information Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  5. Texas General Land Office - Rights of Way and Miscellaneous Easements...

    Open Energy Info (EERE)

    General Land Office - Rights of Way and Miscellaneous Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas General Land Office - Rights of...

  6. Integrated survey and design for transmission lines

    SciTech Connect (OSTI)

    Miller, M.A.; Simpson, K.D.

    1994-12-31

    Gathering and compiling information on the features and uses of the land within a proposed corridor provides the basis for selecting a route, obtaining easements, and designing and constructing a transmission line. Traditionally, gathering this information involved searches of existing maps and records to obtain the available information, which would then be supplemented with aerial photography to record current conditions. Ground surveys were performed to collect topographic data for design purposes. This information was manually transferred to drawings and other documents to show the terrain, environmentally sensitive areas, property ownership, and existing facilities. These drawing served as the base to which the transmission line right-of-way, structures, and other design information were added. As the design was completed, these drawings became the source of information for constructing the line and ultimately, the record of the facility. New technologies and the every growing need for instantly accessible information have resulted in changes in almost every step of gathering, storing and using information. Electronic data collection, global positioning systems (GPS), digitized terrain models, computerized design techniques, development of drawings using CAD, and graphical information systems (GIS) have individually resulted in significant advancements in this process. Combining these components into an integrated system, however, is truly revolutionizing transmission line engineering. This paper gives an overview of the survey and mapping information that is required for transmission line projects, review the traditional techniques that have been employed to obtain and utilize this information, and discuss the recent advances in the technology. Additionally, a system is presented that integrates the components in this process to achieve efficiency, minimize chances of errors, and provide improved access to project information.

  7. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  8. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  9. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  10. EPAct 2005, Indian Lands Rights-of-Way | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    , Indian Lands Rights-of-Way EPAct 2005, Indian Lands Rights-of-Way Energy Policy Act of 2005, Section 1813, Indian Land Rights-of-Way Study, Report to Congress PDF icon EPAct ...

  11. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line ...

  12. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Comment from Change.org Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean Line ...

  13. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  14. Electric Transmission Line Siting Compact

    Office of Environmental Management (EM)

    ... creates a method for states to site multi-state electric transmission lines. Three 4 levels of organization are provided: 5 A state project review panel within each ...

  15. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comment from Mr. Garrett Plains and Eastern Clean Line Transmission Line: Comment from Ms. Rutherford Plains and Eastern Clean Line Transmission Line: Comment from Ms. Campbell

  16. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comment from Downwind, LLC Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line Transmission Line: Comment from Crystal Yarbrough

  17. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Comment from Fallon Sanford Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean ...

  18. Plains and Eastern Clean Line Transmission Line: Federal Register...

    Office of Environmental Management (EM)

    Plains and Eastern Clean Line Transmission Line: Federal Register Notice, Volume 80, No. 81 - April 28, 2015 Plains and Eastern Clean Line Transmission Line: Federal Register ...

  19. Electrical Engineer- Transmission Lines

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Maintenance, North Dakota Maintenance, Transmission...

  20. Revenue metering error caused by induced voltage from adjacent transmission lines

    SciTech Connect (OSTI)

    Hughes, M.B. )

    1992-04-01

    A large zero sequence voltage was found to have been induced onto a 138 kV line from adjacent 500 kV lines where these share the same transmission right-of-way. This zero sequence voltage distorted the 2-1/2-element revenue metering schemes used for two large industrial customer supplied directly from the affected 138 kV line. As a result, these two customers were overcharged, on average, approximately 3.5% for 15 years. This paper describes the work done to trace the origins of the zero sequence voltage, quantify the metering error, and calculate customer refunds which, in the end, totalled $4 million.

  1. Electrical transmission line diametrical retainer

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  2. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  3. EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western’s Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona.

  4. A.A.C. R12-5-801: Rights-of-Way | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: A.A.C. R12-5-801: Rights-of-WayLegal Abstract These regulations gover rights-of-way over Arizona...

  5. Utah - T-223 Application for Right-of-Way Encroachment Permit...

    Open Energy Info (EERE)

    T-223 Application for Right-of-Way Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah - T-223 Application for Right-of-Way...

  6. Texas GLO Highway Right of Way Leasing Forms | Open Energy Information

    Open Energy Info (EERE)

    Highway Right of Way Leasing Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Texas GLO Highway Right of Way Leasing FormsLegal...

  7. Alaska Statutes - Chapter 38.35 - Right of Way Leasing Act |...

    Open Energy Info (EERE)

    35 - Right of Way Leasing Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Alaska Statutes - Chapter 38.35 - Right of Way...

  8. TxDOT - Right of Way Forms webpage | Open Energy Information

    Open Energy Info (EERE)

    Right of Way Forms webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TxDOT - Right of Way Forms webpage Abstract This webpage provides the...

  9. Colorado State Land Board Application for Grant of Right-of-Way...

    Open Energy Info (EERE)

    Colorado State Land Board Application for Grant of Right-of-Way and Amendment to a Right-of-Way Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  10. Title 36 CFR 14 Rights-of-way | Open Energy Information

    Open Energy Info (EERE)

    Title 36 CFR 14 Rights-of-wayLegal Abstract Part 14 - Rights-of-way under Title 36: Parks, Forests, and Public Property of the U.S. Code of Federal Regulations, current as of...

  11. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Comment submitted on ...

  12. Supplement Analysis for the Transmission System Vegetation Management Program FEIS

    SciTech Connect (OSTI)

    N /A

    2001-03-27

    BPA proposes to clear unwanted vegetation from a section of BPA's Ponderosa--Pilot Butte Transmission Line Right-of-way to facilitate relocation of structure 18/3. Work would begin in mid-March and end in April, 2001. (1) Description of right-of-way and vegetation management needed--The project involves cutting all tall growing trees and brush within BPA's 100-foot wide transmission line right-of-way. An encroachment by the City of Bend Sewer Treatment facility, and future expansion plans, compelled the relocation of this portion of the right-of-way. Structures 18/2 and 18/4 will be modified in place to accommodate the new angle of the right-of-way. Structure 18/3 will be moved approximately 300 feet westerly to allow for the expansion of the sewer treatment facility. Only vegetation within the new portion of the right-of-way, totaling approximately 3.5 acres, will be controlled. No herbicides will be used on this project. Vegetation to be controlled: Juniper trees are the only tall growing tree species within this portion of the right-of-way requiring treatment. The density of vegetation within the new right-of-way is light to medium. The right-of-way boundaries will be examined for danger trees and if found, danger trees will be marked and cut according to danger tree policy.

  13. Detection of Unauthorized Construction Equipment in Pipeline Right-of-Ways

    SciTech Connect (OSTI)

    Maurice Givens; James E. Huebler

    2004-09-30

    The leading cause of incidents on transmission pipelines is damage by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline is hit. Currently there is no method for continuously monitoring a pipeline right-of-way. Instead, companies periodically walk or fly over the pipeline to find unauthorized construction activities. Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber buried above the pipeline as a distributed sensor. A custom optical time domain reflectometer (OTDR) is used to interrogate the fiber. Key issues in the development of this technology are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. Advantages of the reflectometry technique are the ability to accurately pinpoint the location of the construction activity and the ability to separately monitor simultaneously occurring events. The basic concept of using OTDR with an optical fiber buried above the pipeline to detect encroachment of construction equipment into the right of way works. Sufficiently rapid time response is possible; permitting discrimination between encroachment types. Additional work is required to improve the system into a practical device.

  14. Plains and Eastern Clean Line Transmission Line: Comment from Marshall

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hughes | Department of Energy from Marshall Hughes Plains and Eastern Clean Line Transmission Line: Comment from Marshall Hughes Comment submitted on updated Part 2 application. Comment from Marshall Hughes 07-10-15.pdf (14.91 KB) More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line Transmission Line: Comment from Patti McCutchen

  15. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  16. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  17. Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-09

    BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability

  18. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-07-19

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design of the diode laser driver and high-speed detector electronics and programming of the custom optical time domain reflectometer.

  19. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  20. Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-06-20

    BPA proposes to build a single-circuit 500-kV transmission line from a tap point on an existing 500-kV line near Kangley, Washington, to its Echo Lake Substation near North Bend, Washington. The proposed route for this line, also called Alternative 1, is about nine miles long. About five miles of the proposed route would go through the Cedar River Municipal Watershed. In addition, Echo Lake Substation would be expanded about three acres to the east and new equipment would be installed there to accommodate the new line (common to all transmission alternatives). This alternative was proposed because it would be located immediately parallel to an existing BPA existing 500-kV transmission line, the Raver-Echo Lake Transmission Line. Locating a new line next to an existing one reduces right-of-way (ROW) clearing needed for the new line and reduces the need for additional access roads. Lattice steel transmission towers would support the 500-kV transmission line. These structures average 135 feet high, with the average span between towers of about 1,150 feet.

  1. Title 43 USC 961 Rights-of-way Through Public Lands, Indian,...

    Open Energy Info (EERE)

    from "http:en.openei.orgwindex.php?titleTitle43USC961Rights-of-wayThroughPublicLands,Indian,andOtherReservationsforPowerandCommunicationsFacilities&oldid...

  2. 16 U.S.C. 79: Rights-of-way for public utilities | Open Energy...

    Open Energy Info (EERE)

    16 U.S.C. 79: Rights-of-way for public utilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 16 U.S.C. 79: Rights-of-way for...

  3. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Comment submitted on updated Part 2 application. PDF icon Comment from Dr. Contreras ...

  4. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ms. Callahan Plains and Eastern Clean Line Transmission Line: Comment from Ms. Callahan Comment submitted on updated Part 2 application. PDF icon Comment from Ms. Callahan ...

  5. Plains & Eastern Clean Line Transmission Line - Part 2 Application |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transmission Line - Part 2 Application Plains & Eastern Clean Line Transmission Line - Part 2 Application In addition to conducting a NEPA review of the proposed Plains & Eastern Clean Line Transmission Line project, DOE will also conduct due diligence on non-NEPA factors such as the project's technical and financial feasibility and whether the project is in the public interest. DOE will conduct a thorough review that includes making all required statutory

  6. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  7. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  8. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  9. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  10. Colorado - C.R.S. 38-5-102 - Right of Way Across State Land ...

    Open Energy Info (EERE)

    38-5-102 - Right of Way Across State Land Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 38-5-102 - Right of...

  11. Title 16 USC 5 Rights-of-way Through Parks or Reservations for...

    Open Energy Info (EERE)

    5 Rights-of-way Through Parks or Reservations for Power and Communications Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  12. 16 U.S.C. 5: Rights-of-way through parks or reservations for...

    Open Energy Info (EERE)

    5: Rights-of-way through parks or reservations for power and communication facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  13. Title 43 CFR 2800 Rights-of-way Under the Federal Land Policy...

    Open Energy Info (EERE)

    Rights-of-way Under the Federal Land Policy Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation:...

  14. Title 43 CFR 2800: Rights-of-Way Under the Federal Land Policy...

    Open Energy Info (EERE)

    0: Rights-of-Way Under the Federal Land Policy Management Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 43 CFR...

  15. Procedural Handbook: Grants of Easement for Right-of-Way on Indian...

    Open Energy Info (EERE)

    Procedural Handbook: Grants of Easement for Right-of-Way on Indian Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  16. Title 25 CFR 169 Rights-of-Way Over Indian Lands | Open Energy...

    Open Energy Info (EERE)

    9 Rights-of-Way Over Indian Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 25 CFR 169...

  17. Idaho Right-of-Way Encroachment Application and Permit for Utilities...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Right-of-Way Encroachment Application and Permit for Utilities Form Type ApplicationNotice...

  18. Arizona State Land Department Rights-of-Way Website | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Rights-of-Way Website Abstract This website provides general information...

  19. Colorado - C.R.S. 36-1-136 - Rights of Way Granted - Reversion...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 36-1-136 - Rights of Way Granted - ReversionLegal Abstract This section covers the...

  20. 19 V.S.A. 1111 Highway Right-of-Way Permit Application (Form...

    Open Energy Info (EERE)

    V.S.A. 1111 Highway Right-of-Way Permit Application (Form TA 210) Example Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  1. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-04-26

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the second quarter of the project includes design of the instrument, selection of the key components, and beginning programming of the custom optical time domain reflectometer. Work included an assessment of two other approaches to measuring strain and vibrations in an extended optical fiber sensor.

  2. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2003-04-17

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 1st quarter of 2003 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. The detector was redesigned reducing the noise floor by over a factor of ten. While GTI's OTDR was being improved, a new, commercial OTDR was used to verify that the technique is capable of measuring one pound continuous force applied to the Hergalite. Optical fibers were installed at the ANR Pipeline test site along an operating pipeline.

  3. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2004-07-26

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. A brighter diode laser increased our sensitivity by a factor of ten. Detection of load fluctuations with frequencies greater than 5 Hertz is also possible. The next step is beginning measurements at the field site.

  4. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-10-30

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design and construction of the diode laser driver and high-speed detector electronics. Fine-tuning of the electronics is proceeding. A new test site along an operating pipeline has been obtained.

  5. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2004-04-12

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. Detection of load fluctuations with frequencies greater than 1 Hertz is also possible. We have also purchased a brighter diode laser for use with the multimode fibers that should improve our sensitivity by a factor of ten.

  6. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-01-31

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage could be prevented if potentially hazardous construction equipment could be detected and identified before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachment. The work performed in the first quarter of the project includes development of the Research Management Plan, writing a paper assessing of the state-of-the-art in encroachment and third party damage detection, and development of factors for selecting the optical fiber sensors.

  7. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2003-01-29

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 4th quarter of 2002 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. It also included installation of optical fibers at the test site along an operating pipeline.

  8. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2003-07-17

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the custom OTDR. An avalanche photo-detector, was purchased. It was able to detect weights on the Hergalite fiber as low as one pound. We are also investigating a brighter laser for use with the multimode fibers.

  9. Supervisory Transmission Lines and Substation Maintenance Manager

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Transmission Lines and Substation Maintenance (G5200) 615...

  10. Northern Pass Transmission Line Project Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September ...

  11. Transmission Line Security Monitor: Final Report

    SciTech Connect (OSTI)

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  12. Detonator comprising a nonlinear transmission line

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  13. PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 1222 of the Energy Policy Act 2005 » PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE On March 25, 2016, U.S. Secretary of Energy Dr. Ernest Moniz announced that the Department of Energy (DOE) will participate in the development of the Plains & Eastern Clean Line project (Project), a major clean energy infrastructure project. Through section 1222 of the Energy Policy Act of 2005, Congress authorized DOE to promote electric

  14. Environmental Assessment of the Gering-Stegall 115-kV Transmission Line Consolidation Project, Scotts Bluff County, Nebraska

    SciTech Connect (OSTI)

    1995-05-01

    The Department of Energy (DOE), Western Area Power Administration (Western) proposes to consolidate segments of two transmission lines near the Gering Substation in Gering, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska. The transmission lines are both located in Scotts Bluff County, Nebraska, within the city of Gering. Presently, there are three parallel 115-kilovolt (kV) transmission lines on separate rights-of-way (ROW) that terminate at the Gering Substation. The project would include dismantling the Archer-Gering wood-pole transmission line and rebuilding the remaining two lines on single-pole steel double circuit structures. The project would consolidate the Gering-Stegall North and Gering-Stegall South 115-kV transmission lines on to one ROW for a 1.33-mile segment between the Gering Substation and a point west of the Gering Landfill. All existing wood-pole H-frame structures would be removed, and the Gering-Stegall North and South ROWs abandoned. Western is responsible for the design, construction, operation, and maintenance of the line. Western prepared an environmental assessment (EA) that analyzed the potential environmental impacts of the proposed construction, operation, and maintenance of the 115-kV transmission line consolidation. Based on the analyses in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA).

  15. PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE | Department of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLAINS & EASTERN CLEAN LINE TRANSMISSION LINE On March 25, 2016, U.S. Secretary of Energy Dr. Ernest Moniz announced that the Department of Energy (DOE) will participate in the ...

  16. McNary-John Day Transmission Line Project Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-03-08

    Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman counties, Oregon. The new line would start at Bonneville's McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville's John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35.

  17. Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

    SciTech Connect (OSTI)

    1996-05-01

    Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.

  18. Plains and Eastern Clean Line Transmission Line: Federal Register Notice,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume 80, No. 81 - April 28, 2015 | Department of Energy Federal Register Notice, Volume 80, No. 81 - April 28, 2015 Plains and Eastern Clean Line Transmission Line: Federal Register Notice, Volume 80, No. 81 - April 28, 2015 The Department of Energy (DOE) requests public comment on the first complete application submitted in response to its June 10, 2010 Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 in the Federal

  19. Single transmission line data acquisition system

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

  20. Electrician - Foreman II (Transmission Lines & Substations) ...

    Broader source: Energy.gov (indexed) [DOE]

    Region Transmission Lines and Substation Maintenance (G5200) 615 S. 43rd Avenue Phoenix, AZ 85009 Duty Location is Page, AZ Find out more about living conditions at this...

  1. Electrical Transmission Line Diametrical Retention Mechanism

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  2. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  3. Load-resistant coaxial transmission line

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  4. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary Bonneville ...

  5. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    81: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River ...

  6. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana EA-1961: Kalispell-Kerr Transmission Line Rebuild Project, Kalispell and Polson, Montana SUMMARY ...

  7. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Line Project; Arizona and New Mexico EIS-0474: Southline Transmission Line Project; Arizona and New Mexico Summary The Bureau of Land Management and Western ...

  8. Interior Offers First Right-of-Way for Renewable Energy Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    "This is a major milestone for offshore renewable energy in the United States," said Secretary ... effects of the project under the National Environmental Policy Act (NEPA). ...

  9. EC Transmission Line Risk Identification and Analysis

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-04-01

    The purpose of this document is to assist in evaluating and planning for the cost, schedule, and technical project risks associated with the delivery and operation of the EC (Electron cyclotron) transmission line system. In general, the major risks that are anticipated to be encountered during the project delivery phase associated with the implementation of the Procurement Arrangement for the EC transmission line system are associated with: (1) Undefined or changing requirements (e.g., functional or regulatory requirements) (2) Underperformance of prototype, first unit, or production components during testing (3) Unavailability of qualified vendors for critical components Technical risks associated with the design and operation of the system are also identified.

  10. EIS-0379- Rebuild of the Libby (FEC) to Troy Section of BPA’s 115-kilovolt Transmission Line in Libby, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action on the proposed rebuilding, operation, and maintenance of a 17-mile-long portion of BPA’s Libby to Bonners Ferry 115-kilovolt (kV) Transmission Line in Lincoln County, Montana. The portion to be rebuilt would start at Flathead Electric Cooperative’s (FEC) Libby Substation, in the town of Libby, Montana, and proceed west along an existing right-of-way for about 17 miles, terminating at BPA’s Troy Substation just east of the town of Troy, Montana.

  11. Transmission line environmental assessment guidance document

    SciTech Connect (OSTI)

    Jackson, J.; Pentecost, E.; Muzzarelli, J.

    1994-01-01

    Since 1939, U.S. utility companies have been required to obtain a Presidential Permit to construct electric transmission lines that cross a U.S. border and connect with a foreign utility. The purpose of this document is to provide Presidential Permit applicants with two types of guidance: (1) on the type of environmental and project descriptive information needed to assess the potential impacts of the proposed and alternative actions and (2) on compliance with applicable federal and state regulations. The main three chapters present information on the purpose and content of this document (Chapter 1); legislative, regulatory, and consultation requirements for transmission line interconnect projects (Chapter 2); and identification of basic transmission system design parameters and environmental data requirements for analysis of potential impacts of the proposed action (Chapter 3). Chapter 3 also includes information on possible techniques or measures to mitigate impacts. Appendix A presents an overview of NEPA requirements and DOE`s implementing procedures. Appendix B summarizes information on legislation that may be applicable to transmission line projects proposed in Presidential Permit applications.

  12. Proposed Southline Transmission Line Project - Volume 3 of 4...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right-of-Way ... G-1 11 12 13 VOLUME SUMMARY 14 15 Volume 1 - Executive Summary, Chapters 1, 2, and 3 16 Volume 2 -...

  13. McNary-John Day Transmission Line Project, Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-30

    Bonneville is proposing to construct, operate, and maintain a 79-mile-long 500-kilovolt-transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman Counties, Oregon. The new line would start at Bonneville's McNary Substation in Oregon and would cross the Columbia River just north of the substation into Washington. The line would then proceed west for about 70 miles along the Columbia River. At the John Day Dam, the line would again cross the Columbia River into Oregon and terminate at Bonneville's John Day Substation. The new line would parallel existing transmission lines for the entire length; mostly within existing available right-of-way. Presently, the existing transmission lines in the area are operating at capacity. These lines help move power from the east side of the Cascades to the west side, where there is a high need for electricity (cities along the I-5 corridor). Because the Northwest has only recently recovered from a shortfall in electric energy supply and a volatile wholesale power market in which prices reached record highs, there are many new proposals for facilities to generate new power. Some of these facilities are in the vicinity of the McNary-John Day project; the proposed line would help insure that existing and newly generated power could move through the system. Bonneville is also considering the No Action Alternative and several short-line routing alternatives. The short routing alternatives include three half-mile-long routes for getting from the McNary Substation to the Columbia River crossing; three two-mile-long routes where the Hanford-John Day transmission line joins the existing corridor; two 1,000-foot-long routes at corridor mile 32; and two 500-foot-long routes at corridor mile 35. This abbreviated final EIS consists of an introduction to the document, changes to the draft EIS, copies of all the comments received on the draft EIS, and Bonneville's written responses to the comments. The final EIS

  14. EIS-0463: Northern Pass Transmission Line Project, New Hampshire...

    Broader source: Energy.gov (indexed) [DOE]

    permit to Northern Pass Transmission, LLC, to construct, operate, maintain, and connect a new electric transmission line across the U.S.-Canada border in northern New Hampshire. ...

  15. Wireless Sensor Network for Electric Transmission Line Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Wireless Sensor Network for Electric Transmission Line Monitoring Citation Details In-Document Search Title: Wireless Sensor Network for Electric Transmission ...

  16. EIS-0325: Schultz-Hanford Area Transmission Line Project, WA

    Broader source: Energy.gov [DOE]

    BPA proposes to construct a new 500-kilovolt (kV) transmission line in central Washington. This project would increase transmission system capacity north of Hanford.

  17. EIS-0499: Great Northern Transmission Line Project, Minnesota...

    Broader source: Energy.gov (indexed) [DOE]

    and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220 mile transmission line would cross the border near Roseau,...

  18. A.R.S. 37-461: Grants of Rights-of-Way and Site for Public...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 37-461: Grants of Rights-of-Way and Site for Public UsesLegal Abstract This...

  19. Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Comment submitted on updated Part 2 application. Comment from Dr. Contreras 6-10-15.pdf (608.36 KB) More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras Plains and Eastern Clean Line Transmission Line: Comment from Dr. Contreras

  20. Dispersion-free radial transmission lines

    DOE Patents [OSTI]

    Caporaso, George J.; Nelson, Scott D.

    2011-04-12

    A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.

  1. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, ...

  2. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Boardman-Hemingway Transmission Line, Oregon and Idaho EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho Summary The Bureau of Land Management and the U.S. Forest ...

  3. EIS-0421: Big Eddy-Knight Transmission Line

    Broader source: Energy.gov [DOE]

    BPA is proposing to build a new 500 kilovolt (kV) transmission line in Wasco County, Oregon and Klickitat County, Washington and a new substation in Klickitat County. The new BPA transmission line...

  4. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    Line Siting Committee Jump to: navigation, search Name: Arizona Transmission Line Siting Committee Abbreviation: TLSC Address: 1200 West Washington Street Place: Phoenix, Arizona...

  5. A radial transmission line material measurement apparatus

    SciTech Connect (OSTI)

    Warne, L.K.; Moyer, R.D.; Koontz, T.E.; Morris, M.E.

    1993-05-01

    A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques. The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.

  6. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  7. DOE Seeking Information on Transmission Line Permitting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Seeking Information on Transmission Line Permitting DOE Seeking Information on Transmission Line Permitting February 27, 2012 - 3:25pm Addthis The Department of Energy's Office of Electricity Delivery and Energy Reliability is seeking information on the questions related to permitting of transmission lines. Infrastructure projects - such as high voltage, long distance, electric transmission facilities - often involve multiple Federal, State, local, and Tribal authorizations and are

  8. Plains and Eastern Clean Line Transmission Line: Comment from Save The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ozarks | Department of Energy from Save The Ozarks Plains and Eastern Clean Line Transmission Line: Comment from Save The Ozarks Comment submitted on updated Part 2 application. Comment by Save the Ozarks 07-13-15.pdf (112.79 KB) More Documents & Publications Plains & Eastern Clean Line Transmission Line - Part 2 Application Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains and

  9. Radio frequency communication system utilizing radiating transmission lines

    DOE Patents [OSTI]

    Struven, Warren C.

    1984-01-01

    A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

  10. Plains and Eastern Clean Line Transmission Line: Comment from Block Plains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Eastern Clean Line: Arkansas and Oklahoma | Department of Energy Block Plains and Eastern Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Comment submitted on updated Part 2 application. Comment from Block Plains & Eastern Clean Line Arkansas and Oklahoma 06-08-15.pdf (1.21 MB) More Documents & Publications Plains and Eastern Clean Line Transmission Line: Comment from Block

  11. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild...

    Energy Savers [EERE]

    Colorado. EIS-0483: Estes to Flatiron Substation Transmission Lines Rebuild Project Public Comment Opportunities No public comment opportunities available at this time....

  12. Appendix S-51 - Transmission Line Approval - Public Utilities...

    Open Energy Info (EERE)

    from "http:en.openei.orgwindex.php?titleAppendixS-51-TransmissionLineApproval-PublicUtilitiesCommission&oldid800735" Feedback Contact needs updating Image needs...

  13. EIS-0317: Kangley-Echo Lake Transmission Line Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to build a new transmission line to accommodate increasing demand for electricity and ensure reliability in the Puget Sound area.

  14. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  15. Proposed Southline Transmission Line Project - Volume 4 of 4...

    Office of Environmental Management (EM)

    2 Appendix J J-1 Southline Transmission Line Project Draft Environmental Impact Statement and Draft Resource Management Plan Amendment BLM LAND USE AUTHORIZATIONS 1...

  16. Guide to Permitting Electric Transmission Lines in Wyoming |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Guide to Permitting Electric Transmission Lines in WyomingPermitting...

  17. EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colusa and Sutter Counties, California EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and Sutter Counties, California Summary Western Area Power ...

  18. Southline Transmission Line Project - Volume 1 Front Matter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Infrastructure Program TPE total potential effect tpy ton(s) per year UAS FTC Unmanned Aircraft Systems Flight Test Center Southline Transmission Line Project Final ...

  19. Hawaii Clean Energy Initiative - Transmission Line Approval Permit...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative - Transmission Line Approval Permit PacketPermittingRegulatory...

  20. EIS-0499: Great Northern Transmission Line Project, Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0499: Great Northern Transmission Line Project, Minnesota Summary This EIS will evaluate the potential environmental impacts of a DOE proposal to grant a Presidential permit to ...

  1. Request for Information on Permitting of Transmission Lines:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume 77, No. 38 - Feb. 27, 2012 Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38 - Feb. 27, 2012 The Department of ...

  2. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...

    Energy Savers [EERE]

    Springs to Anaconda Transmission Line Rebuild Project, Montana SUMMARY DOE's Bonneville Power Administration (BPA) is preparing an EIS that will analyze the potential environmental...

  3. Southline Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    Analysis Type EIS Applicant Southline Transmission, LLC, a subsidiary of Hunt Power L.P. Consultant SWCA Environmental Consultants Geothermal Area Project Location Project...

  4. Great Northern Transmission Line Floodplain and Wetland Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Floodplain and Wetland Assessment Prepared for U.S. Department of Energy Office of Electricity Delivery and Energy Reliability January 2016 Great Northern Transmission Line Floodplain and Wetland Assessment Prepared for U.S. Department of Energy Office of Electricity Delivery and Energy Reliability January 2016 i Great Northern Transmission Line Floodplain and Wetland Assessment January 2016 Contents 1.0 Introduction

  5. Lane-Wendson No. 1 Transmission Line Rebuild Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lane-Wendson No. 1 Transmission Line Rebuild Project Finding of No Significant Impact and Floodplain and Wetland Statement of Findings 1 In cooperation with the Bureau of Land Management Lane-Wendson No. 1 Transmission Line Rebuild Project Finding of No Significant Impact and Floodplain and Wetland Statement of Findings DEPARTMENT OF ENERGY Bonneville Power Administration DOE/EA-1952 April 2016 _____________________________________________________________________________________________________

  6. EIS-0106: Great Falls-Conrad Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

  7. EA-1891: Alvey-Fairview Transmission Line Rebuild Project, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to rebuild DOE’s Bonneville Power Administration’s Alvey-Fairview No. 1 230-kV transmission line located between Eugene, Oregon, and Coquille, Oregon.

  8. Single transmission line interrogated multiple channel data acquisition system

    DOE Patents [OSTI]

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  9. EA-1880: Big Bend to Witten Transmission Line Project, South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to construct, own, and operate an approximately 70-mile long 230-kV single-circuit transmission line that would connect a new switchyard with the existing Witten Substation. ...

  10. Green Power Transmission Line Given New Life | Department of...

    Office of Environmental Management (EM)

    The transmission line should generate about 150 construction jobs and 50 to 75 green jobs directly related to the wind energy companies, which have secured space for their wind ...

  11. Bonneville upgrades lines

    SciTech Connect (OSTI)

    Not Available

    1993-08-30

    A stretch of Bonneville Power Administration transmission line between Spokane and the Grand Coulee Dam is an 82-mile bottleneck as it is the last 115-kv section of [open quotes]road[close quotes] along a 500-kv transmission [open quotes]highway[close quotes]. Soon the administration will change all that. A number of independent and utility powerplants have been proposed in Idaho, Montana and the Spokane, Wash., area during the 1990s. As the operators will need to move their power, Bonneville is planning to build a $144-million, 500-kv line to upgrade the 115-kv section. The agency is planning to use its existing right-of-way.

  12. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect (OSTI)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  13. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  14. Northern Pass Transmission Line Project Environmental Impact Statement:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September 18, 2013 | Department of Energy Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 - September 18, 2013 Northern Pass Transmission Line Project Environmental Impact Statement: Announcement of Change in Public Meeting Location: Federal Register Notice Volume 78, No. 181 -

  15. EIS-0507: Boardman-Hemingway Transmission Line, Oregon and Idaho

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management and the U.S. Forest Service are preparing, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EIS that evaluates the potential environmental impacts of a proposal to construct about 305 miles of 500-kV transmission line from northeast Oregon to southwest Idaho. BPA’s proposed action is to partially fund part the transmission line.

  16. Corrugated outer sheath gas-insulated transmission line

    DOE Patents [OSTI]

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  17. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  18. Comments on RFI on Permitting of Transmission Lines Available

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability released a Federal Register Notice seeking information on questions related to permitting of transmission lines. The Request for Information focused on making the development times for generation and transmission more commensurate with one another. Public comments received are now available for review and downloading.

  19. Stand-off transmission lines and method for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1991-05-21

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress. 16 figures.

  20. Stand-off transmission lines and method for making same

    DOE Patents [OSTI]

    Tuckerman, David B.

    1991-01-01

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress.

  1. NOVEL SIGNAL PROCESSING WITH NONLINEAR TRANSMISSION LINES

    SciTech Connect (OSTI)

    D. REAGOR; ET AL

    2000-08-01

    Nonlinear dielectrics offer uniquely strong and tunable nonlinearities that make them attractive for current devices (for example, frequency-agile microwave filters) and for future signal-processing technologies. The goal of this project is to understand pulse propagation on nonlinear coplanar waveguide prototype devices. We have performed time-domain and frequency-domain experimental studies of simple waveguide structures and pursued a theoretical understanding of the propagation of signals on these nonlinear waveguides. To realistically assess the potential applications, we used a time-domain measurement and analysis technique developed during this project to perform a broadband electrodynamics characterization in terms of nonlinear, dispersive, and dissipative effects. We completed a comprehensive study of coplanar waveguides made from high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric single-crystal SrTiO{sub 3} substrates. By using parameters determined from small-signal (linear) transmission characteristics of the waveguides, we develop a model equation that successfully predicts and describes large-signal (nonlinear) behavior.

  2. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line...

    Energy Savers [EERE]

    2: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, Arizona EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, ...

  3. EA-1982: Parker-Davis Transmission System Routine Operation and Maintenance Project and Proposed Integrated Vegetation Management Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration prepared an EA that assesses potential environmental impacts of the proposed continuation of operation and maintenance activities and implementation of a vegetation management program on Western’s Parker-Davis Transmission System in Arizona, California, and Nevada. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system.

  4. Self-monitoring high voltage transmission line suspension insulator

    DOE Patents [OSTI]

    Stemler, Gary E.; Scott, Donald N.

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  5. Conductor design for the VLHC transmission line magnet

    SciTech Connect (OSTI)

    Foster, G.W.; Kashikhin, V.; McAshan, M.; Mazur, P.O.; Piekarz, H.; Volk, J.T.; Walker, R.

    1999-03-01

    The transmission line magnet [1] is under development for the Very Large Hadron Collider (VLHC) at Fermilab with the expectation that it’s cost will be several times less (per Tesla-meter) than conventional superconducting magnets. It is a dual-aperture warm-iron superferric magnet built around an 80kA superconducting transmission line. The superconductor consists of 8 Rutherford (SSC Outer) cables in an Invar pipe jacket. The conductor design requirements and development program is described. A 100kA conductor test facility based on inductive coupling is described.

  6. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  7. EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with Western Area Power Administration as a cooperating agency, prepared an EA to evaluate potential impacts of a proposal to build and operate a 180-MW photovoltaic facility; a 220, 230, or 500 kV transmission line; and associated facilities in Clark County, Nevada.

  8. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  9. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOE Patents [OSTI]

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  10. High voltage gas insulated transmission line with continuous particle trapping

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

    1983-01-01

    This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

  11. Present state-of-the-art of transmission line icing

    SciTech Connect (OSTI)

    Pohlman, J.C.; Landers, P.

    1982-08-01

    Icing of overhead power lines is a serious problem for electric utilities. The loads resulting from iced conductors take many forms. Existing Codes and Guides offer little help in establishing adequate design criteria. Each transmission line designer must, therefore, rely heavily on intuitive judgment to set performance levels for transmission lines to be built within his particular service area. A special study was undertaken by author Pohlman in behalf of the Electric Power Research Institute (EPRI) to accomplish the following objectives: Improve the general understanding of the total problem; Sample utility perceptions and experience with the problem; Accumulate and review professional opinion on the subject; Inventory past and on-going research activities; Consolidate the above into a definition of the present state-of-the-art to define the need for future research.

  12. Type A Accident Investigation Report on the June 25, 1997, Contractor Inspector Fatality on the Satsop-Aberdeen #2 & #3 230 kV Line

    Broader source: Energy.gov [DOE]

    On June 27, 1997, I established a Type-A Accident Investigation Board to investigate the June 25, 1997 fatal contractor accident which occurred on BPA’s Satsop-Aberdeen #2 and #3 230-kV transmission lines right-of-way.

  13. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  14. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect (OSTI)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  15. EIS-0486: Plains & Eastern Clean Line Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the potential environmental impacts of participating with Clean Line Energy Partners LLC (Clean Line) in the proposed Plains & Eastern Project. The proposed project would include an overhead ± 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver approximately 3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an interconnection with the Tennessee Valley Authority (TVA).

  16. Successful revegetation of a gas pipeline right-of-way in a Gulf Coast barrier island ecosystem

    SciTech Connect (OSTI)

    Hinchman, R.R.; George, J.F.; Gaynor, A.J.

    1987-01-01

    This study evaluates the revegetation of a 30-m-wide right-of-way (ROW) following construction of a 76-cm-diameter natural gas pipeline across Padre Island, Texas, a Gulf Coast barrier island. ROW construction activities were completed in 1979 and included breaching of the foredunes, grading, trenching, pipeline installation, and leveling - which effectively removed all existing vegetation from the full length of the ROW. Following construction, the foredunes were rebuilt, fertilized, and sprigged with Panicum amarum, a native dune grass known as bitter panicum. The remainder of the ROW across the mid-island flats was allowed to revegetate naturally. Plant cover by species and total vegetative cover was measured on paired permanent transects on the ROW and in the adjacent undisturbed vegetation. These cover data show that the disturbed ROW underwent rapid vegetative recovery during the first two growing seasons, attaining 54% of the cover on the undisturbed controls. By 1984, the percent vegetative cover and plant species diversity on the ROW and the adjacent undisturbed control area were not significantly different and the ROW vegetation was visually indistinguishable from the surrounding plant communities. 9 refs., 3 figs., 2 tabs.

  17. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  18. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  19. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Vantage to Pomona Heights 230 kV Transmission Line Project; Yakima, Grant, Benton, and Kittitas Counties, Washington EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line ...

  20. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line...

    Energy Savers [EERE]

    BPA's proposed action is to interconnect the proposed transmission line to an existing BPA substation. EIS-0505: Vantage to Pomona Heights 230 kV Transmission Line Project Public ...

  1. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect (OSTI)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  2. Wild Horse 69-kV transmission line environmental assessment

    SciTech Connect (OSTI)

    1996-12-01

    Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

  3. Monolithic high voltage nonlinear transmission line fabrication process

    DOE Patents [OSTI]

    Cooper, Gregory A.

    1994-01-01

    A process for fabricating sequential inductors and varactor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varactor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process.

  4. Monolithic high voltage nonlinear transmission line fabrication process

    DOE Patents [OSTI]

    Cooper, G.A.

    1994-10-04

    A process for fabricating sequential inductors and varistor diodes of a monolithic, high voltage, nonlinear, transmission line in GaAs is disclosed. An epitaxially grown laminate is produced by applying a low doped active n-type GaAs layer to an n-plus type GaAs substrate. A heavily doped p-type GaAs layer is applied to the active n-type layer and a heavily doped n-type GaAs layer is applied to the p-type layer. Ohmic contacts are applied to the heavily doped n-type layer where diodes are desired. Multiple layers are then either etched away or Oxygen ion implanted to isolate individual varistor diodes. An insulator is applied between the diodes and a conductive/inductive layer is thereafter applied on top of the insulator layer to complete the process. 6 figs.

  5. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  6. U. S. transmission lines moving to comply with 636

    SciTech Connect (OSTI)

    Not Available

    1992-07-20

    This paper reports that interstate gas pipelines continue taking steps to comply with the Federal Energy Regulatory Commission's Order 636. Implementation of the order, as currently written, would mean increased administrative chores for U.S. transmission lines. In the latest announcements: Algonquin Gas Transmission Co. (AGT), Boston, became the second interstate pipeline company to submit an Order 636 compliance filing. Implementation of the filing, expected Nov. 1, would unbundle AGT's sales and storage services at upstream system receipt points. The filing outlines new services, operating conditions, and rates AGT plans to offer customers under 636. FERC approved anew services settlement pending since March 1991, enabling Northern Natural Gas Co., Omaha, to take a step toward unbundling system services and enhancing equal access for all suppliers. FERC approved the settlement with minor changes for a interim period while Northern finishes its 636 restructuring proposal. The company will accept the modified settlement as an interim step but ask FERC to reconsider some of the changes.

  7. EIS-0256: Sierra Pacific Power Company Alturas Transmission Line Project (adopted from BLM)

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental setting and consequences of the construction and operation of the proposal Alturas Transmission Line Project. Sierra Pacific Power Company (SPPCO) has proposed this electric power transmission line to improve the existing operational capacity and reliability of its power transmission system and provide for anticipated growth in demand for electric power.

  8. Polar On-Line Acquisition Relay and Transmission System (POLARATS)

    SciTech Connect (OSTI)

    Yuracko, K.

    2004-07-15

    POLARATS (Polar On-Line Acquisition Relay And Transmission System) is being developed by YAHSGS LLC (YAHSGS) and Oak Ridge National Laboratory (ORNL) to provide remote, unattended monitoring of environmental parameters under harsh environmental conditions. In particular, instrumental design and engineering is oriented towards protection of human health in the Arctic, and with the additional goal of advancing Arctic education and research. POLARATS will obtain and transmit environmental data from hardened monitoring devices deployed in locations important to understanding atmospheric and aquatic pollutant migration as it is biomagnified in Arctic food chains. An Internet- and personal computer (PC)-based educational module will provide real time sensor data, on-line educational content, and will be integrated with workbooks and textbooks for use in middle and high school science programs. The educational elements of POLARATS include an Internet-based educational module that will instruct students in the use of the data and how those data fit into changing Arctic environments and food chains. POLARATS will: (1) Enable students, members of the community, and scientific researchers to monitor local environmental conditions in real time over the Internet; and (2) Provide additional educational benefits through integration with middle- and high-school science curricula. Information will be relayed from POLARATS devices to classrooms and libraries along with custom-designed POLARATS teaching materials that will be integrated into existing curricula to enhance the educational benefits realized from the information obtained.

  9. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  10. USFS Electric Transmission Line Easement Form FS-2700-31 | Open...

    Open Energy Info (EERE)

    USFS Electric Transmission Line Easement Form FS-2700-31 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: USFS Electric Transmission...

  11. Environmental studies for a 1100-kV power line in Oregon. A special report

    SciTech Connect (OSTI)

    Rogers, L.; Hinds, R.

    1983-01-01

    In the first research project to monitor the effects of 1100-kV transmission on a natural ecosystem, researchers at Battelle, Pacific Northwest Laboratories have studied responses of wildlife, native plants, honeybees, and agricultural crops and cattle. No adverse effects were detected on wildlife, crops or cattle. Effects were observed on trees growing within the defined right of way and on honeybee colonies placed beneath the line.

  12. Effects of high-voltage transmission lines on honeybees

    SciTech Connect (OSTI)

    Greenberg, B.; Bindokas, V.P.; Gauger, J.R.

    1985-05-01

    When shielded and exposed colonies were placed at incremental distances at a right angle from a 760-kV transmission line different thresholds for biologic effects were obtained. Hive exposures were controlled (E-field: 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m) by variable height current collectors; shielded hives under the line behave normally. Exposure to 7 kV/m can produce the following sequence of events: (1) increased motor activity and transient hive temperature increase; (2) abnormal propolization; (3) retarded hive weight gain; (4) excess queen cell production with queen loss; (5) reduction of sealed brood area; and (6) poor winter survival. No biological effects were detected below 4.1 kV/m, thus the ''biological effects corridor'' is limited to approximately 23 m beyond a ground projection of each outer phase wire. Hive architecture enhances E-fields and creates shock hazards for bees. Intra-hive E-fields (15 to 100+ kV/m) were measured with a displacement current sensor and fiber optic telemetry link. Step-potential-induced currents up to 0.5 uA were measured with a bee model in hives at 7 kV/m. To investigate further the role of shock versus electric field exposure the study was continued to develop hive entrance extensions (porches), which produce controlled bee exposure to E-field or shock, and to test the feasibility of using these porches in such a study. Biological effects (e.g., abnormal propolization, retarded hive weight, queen loss) found in colonies with total-hive exposure were produced by entrance-only exposure of adult bees. We now have an exposure system in which E-field and shock can be separately controlled to reproduce the biological effects. 10 refs.

  13. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Delaware | Department of Energy 5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, 2011 EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware February 4, 2011 EIS-0465: Announcement of Public Scoping Meetings Construction of Phase II of

  14. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild Project; Lane

    Energy Savers [EERE]

    County, Oregon | Department of Energy 1967: Hills Creek-Lookout Point Transmission Line Rebuild Project; Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild Project; Lane County, Oregon Summary Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115-kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane

  15. Electron flow stability in magnetically insulated vacuum transmission lines

    SciTech Connect (OSTI)

    Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Stygar, W. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-03-15

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  16. Electron flow stability in magnetically insulated vacuum transmission lines.

    SciTech Connect (OSTI)

    Genoni, Thomas C. (Voss Scientific, LLC, Albuquerque, NM); Stygar, William A.; Welch, Dale Robert (Voss Scientific, LLC, Albuquerque, NM); Clark, R. E. (Voss Scientific, LLC, Albuquerque, NM); Rose, David V. (Voss Scientific, LLC, Albuquerque, NM)

    2010-11-01

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  17. Radial transmission line analysis of multi-layer structures

    SciTech Connect (OSTI)

    Hahn, H.; Hammons, L.

    2011-03-28

    The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

  18. Requirements for self-magnetically insulated transmission lines

    SciTech Connect (OSTI)

    VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.

    2015-03-01

    Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closure and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.

  19. Requirements for self-magnetically insulated transmission lines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    VanDevender, J. Pace; Pointon, Timothy D.; Seidel, David B.; Struve, Kenneth W.; Jennings, Christopher; Oliver, Bryan V.; Schneider, Larry X.

    2015-03-01

    Self-magnetically insulated transmission lines (MITLs) connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i) electron retrapping in coupling MITLs to loads, (ii) the applicability of collisionless versus collisional electron flow, (iii) power transport efficiency as a function of the geometry at the beginning of the MITL, (iv) gap closuremore » and when gap closure can be neglected, and (v) the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.« less

  20. EIS-0344: Grand Coulee-Bell 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action for the construction and operation of the proposed Grand Coulee-Bell 500-kV Transmission Line Project.

  1. EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project...

    Energy Savers [EERE]

    No. 1 Transmission Line Rebuild Project; Lane County, Oregon SUMMARY Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the...

  2. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-15)

    SciTech Connect (OSTI)

    N /A

    2001-06-19

    BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission lines. Work also includes clearing of a small (<1/4 mile) section of access road. All work will be in accordance with the National Electrical Safety Code and BPA standards. See Section 1.1 of the attached checklist for detailed information on each section of the referenced transmission lines. BPA will conduct the vegetation control with the goal of removing tall-growing vegetation that is currently or will soon be a hazard to the transmission lines and where possible to promote low-growing plant communities in the right-of-way. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). The vegetation needing control is mainly Douglas Fir, Alder, and blackberries as indicated in Section 1.2 of the attached checklist. The work involved in the ROW includes: clearing tall growing vegetation that is currently or will soon pose a hazard to the lines; treating the associated stumps and re-sprouts with herbicide to ensure that the roots are killed preventing new sprouts; and selectively eliminating tall growing vegetation before it reaches a height or density to begin competing with low-growing vegetation. All work will take place in existing rights-of-ways and around transmission structures. All work will be accomplished by selective vegetation control methods to assure that there is little potential harm to non-target vegetation and to low-growing plants. The work will provide system reliability and fire protection. Also, all off right-of-way trees that are potentially unstable and will fall within a minimum distance or into the zone where the conductors swing will be removed. Access roads will be treated using mowing and herbicide applications. The work will provide system reliability

  3. EIS-0486: Plains & Eastern Clean Line Transmission Project |...

    Broader source: Energy.gov (indexed) [DOE]

    Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the...

  4. Principles of ground relaying for high voltage and extra high voltage transmission lines

    SciTech Connect (OSTI)

    Griffin, C.H.

    1983-02-01

    This paper is a tutorial discussion of the basic principles of ground relaying for high voltage and extra high voltage transmission lines. Three different HV configurations are considered: Long lines, lines with a weak mid-point station, and mutually-coupled lines. Application criteria for EHV circuits are also discussed, and specific setting calculations are included where appropriate.

  5. EIS-0317-S1: Kangley-Echo Lake Transmission Line Project Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) has completed a supplemental draft Environmental Impact Statement (SDEIS) for the proposed Kangley-Echo Lake Transmission Line Project. The proposed line in central King County, Washington is needed to accommodate electrical growth and reliability concerns in the Puget Sound area. The SDEIS analyzes four additional transmission alternatives not analyzed in detail in the draft Environmental Impact Statement (DEIS) issued in June 2001, and a number of non-transmission alternatives.

  6. THE COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COUNCIL OF STATE GOVERNMENTS THE ELECTRIC TRANSMISSION LINE SITING COMPACT LEGISLATIVE BRIEFING Background and Summary Background and Need The siting of interstate transmission lines has long been a problem that has vexed both states and the federal government. With the expected growth in electricity demand, coupled with the need to bring renewable energy to market and the necessity to enhance and secure the nation's energy infrastructure, the need for added transmission capacity has never been

  7. Comments on RFI on Permitting of Transmission Lines Available...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On October 5, 2011, the White House announced the creation of a Rapid Response Team for Transmission (RRTT). In support of the RRTT the Department of Energy's Office of...

  8. Wireless Sensor Network for Electric Transmission Line Monitoring

    Office of Scientific and Technical Information (OSTI)

    ... The validity of this method was tested in the field on a horizontal parallel transmission ... commercial Genscape monitor is 21.5cm*26.5cm*17.2cm (not including the 5W solar panel). ...

  9. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  10. Sensor, method and system of monitoring transmission lines

    DOE Patents [OSTI]

    Syracuse, Steven J.; Clark, Roy; Halverson, Peter G.; Tesche, Frederick M.; Barlow, Charles V.

    2012-10-02

    An apparatus, method, and system for measuring the magnetic field produced by phase conductors in multi-phase power lines. The magnetic field measurements are used to determine the current load on the conductors. The magnetic fields are sensed by coils placed sufficiently proximate the lines to measure the voltage induced in the coils by the field without touching the lines. The x and y components of the magnetic fields are used to calculate the conductor sag, and then the sag data, along with the field strength data, can be used to calculate the current load on the line and the phase of the current. The sag calculations of this invention are independent of line voltage and line current measurements. The system applies a computerized fitter routine to measured and sampled voltages on the coils to accurately determine the values of parameters associated with the overhead phase conductors.

  11. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-09)

    SciTech Connect (OSTI)

    N /A

    2001-05-01

    BPA proposes to clear unwanted vegetation from the rights of way and access roads for BPA's McNary-Santiam No. 1 Transmission Line, beginning in the summer of 2000 and ending in July, 2001. This Supplemental Analysis finds that: (1) the proposed actions are substantially consistent with the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285) and ROD; and (2) there are no new circumstances or information relevant to environmental concerns and bearing on the proposed actions or their impacts. Therefore, no further NEPA documentation is required.

  12. EIS-0514: Colusa-Sutter 500-kilovolt Transmission Line Project; Colusa and Sutter Counties, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    Western Area Power Administration (Western) and the Sacramento Municipal Utility District (SMUD) are preparing a joint EIS/environmental impact report (EIR) –under, respectively, NEPA and the California Environmental Quality Act – that analyzes the potential environmental effects of the proposed new 500-kilovolt Colusa-Sutter (CoSu) Transmission Line Project. The proposed transmission line would interconnect the California-Oregon Transmission Project transmission system, near either Arbuckle or Maxwell, California, to the Central Valley Project transmission system near Yuba City, California. Western’s proposed action is to construct the CoSu Project and modify Western’s facilities to accommodate the new line; SMUD’s proposed action is to fund the proposal.

  13. EIS-0078: Jonesboro-Hergett 161-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Southwestern Power Administration developed this statement to assess the environmental and socioeconomic impacts of a 161-kilovolt transmission line in Craighead County, Arkansas, including its proposed and alternate routes.

  14. Montana ARM 17.20.1606, Electric Transmission Lines, Need Standard...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana ARM 17.20.1606, Electric Transmission Lines, Need StandardLegal Abstract Need...

  15. EIS-0399: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE, jointly with the Montana Department of Environmental Quality (MDEQ), prepared an EIS that evaluated the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana.

  16. EA-1952: Lane-Wendson No. 1 Transmission Line Rebuild Project; Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 41.3-mile Lane-Wendson No. 1 transmission line between Eugene and Florence, Oregon.

  17. EIS-0332: McNary-John Day Transmission Line Project, OR

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to construct, operate, and maintain a 79-mile-long 500-kilovolt transmission line in Benton and Klickitat Counties, Washington, and Umatilla and Sherman counties, Oregon.

  18. EIS-0447: Champlain Hudson Power Express Transmission Line Project, New York

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of a DOE proposal to grant a Presidential permit to Champlain Hudson Power Express, Inc., to construct, operate, maintain, and connect a new 1000-megawatt (MW) electric transmission system across the U.S.-Canada border in northeastern New York State. The proposed transmission line would run from the Canadian Province of Quebec to New York City.

  19. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  20. EA-1665: Davis-Kingman 69-kV Transmission Line Rebuild Project, Arizona

    Broader source: Energy.gov [DOE]

    Western plans to rebuild a 26.6-mile-long portion of the existing 27.3-mile-long Davis–Kingman Tap 69-kV Transmission Line within the existing ROW in order to improve the reliability of the transmission service.

  1. Wallula Power Project and Wallula - McNary Transmission Line Project Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-08-16

    Wallula Generation, LLC proposes to construct a 1,300-megawatt (MW) natural gas-fired combined-cycle combustion gas turbine facility (the Wallula Power Project). The project would be located in the northwestern portion of Walla Walla County, Washington, approximately 8 miles south of the City of Pasco, 2 miles north of the unincorporated community of Wallula, and 7 miles southeast of the unincorporated community of Burbank. The purpose of the proposed power project is to provide energy to meet the needs of the Northwest and other interconnected electric transmission areas where electrical energy is needed. Firm transmission of the power generated by the Wallula Power Project would require construction of a new 500-kilovolt (kV) transmission line and construction of a new switchyard near Smiths Harbor. Approximately 5.1 miles of new transmission line from the proposed generation plant to the new switchyard would be completed. An additional 28 miles of new transmission line from the Smiths Harbor Switchyard to the McNary Substation would be constructed adjacent to the existing Lower Monumental-McNary transmission line and upgrades completed to the existing McNary Substation if loads are exceeded on the existing line. Wallula Generation, LLC, would construct and operate the generation plant and associated facilities, including the makeup water supply line. Bonneville would design, construct, and operate the two 500 kV transmission line segments and switchyard. To supply natural gas to the plant site, a 5.9-mile pipeline interconnection would be engineered, constructed, owned, and operated by PG&E Gas Transmission-Northwest (GTN). This EIS evaluates the environmental impacts of the proposed action, which includes the proposed power plant and 33-mile transmission line. It also evaluates an alternative using taller towers and longer spans between towers along part of the transmission line, and the use of an alternative approach for the transmission line where it would

  2. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project; Kalispell and Polson, Montana

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to evaluate potential environmental impacts of rebuilding its 41-mile long 115 kilovolt (kV) wood-pole Kalispell-Kerr transmission line between Kalispell and Polson, Montana. The proposed action is to replace wood-pole structures and other line components and improve access roads.

  3. EIS-0118: Proposed Eugene-Medford 500-kV Transmission Line

    Broader source: Energy.gov [DOE]

    The U.S. Department of Interior developed this statement to assess the environmental impact of a proposed 500-kilovolt transmission line linking Eugene and Medford, Oregon, that would cross through public lands. The Bonneville Power Administration (BPA) would provide service to the proposed line and is a cooperating agency in the statement. BPA adopted the EIS on 7/10/1985.

  4. Political efficacy and familiarity as predictors of attitudes towards electric transmission lines in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Joe, Jeffrey C.; Hendrickson, Kelsie; Wong, Maria; Kane, Stephanie L.; Solan, David; Carlisle, Juliet E.; Koehler, David; Ames, Daniel P.; Beazer, Robert

    2016-05-18

    Public opposition to the construction (i.e., siting) of new high voltage overhead transmission lines is not a new or isolated phenomenon. Past research has posited a variety of reasons, applied general theories, and has provided empirical evidence to explain public opposition. The existing literature, while clarifying many elements of the issue, does not yet fully explain the complexities underlying this public opposition phenomenon. As a result, the current study demonstrated how two overlooked factors, people’s sense of political efficacy and their familiarity (i.e., prior exposure) with transmission lines, explained attitudes of support and opposition to siting new power lines.

  5. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect (OSTI)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  6. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    SciTech Connect (OSTI)

    Russell, Steven J.; Carlsten, Bruce E.

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  7. Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Keyser, D.

    2013-10-01

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data contained in the model.

  8. International 345 kV transmission line to Highgate, Vermont: environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    The action under consideration is the issuance of a Presidential permit to the Vermont Electric Power Company, Inc. (VELCO) for the construction, operation, maintenance and connection of a facility that will cross the United States-Canada border for international transmission of electric energy. The proposed transmission facilities will consist of a 7.5 mile, alternating current (ac) transmission line and a 200 MW back-to-back direct current (dc) converter terminal station. None of the facilities will involve any polluting emissions. The construction and maintenance of the proposed converter terminal station and transmission facilities will have little or no impact on the geologic features of the region. The transmission line will have little or no effect on agricultural land. Impacts on commercial forestry in the area will be minimal. The proposed route will require clearing about 36 acres of forest. The proposed transmission line and converter terminal site will have no effect on recreational activities, mining activites, residential, commercial, or industrial land use. The proposed corridor will have a minimal impact on area terrestrial wildlife and plant communities. The proposed project will have little or no impact on future population distribution, the operation of local services, employment and economic benefit, or housing in either Franklin or Highgate. 16 references, 3 figures. (ACR)

  9. Investigation of conductor swinging by wind and its application for design of compact transmission line

    SciTech Connect (OSTI)

    Tsujimoto, K.; Fujii, K.; Kubokawa, H.; Okomura, T.; Simojima, K.; Yoshioka, V.

    1982-11-01

    In Japan it has recently become necessary to shorten the interphase spacing in overhead transmission lines because of land limitations and economical considerations. In this connection, the authors have attempted to analyze, in-depth, the possibilities of shortened interphase spacing via conductor swinging caused by wind effects: one of the important factors in the design of more compact overhead lines. This paper describes not only the investigative results of conductor swinging that were obtained both through computer simulation and in 3 years of full scale field line testing, but also design methodology for compact overhead lines based on these results.

  10. Plains & Eastern Clean Line Transmission Line- Part 2 Application: Comments Received on the Updated Application

    Broader source: Energy.gov [DOE]

    In December 2014, DOE requested additional information from Clean Line Energy Partners, LLC to supplement and update its original Plains and Eastern Clean Line application. The updated Part 2 application and other documentation were available for a public comment period that closed on July 13, 2015. Comments were posted as they were received.

  11. Request for Proposals for New or Upgraded Transmission Line Projects Under

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 | Department of Energy Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 Request for Proposals for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005: Federal Register Notice Volume 75, No. 111 - Jun 10, 2012 FRN Request for

  12. Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

    SciTech Connect (OSTI)

    Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab

    2008-06-01

    Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.

  13. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  14. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line; Benton and Yakima Counties, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the existing 26-mile Midway-Grandview transmission line. Both 115-kV lines originate at the BPA Midway Substation in Benton County and terminate in Yakima County.

  15. EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuilding of the existing 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the existing 26-mile Midway-Grandview transmission line. Both 115-kV lines originate at the BPA Midway Substation in Benton County and terminate in Yakima County.

  16. Schultz-Hanford Area Transmission Line Project Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-02-08

    This summary covers the major points of the Draft Environmental Impact Statement (EIS) prepared for the BPA Schultz-Hanford Transmission Project proposed by the Bonneville Power Administration (BPA). The project involves constructing a new 500-kilovolt (kV) line in central Washington, north of Hanford. The new line would connect to an existing line at the Schultz Substation near Ellensburg and to a new or existing substation in the Hanford area (see Map 2 in EIS). The project may also involve constructing a new substation to accommodate the new transmission line. As a federal agency, BPA is required by the National Environmental Policy Act (NEPA) to take into account potential environmental consequences of its proposal and take action to protect, restore, and enhance the environment during and after construction. Preparation of this EIS assists in meeting those requirements.

  17. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  18. Canby Area Service Project substation and associated transmission line. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp`s substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC`s Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC`s substation can accommodate only about 10 percent of the expected additional electric load. BPA`s proposed action is intended to meet SVEC`s increasing electric load. BPA proposes to meet SVEC`s increasing energy load by tapping into BPA`s existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC`s Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no ``environmental impact statement`` is not required.

  19. Canby Area Service Project : Substation and Associated Transmission Line : Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-02-01

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp's substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC's Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC's substation can accommodate only about 10 percent of the expected additional electric load. BPA's proposed action is intended to meet SVEC's increasing electric load. BPA proposes to meet SVEC's increasing energy load by tapping into BPA's existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC's Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no environmental impact statement'' is not required.

  20. EIS-0103: New England/Hydro-Quebec 450-kV Direct Current Transmission Line Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration prepared this statement to evaluate the environmental impacts of the construction, maintenance, and operation of a 57-mile transmission line from Monroe, New Hampshire, to the U.S./Canadian border for the purpose of economic exchange of power and increased reliability. Phase 2 of this project is detailed in EIS-0129.

  1. EA-1946: Salem-Albany Transmission Line Rebuild Project; Polk, Benton, Marion, and Linn Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 24-mile Salem-Albany No. 1 and 28-mile Salem-Albany No. 2 transmission lines between Salem and Albany, Oregon.

  2. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line Rebuild; Pinal County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration prepared an EA that assesses the potential environmental impacts of the proposed rebuild of a 35.6-mile transmission line that Western operates and maintains under an agreement with the Central Arizona Project. Additional information is available on the project website, https://www.wapa.gov/regions/DSW/Environment/Pages/ed2-saguaro-nepa.aspx.

  3. Amended Notice of Intent for the Northern Pass Transmission Line Project Published in the Federal Register

    Broader source: Energy.gov [DOE]

    The Department of Energy announces its intent to modify the scope of the Northern Pass Transmission Line Project Environmental Impact Statement and to conduct additional public scoping meetings. The Federal Register Notice, which is now available for downloading, includes information on how to submit comments and participate in the additional public scoping meetings.

  4. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  5. EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared this EA to evaluate potential environmental impacts of rebuilding approximately 28 miles of the Grand Coulee-Creston No. 1 115-kilovolt (kV) transmission line between Coulee Dam in Grant County and Creston in Lincoln County, Washington.

  6. The Reliability Investigation on ACSR Splice Connector Systems Used in Overhead Power transmission Lines

    SciTech Connect (OSTI)

    Wang, Jy-An John; Jiang, Hao; Ren, Fei

    2012-01-01

    Due to material discontinuity and inherited forming mechanism from a crimped-type splice connector, the associated conductor-connector system is highly sensitive to system components aging, especially during high-temperature operations. Furthermore, due to the increase in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than the original designed values. This has led to the accelerated aging and degradation of conductor-connector systems. The implications of connector aging are two-fold: (1) significant increase in resistivity of the splice connector and (2) significant reduction in the connector clamping strength. Therefore, splice connectors are one of the weakest links in the electric power transmission infrastructure. In this paper we will discuss the reliability of splice connector systems, including both single stage and two stage splice connectors, used in ACSR conductor of transmission lines under high temperature operations.

  7. Request for Information on Permitting of Transmission Lines: Federal Register Notice Volume 77, No. 38- Feb. 27, 2012

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability requested information on questions related to permitting of transmission lines. Infrastructure projects — such as...

  8. Sidney-North Yuma 230-kV Transmission Line Project, Colorado and Nebraska

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    This report describes the need for a 230-kV overhead transmission line to supply power from Sidney, Nebraska to eastern Colorado. The alternative scenario compared to construction of the line is No Action. Rejected alternatives include underground lines and different routing paths, with a possible extension to the Sterling area. Both scenarios are evaluated for environmental effects, cost, and consequences for the eastern Colorado region. The proposed route is determined to be the environmentally preferred choice. 120 refs., 6 figs., 13 tabs. (MHB)

  9. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  10. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    DOE Patents [OSTI]

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.