Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008)  

Broader source: Energy.gov [DOE]

Federal Loan Guarantees For Projects That Employ Innovative Energy Efficiency, Renewable Energy, And Advanced Transmission And Distribution Technologies

2

Integrating Renewable Energy into the Transmission and Distribution...  

Office of Environmental Management (EM)

Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S....

3

Integrating Renewable Energy into the Transmission and Distribution System  

Broader source: Energy.gov (indexed) [DOE]

Integrating Renewable Energy into the Transmission and Distribution Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid. 51294.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands

4

An Energy Transmission and Distribution Network Using Electric Vehicles  

E-Print Network [OSTI]

An Energy Transmission and Distribution Network Using Electric Vehicles Ping Yi, Ting Zhu, Bo Jiang-to-grid provides a viable approach that feeds the battery energy stored in electric vehicles (EVs) back biggest greenhouse gas producer in the world [1]. Many countries have been developing electric vehicles

Wang, Bing

5

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch  

E-Print Network [OSTI]

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch...

Ilic, Marija; Hsieh, Eric; Remanan, Prasad

2004-06-16T23:59:59.000Z

6

AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION  

Broader source: Energy.gov [DOE]

The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

7

AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION | Department...  

Broader source: Energy.gov (indexed) [DOE]

AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION A Public Meeting on the Quadrennial Energy Review, Hosted by the United...

8

Agenda: Natural Gas: Transmission, Storage and Distribution ...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

9

Agenda: Electricity Transmission and Distribution - East | Department...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Transmission and Distribution - East Agenda: Electricity Transmission and Distribution - East A Public Meeting on the Quadrennial Energy Review, Hosted by the United...

10

Agenda: Electricity Transmission, Storage and Distribution -...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Transmission, Storage and Distribution - West Agenda: Electricity Transmission, Storage and Distribution - West A Public Meeting on the Quadrennial Energy Review,...

11

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and...

12

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Technical Report NREL/TP-7A20-51294 September 2011 Integrating Renewable Energy into the Transmission and Distribution System of the

13

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands  

Broader source: Energy.gov (indexed) [DOE]

Integrating Renewable Energy Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Technical Report NREL/TP-7A20-51294 September 2011 Integrating Renewable Energy into the Transmission and

14

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

15

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

16

Energy Transmission  

Broader source: Energy.gov [DOE]

Students will learn about everyday energy usage by completing a home energy audit and examine different lighting choices.

17

Transmission | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission Transmission Below are resources for Tribes on transmission. Transmission 101 Presentation from the National Council on Electricity Policy's Transmissions Technologies workshop. Includes information on transmission technology, costs, and how to plan the system. Transmission on Tribal Land Basics The Tribal Energy and Environmental Information Clearinghouse provides resources for development on tribal lands. Topics covered include transmission technology basics, potential impacts, law and regulations, and tribal incentives. Transmission Pre-Feasibility Study for Tribes Presentation on the components of a pre-feasibility study including generation location, sizing, and desirability, ability and cost to deliver, capacity versus energy, time of delivery versus peak, request for

18

Integrated Transmission and Distribution Control  

SciTech Connect (OSTI)

Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: Develop a simulation environment for integrating transmission and distribution control, Construct reduced-order controllable models for smart grid assets at the distribution level, Design and validate closed-loop control strategies for distributed smart grid assets, and Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

2013-01-16T23:59:59.000Z

19

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

20

Hydrogen Transmission and Distribution Workshop  

Broader source: Energy.gov [DOE]

Proceedings from the Hydrogen Transmission and Distribution Workshop held February 25-26, 2014, in Golden, Colorado. The objective was to discuss and share information on the research, development, and demonstration needs and challenges for low-cost, effective hydrogen transmission and distribution from centralized production facilities to the point of use.

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Transmission and Infrastructure  

SciTech Connect (OSTI)

The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

Mathison, Jane

2012-12-31T23:59:59.000Z

22

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

23

Briefing Memo: Petroleum Product Transmission & Distribution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Briefing Memo: Petroleum Product Transmission & Distribution Briefing Memo: Petroleum Product Transmission & Distribution Click below to download a PDF of the briefing memo....

24

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 129 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled

25

Natural Gas Transmission and Distribution Module This  

Gasoline and Diesel Fuel Update (EIA)

This This page inTenTionally lefT blank 127 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the

26

Power Transmission, Distribution and Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Transmission, Distribution and Plants A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdel-Aal, Radwan E. - Computer Engineering Department, King Fahd University of...

27

Distributed Energy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

28

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

4 4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007 31.8% 2008 31.8% 2009 32.2% 2010 32.3% 2011 32.1% 2012 32.4% 2013 32.7% 2014 33.0% 2015 33.1% 2016 33.2% 2017 33.1% 2018 33.1% 2019 33.1% 2020 33.1% 2021 33.2% 2022 33.2% 2023 33.2% 2024 33.2% 2025 33.1% 2026 33.2% 2027 33.3% 2028 33.4% 10,218 0.2% 10,294 0.2% 10,266 0.2% 10,247 0.2% 10,277 0.2% 10,291 0.2% 10,281 0.2% 10,300 0.3% 10,301 0.3% 10,282 0.3% 10,292 0.4% 10,310 0.4% 10,305

29

Transmission Planning | Department of Energy  

Office of Environmental Management (EM)

Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study made...

30

Transmission | Open Energy Information  

Open Energy Info (EERE)

Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at...

31

Transmission pricing of distributed multilateral energy transactions to ensure system security and guide economic dispatch  

E-Print Network [OSTI]

In this paper we provide a simulations-based demonstration of a hybrid electricity market that combines the distributed competitive advantages of decentralized markets with the system security guarantees of centralized ...

Ilic, Marija D.

2002-01-01T23:59:59.000Z

32

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

5 5 2010 Impacts of Saving an Electric Quad (1) Utility Average-Sized Aggregate Number of Units Fuel Input Utility Unit (MW) to Provide the Fuel's Share Plant Fuel Type Shares (%) in 2010 of the Electric Quad (2) Coal 49% 36 Petroleum 1% 96 Natural Gas 19% 141 Nuclear 22% 3 Renewable (3) 10% 184 Total 100% 460 Note(s): Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2 for consumption and Table A8 for electricity supply. 245 17 85 1,026 22 1) This table displays the breakdown of electric power plants that could be eliminated by saving an electric quad, in exact proportion to the actual primary fuel shares for electricity produced nationwide in 2010. Use this table to estimate the avoided capacity implied by saving one

33

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

3 3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15% 23% 51% 2000 70% 18% 22% 88% 40% 15% 27% 51% 2001 68% 20% 21% 89% 31% 16% 20% 48% 2002 69% 16% 18% 90% 38% 16% 27% 46% 2003 71% 21% 14% 88% 40% 15% 21% 44% 2004 71% 22% 16% 90% 39% 17% 25% 44% 2005 72% 22% 17% 89% 40% 15% 23% 45% 2006 71% 11% 19% 90% 42% 14% 27% 45% 2007 72% 12% 21% 92% 36% 14% 24% 45% 2008 71% 8% 20% 91% 37% 18% 26% 44% 2009 63% 7% 21% 90% 40% 16% 25% 42% 2010 (2) 65% 6% 23% 91% 37% 17% 29% 43% Note(s): Source(s) 1) EIA defines capacity factor to be "the ratio of the electrical energy produced by a generating unit for the period of time considered to the

34

NREL: Energy Analysis: Transmission Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Infrastructure Transmission Infrastructure Grid expansion and planning to allow large scale deployment of renewable generation Large scale deployment of renewable electricity generation will require additional transmission to connect renewable resources, which are wide-spread across the US, but regionally-constrained, to load centers. Long-term transmission planning, based on potential future growth in electric loads and generation resource expansion options, is critical to maintaining the necessary flexibility required for a reliable and robust transmission system. NREL's analyses support transmission infrastructure planning and expansion to enable large-scale deployment of renewable energy in the future. NREL's transmission infrastructure expansion and planning analyses show

35

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect (OSTI)

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

36

Natural Gas Transmission and Distribution Module  

U.S. Energy Information Administration (EIA) Indexed Site

31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT...

37

Transmission | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Edit History Facebook icon Twitter icon » Transmission (Redirected from Transmission) Jump to: navigation, search Transmission header.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at high voltages, typically 115 to 500 kilovolts (kV), across long distances. Networks of transmission lines transfer electricity from power plants or other interconnections to substations. At substations, the high-voltage electricity is "stepped down" to a lower voltage, which can be carried

38

Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Transmission Jump to: navigation, search Transmission header.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry large amounts of electricity at high voltages, typically 115 to 500 kilovolts (kV), across long distances. Networks of transmission lines transfer electricity from power plants or other interconnections to substations. At substations, the high-voltage

39

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

5, DOE/EIA-M062(2005) (Washington, DC, 2005). 5, DOE/EIA-M062(2005) (Washington, DC, 2005). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 101 Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Alaska Alaska MacKenzie W. Canada E. Canada Canada Offshore & LNG Pacific (9) Mountain (8) CA (12) AZ/NM (11) W. South Central (7) E. South Central (6) W. North Central (4) E. North Central (3) Mid Atlantic (2) New Engl. (1) S. Atlantic (5) FL (10) Bahamas Mexico Figure 8. Natural Gas Transmission and Distribution Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting Report #:DOE/EIA-0554(2006) Release date: March 2006 Next release date: March 2007

40

Transmission Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Grid Tech Team » Activities/Outreach » GTT DOE Grid Tech Team » Activities/Outreach » GTT Activities » Transmission Workshop Transmission Workshop Transmission Workshop GTT Transmission Workshop - November 1-2, 2012 On November 1-2, 2012, the GTT presented a workshop on grid integration on the transmission system at the DoubleTree Crystal City near Washington, DC. A draft of the DOE Action Plan Addressing the Electricity Transmission System was discussed during the workshop, which addressed the challenges and opportunities presented by the integration of 21st century energy technologies into the electricity transmission system. Parallel sessions addressed the challenges and opportunities of modernizing the grid and drilled down into key technology areas associated with each of these: System visibility: what advances are needed to "see" the state of

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transmission Reliability | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Reliability Transmission Reliability Transmission Reliability Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The DOE Strategic Plan states that today's electric grid needs to be more efficient, reliable, and secure. A modern, smarter electric grid may save consumers money, help our economy run more efficiently, allow rapid growth in renewable energy sources, and enhance energy reliability. The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security. The Transmission Reliability Program is aligned with this strategic plan

42

QER Public Meeting: Petroleum Product Transmission & Distribution  

Broader source: Energy.gov [DOE]

May 27, 2014 Public Meeting: Petroleum Product Transmission & Distribution (including CO2/EOR) On May 27, 2014, the DOE will hold a public meeting in New Orleans, Louisiana. The May 27, 2014 public meeting will feature facilitated panel discussions, followed by an open microphone session. Persons desiring to speak during the 6 open microphone session at the public meeting should come prepared to speak for no more than 3 minutes and will be accommodated on a first- come, first- serve basis, according to the order in which they register to speak on a sign-in sheet available at the meeting location, on the morning of the meeting. In advance of the meeting, DOE anticipates making publicly available a briefing memorandum providing useful background information regarding the topics under discussion at the meeting. DOE will post this memorandum on its website: http://energy.gov

43

Definition: Transmission Line | Open Energy Information  

Open Energy Info (EERE)

Transmission Line Transmission Line Jump to: navigation, search Dictionary.png Transmission Line A system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power system. Lines are operated at relatively high voltages varying from 69 kV up to 765 kV, and are capable of transmitting large quantities of electricity over long distances.[1] View on Wikipedia Wikipedia Definition An overhead power line, also known as a "pylon" in some areas, is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors (most often three or four) suspended by towers or utility poles. Since most of the insulation is provided by air, overhead power lines are

44

Assumptions to the Annual Energy Outlook - Natural Gas Transmission and  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumption to the Annual Energy Outlook Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

45

Transmission Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning Planning Transmission Planning Modernizing America's electricity infrastructure is one of the U.S. Department of Energy's top priorities. The National Transmission Grid Study (PDF 2.0 MB) made clear that without dramatic improvements and upgrades over the next decade our nation's transmission system will fall short of the reliability standards our economy requires, and will result in higher electricity costs to consumers. The Department's research into a variety of tools that will improve advanced system monitoring, visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand, and provide a greater degree of security. The next generation supervisory control and data acquisition (SCADA) and

46

Chapter 4 Transmission Adequacy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 4 Transmission Adequacy Chapter 4 Transmission Adequacy Chapter 4 Transmission Adequacy Transmission lines are the critical link between the point of electricity generation and consumers. The U.S. transmission grid infrastructure is owned and operated by approximately 3,000 distribution utilities and 500 transmission owners. This structure presents a distinct set of challenges in transmission planning, siting, cost allocation, grid operations and management, technological innovation, financing and construction. The development and deployment of a national strategy on transmission that meets the needs of all parties is extremely complex; however, a solution is desperately needed. Chapter 4 Transmission Adequacy More Documents & Publications Draft Chapter 4: Transmission Adequacy

47

Saving Energy by Adjusting Transmission Power in Wireless Sensor Networks  

E-Print Network [OSTI]

and communication areas. Energy-efficient communication is an important issue in WSNs because of the limited power distributed algorithms to reduce communication energy consumption in WSNs by minimizing the total transmissionSaving Energy by Adjusting Transmission Power in Wireless Sensor Networks Xiao Chen Department

Rowe, Neil C.

48

Southline Transmission Line | Open Energy Information  

Open Energy Info (EERE)

Impact Statement for the Southline Transmission Line Project General NEPA Document Info Energy Sector Transmission Environmental Analysis Type EIS Applicant Southline...

49

Definition: Transmission Line | Open Energy Information  

Open Energy Info (EERE)

Line Line (Redirected from Definition:Transmission lines) Jump to: navigation, search Dictionary.png Transmission Line A system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power system. Lines are operated at relatively high voltages varying from 69 kV up to 765 kV, and are capable of transmitting large quantities of electricity over long distances.[1] View on Wikipedia Wikipedia Definition An overhead power line, also known as a "pylon" in some areas, is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors (most often three or four) suspended by towers or utility poles. Since most of the insulation is provided by air, overhead power lines are

50

Wind Energy Transmission | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Transmission Wind Energy Transmission Jump to: navigation, search Just a few years ago, 5% wind energy penetration in the United States was a lofty goal. In Europe, however, some countries have already reached wind energy penetrations of 10% or higher in a short period of time. The growth of domestic wind generation over the past decade has sharpened the focus on two questions: Can the electrical grid accommodate very high amounts of wind energy without jeopardizing security or degrading reliability? And, given that the nation's current transmission infrastructure is already constraining further development of wind generation in some regions, how could significantly larger amounts of wind energy be developed? The answers to these questions could hold the keys to determining how much of a role

51

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Transmission and Distribution (EPTD) Smart Grid Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back Eligibility Agricultural Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State New York Program Type Grant Program Provider New York State Energy Research and Development Authority Up to $10 million in funds is available from NYSERDA to support research and engineering studies, product development and demonstration projects that improve the reliability, efficiency, quality, and overall performance

52

127 Natural Gas Transmission and Distribution Module  

E-Print Network [OSTI]

and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of the supply options available to bring gas to market centers within each of the NGTDM regions (Figure 9). The major assumptions used within the NGTDM are grouped into four general categories. They relate to (1) structural components of the model, (2) capacity expansion and pricing of transmission and distribution services, (3) Arctic pipelines, and (4) imports and exports. A complete listing of NGTDM assumptions and in-depth

Key Assumptions

53

NREL: Learning - Distributed Energy Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

54

New approach for modelling distributed MEMS transmission lines  

E-Print Network [OSTI]

New approach for modelling distributed MEMS transmission lines K. Topalli, M. Unlu, S. Demir, O for the distributed MEMS transmission line (DMTL) structures. In this new model, the MEMS bridges that are used as the loading elements of the DMTL structures are represented as low-impedance transmission lines, rather than

Akin, Tayfun

55

Regional Transmission Planning Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regional Transmission Planning Webinar Regional Transmission Planning Webinar Regional Transmission Planning Webinar May 29, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration (WAPA) are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. As part of a process to develop interconnection-based transmission plans for the Eastern and Western Interconnections and the Electric Reliability Council of Texas (ERCOT), the eight U.S. regional reliability organizations are expanding existing regional transmission planning activities and broadening stakeholder involvement. Hear about the status of the organizations' plans and evaluations of long-term regional transmission

56

Transmission Reliability | Department of Energy  

Energy Savers [EERE]

design, long-term supply and transmission investment, renewable integration, demand response, and environmental impacts. Researchers use models and simulations to assess how...

57

Definition: Transmission Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Dictionary.png Transmission Service Services provided to the Transmission Customer by the Transmission Service Provider to move energy from a Point of Receipt to a Point of Delivery.[1] Related Terms transmission lines, Transmission Customer, Transmission Service Provider, transmission line References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transmission_Service&oldid=480302" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

58

Open Access Transmission and Renewable Energy Technologies  

SciTech Connect (OSTI)

In April 1996, the Federal Regulatory Commission (PERC) approved Orders 888 and 889 and released a draft rule for public comment on capacity reservation tariffs (CRTs). Order No. 888 requires electric utilities to file transmission tariffs that would allow transmission access to third parties who want to conduct wholesale transactions, and Order No. 889 requires transmission-owning utilities to set up open access, same-time information systems (OASIS), using commercial software and Internet protocols. This paper discusses these Orders in detail, as well as some of the issues before FERC with implications for renewables, which include: transmission pricing; transmission terms and conditions; reassignment of transmission capacity; defining state and FERC jurisdiction over transmission and distribution; the pricing of ancillary services; and the adoption and implementation of independent system operators.

Porter, K.

1996-09-01T23:59:59.000Z

59

ITC Transmission | Open Energy Information  

Open Energy Info (EERE)

ITC Transmission ITC Transmission Jump to: navigation, search Name ITC Transmission Place Michigan Utility Id 56068 Utility Location Yes Ownership T NERC RFC Yes ISO MISO Yes Activity Transmission Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=ITC_Transmission&oldid=410858" Categories: EIA Utility Companies and Aliases Utility

60

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

Mills, Andrew D.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lone Star Transmission LLC | Open Energy Information  

Open Energy Info (EERE)

Zip: 33408 Product: Wholly owned subsidiary of FPL Energy, developing transmission lines. First project is the DFW Express high voltage DC line from West Texas to DallasFort...

62

Interaction, transmissionInteraction, transmission distribution anddistribution and  

E-Print Network [OSTI]

· Suppression of tunneling rates due to inelastic processes · Anomalous exponent · Analogy with E.M. wrong Z? No processes are responsible for anomalous exponents. · An alternative? Non- Luttinger behavior? · Nice about with energy ... · Different problems, interrelated answers #12;Resonant tunneling in L.L.Resonant tunneling

Fominov, Yakov

63

Data transmission system with distributed microprocessors  

DOE Patents [OSTI]

A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

Nambu, Shigeo (Fuchu, JP)

1985-01-01T23:59:59.000Z

64

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

65

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

SEC). 2008. Form 10-K: Xcel Energy Inc. http://www.sec.gov/cost of transmission proposed in Xcel Energy 2001). SouthernApril. http://www.ftloutreach.com Xcel Energy Transmission

Mills, Andrew D.

2009-01-01T23:59:59.000Z

66

EIA-Assumptions to the Annual Energy Outlook - National Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2007 National Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

67

Recovery Act Interconnection Transmission Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act Interconnection Act Interconnection Transmission Planning Recovery Act Interconnection Transmission Planning View a Map of the Interconnections View a Map of the Interconnections Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the transportation sector. Pursuant to Title IV of the American Reinvestment and Recovery Act (2009), the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability is helping to strengthen the capabilities for long-term analysis and planning in the three interconnections serving the lower 48

68

Colorado/Transmission/Agencies | Open Energy Information  

Open Energy Info (EERE)

Agencies < Colorado | Transmission Jump to: navigation, search Colorado Transmission Roadmap Agency Links Local Regulations State Regulations Summary General Transmission...

69

Electricity Transmission, A Primer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the transmission system,...

70

2014 Hydrogen Transmission and Distribution Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and other applications). The workshop drew on experts from the industrial gas and energy industries, national laboratories, academia, and the National Institute of...

71

Singular Layer Transmission for Continuous-Variable Quantum Key Distribution  

E-Print Network [OSTI]

We develop a singular layer transmission model for continuous-variable quantum key distribution (CVQKD). In CVQKD, the transmit information is carried by continuous-variable (CV) quantum states, particularly by Gaussian random distributed position and momentum quadratures. The reliable transmission of the quadrature components over a noisy link is a cornerstone of CVQKD protocols. The proposed singular layer uses the singular value decomposition of the Gaussian quantum channel, which yields an additional degree of freedom for the phase space transmission. This additional degree of freedom can further be exploited in a multiple-access scenario. The singular layer defines the eigenchannels of the Gaussian physical link, which can be used for the simultaneous reliable transmission of multiple user data streams. Our transmission model also includes the singular interference avoider (SIA) precoding scheme. The proposed SIA precoding scheme prevents the eigenchannel interference to reach an optimal transmission over a Gaussian link. We demonstrate the results through the adaptive multicarrier quadrature division-multiuser quadrature allocation (AMQD-MQA) CVQKD multiple-access scheme. We define the singular model of AMQD-MQA and characterize the properties of the eigenchannel interference. We propose the SIA precoding of Gaussian random quadratures and the optimal decoding at the receiver. We show a random phase space constellation scheme for the Gaussian sub-channels. The singular layer transmission provides improved simultaneous transmission rates for the users with unconditional security in a multiple-access scenario, particularly in crucial low signal-to-noise ratio regimes.

Laszlo Gyongyosi

2014-02-20T23:59:59.000Z

72

Energy Efficiency of Future Networks Energy Efficient Transmission in  

E-Print Network [OSTI]

Energy Efficiency of Future Networks Part 1: Energy Efficient Transmission in Classical Wireless #12;Goals Energy Efficiency: What it meant last decade; what it means today From a communication network design perspective what should we care about for energy efficient design of cellular

Ulukus, Sennur

73

Assumptions to the Annual Energy Outlook 1999 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by obtaining market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation Report: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, DOE/EIA-MO62/1, January 1999.

74

Assumptions to the Annual Energy Outlook 2000 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, Model Documentation 2000, DOE/EIA-M062(2000), January 2000.

75

Transmission/Photo Gallery | Open Energy Information  

Open Energy Info (EERE)

Colorado transmission 2.jpg Bird diverters.jpg Transmission insulators.jpg Retrieved from "http:en.openei.orgwindex.php?titleTransmissionPhotoGallery&oldid687595...

76

Factsheet: An Initiative to Help Modernize Natural Gas Transmission and Distribution Infrastructure  

Broader source: Energy.gov [DOE]

Today, the White House and the Department of Energy are hosting a Capstone Methane Stakeholder Roundtable. In addition, DOE is announcing a series of actions, partnerships, and stakeholder commitments to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions.

77

transmission april may 2003 re-gen56 Privately-owned distributed generation  

E-Print Network [OSTI]

transmission grid to Distributed renewable energy systems, such as mini- hydro, can significantly affect, including mini-hydro. Mini- hydro resources are commonly found in areas with low population and load new techniques that could facilitate a greater capacity of mini- hydro generation. The first allows

Harrison, Gareth

78

RAPID/BulkTransmission/Oregon | Open Energy Information  

Open Energy Info (EERE)

Electric Cooperative, Columbia Grid, Northern Tier Transmission Group, and Bonneville Power Administration. Oregon Energy Policy The Oregon Department of Energy's Governor's...

79

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

wind with transmission alternative 7b (500 kV AC line fromkV line CAISO - A4 Central California Clean Energy TransmissionTransmission Line: Transmission Development Facilities Application Volume One MATL New 230 kV

Wiser, Ryan

2014-01-01T23:59:59.000Z

80

Electric Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Electric Transmission SitingLegal Abstract Electric Transmission Siting at the California...

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

82

Exploring the Business Link Opportunity: Transmission & Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

Exploring the Business Link Opportunity: Transmission & Clean Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute Alternative Energy Investment Fund, speaking at the Office of Indian Energy Tribal Leader Energy Forum on transmission. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute

83

Exploring the Business Link Opportunity: Transmission & Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

Exploring the Business Link Opportunity: Transmission & Clean Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL The Office of Indian Energy Tribal Leader Energy Forum on transmission took place February 7-8, 2012, in Denver, Colorado. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute Alternative Energy Investment Fund, speaking at the Office of Indian Energy Tribal Leader Energy Forum on transmission. Photo by Dennis Schroeder, NREL Travis Stone, Shoshone Bannock Tribe, and Rebecca Kauffman, Southern Ute

84

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to

85

Transmission  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission ,... ,...vc- "' ""'\ S I r;. Dr. Jerry Pell, CCM Principal NEP A Document Manager Permitting, Siting, and Analysis (OE-20) Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1 000 Independence A venue SW Washington, D.C. 20585-0001 Subject: Champlain Hudson Power Express Project Submittal of Amendment Application Dear Dr. Pell: February 28, 2012 On January 25, 2010, Transmission Developers, Inc. ("TDI") submitted on behalf of Champlain Hudson Power Express, Inc. ("CHPEI") an application to the U.S. Department of Energy ("DOE") for a Presidential Permit ("Application) in connection with the Champlain Hudson Power Express project ("Project"). The Application proposed to connect clean sources

86

20% Wind Energy by 2030 - Chapter 4: Transmission and Integration...  

Broader source: Energy.gov (indexed) [DOE]

4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary...

87

California/Transmission | Open Energy Information  

Open Energy Info (EERE)

California/Transmission California/Transmission < California Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in California is part of the WestConnect Transmission Planning area and the California Transmission Planning Group. The desert southwest region of California belongs to the Southwest Area Transmission power grid and the northern region of the state belongs to the Sierra Subregional Planning Group. The SWAT provides the technical forum required to complete reliability assessments, develop joint business opportunities and accomplish

88

Distributed Energy Alternatives to Electrical  

E-Print Network [OSTI]

Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated Edison.www.gastechnology.org 2 #12;Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated-Battelle for the Department of Energy Subcontract Number: 4000052360 GTI Project Number: 20441 New York State Energy Research

Pennycook, Steve

89

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network [OSTI]

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

90

Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization  

Broader source: Energy.gov [DOE]

Today, the Department of Energys Western Area Power Administration (Western) and a group of Arizona utilities celebrated the energizing of a new transmission infrastructure project that will serve the states growing electrical energy needs, attract renewable energy development to the area, and strengthen the transmission system in the Southwestern United States.

91

Distributed Energy Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

92

Definition: Network Integration Transmission Service | Open Energy  

Open Energy Info (EERE)

Network Integration Transmission Service Network Integration Transmission Service Jump to: navigation, search Dictionary.png Network Integration Transmission Service Service that allows an electric transmission customer to integrate, plan, economically dispatch and regulate its network reserves in a manner comparable to that in which the Transmission Owner serves Native Load customers.[1] Related Terms transmission lines, transmission customer, transmission line, native load, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Network_Integration_Transmission_Service&oldid=502560" Categories: Definitions

93

Department of Energy Finalizes Loan Guarantee for New Transmission Project  

Broader source: Energy.gov (indexed) [DOE]

for New Transmission for New Transmission Project to Deliver Renewable Energy to Southwest Department of Energy Finalizes Loan Guarantee for New Transmission Project to Deliver Renewable Energy to Southwest February 15, 2011 - 12:00am Addthis Washington, D.C. -- Energy Secretary Steven Chu today announced that the U.S. Department of Energy has finalized a $343 million loan guarantee, supported by the Recovery Act, to develop the One Nevada Transmission Line, known as the ON Line project. The ON Line project, which is jointly owned by Great Basin Transmission South, LLC and NV Energy, consists of a new 500 kilovolt (kV) AC transmission line that will carry approximately 600 megawatts of electricity, including from renewable energy resources, in northern Nevada. This is the Department's first loan guarantee for a

94

Department of Energy Finalizes Loan Guarantee for New Transmission Project  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantee for New Transmission Loan Guarantee for New Transmission Project to Deliver Renewable Energy to Southwest Department of Energy Finalizes Loan Guarantee for New Transmission Project to Deliver Renewable Energy to Southwest February 15, 2011 - 12:00am Addthis Washington, D.C. -- Energy Secretary Steven Chu today announced that the U.S. Department of Energy has finalized a $343 million loan guarantee, supported by the Recovery Act, to develop the One Nevada Transmission Line, known as the ON Line project. The ON Line project, which is jointly owned by Great Basin Transmission South, LLC and NV Energy, consists of a new 500 kilovolt (kV) AC transmission line that will carry approximately 600 megawatts of electricity, including from renewable energy resources, in northern Nevada. This is the Department's first loan guarantee for a

95

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

96

Transmission Capital Limited | Open Energy Information  

Open Energy Info (EERE)

Capital Limited Capital Limited Jump to: navigation, search Name Transmission Capital Limited Place London, United Kingdom Zip EC2V 7HR Sector Renewable Energy, Services Product String representation "Provides adviso ... y arrangements." is too long. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Arizona/Transmission/Summary | Open Energy Information  

Open Energy Info (EERE)

Arizona‎ | Transmission Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Permitting at a Glance In Arizona, the state has the authority to site high-voltage transmission lines. A public service corporation would need to obtain a Certificate of Environmental Compatibility (CEC) from the Arizona Power Plant and Transmission Line Siting Committee that is "affirmed and approved" by the Arizona Corporation Commission (ACC). State Siting Act Arizona Revised Statute (A.R.S.)§ 40-360 et seq. State Preemptive Authority If the Transmission Line Siting Committee (TLSC) finds that compliance with local ordinances, master plan or regulation is unreasonably restrictive and compliance is not feasible in view of technology available, then the TLSC may grant a certificate.[1]

98

Georgia Transmission Corp | Open Energy Information  

Open Energy Info (EERE)

for 2010 - File1a1 EIA Form 861 Data Utility Id 7197 Utility Location Yes Ownership T NERC Location SERC NERC SERC Yes Activity Transmission Yes Activity Buying Transmission...

99

Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors  

E-Print Network [OSTI]

Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors Rahul Vaze School: krishnaj@ee.iitm.ac.in Abstract--In this paper, we derive optimal transmission poli- cies for energy harvesting sensors to maximize the utility obtained over a finite horizon. First, we consider a single energy

Jagannathan, Krishna

100

RAPID/BulkTransmission/California | Open Energy Information  

Open Energy Info (EERE)

& Electric Co Southern California Edison Co Transmission Agency of Northern California Western Area Power Administration Surprise Valley Electrification Corp. NV Energy, Inc....

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Department of Energy Finalizes Loan Guarantee for New Transmission...  

Office of Environmental Management (EM)

Nevada, improving grid reliability and efficiency. "As our country increases its use of alternative energy sources, new transmissions lines like the ON Line project will play a...

102

Hawaii Clean Energy Initiative - Transmission Line Approval Permit...  

Open Energy Info (EERE)

Hawaii Clean Energy Initiative - Transmission Line Approval Permit Packet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

103

Colorado/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Transmission/Roadmap < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations.

104

California/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Transmission/Roadmap < California‎ | Transmission Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations.

105

Arizona/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

Roadmap Roadmap < Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart for Section 8: Transmission. The General Flowchart will lead you to the

106

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

and Energy Reliability, Distribution System Integrationand Energy Reliability, Distribution System Integration

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

107

Idaho/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

Idaho/Transmission/Roadmap Idaho/Transmission/Roadmap < Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart for Section 8: Transmission. The General Flowchart will lead you to the

108

Idaho/Transmission/Summary | Open Energy Information  

Open Energy Info (EERE)

Idaho‎ | Transmission Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Permitting at a Glance In Idaho, the state's siting authority is limited to siting approvals on state property, and high voltage transmission lines (115kV or greater) within a National Interstate Electric Transmission Corridor (NIETC). Under these circumstances a Route Permit would be required by the Idaho Public Utilities Commission (IPUC); however, no such corridors have been designated and therefore the process has not been tested. Local governments

109

Colorado/Transmission/Summary | Open Energy Information  

Open Energy Info (EERE)

Colorado/Transmission/Summary Colorado/Transmission/Summary < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Permitting at a Glance In Colorado, local governments (counties and municipalities) have the authority to site high-voltage transmission lines. The State's authority in siting is limited to a backstop appeal process, by which utilities may submit an appeal to local government decisions to the Colorado Public Utilities Commission (CPUC) for review and resolution. State Siting Act None State Preemptive Authority The CPUC has backstop authority only. If a permit is denied by the local government, the applicant may appeal to the CPUC if certain conditions are met (CRS 29-20-108).

110

2006 National Electric Transmission Congestion Study | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 National Electric Transmission Congestion Study 6 National Electric Transmission Congestion Study 2006 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. Based on these studies, and comments concerning them from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor). Based on the 2006 study, two National Interest Electric Transmission Corridors were designated in 2007. These were invalidated by a federal appeals court in

111

New Mexico/Transmission | Open Energy Information  

Open Energy Info (EERE)

New Mexico/Transmission New Mexico/Transmission < New Mexico Jump to: navigation, search NewMexicoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in New Mexico is part of the Southwest Area Transmission power grid which is part of the WestConnect Transmission Planning area, and covers the desert southwest of the United States. The Western Electricity Coordinating Council (WECC) is the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in New Mexico. In addition, WECC provides an environment for coordinating the operating and planning

112

Transmission/Resource Library | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transmission/Resource Library < Transmission Jump to: navigation, search ResourceLibraryHeader.png Public Involvement Resources GIS Tools and Maps Environmental Resources and Mitigation NEPA MOUs General Transmission Documents Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database About Transmission Electricity Transmission: A Primer Overview of the grid system and the role of states in overseeing this system. The Design, Construction, and Operation of Long-Distance High-Voltage

113

California/Transmission/Summary | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Transmission/Summary < California‎ | Transmission Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Transmission Permitting at a Glance In California, the California Public Utilities Commission (CPUC) has authority to site transmission lines of 200kV or higher. The CPUC is authorized to approve or deny the applicant's request for the Certificate

114

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

SEC). 2008. Form 10-K: Xcel Energy Inc. http://www.sec.gov/cost of transmission proposed in Xcel Energy 2001). SouthernApril. http://www.ftloutreach.com Xcel Energy Transmission

Wiser, Ryan

2014-01-01T23:59:59.000Z

115

Category:NEPA Transmission | Open Energy Information  

Open Energy Info (EERE)

Pages in category "NEPA Transmission" This category contains only the following page. T TransWest Retrieved from "http:en.openei.orgwindex.php?titleCategory:NEPATransmiss...

116

Nevada Transmission Siting Information | Open Energy Information  

Open Energy Info (EERE)

Siting Information Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Nevada Transmission Siting...

117

Transmission/Permitting Atlas | Open Energy Information  

Open Energy Info (EERE)

mittingAtlasHeader.png Roadmap Compare States General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah...

118

Electricity Transmission, A Primer | Open Energy Information  

Open Energy Info (EERE)

A Primer Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Electricity Transmission, A Primer Authors Matthew H. Brown, National Conference of State...

119

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Broader source: Energy.gov (indexed) [DOE]

May 29 Tribal Renewable Energy Webinar to Highlight Regional May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 24, 2013 - 3:41pm Addthis The U.S. Department of Energy Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Regional Transmission Planning," on Wednesday, May 29, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. Speakers from WAPA's Rocky Mountain Region, its Upper Great Plains Region, and WestConnect will provide an overview of various interconnection-based regional transmission planning efforts. Helpful background information on

120

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Broader source: Energy.gov (indexed) [DOE]

May 29 Tribal Renewable Energy Webinar to Highlight Regional May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 24, 2013 - 3:41pm Addthis The U.S. Department of Energy Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Regional Transmission Planning," on Wednesday, May 29, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. Speakers from WAPA's Rocky Mountain Region, its Upper Great Plains Region, and WestConnect will provide an overview of various interconnection-based regional transmission planning efforts. Helpful background information on

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Generation and Transmission Maximization Model | Open Energy Information  

Open Energy Info (EERE)

Generation and Transmission Maximization Model Generation and Transmission Maximization Model Jump to: navigation, search Tool Summary Name: Generation and Transmission Maximization Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.dis.anl.gov/projects/Gtmax.html Cost: Paid Generation and Transmission Maximization Model Screenshot References: Generation and Transmission Maximization Model [1] Logo: Generation and Transmission Maximization Model The GTMax model helps researchers study complex marketing and system operational issues. With the aid of this comprehensive model, utility operators and managers can maximize the value of the electric system, taking into account not only its limited energy and transmission resources,

122

Category:Smart Grid Projects - Electric Transmission Systems | Open Energy  

Open Energy Info (EERE)

Transmission Systems category. Transmission Systems category. Pages in category "Smart Grid Projects - Electric Transmission Systems" The following 10 pages are in this category, out of 10 total. A American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project D Duke Energy Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project N New York Independent System Operator, Inc. Smart Grid Project P PJM Interconnection, LLC Smart Grid Project W Western Electricity Coordinating Council Smart Grid Project Retrieved from "http://en.openei.org/w/index.php?title=Category:Smart_Grid_Projects_-_Electric_Transmission_Systems&oldid=214227

123

///COUNTER : an artistic system for the transmission of cultural energy  

E-Print Network [OSTI]

My thesis introduces ///COUNTER as an artistic system for the transmission of cultural energy. The underlying concepts of ///COUNTER are derived directly from my work on energy access as developed through the eWheel and ...

Vincent de Paul, Jegan Joyston

2009-01-01T23:59:59.000Z

124

Definition: Transmission Planner | Open Energy Information  

Open Energy Info (EERE)

Planner Planner Jump to: navigation, search Dictionary.png Transmission Planner The entity that develops a long-term (generally one year and beyond) plan for the reliability (adequacy) of the interconnected bulk electric transmission systems within its portion of the Planning Authority Area.[1] Related Terms transmission lines, transmission line, planning authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transmission_Planner&oldid=502606" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

125

Arizona/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

Arizona/Transmission/Agency Links Arizona/Transmission/Agency Links < Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Agency Links Arizona Department of Environmental Quality Arizona State Land Department Arizona Game and Fish Department Arizona State Historic Preservation Office Arizona Department of Transportation Arizona Department of Agriculture Arizona Department of Water Resources Central Arizona Water Conservation District Arizona State Parks Arizona Governor's Office of Energy Policy Arizona Corporation Commission (ACC) - Utility Division

126

2009 National Electric Transmission Congestion Study | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9 National Electric Transmission Congestion Study 9 National Electric Transmission Congestion Study 2009 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. Based on these studies, and comments concerning them from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor). The 2009 study is the second Congestion Study that the Department conducted. The first Congestion Study was conducted in 2006. Preparations

127

Assumptions to the Annual Energy Outlook 2002 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market

128

Assumptions to the Annual Energy Outlook 2001 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market

129

EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies  

E-Print Network [OSTI]

EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies Ekhiotz Jon Vergara-awareness and propose EnergyBox, a tool that provides accurate and repeatable en- ergy consumption studies for 3G and WiFi transmissions at the user end. We recognize that the energy consumption of data transmission is highly

130

2012 Transmission and Energy Storage Peer Review Presentations Available |  

Broader source: Energy.gov (indexed) [DOE]

2 Transmission and Energy Storage Peer Review Presentations 2 Transmission and Energy Storage Peer Review Presentations Available 2012 Transmission and Energy Storage Peer Review Presentations Available December 3, 2012 - 1:26pm Addthis Presentations from two peer reviews in September are now available. The Consortium for Electric Reliability Technology Solutions (CERTS) Transmission Reliability R&D Load as a Resource (LAAR) Program peer review included five presentations on September 20, 2012, hosted by DOE at the Lawrence Berkeley National Lab. DOE's Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on September 26 - 28, 2012. The 3-day conference included nine sessions and two poster sessions. Addthis Related Articles 2013 Transmission Reliability R&D Peer Review Presentations Available

131

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wyoming/Transmission < Wyoming Jump to: navigation, search WyomingTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Wyoming is part of the WestConnect Transmission Planning area, and covers the southwest of the United States. Within the WestConnect system, Wyoming is part of the Colorado Coordinated Planning Group (CCPG) power grid that covers Colorado and portions of Wyoming.

132

Geothermal/Transmission | Open Energy Information  

Open Energy Info (EERE)

Transmission Transmission < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Transmission General Regulatory Roadmap NEPA (5) The Geysers power plant showing condensers being retrofitted with direct contact condensers (DCCs). The DCCs were designed by NREL researchers working with Calpine Corporation for improved efficiency. With a 750-megawatt output from 14 units, the Geysers is the largest producer of geothermal power in the world. Geothermal power plants are located very close to the geothermal resource because the hot water/steam would cool down before reaching the power plant, unlike a natural gas plant which pipe gas hundreds or even thousands

133

Michigan Electric Transmission Company | Open Energy Information  

Open Energy Info (EERE)

for 2010 - File1a1 EIA Form 861 Data Utility Id 56163 Utility Location Yes Ownership T NERC RFC Yes ISO MISO Yes Activity Transmission Yes Alt Fuel Vehicle Yes Alt Fuel...

134

American Transmission Systems Inc | Open Energy Information  

Open Energy Info (EERE)

for 2010 - File1a1 EIA Form 861 Data Utility Id 56162 Utility Location Yes Ownership T NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes This article is a...

135

GRR/Section 8 - Transmission Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8 - Transmission Overview GRR/Section 8 - Transmission Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8 - Transmission Overview 08 - TransmissionOverview.pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Regulations & Policies FERC Order No. 2003 FERC Order No. 2006 Triggers None specified Click "Edit With Form" above to add content 08 - TransmissionOverview.pdf 08 - TransmissionOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The siting of an individual project can have a major impact on transmission and interconnection. 8.1 - Will the Power Plant Developer Negotiate an Interconnection

136

DEPARTMENT OF ENERGY National Electric Transmission Congestion Report  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Report National Electric Transmission Congestion Report [Docket No. 2007-OE-01, Mid-Atlantic Area National Interest Electric Transmission Corridor; Docket No. 2007-0E-02, Southwest Area National Interest Electric Transmission Corridor] AGENCY: Department of Energy. ACTION: Order Denying Rehearing. SUMMARY: On October 5,2007, the Department of Energy (Department or DOE) published in the Federal Register a National Electric Transmission Congestion Report and Order (Report and Order) in the above dockets in which it designated the Mid- Atlantic Area and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) (72 FR 56992). Numerous parties in each of the above named dockets filed timely applications for rehearing of DOE's Report and Order. Some parties

137

Energy performance of underfloor air distribution systems  

E-Print Network [OSTI]

UnderfloorAirDistribution(UFAD)DesignGuide. Atlanta:distribution,UFAD,EnergyPlus,EnergyPlus/UFAD,energy modeling,designdesigncalculationsmustaccountforthedistributionof

Bauman, Fred; Webster, Tom; Linden, Paul; Buhl, Fred

2007-01-01T23:59:59.000Z

138

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Broader source: Energy.gov (indexed) [DOE]

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

139

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

140

Colorado/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Transmission < Colorado Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Colorado is part of the Western Interconnection power grid, which covers most of the western United States. The Western Electricity Coordinating Council (WECC) is the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Idaho/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Idaho/Transmission < Idaho Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Idaho is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC). It includes the provinces of Alberta and British Columbia, the northern portion of Baja California, Mexico, and all or portions of the 14 Western states between.

142

Arizona/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arizona/Transmission < Arizona Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Arizona is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC) is the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC

143

Washington/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Transmission < Washington Jump to: navigation, search WashingtonTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Washington is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC). WECC's service territory extends from Canada to Mexico. It includes the provinces of Alberta and British Columbia, the northern portion of Baja California,

144

Montana/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Montana/Transmission < Montana Jump to: navigation, search MontanaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Montana is part of both the Eastern and Western Interconnection power grids and is part of two NERC regions - the Midwest Reliability Organization (MRO) and Western Electricity Coordinating Council (WECC). MRO's service territory extends from the state of Nebraska north to

145

Transmission/Nepa Database | Open Energy Information  

Open Energy Info (EERE)

Nepa Database Nepa Database < Transmission Jump to: navigation, search NepaHeader.png Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Document Collections (1) Have a NEPA Document Collection to add that doesn't yet exist in this collection? Make sure it doesn't already exist: Please be sure to search this page by serial number and by document number Add.png Add a new NEPA Document Collection This query has been included to allow you to use the black arrows in the table header cells to sort the table data. Document Name Serial Number Analysis Type Transmission Type Project Area Applicant Lead Agency District Office Project Phase(s) TransWest EIS 600kV Wyoming Western Power Administration BLM BLM Wyoming State Office

146

Oregon/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oregon/Transmission < Oregon Jump to: navigation, search OregonTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Idaho is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC). WECC's service territory extends from Canada to Mexico. It includes the provinces of Alberta and British Columbia, the northern portion of Baja California,

147

Utah/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Transmission < Utah Jump to: navigation, search UtahTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Utah is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC). WECC includes the provinces of Alberta and British Columbia, the northern portion of Baja California, Mexico, and all or portions of the 14 Western states between.

148

Nevada/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Nevada/Transmission < Nevada Jump to: navigation, search NevadaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Nevada is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC). WECC is the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Nevada.

149

Definition: Advanced Transmission Applications | Open Energy Information  

Open Energy Info (EERE)

Applications Applications Jump to: navigation, search Dictionary.png Advanced Transmission Applications Software that utilizes synchrophasor information for real-time grid operations or planning and off-line analysis. These applications are aimed at providing wide-area situational awareness, grid monitoring, and detailed power system analysis and the improvement or validation of power system models.[1] Related Terms smart grid References ↑ https://www.smartgrid.gov/category/technology/advanced_transmission_applications [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssustainability, |Template:BASEPAGENAME]]sustainability, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Advanced_Transmission_Applications&oldid=502495

150

Electric Transmission Lines (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nebraska) Nebraska) Electric Transmission Lines (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Public Service Commission The Public Service Commission has jurisdiction over all electricity transmission lines crossing over or under railroad tracks at public highway

151

Installation of PV systems in GreeceReliability improvement in the transmission and distribution system  

Science Journals Connector (OSTI)

Photovoltaic (PV) power systems are becoming one of the most developing investment areas in the field of Renewable Energy Sources (RES). A statement of the status quo of PV power systems in Greece, and their contribution towards the improvement of power system reliability, is the scope of the present paper. Siting and installation of PV power systems is performed according to a recent Greek law, along with environmental and geographical constraints. Meteorological data are computed, formulated and imported to appropriate software in order to simulate the PV units and generate their power output. Data for unserved loads, resulting from load shedding during peak hours, are compared to the above estimated power production. Assuming that a proportion of the eventually unsupplied power could be provided by the accessed power generation of the PV units, the reliability of both transmission and distribution system is improved. The impact on the transmission system is shown by an improvement of LOLP and LOEP indices, whereas peak shaving for the Interconnected Greek Transmission System (IGTS) is also illustrated. For the distribution system the impact is quantified using the distribution system reliability indices SAIDI, SAIFI, and CAIDI. Finally, the resulting improvement is also expressed in financial terms.

Aggelos S. Bouhouras; Antonios G. Marinopoulos; Dimitris P. Labridis; Petros S. Dokopoulos

2010-01-01T23:59:59.000Z

152

California/Transmission/State Regulations | Open Energy Information  

Open Energy Info (EERE)

California/Transmission/State Regulations California/Transmission/State Regulations < California‎ | Transmission Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Siting Process Transmission lines 200 kV or greater are required to undergo a two-part state siting and permitting process with the California Public Utility Commission (CPUC). One part of the process will analyze the need for the project and consists of obtaining a Certificate of Public Convenience and Necessity (CPCN) from the California Energy Commission (CEC). The other part of the process will analyze environmental and community impacts in the

153

Idaho/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

Idaho/Transmission/Agency Links Idaho/Transmission/Agency Links < Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Agency Links Idaho Department of Fish and Game Idaho State Historical Society Idaho Department of Environmental Quality Idaho Transportation Department Idaho Department of Lands Idaho Department of Water Resources Idaho Department of Parks and Recreation Idaho Public Utilities Commission Idaho Governor's Office of Energy Resources Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Idaho/Transmission/Agency_Links&oldid=687138"

154

Colorado/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

Colorado/Transmission/Agency Links Colorado/Transmission/Agency Links < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Agency Links Colorado Division of Wildlife Colorado Office of Archaeology and Historic Preservation Colorado Department of Transportation Colorado State Board of Land Commissioners Colorado Energy Office Colorado Public Utilities Commission Colorado Parks & Wildlife Colorado Office of Archaeology and Historic Preservation Colorado Department of Local Affairs Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Colorado/Transmission/Agency_Links&oldid=687137"

155

Transmission of energy down periodically ribbed elastic structures under fluid loading: spatialperiodicity in the pass bands  

Science Journals Connector (OSTI)

...long-range coupling|Green's function| Transmission of energy down periodically...long-range coupling; Green's function 1. Introduction Energy transmission down...fluid loading in energy transmission...properties of the Green's function...

1998-01-01T23:59:59.000Z

156

Property:EIA/861/ActivityTransmission | Open Energy Information  

Open Energy Info (EERE)

EIA/861/ActivityTransmission EIA/861/ActivityTransmission Jump to: navigation, search This is a property of type Boolean. Description: Activity Transmission Entity engages in power transmission activity (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityTransmission" Showing 25 pages using this property. (previous 25) (next 25) A A & N Electric Coop (Virginia) + true + AEP Texas Central Company + true + AEP Texas North Company + true + Alabama Power Co + true + Alaska Electric & Energy Coop + true + Alaska Electric Light&Power Co + true + Alaska Energy Authority + true + Alaska Power and Telephone Co + true + Allegheny Electric Coop Inc + true + Ameren Illinois Company + true +

157

Efficient Macromodeling of Power Distribution Planes using Delay Extraction based Transmission Line Representation  

E-Print Network [OSTI]

Efficient Macromodeling of Power Distribution Planes using Delay Extraction based Transmission Line plane structures are based on discretization of the plane into a grid of transmission lines [3]-[6]. Macromodeling the transmission line network using conventional lumped RLGC elements [4]- [6] can provide

Roy, Sourajeet

158

Nodes Placement for reducing Energy Consumption in Multimedia Transmissions  

E-Print Network [OSTI]

quality of multimedia traffic. Index Terms--Wireless Sensor Networks, Multimedia, Energy Saving, Quality on the energy saving by extending the lifetime of the network up to more than 15% while preserving video qualityNodes Placement for reducing Energy Consumption in Multimedia Transmissions Pasquale Pace Valeria

Paris-Sud XI, Université de

159

Canopy radiation transmission for an energy balance snowmelt model  

E-Print Network [OSTI]

Canopy radiation transmission for an energy balance snowmelt model Vinod Mahat1 and David G January 2012. [1] To better estimate the radiation energy within and beneath the forest canopy for energy differential equations using a single path assumption were solved analytically to approximate the radiation

Tarboton, David

160

Energy Efficient Transmissions in MIMO Cognitive Radio Networks  

E-Print Network [OSTI]

Energy Efficient Transmissions in MIMO Cognitive Radio Networks Liqun Fu The Institute of Network@ie.cuhk.edu.hk Abstract--In this paper, we consider energy efficient transmis- sions for MIMO cognitive radio networks on the traffic load of the secondary system. Index Terms--Cognitive radio networks, MIMO, Energy- efficiency. I

Huang, Jianwei

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Efficient Transmissions In MIMO Cognitive Radio Networks  

E-Print Network [OSTI]

Energy Efficient Transmissions In MIMO Cognitive Radio Networks Liqun Fu The Institute of Network@ie.cuhk.edu.hk Abstract-In this paper, we consider energy efficient transmis sions for MIMO cognitive radio networks. Index Terms-Cognitive radio networks, MIMO, Energy efficiency. I. INTRODUCTION Cognitive radio, which

Huang, Jianwei

162

Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting  

E-Print Network [OSTI]

1 Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting Alireza of developing energy efficient transmission strategies for Body Sensor Networks (BSNs) with energy harvesting [1]. A major hurdle for the wide adoption of BSN technology is the energy supply [2]. Current battery

Sikdar, Biplab

163

Distributed Automated Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore National Laboratory Contact LLNL About This Technology...

164

Energy Storage and Distributed Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

165

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network [OSTI]

California Energy Commission Transmission Planning Analysis92, No. 5, Dec. CEC (California Energy Commission). 2004.of MCPs. California Energy Commission. Nov. CERTS PIER

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

166

Electric Utility Transmission and Distribution Line Engineering Program  

SciTech Connect (OSTI)

Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

Peter McKenny

2010-08-31T23:59:59.000Z

167

NREL: Transmission Grid Integration - Energy Imbalance Markets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Imbalance Markets The anticipated growth of variable renewable generation, such as solar and wind power, in the West has raised concerns about how system operators will...

168

Definition: Distributed Energy Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Dictionary.png Distributed Energy Resource A device that produces electricity, and is connected to the electrical system, either "behind the meter" in the customer's premise, or on the utility's primary distribution system. A Distributed Energy Resource (DER) can utilize a variety of energy inputs including, but not limited to, liquid petroleum fuels, biofuels, natural gas, solar, wind, and geothermal. Electricity storage devices can also be classified as DERs.[1] Also Known As DER Related Terms energy, biofuels, electricity storage technologies, system, electricity generation References ↑ https://www.smartgrid.gov/category/technology/distributed_energy_resource [[Categ LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

169

Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting  

E-Print Network [OSTI]

Energy Efficient Transmission Strategies for Body Sensor Networks with Energy Harvesting Alireza for Body Sensor Networks (BSNs) with energy harvesting capabilities. It is assumed that two transmission tracking [4]. One major hurdle for the wide adoption of the BSN technology is the energy supply [11

Sikdar, Biplab

170

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network [OSTI]

of routing tree establishment, transmission energy planninglarge gap of energy between the single-hop tree and theThe routing tree ?nding and the transmission energy planning

Huang, Yi

2010-01-01T23:59:59.000Z

171

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Equipment Transmission Lines 765 kV (no description) 500Montana-Alberta Tie 230 kV Transmission Line: TransmissionMontana-Alberta Tie 230 kV Transmission Line: Transmission

Mills, Andrew D.

2009-01-01T23:59:59.000Z

172

Section 406 Renewable Energy and Electric Transmission Loan Guarantee Program under ARRA  

Broader source: Energy.gov [DOE]

A temporary program for rapid deployment of renewable energy and electric power transmission projects.

173

Green Power Transmission Line Given New Life | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Power Transmission Line Given New Life Green Power Transmission Line Given New Life Green Power Transmission Line Given New Life March 11, 2010 - 4:34pm Addthis Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Poles for the Montana-Alberta Tie Line are unloaded outside Shelby, Mont. | Photo courtesy of Tonbridge Power Stephen Graff Former Writer & editor for Energy Empowers, EERE Thanks to funds from the American Recovery and Reinvestment Act, construction of a green power transmission line stretching from Lethbridge, Alberta in Canada, down to Great Falls, Mont., was put back on track after a bank failure. Currently under construction, the Montana-Alberta Tie Line, which is owned by Toronto-based Tonbridge Power, will connect the electricity markets of

174

Dynamic simulation method for transmission and distribution planning  

Science Journals Connector (OSTI)

Under the conditions of liberalised market development optimisation role is not to be decreasing but even increasing. Basic definitions and model structure of optimisation system under market conditions is discussed in a paper, as well the experience ... Keywords: development optimisation, liberalised electricity market, power generation, power system planning, power system simulation, power transmission, risk analysis, uncertainty

Z. Krishans; I. Oleinikova; A. Mutule; J. Runcs

2006-12-01T23:59:59.000Z

175

Published in IET Generation, Transmission & Distribution Received on 5th October 2012  

E-Print Network [OSTI]

Published in IET Generation, Transmission & Distribution Received on 5th October 2012 Revised on 31 are small scale power systems that facilitate the effective integration of distributed generators (DG) [1 of multiple photovoltaic generators in a power distribution system [16]. Networked multi-agent systems have

Qu, Zhihua

176

Life cycle assessment of electricity transmission and distributionpart 2: transformers and substation equipment  

Science Journals Connector (OSTI)

The purpose of this paper is to characterize the environmental impacts of equipment used in power transmission and distribution. This study is divided in two parts, each addressing different main components of th...

Raquel Santos Jorge; Troy R. Hawkins

2012-02-01T23:59:59.000Z

177

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation operator  

Science Journals Connector (OSTI)

In order to improve the safety management of urban gas transmission and distribution system, failure mode and effects analysis (FMEA) was used to construct the reliability analysis ... the risk priority number (R...

Su Li; Weiguo Zhou

2014-12-01T23:59:59.000Z

178

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

179

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

from existing state renewable energy policy requirements,for renewable energy to different assumptions and policiesrenewable energy procurement, technology cost, transmission, and policy

Mills, Andrew D

2011-01-01T23:59:59.000Z

180

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

from existing state renewable energy policy requirements,renewable energy procurement, technology cost, transmission, and policypolicies (including renewable development and energy

Mills, Andrew

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RAPID/BulkTransmission/About | Open Energy Information  

Open Energy Info (EERE)

Contribute Contact Us About Bulk Transmission Lattice.jpg High-voltage transmission lines form the backbone of electricity systems. Transmission lines are designed to carry...

182

Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01200 eV  

E-Print Network [OSTI]

Europium resonance parameters from neutron capture and transmission measurements in the energy University. The current measure- ment has better energy resolution and updated analysis methods. Other-yield tail at the high end of the fission fragment mass distribution. Measure- ments have been made

Danon, Yaron

183

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

184

Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint  

SciTech Connect (OSTI)

This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

Zhang, Y.; Allen, A.; Hodge, B. M.

2014-02-01T23:59:59.000Z

185

Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations  

SciTech Connect (OSTI)

This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

Brancucci Martinez-Anido, C.; Hodge, B. M.

2014-09-01T23:59:59.000Z

186

Renewable Energy: Distributed Generation Policies and Programs...  

Energy Savers [EERE]

Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of...

187

Distributed Energy Communications & Controls, Lab Activities - Summary  

SciTech Connect (OSTI)

The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

Rizy, D Tom [ORNL

2010-01-01T23:59:59.000Z

188

Transmission of energy down periodically ribbed elastic structures under fluid loading: algebraic decay in the stop bands  

Science Journals Connector (OSTI)

...manipulation|numerical simulation|energy transmission|Green's function| Transmission of energy down periodically ribbed elastic structures...manipulation; numerical simulation; energy transmission; Green's function 1. Introduction The...

1998-01-01T23:59:59.000Z

189

Federal Energy Management Program: Distributed-scale Renewable Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed-scale Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) to someone by E-mail Share Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Facebook Tweet about Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Twitter Bookmark Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Google Bookmark Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Delicious Rank Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Digg Find More places to share Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on

190

Integration of Green Energy into Power Distribution Systems: Study of Impacts and Development of Control Methodology  

Science Journals Connector (OSTI)

Distributed generation (DG) is gaining popularity as it has a positive environmental impact and the capability to reduce high transmission costs and power losses. Although the integration of renewable energy-base...

N. K. Roy; H. R. Pota

2014-01-01T23:59:59.000Z

191

Customer system efficiency improvement assessment: Supply curves for transmission and distribution conservation options  

SciTech Connect (OSTI)

This report documents the results of Task 6 in the Customer System Efficiency Improvement (CSEI) Assessment Project. A principal objective of this project is to assess the potential for energy conservation in the transmission and distribution (TandD) systems of electric utilities in the BPA service area. The scope of this assessment covers BPA customers in the Pacific Northwest region and all non-federal TandD systems, including those that currently place no load on the BPA system. Supply curves were developed to describe the conservation resource potentially available from TandD-system efficiency improvements. These supply curves relate the levelized cost of upgrading existing equipment to the estimated amount of energy saved. Stated in this form, the resource represented by TandD loss reductions can be compared with other conservation options and regional electrical generation resources to determine the most cost-effective method of supplying power to the Pacific Northwest. The development of the supply curves required data acquisition and methodology development that are also described in this report. 11 refs., 11 figs., 16 tabs.

Tepel, R.C.; Callaway, J.W.; De Steese, J.G.

1987-11-01T23:59:59.000Z

192

The urban design of distributed energy resources  

E-Print Network [OSTI]

Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

Sheehan, Travis (Travis P.)

2012-01-01T23:59:59.000Z

193

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

NREL/CP-500-35969. Global WindPower Conference. Chicago,Transmission Projects. Windpower 2007 Conference. Los

Mills, Andrew D.

2009-01-01T23:59:59.000Z

194

Transmission and Conversion of Energy by Coupled Soft Gears  

E-Print Network [OSTI]

Dynamical aspects of coupled deformable gears are investigated to clarify the differences of mechanical properties between the machines consist of hard materials and those of soft materials. In particular, the performances of two functions, the transmission and the conversion of the energy, are compared between the hard and soft gears systems. First, the responses of the coupled gears against a constant torque working on one of gears are focused for two types of couplings; P) a pair gears are coupled, and T) three gears are coupled with forming a regular triangle. In systems with the coupling P), we obtain trivial results that the rotational energy can be transmitted to other gear only if these gears are hard enough. On the other hand, in systems with the coupling T), the transmission of the rotational energy to one of the other gears appears only if these gears are soft enough. Second, we show the responses of this system in which one of gears have contact with a high temperature heat bath and the other gears have contact with a 0 temperature heat bath. With the coupling T), the directional rotations appear in two gears having contact with 0 temperature heat bath. Here, the direction of these rotations change depending on the noise strength.

Akinori Awazu

2005-03-14T23:59:59.000Z

195

Idaho/Transmission/State Regulations | Open Energy Information  

Open Energy Info (EERE)

Idaho‎ | Transmission Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Siting Process The State's direct authority to site high-voltage transmission lines is limited to transmission lines located within National Interstate Electric Transmission Corridors (NIETC); however, no NIETCs currently exist within Idaho so the authority has not been put into practice. Siting authority belongs to local governments or federal agencies that manage the land where the proposed transmission line would be located. Public utilities that

196

2009 Electric Transmission Congestion Study | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9 Electric Transmission Congestion Study 9 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints across the Nation and identifies areas that are transmission-constrained, but does not make recommendations concerning existing or new National Corridor designations. This is the second Congestion Study the Department has conducted, with the first issued in 2006. Public comments received after the release of the 2009 Congestion Study can be found here. National Electric Transmission Congestion Study 2009 Executive Summary Full Text of the National Electric Transmission Congestion Study 2009 More Documents & Publications

197

RAPID/BulkTransmission/General Construction | Open Energy Information  

Open Energy Info (EERE)

RAPIDBulkTransmissionGeneral Construction < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit...

198

RAPID/BulkTransmission/Land Access | Open Energy Information  

Open Energy Info (EERE)

Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us RAPID Bulk Transmission Land Access Regulatory...

199

RAPID/BulkTransmission/Siting/New Mexico | Open Energy Information  

Open Energy Info (EERE)

Solar Resources Contribute Contact Us RAPID Bulk Transmission Siting New Mexico Bulk Transmission Siting in New Mexico Regulatory Information Overviews Search for...

200

RAPID/BulkTransmission/Siting/California | Open Energy Information  

Open Energy Info (EERE)

Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us RAPID Bulk Transmission Siting California Bulk...

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RAPID/BulkTransmission/Air Quality | Open Energy Information  

Open Energy Info (EERE)

RAPIDBulkTransmissionAir Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About...

202

California/Transmission/Local Regulations | Open Energy Information  

Open Energy Info (EERE)

do not have siting authority for transmission facilities. Print PDF Retrieved from "http:en.openei.orgwindex.php?titleCaliforniaTransmissionLocalRegulations&oldid68832...

203

RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...  

Open Energy Info (EERE)

Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

204

An Introduction to Electric Power Transmission | Open Energy...  

Open Energy Info (EERE)

An Introduction to Electric Power Transmission Abstract An introduction to transmission lines including topics: electricity generation and delivery, ownership and funding, anatomy...

205

RAPID/BulkTransmission/Water Quality | Open Energy Information  

Open Energy Info (EERE)

RAPIDBulkTransmissionWater Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About...

206

RAPID/BulkTransmission/Water Use | Open Energy Information  

Open Energy Info (EERE)

RAPIDBulkTransmissionWater Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk...

207

2009 Electric Transmission Congestion Study | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2009 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the Federal Power Act, examines transmission congestion constraints across the Nation and identifies areas that are transmission-constrained, but does not make recommendations concerning existing or new National Corridor designations. This is the second Congestion Study the Department has conducted, with the first issued in 2006. Public comments received after the release of the 2009 Congestion Study can be found here. National Electric Transmission Congestion Study 2009 Executive Summary Full Text of the National Electric Transmission Congestion Study 2009 More Documents & Publications

208

RAPID/BulkTransmission/Power Plant | Open Energy Information  

Open Energy Info (EERE)

BulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk...

209

Distributed Energy Systems Corp | Open Energy Information  

Open Energy Info (EERE)

Systems Corp Systems Corp Jump to: navigation, search Name Distributed Energy Systems Corp Place Wallingford, Connecticut Zip CT 06492 Product The former holding company of Proton Energy Systems and Northern Power Systems that ceased to operate upon the sale of both subsidiaries. Coordinates 43.473755°, -72.976925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.473755,"lon":-72.976925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Mapping the Valence States of Transition-Metal Elements Using Energy-Filtered Transmission Electron Microscopy  

E-Print Network [OSTI]

spectrum of MnO2 acquired at 200 kV using a Hitachi HF-2000 transmission electron microscope equipped lines observed in electron energy-loss spectroscopy in a transmission electron microscope (TEMMapping the Valence States of Transition-Metal Elements Using Energy-Filtered Transmission Electron

Wang, Zhong L.

211

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

solar electric and thermal equipment, and energy storage - collectively termed distributed energy resources (energy resources (DER) such as on-site fossil-fuel based combined heat and power (CHP), thermally- activated cooling, photovoltaics, solar

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

212

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Estimates of Congestion Costs. The Electricity Journal 17,Incremental Transmission Costs Due to Wind Power. Rockville,and Intermittency Really Cost? Supply Curves for Electricity

Mills, Andrew D.

2009-01-01T23:59:59.000Z

213

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

Planning (Xcel). 2006. Wind Integration Study Report OfTransmission Vision for Wind Integration. White Paper.Charles Smith (Utility Wind Integration Group), Lynn Coles (

Mills, Andrew D.

2009-01-01T23:59:59.000Z

214

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

turbines and compressed air energy storage for supplementalresources and compressed air energy storage (CAES). Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

215

Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification  

Science Journals Connector (OSTI)

An alternative application of distributed Raman amplification (DRA) for ultralong-haul optical fiber transmission is proposed. In our study, the DRA is employed in a transmission...

Kaewplung, Pasu; Kikuchi, Kazuro

2007-01-01T23:59:59.000Z

216

Definition: Transmission Angle and Frequency Monitoring | Open Energy  

Open Energy Info (EERE)

Transmission Angle and Frequency Monitoring Transmission Angle and Frequency Monitoring Jump to: navigation, search Dictionary.png Transmission Angle and Frequency Monitoring An advanced transmission application that uses angle and frequency measurements from PMUs to indicate loss of generation or other disturbances causing a change in the supply/demand balance.[1] Related Terms transmission lines, advanced transmission applications, transmission line References ↑ https://www.smartgrid.gov/category/technology/transmission_angle_and_frequency_monitoring [[Cat LikeLike UnlikeLike You like this.Sign Up to see what your friends like. egory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transmission_Angle_and_Frequency_Monitoring&oldid=502506

217

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

218

Colorado/Transmission/Regulatory Overview | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Transmission/Regulatory Overview < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission Regulatory Overview Roadmap State Data Regulatory Overview General Transmission Permitting at a Glance In Colorado, local governments (counties and municipalities) have the authority to site high-voltage transmission lines. The State's authority in siting is limited to a backstop appeal process, by which utilities may submit an appeal to local government decisions to the Colorado Public Utilities Commission (CPUC) for review and resolution.

219

File:08COCStateTransmissionProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

COCStateTransmissionProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08COCStateTransmissionProcess.pdf Size of this preview: 463 599 pixels....

220

Mail and Distribution | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mail and Distribution Mail and Distribution The DOE Mail Center provides a variety of mail services for all official and other authorized mail for the Department of Energy and its...

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Distributed Energy Fuel Cells Electricity Users  

E-Print Network [OSTI]

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

222

Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network  

E-Print Network [OSTI]

Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network Yves Josse communications in indoor environments. In this paper, the power consumption and energy efficiency of a DAS using for different transmission configurations, yielding a distance- dependent energy efficiency model. In a second

Paris-Sud XI, Université de

223

Colorado/Transmission/Local Regulations | Open Energy Information  

Open Energy Info (EERE)

Colorado/Transmission/Local Regulations Colorado/Transmission/Local Regulations < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Local Siting Process Under state law, Colorado counties and municipalities are given broad authority to plan for and regulate the use of land within their jurisdictions.[1] State statutes give local governments (counties and municipalities) the authorization to; Appoint planning commissions [2] which are required to prepare and adopt master plans or comprehensive plans for physical development within

224

Colorado/Transmission/Regulatory Roadmap | Open Energy Information  

Open Energy Info (EERE)

Roadmap Roadmap < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission Regulatory Roadmap Roadmap State Data Regulatory Overview General TOOLS Regulatory Roadmap Regulatory Wizard Best Practices Document Library NEPA Database Glossary TECHNOLOGIES Geothermal Solar Water Wind TOPICS Land Use Planning Land Access Exploration Well Field Power Plant Transmission Water Rights Environment The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart

225

Tips: Booklet Distribution | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Booklet Distribution Tips: Booklet Distribution Tips: Booklet Distribution April 11, 2012 - 8:54am Addthis Tips: Booklet Distribution There are many ways to obtain Energy Savers-Tips for Saving Money and Energy at Home! You can access Energy Savers, as well as the Spanish-language Energy Savers, in the following ways. Order booklets in bulk quantities through the Energy Savers Partnership. Order now! Organizations can order booklet copies in bulk, for distribution to your customers, members, or employees. The Energy Savers booklet and the Spanish Energy Savers booklet are available for ordering. Booklet ordering is available for a limited time, at low cost to you. Please place your orders directly with the printer through the online web site. Order today for delivery before the winter heating season!

226

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

of incremental wind development. At the extreme, still otherextreme assumption, the implied unit cost of transmission for windon wind power in their analysis. On one extreme, a number of

Mills, Andrew D.

2009-01-01T23:59:59.000Z

227

Idaho/Transmission/Local Regulations | Open Energy Information  

Open Energy Info (EERE)

Idaho/Transmission/Local Regulations Idaho/Transmission/Local Regulations < Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Local Siting Process The typical siting process for a transmission line in Idaho will fall to the local units of government in the form of local siting permits, because NIETCs are lacking within Idaho. Chapter 65, Title 67 of Idaho Code extends authority to the counties to include transmission corridors in their comprehensive plans and provides ordinance authority and processes for granting such permits. When the siting process falls to the county level,

228

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

229

Array detector for high energy laser based on diffuse transmission sampling  

SciTech Connect (OSTI)

In order to improve the ability and accuracy of measuring the temporalspatial distribution of the intensity of a large-size, high-energy laser beam, a novel array detecting method based on diffuse transmission sampling is proposed. The measurement principle and the design of the sampling and attenuating unit are presented. High-temperature-resistant diffuse transmission material is used to sample and attenuate a high energy laser beam. Pure copper, whose surface is first sand-blasted and then gold-plated, is applied to scatter the incident high-energy laser beam. The formula for the attenuation ratio was derived in detail. We developed two large-aperture array detectors with spatial resolution of 5 mm, spatial duty ratio of 20%, and useable angle range of 30 without varying the responsivity, the non-uniformity in the laser profile measurement is below 1%, and the repeatability error in the laser power measurement is approximately 1%. The maximal energy density that the array detector can endure is more than 10 kJ/cm{sup 2}.

Pang, Miao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China) [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900 China (China); Key Laboratory of High Energy Laser, CAEP, Mianyang 621900 (China); Rong, Jian [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhou, Shan; Wu, Juan; Zhang, Wei; Hu, Xiaoyang [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900 China (China)] [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900 China (China); Fan, Guobin [Key Laboratory of High Energy Laser, CAEP, Mianyang 621900 (China)] [Key Laboratory of High Energy Laser, CAEP, Mianyang 621900 (China)

2014-01-15T23:59:59.000Z

230

High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy  

Science Journals Connector (OSTI)

...R. F. 1996 Electron energy-loss spectroscopy in...microscope, 2nd edn. New York, NYPlenum. Egerton...Transmission electron energy loss spectrometry in materials...energy-gain spectroscopy. New J. Phys. 10, 1367-2630...

2009-01-01T23:59:59.000Z

231

EIS-0231: Navajo Transmission Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31: Navajo Transmission Project 31: Navajo Transmission Project EIS-0231: Navajo Transmission Project SUMMARY This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise, to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned to deliver electric power from the Four Comers area in northwestern New Mexico across northern Arizona to a terminus in southeastern Nevada. The proposed project, the Navajo Transmission Project, is currentiy planned to be in service in the year 2001 and operate for about 50 years. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 1, 1996 EIS-0231: Draft Environmental Impact Statement Draft Environmental Impact Statement Navajo Transmission Project

232

Arizona/Transmission/State Regulations | Open Energy Information  

Open Energy Info (EERE)

Arizona‎ | Transmission Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Siting Process The requirements for routing and permitting electric transmission lines are found in Arizona State Legislature Revised Statutes Title 40, Chapter 2, Article 6.2. According to statute, every person contemplating construction of any transmission line within the state during any 10-year period must file a 10-year with the Arizona Corporation Commission (ACC) on or before January 31 of each year.[1] Prior to beginning construction of a

233

Colorado/Transmission/State Data Documents | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Transmission/State Data Documents < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission State Data Documents Roadmap State Data Regulatory Overview General Print PDF Transmission Permitting at a Glance In Colorado, local governments (counties and municipalities) have the authority to site high-voltage transmission lines. The State's authority in siting is limited to a backstop appeal process, by which utilities may submit an appeal to local government decisions to the Colorado Public Utilities Commission (CPUC) for review and resolution.

234

GTT 2012 Transmission Workshop - Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Workshop - Documents Transmission Workshop - Documents GTT 2012 Transmission Workshop - Documents Use the links below to download documents from the GTT's Transmission Workshop, held November 1-2, 2012 Agenda Roster of Attendees Presentation - Overview - Anjan Bose, DOE Presentation - EERE Issues and Opportunities - David Danielson, DOE Presentation - Vision for the Future - Lauren Azar, DOE Presentation - Tomorrow's Power System - Michael Heyeck, EPRI Presentation - FERC Overview - Cheryl LaFleur, FERC Presentation - ISO/RTO Challenges and Opportunities - Carl Monroe, Southwest Power Pool Product - Future Vision & Grid Challenges: Summary Results of Breakout Group Discussions Product - Opportunities to Overcome Key Challenges: Summary Results of Breakout Group Discussions Product - Final Discussion Summary Report

235

RAPID/BulkTransmission/New Mexico | Open Energy Information  

Open Energy Info (EERE)

Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us Regulatory Information Overviews Search for other...

236

Sun Valley to Morgan Transmission Line | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: Sun Valley to Morgan Transmission Line EIS at na for na Environmental Impact Statement...

237

Incorporating Energy Efficiency into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Columbia Transmission Corporation BPA Bonneville Powerthis treatment vary. For BPA and most of the northwesternPACW broader adjustment BPA, CHPD, DOPD, GCPD, TPWR: Impact

Barbose, Galen

2014-01-01T23:59:59.000Z

238

Transmission Siting in the Western United States | Open Energy...  

Open Energy Info (EERE)

in the Western United StatesPermittingRegulatory GuidanceGuideHandbook Abstract This "white paper" provides comprehensive regulatory guidance for the siting of transmission...

239

WAC - 463-61 - Electrical Transmission Facilities | Open Energy...  

Open Energy Info (EERE)

61 - Electrical Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 463-61 - Electrical...

240

Energy Efficiency of MIMO Transmission Strategies in Wireless Sensor Networks Huaiyu Dai, Liang Xiao, and Quan Zhou  

E-Print Network [OSTI]

Energy Efficiency of MIMO Transmission Strategies in Wireless Sensor Networks Huaiyu Dai, Liang in the link adaptation study. Keywords: Cooperative MIMO, Energy Efficiency, MIMO Transmission, Mobile Agent, Sensor Network, Spectral Efficiency, Virtual MIMO, Wideband Regime. #12;Energy Efficiency of MIMO

Dai, Huaiyu

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

IPCC Data Distribution Centre | Open Energy Information  

Open Energy Info (EERE)

IPCC Data Distribution Centre IPCC Data Distribution Centre Jump to: navigation, search Tool Summary Name: IPCC Data Distribution Centre Agency/Company /Organization: World Meteorological Organization, United Nations Environment Programme Sector: Energy, Land Topics: Baseline projection, GHG inventory, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, Pathways analysis Resource Type: Dataset Website: www.ipcc-data.org/ References: IPCC Data Distribution Centre [1] " The DDC provides climate, socio-economic and environmental data, both from the past and also in scenarios projected into the future. Technical guidelines on the selection and use of different types of data and scenarios in research and assessment are also provided." References ↑ "IPCC Data Distribution Centre"

242

Finding optimum route of electrical energy transmission line using multi-criteria with Q-learning  

Science Journals Connector (OSTI)

Due to an increasing energy requirement the consideration of route determination is becoming important. The aim of this project is to find an optimum result considering its important criteria. Finding an optimum route is a complex problem. It does not mean the shortest path to the problem. It is important to find the best way under the criterion that is determined by experts. Because of this we did not use the classical shortest path algorithm and we applied one of algorithms of the Artificial Intelligence. In this work, Geographic Information System (GIS)-based energy transmission route planning had been performed. In this optimization, using Multiagent Systems (MAS) which is a subdirectory of Distributed Artificial Intelligence the multi-criteria affecting energy transmission line (ETL) had been severally analyzed. The application had been actualized on the Selcuk University Campus Area. Therefore, the digital map of the campus area particularly had been composed containing of relevant criteria. Using Q- learning Algorithm of Multiagent System the optimum route had been determined.

Semiye Demircan; Musa Aydin; S. Savas Durduran

2011-01-01T23:59:59.000Z

243

NREL: Electric Infrastructure Systems Research - Distributed Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

244

Transmission/Resource Library/MOU | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transmission/Resource Library/MOU < Transmission‎ | Resource Library Jump to: navigation, search ResourceLibraryHeader.png Public Involvement Resources GIS Tools and Maps Environmental Resources and Mitigation NEPA MOUs General Transmission Documents Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Memorandums of Understanding (MOUs)for Interstate Transmission Projects Multi-state transmission siting and permitting projects benefit from effective collaboration between government entities, tribes, project

245

Transmission/Resource Library/Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transmission/Resource Library/Resources < Transmission‎ | Resource Library(Redirected from Transmission/Resource Library/Public Involvement) Jump to: navigation, search ResourceLibraryHeader.png Public Involvement Resources GIS Tools and Maps Environmental Resources and Mitigation NEPA MOUs General Transmission Documents Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Public Participation for Interstate Transmission Public participation is a requirement of any project that must comply with

246

Colorado/Transmission/State Data | Open Energy Information  

Open Energy Info (EERE)

Data Data < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission State Data Roadmap State Data Regulatory Overview General Print PDF Under DevelopmentThis page is part of the redesign of the Regulatory Roadmap. Transmission Permitting at a Glance In Colorado, local governments (counties and municipalities) have the authority to site high-voltage transmission lines. The State's authority in siting is limited to a backstop appeal process, by which utilities may submit an appeal to local government decisions to the Colorado Public Utilities Commission (CPUC) for review and resolution. State Siting Act None State Preemptive Authority The CPUC has backstop authority only. If a permit is denied by the local government, the applicant may appeal to the CPUC if certain conditions are met (CRS 29-20-108).

247

Definition: Transmission Line Monitoring System | Open Energy Information  

Open Energy Info (EERE)

Monitoring System Monitoring System Jump to: navigation, search Dictionary.png Transmission Line Monitoring System Hardware, software, including sensors for voltage, current, temperature, mechanical load, wind speed, or other electrical or environmental parameters, including synchrophasors. These systems are designed to provide precise information that determine the operating conditions and ratings of transmission lines. Such a system can monitor line conditions and alert grid operators of trouble.[1] Related Terms transmission lines, transmission line References ↑ https://www.smartgrid.gov/category/technology/transmission_line_monitoring_system [[Ca LikeLike UnlikeLike You like this.Sign Up to see what your friends like. tegory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid,

248

Colorado/Transmission/State Regulations | Open Energy Information  

Open Energy Info (EERE)

Regulations Regulations < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State Siting Process Colorado does not have a state-administered siting act for high-voltage transmission lines. The role of the state in permitting high-voltage transmission lines is limited to 1) issuing a Certificate of Public Convenience and Necessity (CPCN), typically prior to the siting and permitting processes, and 2) reviewing and resolving siting cases if a utility appeals local government decisions. Colorado laws and CPUC rules require that an electric utility seeking to

249

2010 Transmission Reliability Program Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Reliability Program Peer Review Transmission Reliability Program Peer Review 2010 Transmission Reliability Program Peer Review The Transmission Reliability research area focuses on two key areas: 1) Real-Time Grid Reliability Management and 2) Reliability and Markets. The first area develops monitoring and analysis tools that process synchrophasor data to enable real-time assessment of grid status and stability margins, with the goal of improving power system reliability and visibility through wide-area measurement and control. It is developing advanced technologies and tools to help create a resilient electric transmission system that can better detect disturbances, accommodate a variety of generation sources, and automatically reconfigure the grid to prevent widespread outages and/or rebalance the system. The second area

250

Distributed Wind | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

used by the Wind Program to characterize them as distributed: Proximity to End-Use: Wind turbines that are installed at or near the point of end-use for the purposes of meeting...

251

Measurement of technical and allocative efficiencies using a CES cost frontier: a benchmarking study of Japanese transmission-distribution electricity  

Science Journals Connector (OSTI)

This paper estimates the technical and allocative inefficiencies of the transmission-distribution sector of Japanese electric utilities using a panel data during the 19811998 period. A stochastic production f...

Jiro Nemoto; Mika Goto

2006-03-01T23:59:59.000Z

252

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

large, but conceptual, transmission lines such as the C/PNW-very conceptual transmission lines that resemble radialand voltage of transmission lines added in the study, as

Wiser, Ryan

2014-01-01T23:59:59.000Z

253

Distribution Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

charging and electrolyzers Energy storage Building and industrial loads and demand response Smart grid sensing, automation, and microgrids Informed efforts in technology...

254

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

500 and 230 kV 765 kV and 800 kV HVDC 500 and 230 kV 500 kVmi) 138 and 345 kV 345 kV 345 kV 345 kV and HVDC 345kV and HVDC 345 kV 345 kV Note: Total transmission cost is

Mills, Andrew D.

2009-01-01T23:59:59.000Z

255

Incorporating Energy Efficiency into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

2010. Improving Energy Efficiency for Albertas IndustrialEnergy Assessment of Energy Efficiency Potentials (2010-2010. Improving Energy Efficiency for Albertas Industrial

Barbose, Galen

2014-01-01T23:59:59.000Z

256

GRR/Section 8-OR-a - State Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

8-OR-a - State Transmission Siting 8-OR-a - State Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-OR-a - State Transmission Siting 08ORAStateTransmissionSitingProcess (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Energy Oregon Energy Facility Siting Council Regulations & Policies ORS 469: Energy and Conservation OAR 345-015: Department of Energy Proceedings OAR 345-023: Need Standard OAR 345-024: Specific Standards for Siting Facilities Triggers None specified Click "Edit With Form" above to add content 08ORAStateTransmissionSitingProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

257

Distribution System Voltage Regulation by Distributed Energy Resources  

SciTech Connect (OSTI)

This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

258

Transmission/Resource Library/GIS Tools | Open Energy Information  

Open Energy Info (EERE)

Transmission/Resource Library/GIS Tools Transmission/Resource Library/GIS Tools < Transmission‎ | Resource Library Jump to: navigation, search ResourceLibraryHeader.png Planning Public Involvement GIS Tools and Maps Environmental Resources and Mitigation NEPA MOUs General Transmission Documents Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database ACEII.jpg ACE-II: Areas of Conservation Emphasis Provides an easily-accessible and standardized way to view the best available statewide data on California's biological richness and biodiversity CAPS.jpg CAPS: Crucial Areas Planning System Online tool that maps crucial habitat as well as key wildlife connectivity areas in Montana. The aim of the mapping system is to consider fish,

259

2013 Transmission Reliability Program Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Reliability Program Peer Review Transmission Reliability Program Peer Review 2013 Transmission Reliability Program Peer Review The Transmission Reliability Program Peer Review included six sessions over 2 days on June 27 - 28, 2013. Presentations are available through the individual session links. The agenda and introduction by Joe Eto, LBNL, are available below. Day 1: June 27 Session I Baselining Studies and Analysis, Bharat Bhargava, EPG Baselining Studies and Analysis, Brett Amidan, PNNL Synchrophasor Standards Support and Development, Ken Martin, EPG Session II Advanced Synchrophasor Metrology, Stan Hadley, ORNL GPS Issue Management, Mark Buckner, ORNL Technology Assessment for Next Generation PMU, Mark Buckner, ORNL Session III Measurement-Based Stability Assessment, Dan Trudnowski, U. Montana

260

2012 National Electric Transmission Congestion Study | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012 2012 National Electric Transmission Congestion Study 2012 National Electric Transmission Congestion Study 2012 National Electric Transmission Congestion Study The Department issued a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study. DOE hosted four regional pre-study workshops in early December 2011 to receive input and suggestions concerning the study. DOE appreciates the comments that various individuals and organizations submitted. The Department is preparing the 2012 Congestion Study now, and hosted three webinars in August 2012 to receive input and suggestions concerning the preliminary findings of the study. The presentation used in the webinars is now available. Later this year, DOE will release a draft of the study

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tri State Generation and Transmission Association Inc | Open Energy  

Open Energy Info (EERE)

Generation and Transmission Association Inc Generation and Transmission Association Inc Jump to: navigation, search Name Tri-State Generation and Transmission Association Inc Place Westminster, Colorado Zip 80234 Product A wholesale electric power asset operator and transmission grid. Coordinates 43.07212°, -72.465748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07212,"lon":-72.465748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Transmission/Permitting Atlas/State Data | Open Energy Information  

Open Energy Info (EERE)

Transmission/Permitting Atlas/State Data Transmission/Permitting Atlas/State Data < Transmission‎ | Permitting Atlas Jump to: navigation, search PermittingAtlasHeader.png Roadmap Compare States General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database State State Siting Act State Preemptive Authority Siting/Permitting Entities Permit Processing Timeframe Arizona None If TLSC finds compliance with local land use unreasonable or unfeasible, then the TLSC may grant a certificate Arizona Corporation Commission (ACC); Transmission Line Siting Committee (TLSC) 210-240 Days California Public Utilities Code Section 1001 Local jurisdictions are preempted from regulating electric power line projects California Public Utilities Commission (CPUC) 18 months

263

PP-230-2 International Transmission Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

No. PP-230-4 International Transmission Company: Federal Register Notice Volume 74, No. 26 - Feb. 10, 2009 Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C....

264

Electric Transmission Siting at the California PUC | Open Energy...  

Open Energy Info (EERE)

at the California PUC Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Electric Transmission Siting at the California PUC Published Publisher Not...

265

A distributed on-line HV transmission condition monitoring information system  

SciTech Connect (OSTI)

China Light and Power Company Ltd. (CLP) is responsible for supplying electricity to the whole of Hong Kong except Hong Kong Island and Lamma Island. In CLP`s Castle Peak power plant, 19 kV and 23 kV electric supplies are generated. The voltage is then stepped up to 400 kV for transmission. The intermediate control between those transformers and the major 400 kV overhead transmission system lies with a standard One and a half Breaker Configuration switch substations. The substation houses single phase encapsulated SF{sub 6} circuit breakers. In the urban centers, 400 kV substations are installed to step down 400 kV to 132 kV or further to 11 kV for distribution. This paper describes the development of a on-line distributed information system for monitoring the conditions of the whole HV transmission system. The system continuously monitors status of each circuit breaker (CB) together with important operational parameters, such as duration during making and breaking, operations of hydraulic pumps and SF{sub 6} gas pressure etc. Each group of CBs is monitored by a standalone microcontroller using a local area network with a baud rate of 9,600. The information can be recorded on the harddisk of an on-site microcomputer and further transmitted back to a remote computer for alarm generation and multi-station supervision. The CLP 400 kV substation and the Tsz Wan Shan 400 kV substation are among the first targets for development.

Chan, W.L. [Hong Kong Polytechnic Univ., Kowloon (Hong Kong)] [Hong Kong Polytechnic Univ., Kowloon (Hong Kong); Pang, S.L.; Chan, T.M. [China Light and Power Co. Ltd., Hong Kong (Hong Kong)] [China Light and Power Co. Ltd., Hong Kong (Hong Kong); So, A.T.P. [City Univ. of Hong Kong, Kowloon (Hong Kong)] [City Univ. of Hong Kong, Kowloon (Hong Kong)

1997-04-01T23:59:59.000Z

266

Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems  

SciTech Connect (OSTI)

This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering

1992-02-01T23:59:59.000Z

267

Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure  

Broader source: Energy.gov [DOE]

During this workshop, EPSA invited technical experts from industry, national laboratories, and NGOs to discuss the need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures.

268

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

SciTech Connect (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

269

Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Broader source: Energy.gov [DOE]

Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

270

American Transmission Company LLC Smart Grid Project | Open Energy  

Open Energy Info (EERE)

American Transmission Company LLC American Transmission Company LLC Country United States Headquarters Location Waukesha, Wisconsin Recovery Act Funding $1,330,825.00 Total Project Value $2,661,650.00 Coverage Area Coverage Map: American Transmission Company LLC Smart Grid Project Coordinates 43.0116784°, -88.2314813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

271

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect (OSTI)

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

272

File:08CABCaliforniaTransmissionCPUCProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

CABCaliforniaTransmissionCPUCProcess.pdf CABCaliforniaTransmissionCPUCProcess.pdf Jump to: navigation, search File File history File usage File:08CABCaliforniaTransmissionCPUCProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 119 KB, MIME type: application/pdf, 3 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:15, 10 January 2013 Thumbnail for version as of 17:15, 10 January 2013 1,275 × 1,650, 3 pages (119 KB) Alevine (Talk | contribs) 14:27, 29 November 2012 Thumbnail for version as of 14:27, 29 November 2012 1,275 × 1,650, 3 pages (159 KB) Dfitzger (Talk | contribs)

273

Arizona/Transmission/Local Regulations | Open Energy Information  

Open Energy Info (EERE)

Regulations Regulations < Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database Local Siting Process A CEC granted by the TLSC must be in compliance with all applicable ordinances, master plans and regulations of the state, a county or an incorporated city or town in which a facility will be located.[1] [This is subject to the power to grant a CEC "notwithstanding any such ordinance, master plan or regulation, exclusive of franchises, if the committee finds as a fact that compliance with such ordinance, master plan or regulation is

274

Distributed Renewable Energy Finance and Policy Toolkit | Open Energy  

Open Energy Info (EERE)

Distributed Renewable Energy Finance and Policy Toolkit Distributed Renewable Energy Finance and Policy Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Renewable Energy Finance and Policy Toolkit Agency/Company /Organization: Clean Energy States Alliance (CESA) Partner: Charles Kubert and Mark Sinclair Sector: Energy Focus Area: People and Policy, Economic Development Phase: Evaluate Options, Develop Goals, Develop Finance and Implement Projects Topics: Best Practices Resource Type: Guide/manual User Interface: Other Website: www.cleanenergystates.org/Publications/cesa-financial_Toolkit_Dec2009. Cost: Free Equivalent URI: cleanenergysolutions.org/content/distributed-renewable-energy-finance- Language: English Policies: "Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property.

275

Distributed Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

Energy Association Energy Association Address PO Box 1861 Place Flagstaff, AZ Zip 86002 Phone number 928-255-0214 Website http://www.distributedwind.org Coordinates 35.1978341°, -111.6464261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1978341,"lon":-111.6464261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Synthesised Constraint Models for Distributed Energy Management  

E-Print Network [OSTI]

for optimisation have been widely ignored ­ a gap we aim to close. As a by-product, we give a formulation of warmSynthesised Constraint Models for Distributed Energy Management Alexander Schiendorfer, Jan frequently encountered in energy management systems such as the coordination of power generators in a virtual

Reif, Wolfgang

277

Distribution Drive | Open Energy Information  

Open Energy Info (EERE)

Drive Drive Jump to: navigation, search Name Distribution Drive Place Dallas, Texas Zip 75205 Product Biodiesel fuel distributor. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

The Future of Offshore Wind Energy and Transmission in New Jersey...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 11, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium The Future of Offshore Wind Energy and Transmission in New Jersey Kris Ohleth The Atlantic Wind Connection Offshore...

279

THURSDAY: Deputy Secretary of Energy to Visit Western Area Power Administration Transmission Substation  

Broader source: Energy.gov [DOE]

Deputy Secretary of Energy Elizabeth Sherwood-Randall will visit the Western Area Power Administration for a ceremony at the Electrical District No. 5 Substation to view progress on the Electrical District 5-to-Palo Verde transmission project.

280

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

Cost with Starting Point Assumptions ($/MWh) Energy- Weighted Median (10th; 90th Percentile) Hydro Biomass Geothermalenergy levels on resource composition, costs, and transmission expansion Impact 12% Renewables (TWh/yr) Geothermal

Mills, Andrew D

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network [OSTI]

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

282

Energy distribution of Kerr spacetime using Moller energy momentum complex  

E-Print Network [OSTI]

Using the energy momentum complex given by M{\\o}ller in 1978 based on the absolute parallelism, the energy distribution in Kerr spacetime is evaluated. The energy with this spacetime is found to be the same as it was earlier evaluated using different definitions mainly based on the metric tensor.

Gamal G. L. Nashed

2005-07-12T23:59:59.000Z

283

GRR/Section 8-CA-a - State Transmission | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-CA-a - State Transmission GRR/Section 8-CA-a - State Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-CA-a - State Transmission 08CAACaliforniaTransmission.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies CPUC General Order (G.O) 131-D Triggers None specified Click "Edit With Form" above to add content 08CAACaliforniaTransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 8-CA-a.1 to 8-CA-a.2 - Is the Planned Geothermal Plant Capacity Greater than 50 MW The California Energy Commission (CEC) has the statutory responsibility for

284

Interior Offers First Right-of-Way for Renewable Energy Transmission in Federal Waters  

Broader source: Energy.gov [DOE]

As part of President Obamas Climate Action Plan to create American jobs, develop clean energy sources and cut carbon pollution, Secretary of the Interior Sally Jewell and Bureau of Ocean Energy Management (BOEM) Acting Director Walter Cruickshank today announced that BOEM has offered a right-of-way (ROW) grant to Deepwater Wind Block Island Transmission System, LLC (Deepwater Wind) for the Block Island Transmission System (BITS).

285

Flexible Distributed Energy and Water from Waste for the Food...  

Energy Savers [EERE]

Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage...

286

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

287

Incorporating Energy Efficiency into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

s December 2009, California Energy Demand 2010-2020 Adoptedsavings from both energy efficiency and demand response. Weto the annual energy and peak demand in 2021. See Appendix A

Barbose, Galen

2014-01-01T23:59:59.000Z

288

RAPID/BulkTransmission/Siting/Federal | Open Energy Information  

Open Energy Info (EERE)

Regulations for Implementing the Procedural Provisions of the NEPA Department of Energy - DOE, NEPA and You - A Guide to Public Participation Department of Energy - Office of NEPA...

289

Southwest Transmission Cooperative, Inc. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Inc. Smart Grid Project Inc. Smart Grid Project Jump to: navigation, search Project Lead Southwest Transmission Cooperative, Inc. Country United States Headquarters Location Benson, Arizona Recovery Act Funding $32,244,485.00 Total Project Value $64,488,970.00 Coverage Area Coverage Map: Southwest Transmission Cooperative, Inc. Smart Grid Project Coordinates 31.9678611°, -110.2945174° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

290

American Transmission Company LLC II Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead American Transmission Company LLC Country United States Headquarters Location Waukesha, Wisconsin Recovery Act Funding $11,444,180 Total Project Value $22,888,360 Coverage Area Coverage Map: American Transmission Company LLC II Smart Grid Project Coordinates 43.0116784°, -88.2314813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

291

An Evaluation of Cooperation Transmission Considering Practical Energy Models and Passive  

E-Print Network [OSTI]

.e. fixed constellation). Since reception energy costs are significant in WSNs, another quantity that shouldAn Evaluation of Cooperation Transmission Considering Practical Energy Models and Passive Reception. of Microelectronic Engineering, National University of Ireland, Cork, Ireland Abstract--The total energy consumed

Ingram, Mary Ann

292

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network [OSTI]

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means

New Hampshire, University of

293

Energy-Efficient Transmission for Multimedia Streams in Last-hop Wireless Internet  

E-Print Network [OSTI]

Energy-Efficient Transmission for Multimedia Streams in Last-hop Wireless Internet Invited Paper characteristics that can be leveraged to design energy-efficient loss recovery mechanisms. Given their loss, we first present an analysis of an energy-efficient MAC-layer protocol, called Fast Transmit MAC

Kravets, Robin

294

File:08COAStateTransmission.pdf | Open Energy Information  

Open Energy Info (EERE)

COAStateTransmission.pdf COAStateTransmission.pdf Jump to: navigation, search File File history File usage Metadata File:08COAStateTransmission.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 39 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:47, 10 July 2013 Thumbnail for version as of 13:47, 10 July 2013 1,275 × 1,650 (39 KB) Alevine (Talk | contribs) 12:00, 11 April 2013 Thumbnail for version as of 12:00, 11 April 2013 1,275 × 1,650 (60 KB) Dfitzger (Talk | contribs) 12:51, 28 February 2013 Thumbnail for version as of 12:51, 28 February 2013 1,275 × 1,650 (44 KB) Dfitzger (Talk | contribs)

295

File:08IDAStateTransmission.pdf | Open Energy Information  

Open Energy Info (EERE)

IDAStateTransmission.pdf IDAStateTransmission.pdf Jump to: navigation, search File File history File usage File:08IDAStateTransmission.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 37 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:27, 14 January 2013 Thumbnail for version as of 15:27, 14 January 2013 1,275 × 1,650 (37 KB) Dfitzger (Talk | contribs) 10:46, 9 January 2013 Thumbnail for version as of 10:46, 9 January 2013 1,275 × 1,650 (19 KB) Alevine (Talk | contribs) 14:17, 16 August 2012 Thumbnail for version as of 14:17, 16 August 2012 1,275 × 1,650 (20 KB) Dklein2012 (Talk | contribs)

296

File:08 - TransmissionOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

TransmissionOverview.pdf TransmissionOverview.pdf Jump to: navigation, search File File history File usage Metadata File:08 - TransmissionOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 65 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:20, 1 August 2013 Thumbnail for version as of 12:20, 1 August 2013 1,275 × 1,650, 2 pages (65 KB) Apalazzo (Talk | contribs) 15:43, 1 July 2013 Thumbnail for version as of 15:43, 1 July 2013 1,275 × 1,650, 2 pages (65 KB) Apalazzo (Talk | contribs) 17:37, 16 January 2013 Thumbnail for version as of 17:37, 16 January 2013 1,275 × 1,650, 2 pages (66 KB) Dfitzger (Talk | contribs)

297

File:08CAACaliforniaTransmission.pdf | Open Energy Information  

Open Energy Info (EERE)

CAACaliforniaTransmission.pdf CAACaliforniaTransmission.pdf Jump to: navigation, search File File history File usage File:08CAACaliforniaTransmission.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 30 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:54, 10 January 2013 Thumbnail for version as of 16:54, 10 January 2013 1,275 × 1,650 (30 KB) Alevine (Talk | contribs) 15:58, 29 November 2012 Thumbnail for version as of 15:58, 29 November 2012 1,275 × 1,650 (65 KB) Dfitzger (Talk | contribs) 15:02, 29 November 2012 Thumbnail for version as of 15:02, 29 November 2012 1,275 × 1,650 (65 KB) Dfitzger (Talk | contribs)

298

DAVIC - Distributed Energy Automation via Implicit Communication  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DAVIC - Distributed Energy Automation via Implicit Communication DAVIC - Distributed Energy Automation via Implicit Communication Speaker(s): Peter Palensky Date: January 22, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Peng Xu The electricity grid is seen as a wide-area distributed process, determined by its sub-processes - in our case the loads and distributed generation. Network-based coordination needs to be done very carefully and properly timed to avoid instabilities. Luckily, every point of the grid has the same grid frequency and the same time. Integrating these two trivial things (implicit communication) into one consistent communication model might complement a low-quality (explicit) best-effort communication channel (e.g. Internet, GPRS) for real time applications. A simulation shall clarify how

299

An Australian Perspective On Distributed Energy Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Australian Perspective On Distributed Energy Resources An Australian Perspective On Distributed Energy Resources Speaker(s): Hugh Outhred Date: December 11, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare The seminar will describe and critique the Australian approach to incorporating distributed energy resources into its restructured electricity industry, which consists of the National Electricity Market (a wholesale electricity market), retail electricity markets, network regulation and environmental regulation. These arrangements continue to evolve and recent developments will be discussed. Hugh Outhred is in the School of Electrical Engineering & Telecommunications at the University of New South Wales, Sydney, Australia. He is also a member of the National Electricity Tribunal ( a quasi-judicial appeal body associated with

300

Definition: Distribution Management System | Open Energy Information  

Open Energy Info (EERE)

Management System Management System Jump to: navigation, search Dictionary.png Distribution Management System A Distribution Management System (DMS) is a utility IT system capable of collecting, organizing, displaying and analyzing real-time or near real-time electric distribution system information. A DMS can also allow operators to plan and execute complex distribution system operations in order to increase system efficiency, optimize power flows, and prevent overloads. A DMS can interface with other operations applications such as geographic information systems (GIS), outage management systems (OMS), and customer information systems (CIS) to create an integrated view of distribution operations.[1] View on Wikipedia Wikipedia Definition In the recent years, utilization of electrical energy increased

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A comprehensive strategy for transmission switching action in simultaneous clearing of energy and spinning reserve markets  

Science Journals Connector (OSTI)

Abstract There is a great resolution calling for smart grids in recent years. Introduction of new technologies, that make the network flexible and controllable, is a main part of smart grid concept and a key factor to its success. Transmission network as a part of system network has drawn less attention. Transmission switching as a new transmission service can release us from load shedding and remove the constraints violations. Transmission switching can provide economic benefits compared to other control methods such as generation unit rescheduling or load shedding for contingency management. Utilizing a stochastic mix-integer nonlinear programming (SMINLP) model, transmission switching is used during contingencies and steady state to determine optimal required energy and reserve values. Stochastic joint energy and reserve markets with transmission switching considering dynamic constraints has been proposed to minimize the cost of supplying load, security expenses. Considering dynamic constraints in proposed model avoid the occurrence of transient instability when opening the line in transmission switching action. A network reduction method based on modified Jacobean AC NewtonRaphson technique power flow considering switchable line in technique is used for speeding up the calculation, efficiency and simplicity. To investigate the efficiency of the proposed strategy IEEE 14 bus test and IEEE 57 bus test system are studied. According to the obtained results, this strategy decreases energy and reserve marginal prices, as well as security cost.

Rahmat Aazami; Mahmoud Reza Haghifam; Farzad Soltanian; Masoud Moradkhani

2015-01-01T23:59:59.000Z

302

EEI/DOE Transmission Capacity Report  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

303

GRR/Section 8-HI-a - Transmission Line Approval | Open Energy Information  

Open Energy Info (EERE)

8-HI-a - Transmission Line Approval 8-HI-a - Transmission Line Approval < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-HI-a - Transmission Line Approval 08HIATransmissionLineApproval.pdf Click to View Fullscreen Contact Agencies Hawaii Public Utilities Commission Triggers None specified Click "Edit With Form" above to add content 08HIATransmissionLineApproval.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain Transmission Line Approval from the Hawaii Public Utilities Commission (PUC) to interconnect a proposed renewable energy project to the existing grid, when new transmission lines are required.

304

GRR/Section 8-UT-a - State Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-UT-a - State Transmission Siting GRR/Section 8-UT-a - State Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-UT-a - State Transmission Siting 08UTAStateTransmissionSitingProcess.pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Utah Public Service Commission Regulations & Policies Utah Code Title 54 - Public Utilities Siting of High Voltage Power Line Act Utah Code 10-9a-508 Triggers None specified Click "Edit With Form" above to add content 08UTAStateTransmissionSitingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

305

U.S. Energy Information Administration | Quarterly Coal Distribution...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama ...

306

Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West  

Broader source: Energy.gov (indexed) [DOE]

AGENDA TUESDAY, FEBRUARY 7 MEETING ROOM-WINDOWS ROOM 8:30am - 8:50am WELCOME, INTRODUCTIONS AND OPENING REMARKS CONTINENTAL BREAKFAST WILL BE SERVED Tracey A. LeBeau, Director, DOE Office of Indian Energy Lamont Jackson, Representative, DOE Office of Electricity Delivery and Energy Reliability Introductions 8:50am - 9:10am FEDERAL TRANSMISSION DISCUSSION: TRANSMISSION EXPANSION IN THE WEST Timothy Meeks, Administrator, Western Area Power Administration 9:10am - 9:30am TRANSMISSION DEVELOPMENT IN THE PACIFIC: PERSPECTIVES FROM BONNEVILLE POWER ADMINISTRATION Bill Drummond, Deputy Administrator, Bonneville Power Administration 9:30am - 10:45am TRANSMISSION POLICY AND REGULATION PRIMER: OVERVIEW OF JURISDICTIONAL AUTHORITIES & CURRENT POLICY TRENDS

307

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network [OSTI]

Energy Jobs Plan, Governor Brown established a 2020 goal of 12,000 megawatts of localized renewable energy development, or distributed generation, in California. In May 2012, Southern California Edison, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use

308

2012 Transmission and Energy Storage Peer Review Presentations...  

Broader source: Energy.gov (indexed) [DOE]

by DOE at the Lawrence Berkeley National Lab. DOE's Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on September 26 - 28,...

309

RAPID/BulkTransmission/Nevada | Open Energy Information  

Open Energy Info (EERE)

of Nevada: NV Energy, Bonneville Power Administration, and Valley Electric Association, Colorado River Commission, Los Angeles Department of Water and Power, Southern California...

310

20% Wind Energy by 2030 - Chapter 4: Transmission and Integration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

costs would be generally less than 10% wholesale cost of energy Date Study Wind Capacity Penetration (%) Regulation Cost (MWh) Load Following Cost (MWh) Unit Commit- ment Cost...

311

Modeling Interregional Transmission Congestion in the National Energy Modeling System  

E-Print Network [OSTI]

Abbreviations AEO DOE ECAR ECP EERE EFD EIA EMM ERCOT FERCBudget and Analysis Program of EERE Rocky Mountain, Arizona,Efficiency and Renewable Energy (EERE) Program supports many

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-01-01T23:59:59.000Z

312

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

313

Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment  

E-Print Network [OSTI]

Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment B. W. Reed, M of carbon nanotube materials, grown with a pulsed-laser deposition technique but purified and heat treated

Bertsch George F.

314

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network [OSTI]

stakeholders in transmission-line route planning and sitingan optimal transmission line route-finding tool. This tool

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

315

Incorporating Energy Efficiency into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Final Report. Prepared for Xcel Energy. Nexant. 2010. Systemin Section 2.2. PSCO Customer-Funded EE Programs (Xcel):Xcel staff indicated that the load forecast provided to WECC

Barbose, Galen

2014-01-01T23:59:59.000Z

316

Renewable Energy and Inter-Island Power Transmission (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

Gevorgian, V.

2011-05-01T23:59:59.000Z

317

Energy efficiency of information transmission by electrically coupled neurons  

E-Print Network [OSTI]

The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction takes place at relatively low values of energy consumption and the ratio of mutual information to energy consumption is relatively high. Therefore, communicating at these coupling values could be energetically the most efficient option.

Francisco J. Torrealdea; Cecilia Sarasola; Alicia d'Anjou; Abdelmalik Moujahid; N. Vlez de Mendizbal

2012-04-17T23:59:59.000Z

318

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

SciTech Connect (OSTI)

Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but factors that impact transmission costs and the relative market value of each renewable option can also be important. Under scenarios in which each load zone must meet 33% of its load with delivered renewable energy from the WREZ-identified resource hubs, the total transmission investment required to meet the 33% west-wide RE target is estimated at between $22 billion and $34 billion. Although a few of the new transmission lines are very long - over 800 miles - most are relatively short, with average transmission distances ranging from 230-315 miles, depending on the scenario. Needed transmission expenditure are found to decline to $17 billion if wide use of renewable energy credits is allowed; consideration of renewable resources outside of WREZ-identified hubs would further reduce this transmission cost estimate. Even with total transmission expenditures of $17-34 billion, however, these costs still represent just 10-19% of the total delivered cost of renewable energy.

Mills, Andrew; Phadke, Amol; Wiser, Ryan

2010-02-16T23:59:59.000Z

319

Distribution capacitor automation that controls voltage and saves energy  

SciTech Connect (OSTI)

The Electric Distribution Business Line of Southern California Edison Company (SCE) has begun a program to improve the distribution system operations and electrical efficiency. The program, called the Distribution System Efficiency Enhancement Program (DSEEP), consists of five principal projects: Automated Switching, Circuit Lock-Out Alarming, Substation Monitoring and Control, Outage Management, and Distribution Capacitor Automation Project (DCAP). DCAP is the largest and most sophisticated of the projects being implemented. The project takes advantage of fine-tuning customer voltages for conservation voltage regulation (CVR) benefits as well as minimizes line losses by reducing unnecessary reactive power flow. DCAP can also help to increase transmission line and substation capacity by improving system power factor. The DCAP system takes advantage of the distributed processing capability of meters, capacitor controllers, radios, and substation processors. DCAP uses two-way packet radios and new electronic meters that read real-time customer voltages as well as energy consumption. The radios transmit customer meter voltage information and capacitor status to substation processors, where a control algorithm runs to determine which capacitors should be turned on or off. The objective of DCAP is to reduce over-all net energy transfer from the substation to the customer and meet system VAR requirements. SCE has tested the system on 66 circuit capacitors (including 3 substation capacitors) on 18 circuits served from two substations. The positive results of the DCAP demonstrations has led to an aggressive roll-out plan for system-wide implementation of automating over 7600 switched capacitors by year-end 1995.

Williams, B.R.

1994-12-31T23:59:59.000Z

320

Distributed Energy Communications & Controls, Lab Activities - Synopsis  

SciTech Connect (OSTI)

Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

Rizy, D Tom [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Distribution of Natural Gas: The Final Step in the Transmission Process  

U.S. Energy Information Administration (EIA) Indexed Site

June 2008 June 2008 1 Each day, close to 70 million customers in the United States depend upon the national natural gas distribution network, including natural gas distribution companies and pipelines, to deliver natural gas to their home or place of business (Figure 1). These customers currently consume approximately 20 trillion cubic feet (Tcf) of natural gas per annum, accounting for about 22 percent of the total energy consumed in the United States each year. This end- use customer base is 92 percent residential units, 7 percent commercial businesses, and 1 percent large industrial and electric power generation customers. 1 However, the large- volume users, though small in number, account for more than 60 percent of the natural gas used by end users.

322

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

SciTech Connect (OSTI)

The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

2010-06-10T23:59:59.000Z

323

Exploration of resource and transmission expansion decisions in the Western Renewable Energy Zone initiative  

Science Journals Connector (OSTI)

The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (3865%). Solar energy is almost always the second largest source (1441%). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $1734 billion these costs still represent just 1019% of the total delivered cost of renewable energy.

Andrew Mills; Amol Phadke; Ryan Wiser

2011-01-01T23:59:59.000Z

324

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

U.S. Department of Energy 2012 National Electric Transmission Congestion Study  

Broader source: Energy.gov (indexed) [DOE]

12 National Electric 12 National Electric Transmission Congestion Study Eastern Regional Workshop St. Louis, MO Rep. Tom Sloan, Kansas Congestion Means: Convergence of Political and Technological Limitations on Operation of Grid Price signal to incent investment in local generation or/and regional transmission or/and increased energy conservation investments An impediment to moving large amounts of lower-cost renewable energy to distant load centers An opportunity for the DOE to Partner with stakeholders on innovative programs to address the political impediments to alleviating congestion Commend DOE Efforts to Address Political Congestion: Reaching out to Lauren Azar and an RTO Engineer Carefully Considering DOE Electricity Advisory Committee Recommendations

326

Energy efficiency of information transmission by electrically coupled neurons  

E-Print Network [OSTI]

The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction take...

Torrealdea, Francisco J; d'Anjou, Alicia; Moujahid, Abdelmalik; de Mendizbal, N Vlez; 10.1016/j.biosystems.2009.04.004

2012-01-01T23:59:59.000Z

327

NREL: Energy Analysis - Distributed Generation Energy Technology Capital  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capital Costs Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology capital cost estimates, please visit the Transparent Cost Database website for NREL's information

328

Sandia National Laboratories: PNM Distributed Energy Solar Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

329

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

330

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

331

Energy Efficiency of Fixed-Rate Wireless Transmissions under Queueing Constraints and Channel Uncertainty  

E-Print Network [OSTI]

Energy efficiency of fixed-rate transmissions is studied in the presence of queueing constraints and channel uncertainty. It is assumed that neither the transmitter nor the receiver has channel side information prior to transmission. The channel coefficients are estimated at the receiver via minimum mean-square-error (MMSE) estimation with the aid of training symbols. It is further assumed that the system operates under statistical queueing constraints in the form of limitations on buffer violation probabilities. The optimal fraction of of power allocated to training is identified. Spectral efficiency--bit energy tradeoff is analyzed in the low-power and wideband regimes by employing the effective capacity formulation. In particular, it is shown that the bit energy increases without bound in the low-power regime as the average power vanishes. On the other hand, it is proven that the bit energy diminishes to its minimum value in the wideband regime as the available bandwidth increases. For this case, expressio...

Qiao, Deli; Velipasalar, Senem

2009-01-01T23:59:59.000Z

332

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

nearest transmission system substation, and are derived fromthe nearest transmission substation, the capacity factor of

Mills, Andrew D

2011-01-01T23:59:59.000Z

333

IEEE 1547 and 2030 Standards for Distributed Energy Resources...  

Office of Scientific and Technical Information (OSTI)

IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid Thomas Basso National Renewable Energy Laboratory...

334

Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks.  

E-Print Network [OSTI]

??The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to (more)

Zhang, Xianjun

2013-01-01T23:59:59.000Z

335

Optical fiber configurations for transmission of laser energy over great distances  

DOE Patents [OSTI]

There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

Rinzler, Charles C; Zediker, Mark S

2014-11-04T23:59:59.000Z

336

Modeling Interregional Transmission Congestion in the NationalEnergy Modeling System  

SciTech Connect (OSTI)

Congestion analysis using National Energy Modeling National Energy Modeling System (NEMS) or NEMS-derivatives, such as LBNL-NEMS, is subject to significant caveats because the generation logic inherent in NEMS limits the extent to which interregional transmission can be utilized and intraregional transmission is not represented at all. The EMM is designed primarily to represent national energy markets therefore regional effects may be simplified in ways that make congestion analysis harder. Two ways in particular come to mind. First, NEMS underutilizes the capability of the traditional electric grid as it builds the dedicated and detached grid. Second, it also undervalues the costs of congestion by allowing more transmission than it should, due to its use of a transportation model rather than a transmission model. In order to evaluate benefits of reduced congestion using LBNL-NEMS, Berkeley Lab identified three possible solutions: (1) implement true simultaneous power flow, (2) always build new plants within EMM regions even to serve remote load, and (3) the dedicated and detached grid should be part of the known grid. Based on these findings, Berkeley Lab recommends the following next steps: (1) Change the build logic that always places new capacity where it is needed and allow the transmission grid to be expanded dynamically. (2) The dedicated and detached grid should be combined with the traditional grid. (3) Remove the bias towards gas fired combine cycle and coal generation, which are the only types of generation currently allowed out of region. (4) A power flow layer should be embedded in LBNL-NEMS to appropriately model and limit transmission.

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-05-25T23:59:59.000Z

337

Sandia National Laboratories: distributed energy resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events,...

338

Department of Energy Announces Quadrennial Energy Review Public...  

Broader source: Energy.gov (indexed) [DOE]

effort to make recommendations regarding key infrastructure needed for transmission, storage and distribution of energy. The Cheyenne meeting will examine...

339

Department of Energy Announces Quadrennial Energy Review Public...  

Broader source: Energy.gov (indexed) [DOE]

effort to make recommendations regarding key infrastructure needed for transmission, storage and distribution of energy. The Rhode Island and Connecticut...

340

Department of Energy Announces Quadrennial Energy Review Public...  

Broader source: Energy.gov (indexed) [DOE]

effort to make recommendations regarding key infrastructure needed for transmission, storage and distribution of energy. The Portland meeting will examine...

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Toward space solar power: Wireless energy transmission experiments past, present and future  

Science Journals Connector (OSTI)

Solar power is a reality. Today increasing numbers of photovoltaic and other solar-powered installations are in service around the world and in space. These uses range from the primary electric power source for satellites remote site scientific experiments and villages in developing countries to augmenting the commercial electric grid and providing partial power for individual businesses and homeowners in developed countries. In space electricity generated by photovoltaic conversion of solar energy is the mainstay of power for low Earth and geostationary satellite constellations. Still for all its acceptance as a benign and environmentally friendly energy source terrestrial solar power has yet to be seriously considered a viable technology for providing base electrical generating capacity. The obvious reason is sunshine on Earth is too unreliable. In addition to the diurnal and seasonal cycles inclement weather reduces the average daily period and intensity of insolation. However the Sun shines constantly in space. The challenge is to harvest and transmit the energy from space to Earth. The concept of space solar power based on microwave wireless energy transmission was first put forth more than 25 years ago by Dr. Peter Glaser. We review historical experiments in wireless energy transmission which have brought the technology from a laboratory curiosity to its present status. Results from recent experiments and their implications for wireless energy transmission as an enabling technology for space solar power are reviewed. Current developments are discussed along with proposed terrestrial and space experiments.

Frank E. Little; James O. McSpadden; Kai Chang; Nobuyuki Kaya

1998-01-01T23:59:59.000Z

342

Energy Distribution of Nanoflares in Three-Dimensional Simulations of  

E-Print Network [OSTI]

Energy Distribution of Nanoflares in Three-Dimensional Simulations of Coronal Heating Chung-Sang Ng of the energy distribution of solar flares, there have not been many results based on large-scale three-dimensional direct simulations due to obvious numerical difficulties. We will present energy distributions and other

Ng, Chung-Sang

343

Designing pricing strategies for coordination of networked distributed energy resources  

E-Print Network [OSTI]

simulations. Keywords: Power systems, distributed energy resources, energy market, distributed control, gameDesigning pricing strategies for coordination of networked distributed energy resources Bahman, Urbana-Champaign, USA, basar1@illinois.edu, aledan@illinois.edu. Abstract: We study the problem

Liberzon, Daniel

344

Distributed Energy Resources Market Diffusion Model  

SciTech Connect (OSTI)

Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase DER adoption, and thus, shift building energy consumption to a more efficient alternative.

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

2006-06-16T23:59:59.000Z

345

Category:Energy Distribution Organizations | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Energy Distribution Organizations Jump to: navigation, search Add a new Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

346

Agenda: Energy Infrastructure Finance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CAPITAL FOR ENERGY TRANSMISSION, STORAGE, AND DISTRIBUTION How do investors and capital markets view energy TS&D infrastructure as an asset class, especially compared to other...

347

A Smart Energy System: Distributed Resource Management, Control and Optimization  

E-Print Network [OSTI]

A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded platform for realizing a dynamic energy mix and optimizing the energy consumption dy- namically. Based

Beigl, Michael

348

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

turbines and compressed air energy storage for supplementalThe value of compressed air energy storage with wind inresources and compressed air energy storage (CAES). Energy

Wiser, Ryan

2014-01-01T23:59:59.000Z

349

Afluente Gera o e Transmiss o de Energia El trica S A | Open Energy  

Open Energy Info (EERE)

Afluente Gera o e Transmiss o de Energia El trica S A Afluente Gera o e Transmiss o de Energia El trica S A Jump to: navigation, search Name Afluente Geração e Transmissão de Energia Elétrica S.A. Place Flamengo, Rio de Janeiro, Brazil Zip 22210-090 Product The company is quoted and its activities are study, project, construction and exploration of energy generation system and energy transmission. Coordinates -22.934099°, -43.17601° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.934099,"lon":-43.17601,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

nearest transmission system substation, and are derived fromthe nearest transmission substation, the capacity factor ofor above) transmission substation. Capital costs vary for

Mills, Andrew

2010-01-01T23:59:59.000Z

351

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network [OSTI]

of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

352

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

and thermal equipment, and energy storage - collectivelysolar thermal collectors, and energy storage devices can be

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

353

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

photovoltaics, solar thermal collectors, and energy storagesolar electric and thermal equipment, and energy storage -

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

354

Federal Energy Management Program: Best Management Practice: Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution System Audits, Leak Detection, and Repair to someone Distribution System Audits, Leak Detection, and Repair to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Google Bookmark Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Delicious Rank Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Digg Find More places to share Federal Energy Management Program: Best

355

EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

356

Energy-time entanglement preservation in plasmon-assisted light transmission  

E-Print Network [OSTI]

We report on experimental evidences of the preservation of energy-time entanglement for extraordinary plasmonic light transmission through sub-wavelength metallic hole arrays, and for long range surface plasmon polaritons. Plasmons are shown to coherently exist at two different times separated by much more than the plasmons lifetime. This kind of entanglement involving light and matter is expected to be useful for future processing and storing of quantum information.

Sylvain Fasel; Nicolas Gisin; Hugo Zbinden; Daniel Erni; Esteban Moreno; Frank Robin

2004-10-08T23:59:59.000Z

357

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen  

E-Print Network [OSTI]

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12;Objectives & Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system

358

How Distributed Wind Works | Department of Energy  

Energy Savers [EERE]

Basics How Distributed Wind Works How Distributed Wind Works Residential Small wind turbines can be used in residential settings to directly offset electricity usage using net...

359

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

Wiser, Ryan

2014-01-01T23:59:59.000Z

360

Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) |  

Broader source: Energy.gov (indexed) [DOE]

Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) October 7, 2013 - 9:33am Addthis Training Available Learn more about project planning and implementation: Project Planning: Determining the Best Renewable Energy Project for Your Site Federal Renewable Energy Project Implementation: From RFP to Project Closeout See more renewable energy training options. Most Federal distributed-scale renewable energy projects (smaller than 10 MWs) can be broken down into nine steps. The first two fall within the planning phase, while the remaining seven are part of the implementation phase. Many steps will be familiar to energy/facility managers already versed in conventional energy projects. Step 1: Facility/Energy Characteristics

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

current Coal Distribution Report current Coal Distribution Report Annual Coal Distribution Report Release Date: November 7, 2012 | Next Release Date: November 2013 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of U.S. coal by major coal-exporting States and destination Domestic distribution of U.S. coal by origin State, consumer, destination and method of transportation1 Domestic distribution of U.S. coal by destination State, consumer, destination and method of transportation1

362

Energy-water analysis of the 10-year WECC transmission planning study cases.  

SciTech Connect (OSTI)

In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

2011-11-01T23:59:59.000Z

363

MiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11a/h  

E-Print Network [OSTI]

at appropriate moments to save battery energy. An alternative way to conserve energy is to apply TPC (Trans- mitMiSer: An Optimal Low-Energy Transmission Strategy for IEEE 802.11a/h Daji Qiao+ Sunghyun Choi the energy consumption by wireless communication de- vices is perhaps the most important issue in the widely

Qiao, Daji

364

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network [OSTI]

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

365

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network [OSTI]

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

Tilevich, Eli

366

Integration of Distributed Energy The CERTS MicroGrid Concept  

E-Print Network [OSTI]

Integration of Distributed Energy Resources The CERTS MicroGrid Concept CALIFORNIA ENERGY are being challenged to maintain the reliability of the grid and support economic transfers of power Consortium for Electric Reliability Technology Solutions White Paper on Integration of Distributed Energy

367

Industrial Distributed Energy: Combined Heat & Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

368

Annual Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | Revision/Correction The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for 2012 are final, and this report supersedes the 2012 quarterly coal distribution reports. Highlights for 2012: Total coal distributions for 2012 were 1,003.1 million short tons (mmst), a decrease of 7.9% compared to 2011. Distributions to domestic destinations were 877.3 mmst, a decrease of 104.1 mmst (i.e. 10.6% decrease) compared to 2011. Distributions to

369

Determination analysis of energy conservation standards for distribution transformers  

SciTech Connect (OSTI)

This report contains information for US DOE to use in making a determination on proposing energy conservation standards for distribution transformers as required by the Energy Policy Act of 1992. Potential for saving energy with more efficient liquid-immersed and dry-type distribution transformers could be significant because these transformers account for an estimated 140 billion kWh of the annual energy lost in the delivery of electricity. Objective was to determine whether energy conservation standards for distribution transformers would have the potential for significant energy savings, be technically feasible, and be economically justified from a national perspective. It was found that energy conservation for distribution transformers would be technically and economically feasible. Based on the energy conservation options analyzed, 3.6-13.7 quads of energy could be saved from 2000 to 2030.

Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Das, S.

1996-07-01T23:59:59.000Z

370

Definition: Interchange Distribution Calculator | Open Energy Information  

Open Energy Info (EERE)

Distribution Calculator Distribution Calculator Jump to: navigation, search Dictionary.png Interchange Distribution Calculator The mechanism used by Reliability Coordinators in the Eastern Interconnection to calculate the distribution of Interchange Transactions over specific Flowgates. It includes a database of all Interchange Transactions and a matrix of the Distribution Factors for the Eastern Interconnection.[1] Related Terms Reliability Coordinator, Interchange Transaction References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Distribution_Calculator&oldid=480261" Categories: Definitions

371

Gas-Fired Distributed Energy Resource Technology Characterizations  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

372

OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OAHU WIND INTEGRATION OAHU WIND INTEGRATION AND TRANSMISSION STUDY: SUMMARY REPORT NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

373

OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)  

Broader source: Energy.gov (indexed) [DOE]

OAHU WIND INTEGRATION OAHU WIND INTEGRATION AND TRANSMISSION STUDY: SUMMARY REPORT NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

374

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network [OSTI]

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

375

Flexible Distributed Energy & Water from Waste for the Food ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report Biogas Opportunities Roadmap...

376

Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001  

Broader source: Energy.gov [DOE]

results of a demonstration of a microturbine simulator used to mimic the behavior of a distributed energy resource on an electrical system

377

CleanDistributedGeneration.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

anDistributedGeneration.pdf More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy...

378

Distributed Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distributed Wind Turbines Distributed Wind Turbines Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to...

379

Transmission and Distribution World March 2007: DOE Focuses on Cyber Security  

Broader source: Energy.gov [DOE]

Energy sector owners, operators and system vendors team up to boost control system security with national SCADA test bed.

380

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network [OSTI]

the other hand, such distributed generators as fuel cells ordistributed and conventional. Nuclear plants and conventional coal fired generators

Kahn, E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Generation Technologies Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherDistributedGenerationTechnologies&oldid267183...

382

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2007 Investment Plan was prepared with contribution from the following Energy Commission staff and consultants Kondoleon, Chuck Najarian. 2007 Strategic Transmission Investment Plan. California Energy Commission

383

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

connection costs associated with renewable energy in Europeand costs for renewables electricity grid connection: Examples in Europe. Renewable Energyrenewable energy zones (CREZs), for instance, estimated the cost

Wiser, Ryan

2014-01-01T23:59:59.000Z

384

Energy Department Announces Distributed Wind Competitiveness...  

Energy Savers [EERE]

for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy...

385

Energy Distribution at Large Angles of High-Energy Electrons in Bremsstrahlung  

Science Journals Connector (OSTI)

The energy distribution of high-energy electrons, that have been scattered by the nuclear potential and have lost energy by bremsstrahlung, has been investigated. It has been found that there is a peak in the energy distribution which occurs at energies of the order of mc2. The nature of and reasons for the peak are discussed. Formulas for the energy distribution near the peak and for the area under the peak are given. Similar results apply also to pair production.

David G. Keiffer and George Parzen

1956-02-15T23:59:59.000Z

386

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

photovoltaics, solar thermal collectors, and energy storagecooling, solar electric and thermal equipment, and energysolar thermal collectors coupled to absorption chillers are an economic approach to energy

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

387

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

Energy Resources for Carbon Emissions Mitigation RyanEnergy Resources for Carbon Emissions Mitigation Ryanand/or site-attributable carbon emissions at commercial and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

388

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Wind Powering America (EERE)

from New Transmission and Generation in Wyoming Introduction Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state. Modeling Inputs New infrastructure projects considered in this analysis would be developed for the purpose of exporting Wyoming wind and natural gas

389

Electric Transmission and Distribution Future R&D Needs Planning, Operation, Control, and Visualization  

Broader source: Energy.gov (indexed) [DOE]

27-28, 2013 27-28, 2013 Washington, DC FY13 DOE/CERTS Transmission Reliability R&D Internal Program Review Research Projects Reliability Standards Analysis and Assessments  Frequency Response Event Collection and Analysis  NERC Interconnections 2012 Annual Grid Reliability Performance Analysis and Report Page 1 Reliability Standards Analysis and Assessment  Objective: Collect grid data and conduct grid reliability performance analysis to support the NERC committees/groups (Resources Subcommittee and RS- Frequency Working Group) in the following ways: - Perform grid reliability metrics analysis using data collected in CERTS applications as requested by the RS - Analyze collected data to assess reliability performance at different levels - Interconnection, Reliability Coordinator, Balancing Authority

390

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

building a new 500 kV transmission line delivering roughlycost 500 kV HVDC lines rather than the New Transmission1500 MW, 500 kV lines. Cooperative transmission investments

Mills, Andrew D

2011-01-01T23:59:59.000Z

391

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

building a new 500 kV transmission line delivering roughlyinvestment in a 500 kV transmission line delivering 1,500 MWthe fact that 500 kV transmission lines can only be built in

Mills, Andrew

2010-01-01T23:59:59.000Z

392

Negative differential transmission in graphene  

Science Journals Connector (OSTI)

By using the Kubo linear response theory with the Keldysh Green function approach, we investigate the mechanism leading to the negative differential transmission in a system with the equilibrium electron density much smaller than the photon-excited one. It is shown that the negative differential transmission can appear at low probe-photon energy (in the order of the scattering rate) or at high energy (much larger than the scattering rate). For the low probe-photon energy case, the negative differential transmission is found to come from the increase of the intraband conductivity due to the large variation of electron distribution after the pumping. As for the high probe-photon energy case, the negative differential transmission is shown to tend to appear with the hot-electron temperature being closer to the equilibrium one and the chemical potential higher than the equilibrium one but considerably smaller than half of the probe-photon energy. We also show that this negative differential transmission can come from both the inter- and the intraband components of the conductivity. Especially, for the interband component, its contribution to the negative differential transmission is shown to come from both the Hartree-Fock self-energy and the scattering. Furthermore, the influence of the Coulomb-hole self-energy is also addressed.

B. Y. Sun and M. W. Wu

2013-12-17T23:59:59.000Z

393

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Distribution Report Quarterly Coal Distribution Report Release Date: October 01, 2013 | Next Release Date: January 3, 2014 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the second quarter 2013: Total domestic coal distribution was an estimated 205.8 million short tons (mmst) in the second quarter 2013. This value is 0.7 mmst (i.e. 0.3 percent) higher than the previous quarter and 6.3 mmst (i.e. 3.1 percent) higher than the second quarter of 2012 estimates.

394

Heat Distribution Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

395

Targeting DSM for transmission and distributions benefits: A case study of PG E's Delta District  

SciTech Connect (OSTI)

This study describes the results of evaluating the impact of a variety of DSM programs on the capacity expansion plan of an actual distribution planning area in Pacific Gas and Electric Company's service territory. The study makes use of a number of new techniques to develop area specific marginal costs, loads and DSM load impacts. The detailed data is used to develop an integrated least-cost distribution plan for the area. The integrated plan is approximately 30 percent less expansive than the unintegrated distribution expansion plan. PG E is among a number of utilities that are now beginning to work on increasing the cost-effectiveness of DSM programs with the use of integrated T D planning. Most of these utilities are experiencing higher T D costs relative to their costs of generation.

Orans, R.; Woo, C.K.; Swisher, J.N. (Energy and Environmental Economics, San Francisco, CA (United States)); Wiersma, B.: Horii, B. (Pacific Gas and Electric Co., San Francisco, CA (United States))

1992-05-01T23:59:59.000Z

396

Residual-Energy-Activated Cooperative Transmission (REACT) to Avoid the Energy Hole  

E-Print Network [OSTI]

strategy of CT may not be energy-efficient in terms of the total energy consumption when the distance the nodes near the sink of some of their burden and balancing the energy consumption across the network mobile nodes to mitigate uneven energy consumption is introduced in [3] and [4]. By changing the location

Ingram, Mary Ann

397

NREL: Energy Systems Integration Facility - Thermal Distribution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature...

398

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

carbon tax, combined heat and power, distributed energyuseful heat in combined heat and power systems, thermally-fossil-fuel based combined heat and power (CHP), thermally-

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

399

ITP Distributed Energy: CHP Project Development Handbook  

Broader source: Energy.gov (indexed) [DOE]

the geographic location, the extent of other infrastructure modifications (e.g., gas pipeline, distribution), and the potential environmental impacts of construction and...

400

Efficient Thermal Energy Distribution in Commercial Final Report  

E-Print Network [OSTI]

energy distribution. These include, but not limited to, 1) reducing thermal losses induced by air leakage through system components (i.e., duct, equipment), 2) decreasing thermal losses induced by heat conductionLBNL-41365 Efficient Thermal Energy Distribution in Commercial Buildings Final Report to California

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Robust Implementation of Distributed Algorithms for Control of Distributed Energy Resources  

E-Print Network [OSTI]

be used to enable the utilization of distributed energy resources for the provision of grid support is utilizing distributed energy storage (e.g. plug-in hybrid electric vehicles (PHEV) or uninterruptible power resources is not required, reducing costs associated with communication infrastructure, ii) complete

Liberzon, Daniel

402

Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks  

Science Journals Connector (OSTI)

Abstract This paper proposes an algorithm for modeling stochastically dependent renewable energy based distributed generators for the purpose of proper planning of unbalanced distribution networks. The proposed algorithm integrate the diagonal band Copula and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. Secondly, an efficient algorithm based on modification of the traditional Big Bang-Big crunch method is proposed for optimal placement of renewable energy based distributed generators in the presence of dispatchable distributed generation. The proposed optimization algorithm aims to minimize the energy loss in unbalanced distribution systems by determining the optimal locations of non-dispatchable distributed generators and the optimal hourly power schedule of dispatchable distributed generators. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithms.

A.Y. Abdelaziz; Y.G. Hegazy; Walid El-Khattam; M.M. Othman

2015-01-01T23:59:59.000Z

403

Audit Report - Department of Energy's Interconnection Transmission Planning Program Funded through the American Recovery and Reinvestment Act of 2009  

Broader source: Energy.gov (indexed) [DOE]

Audit Report Department of Energy's Interconnection Transmission Planning Program Funded through the American Recovery and Reinvestment Act of 2009 OAS-RA-13-26 June 2013 Department of Energy Washington, DC 20585 June 19, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ELECTRICITY DELIVERY AND ENERGY RELIABILITY FROM: Rickey R. Hass Deputy Inspector General for Audit and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Interconnection Transmission Planning Program Funded through the American Recovery and Reinvestment Act of 2009" BACKGROUND Under the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of

404

COMMISSION REPORT PUBLIC INTEREST ENERGY  

E-Print Network [OSTI]

transmission or distribution of electricity generated from renewable energy resources · Advanced electricity, clean energy, energy infrastructure, electric vehicles, Governor Brown's Clean Energy Jobs Plan The California Energy Commission manages public interest energy research for electric and natural gas research

405

Distributed generation capabilities of the national energy modeling system  

SciTech Connect (OSTI)

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

406

Definition: Automated Distribution Circuit Switches | Open Energy  

Open Energy Info (EERE)

Circuit Switches Circuit Switches Jump to: navigation, search Dictionary.png Automated Distribution Circuit Switches Distribution circuit switches that can be operated automatically in response to control signals from local sensors, distribution automation systems, or grid control systems. Such switches can be installed as automated devices or existing equipment can be retrofitted with controls and communications. The degree of automation depends on the controls and communications system implemented. These switches can be opened or closed to isolate portions of a distribution circuit that has experienced a short circuit (fault), or must be taken out of service for maintenance or other operations. When used in combination, these switches can reroute power from other substations or nearby distribution circuits.[1]

407

CCPG Update U.S. Department Of Energy 2012 National Electric Transmission Congestion  

Broader source: Energy.gov (indexed) [DOE]

CCPG Update CCPG Update U.S. Department Of Energy 2012 National Electric Transmission Congestion Study Workshop - Portland, OR December 13, 2011 Susan Henderson, P.E. Xcel Energy Path/TOT Ratings  TOT 1A - none  TOT 2A - none  TOT 3 ◦ Archer-Wayne Child Interconnection (150MW, 345kV) ◦ High Plains Express (500kV, 1600-8000MW) ◦ Zephyr (500kV DC, 3000MW) ◦ TransWest Express (600kV DC, 3000MW) ◦ Colorado-Wyoming Intertie (345kV, 800MW)  Reference: WECC Path Reports & Rating Catalog Planned Projects w/Path Impact)  TOTs 1A, 2A, and 3 are historically congested, however this is changing with new resources added along front range.  WECC 2019 & 2020 studies show no congestion issues along these paths - unless a large build out of WY

408

Definition: Distribution Automation Communications Network | Open Energy  

Open Energy Info (EERE)

Automation Communications Network Automation Communications Network Jump to: navigation, search Dictionary.png Distribution Automation Communications Network A communications network or networks designed to deliver control signals and information between distribution automation devices, and between these devices and utility grid control systems. These networks can utilize wired or wireless connections, and can be utility-owned or provided as services by a third party.[1] Related Terms distribution automation References ↑ https://www.smartgrid.gov/category/technology/distribution_automation_communications_network [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from

409

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

attractive. In general, solar thermal energy is attractiveof Distributed Solar Thermal Energy in Chinese Buildingsutilizing distributed solar thermal energy in residential

Feng, Wei

2014-01-01T23:59:59.000Z

410

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy a new scheme for an energy management system in the form of distributed control agents. The control architecture to function as energy management system is presented. Index Terms-- integrated electric power

Lai, Hong-jian

411

Published in IET Generation, Transmission & Distribution Received on 20th July 2011  

E-Print Network [OSTI]

of fixed- speed wind turbines using decentralised control of STATCOM with energy storage system M concern for power systems worldwide owing to the increasing impact of induction motor loads, wind turbines the requirements of grid code to connect wind turbines, considerable advances in the control of this system

Pota, Himanshu Roy

412

Energy and Isotope Dependence of Neutron Multiplicity Distributions  

E-Print Network [OSTI]

Fission neutron multiplicity distributions are known to be well reproduced by simple Gaussian distributions. Many previous evaluations of multiplicity distributions have adjusted the widths of Gaussian distributions to best fit the measured multiplicity distributions Pn. However, many observables do not depend on the detailed shape of Pn, but depend on the first three factorial moments of the distributions. In the present evaluation, the widths of Gaussians are adjusted to fit the measured 2nd and 3rd factorial moments. The relationships between the first three factorial moments are estimated assuming that the widths of the multiplicity distributions are independent of the initial excitation energy of the fissioning system. These simple calculations are in good agreement with experimental neutron induced fission data up to an incoming neutron energy of 10 MeV.

Lestone, J P

2014-01-01T23:59:59.000Z

413

Energy and Isotope Dependence of Neutron Multiplicity Distributions  

E-Print Network [OSTI]

Fission neutron multiplicity distributions are known to be well reproduced by simple Gaussian distributions. Many previous evaluations of multiplicity distributions have adjusted the widths of Gaussian distributions to best fit the measured multiplicity distributions Pn. However, many observables do not depend on the detailed shape of Pn, but depend on the first three factorial moments of the distributions. In the present evaluation, the widths of Gaussians are adjusted to fit the measured 2nd and 3rd factorial moments. The relationships between the first three factorial moments are estimated assuming that the widths of the multiplicity distributions are independent of the initial excitation energy of the fissioning system. These simple calculations are in good agreement with experimental neutron induced fission data up to an incoming neutron energy of 10 MeV.

J. P. Lestone

2014-09-17T23:59:59.000Z

414

Delay-aware BS Discontinuous Transmission Control and User Scheduling for Energy Harvesting Downlink Coordinated MIMO Systems  

E-Print Network [OSTI]

In this paper, we propose a two-timescale delay-optimal base station Discontinuous Transmission (BS-DTX) control and user scheduling for downlink coordinated MIMO systems with energy harvesting capability. To reduce the complexity and signaling overhead in practical systems, the BS-DTX control is adaptive to both the energy state information (ESI) and the data queue state information (QSI) over a longer timescale. The user scheduling is adaptive to the ESI, the QSI and the channel state information (CSI) over a shorter timescale. We show that the two-timescale delay-optimal control problem can be modeled as an infinite horizon average cost Partially Observed Markov Decision Problem (POMDP), which is well-known to be a difficult problem in general. By using sample-path analysis and exploiting specific problem structure, we first obtain some structural results on the optimal control policy and derive an equivalent Bellman equation with reduced state space. To reduce the complexity and facilitate distributed imp...

Cui, Ying; Wu, Yueping

2012-01-01T23:59:59.000Z

415

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network [OSTI]

William, "Energy Storage and Solar Power: An Exaggeratedreasons solar cogeneration requires on-site storage (1, 26).that solar alternatives will require so much storage to

Kahn, E.

2011-01-01T23:59:59.000Z

416

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network [OSTI]

applied to the case of hydroelectric facilities with large3. For comparison, the hydroelectric system in California asas droughts which reduce hydroelectric energy availability,

Kahn, E.

2011-01-01T23:59:59.000Z

417

ITP Industrial Distributed Energy: Microturbine Power Conversion...  

Broader source: Energy.gov (indexed) [DOE]

after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http:www.osti.govbridge Not available...

418

Transmission Design at the National Level: Benefits, Risks and Possible Paths Forward  

E-Print Network [OSTI]

Electric Energy System #12;Transmission Design at the National Level: Benefits, Risks and Possible Paths of Transmission and Distribution, Southern Company Brad Nickell, Director of Transmission Planning, Western interconnection consisting of one (in the case of ERCOT) or more regions. The ability to move electric energy

419

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2007. Blevins #12; i ACKNOWLEDGEMENTS The 2007 Strategic Transmission Investment Plan was prepared Investment Plan. California Energy Commission, Engineering Office. CEC7002007018CTF. #12; ii #12; iii

420

Research on Energy Efficiency of DC Distribution System  

Science Journals Connector (OSTI)

Abstract Energy efficiency of DC distribution systems is researched in this paper. Efficiency calculation models of feeders and loads are established, efficiencies of AC/DC, DC/DC and DC/AC are analyzed. Moreover, energy efficiencies of an AC system and two DC systems, monopole and bipolar, are calculated and compared. The efficiency improvement of office building supplied by DC power system compared to supply by AC power system is demonstrated. From analysis, it is showed that the energy efficiency is higher in DC distribution system than AC distribution system.

Zifa Liu; Mengyu Li

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Definition: Distribution Automation | Open Energy Information  

Open Energy Info (EERE)

Automation Automation Jump to: navigation, search Dictionary.png Distribution Automation DA is a family of technologies including sensors, processors, communication networks, and switches that can perform a number of distribution system functions depending on how they are implemented. Over the last 20 years, utilities have been applying DA to improve reliability, service quality and operational efficiency. More recently, DA is being applied to perform automatic switching, reactive power compensation coordination, or other feeder operations/control.[1] Related Terms sustainability, smart grid References ↑ https://www.smartgrid.gov/category/technology/distribution_automation [[Ca LikeLike UnlikeLike You and one other like this.One person likes this. Sign Up to see what your friends like.

422

DistributionDrive | Open Energy Information  

Open Energy Info (EERE)

DistributionDrive DistributionDrive Jump to: navigation, search Name DistributionDrive Place Addison, Texas Zip 75001 Product Supplier of Biodiesel, Straight Vegetable Oil (SVO), Recycled Vegetable Oil (WVO) and Engine Conversion Kits to use this fuels. Coordinates 38.477365°, -80.412149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.477365,"lon":-80.412149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Nord Distribution Solaire | Open Energy Information  

Open Energy Info (EERE)

Nord Distribution Solaire Nord Distribution Solaire Jump to: navigation, search Name Nord Distribution Solaire Place Roubaix, France Zip 59100 Sector Solar Product An installation company for solar passive and PV system in the North of France. Coordinates 50.691705°, 3.1752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.691705,"lon":3.1752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

ITP Distributed Energy: State of Washington Clean Energy Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

425

Transmission Utilization Group (TUG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Intertie Initiatives Intertie Open Season Transmission Utilization...

426

Transmission Commercial Project Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

427

Building Distributed Energy Performance Optimization for China - a Regional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

428

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Broader source: Energy.gov (indexed) [DOE]

DOE Distributes Energy-Saving Tools to Help Manufacturers Save DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

429

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Broader source: Energy.gov (indexed) [DOE]

Distributes Energy-Saving Tools to Help Manufacturers Save Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

430

Articles about Distributed Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

upward at the blades and nacelle. In July, the U.S. September 11, 2014 Three DOE Reports Analyze U.S. Wind Energy Growth DOE recently released three reports indicating that...

431

Optimal Siting and Sizing of Distributed Energy Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimal Siting and Sizing of Distributed Energy Resources Optimal Siting and Sizing of Distributed Energy Resources Speaker(s): Johan Driesen Date: February 15, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Ongoing changes in the operation of distribution grids call for a new way to plan grid modifications. This presentation gives an overview of possible methods of long-term planning for the deployment of Distributed Energy Resources (distributed generation, storage and controllable loads) in a given grid. The placement and sizing of the units have to be considered, making this a complex optimization problem with discrete and continuous variables. In the optimization problem, multiple objectives are often conflicting, e.g. minimal grid losses, maximal use of the resources and voltage stability. An evolutionary algorithm (genetic algorithms) is used

432

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution Systems |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: Air Distribution 8: Air Distribution Systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

433

Community Energy: Analysis of Hydrogen Distributed Energy Systems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(rooftop) photovoltaics (PV) and high electric vehicle (EV) penetration presents unique challenges and opportunities for distribution grid integration. The impacts of home...

434

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Energy optimization of water distribution system  

SciTech Connect (OSTI)

In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

Not Available

1993-02-01T23:59:59.000Z

436

Abstract--The increase in use of power electronics in transmission and distribution applications is the driving  

E-Print Network [OSTI]

is the driving force for development of high power devices. Utility applications like FACTS and HVDC require cost and compared for SiC and Si devices. These loss models are integrated with an HVDC transmission system to study of the systems. High Voltage DC (HVDC) transmission and Flexible AC Transmission Systems (FACTS) are the widely

Tolbert, Leon M.

437

30-MJ superconducting magnetic energy storage for electric-transmission stabilization  

SciTech Connect (OSTI)

The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

Turner, R.D.; Rogers, J.D.

1981-01-01T23:59:59.000Z

438

EIS-0421: Big Eddy-Knight Transmission Line | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21: Big Eddy-Knight Transmission Line 21: Big Eddy-Knight Transmission Line EIS-0421: Big Eddy-Knight Transmission Line Overview BPA is proposing to build a new 500 kilovolt (kV) transmission line in Wasco County, Oregon and Klickitat County, Washington and a new substation in Klickitat County. The new BPA transmission line would extend generally northeast from BPA's existing Big Eddy Substation in The Dalles, Oregon, to a new substation (Knight Substation) proposed to be connected to an existing BPA line about 4 miles northwest of Goldendale, Washington. The proposed Big Eddy Knight Transmission Project is needed to increase transmission capacity to respond to requests for transmission service in this area. Public Comment Opportunities No public comment opportunities available at this time.

439

File:08COaBulkTransmissionSitingProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08COaBulkTransmissionSitingProcess.pdf Size of this preview: 463 599...

440

X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations  

E-Print Network [OSTI]

The high-resolution X-ray spectroscopy made possible by the 1999 deployment of the Chandra X-ray Observatory has revolutionized our understanding of stellar X-ray emission. Many puzzles remain, though, particularly regarding the mechanisms of X-ray emission from OB stars. Although numerous individual stars have been observed in high-resolution, realizing the full scientific potential of these observations will necessitate studying the high-resolution Chandra dataset as a whole. To facilitate the rapid comparison and characterization of stellar spectra, we have compiled a uniformly processed database of all stars observed with the Chandra High Energy Transmission Grating (HETG). This database, known as X-Atlas, is accessible through a web interface with searching, data retrieval, and interactive plotting capabilities. For each target, X-Atlas also features predictions of the low-resolution ACIS spectra convolved from the HETG data for comparison with stellar sources in archival ACIS images. Preliminary analyses of the hardness ratios, quantiles, and spectral fits derived from the predicted ACIS spectra reveal systematic differences between the high-mass and low-mass stars in the atlas and offer evidence for at least two distinct classes of high-mass stars. A high degree of X-ray variability is also seen in both high and low-mass stars, including Capella, long thought to exhibit minimal variability. X-Atlas contains over 130 observations of approximately 25 high-mass stars and 40 low-mass stars and will be updated as additional stellar HETG observations become public. The atlas has recently expanded to non-stellar point sources, and Low Energy Transmission Grating (LETG) observations are currently being added as well.

Owen W. Westbrook; Nancy Remage Evans; Scott J. Wolk; Vinay L. Kashyap; Joy S. Nichols; Peter J. Mendygral; Jonathan D. Slavin; Bradley Spitzbart; Wayne L. Waldron

2007-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Distributed Energy Resources for Carbon Emissions Mitigation  

SciTech Connect (OSTI)

The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

442

Charged particle rapidity distributions at relativistic energies  

E-Print Network [OSTI]

- describe the measured net baryon rapidity distribution, we have included in the Lund string fragmentation model the popcorn mechanism for baryon-antibaryon production with equal probabilities for baryon-meson-antibaryon and baryon- antibaryon... to the hadronic interactions than PACS number~s!: 25.75.2q, 24.10.Lx owing effect on parton production via the gluon recombina- tion mechanism of Mueller-Qiu @11#. After the colliding nu- clei pass through each other, the Gyulassy-Wang model @12# is then used...

Lin, ZW; Pal, S.; Ko, Che Ming; Li, Ba; Zhang, B.

2001-01-01T23:59:59.000Z

443

"Are Distributed Energy Systems Optimal In India?" Narayanan Komerath  

E-Print Network [OSTI]

efficiency, their effectiveness as the elements of a national energy architecture is obvious. The point is to understand the key numbers and issues of the Indian primary energy market, the reasons and constraints partial "miracle cure" that may be embraced by a large part of the Indian population. ARE DISTRIBUTED

444

Cooperatives of distributed energy resources for efficient virtual power plants  

Science Journals Connector (OSTI)

The creation of Virtual Power Plants (VPPs) has been suggested in recent years as the means for achieving the cost-efficient integration of the many distributed energy resources (DERs) that are starting to emerge in the electricity network. In this work, ... Keywords: coalition formation, energy and emissions, incentives for cooperation, simulation

Georgios Chalkiadakis; Valentin Robu; Ramachandra Kota; Alex Rogers; Nicholas R. Jennings

2011-05-01T23:59:59.000Z

445

Towards a Policy of Renewable and Distributed Energy Resources  

E-Print Network [OSTI]

Grid 2020 Towards a Policy of Renewable and Distributed Energy Resources September 2012 Resnick W. California Blvd. MC 132-80 Pasadena, CA. 91125 USA + #12;GRID 2020: Towards a Policy of Renewable in the Resnick Insti- tute's Managing Uncertainty: Incorporating Intermittent Renewable Energy Into the Power

446

Renewable Energy Co-Location of Distribution Facilities (Virginia) |  

Broader source: Energy.gov (indexed) [DOE]

Co-Location of Distribution Facilities (Virginia) Co-Location of Distribution Facilities (Virginia) Renewable Energy Co-Location of Distribution Facilities (Virginia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity generated at its

447

Energy Dependent Growth of Nucleon and Inclusive Charged Hadron Distributions  

E-Print Network [OSTI]

In the Color Glass Condensate formalism, charged hadron p_{T} distributions in p+p collisions are studied by considering an energy-dependent broadening of nucleon's density distribution. Then, in the Glasma flux tube picture, the n-particle multiplicity distributions at different pseudo-rapidity ranges are investigated. Both of the theoretical results show good agreement with the recent experimental data from ALICE and CMS at \\sqrt{s}=0.9, 2.36, 7 TeV. The predictive results for p_{T} and multiplicity distributions in p+p and p+Pb collisions at the Large Hadron Collider are also given in this paper.

Wang, Hongmin; Sun, Xian-Jing

2015-01-01T23:59:59.000Z

448

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Optimal investment and scheduling of distributed energy resources with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

investment and scheduling of distributed energy resources with investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules Title Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules Publication Type Journal Article LBNL Report Number LBNL-6471E Year of Publication 2013 Authors Cardoso, Gonçalo, Michael Stadler, Mohammad Bozchalui, Ratnesh Sharma, Chris Marnay, Ana Barbosa-Póvoa, and Paulo Ferrão Journal Energy Date Published 10/2013 Abstract The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

450

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

451

Distributional aspects of an energy conserving tax and rebate  

Science Journals Connector (OSTI)

Previous work on an energy-conserving well-head tax and rebate has treated consumers as a single, lumped entity. This work investigates energy savings, and, especially, distributional effects over a disaggregated household sector (16 expenditure levels 7 household sizes 4 degrees of urbanization). The approach includes the price effects on indirect as well as direct energy consumption. Reduction in energy demand is insensitive to the distribution of the rebate, i.e., it is dominated by interproduct substitution and technology change. Change in a household's real expenditure is, of course, affected by the rebate scheme. A rebate which maintains real expenditures (i.e., allows consumption of the pre-tax market basket) is designed for different households; this is compared with a flat per-capita rebate. This is done for energy taxes of 100, 224 and 400% (base year = 19721973), yielding energy savings of about 8, 16 and 20%, respectively.

Robert A. Herendeen; Farzaneh Fazel

1984-01-01T23:59:59.000Z

452

Energy Efficiency Standards for Distribution Transformers: The Importance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Standards for Distribution Transformers: The Importance Energy Efficiency Standards for Distribution Transformers: The Importance of the Load Factor Assessment from an Energy Saving Point of View. Speaker(s): Norma Anglani Date: April 10, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare The energy saving assessment for each chosen transformer is a very important issue in the rule-making process, not only because of the obvious environmental consequences but also considering the economic impact of the standards. The life cycle cost equation, which is a keystone feature, is also affected by the correct definition of the savings achieved by improving the efficiency of each class of transformers. Setting up efficiency standards by looking at what is offered in the current distribution transformers market doesn't necessarily entail an improvement

453

A Radical Distributed Architecture for Local Energy Generation,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The LoCal Project is developing Information Age solutions to the limiting resource of this century: energy. One hundred fifty years ago, humanity was transformed by harnessing energy for machinery and work. Toil by hand became routinely mechanized, inconceivable constructions became reality, and powered transport shrunk the world. A century later, computers brought an equally profound transformation, replacing mundane bookkeeping and obviating libraries, simulating the imperceptible, and placing knowledge at our fingertips. Information processing has sustained a 50-100% annualized

454

GridLab Power Distribution System Simulation | Open Energy Information  

Open Energy Info (EERE)

GridLab Power Distribution System Simulation GridLab Power Distribution System Simulation Jump to: navigation, search Tool Summary Name: GridLab Power Distribution System Simulation Agency/Company /Organization: Pacific Northwest National Laboratory Sector: Energy Focus Area: Grid Assessment and Integration Phase: Evaluate Options Topics: Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org/ Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation Software[1] Examine in detail the interplay of every part of a distribution system with every other part of the system. GridLAB-D(tm) is a new power distribution system simulation and analysis tool that provides valuable information to users who design and operate distribution systems, and to utilities that wish to take advantage of the

455

STAFF PAPER A Review of Transmission Losses in  

E-Print Network [OSTI]

Electricity Analysis Office Electricity Supply Analysis Division California Energy Commission and distribution loss values in planning studies. In this effort, staff analyzed data, researched literature STAFF PAPER A Review of Transmission Losses in Planning Studies Lana Wong

456

2011 Industrial Distributed Energy and CHP R&D Portfolio Review...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Deployment 2011 Industrial Distributed Energy and CHP R&D Portfolio Review 2011 Industrial Distributed Energy and CHP R&D Portfolio Review The Advanced...

457

Energy Management of Steam Distribution Systems Through Energy Audits and Computerized Reporting Programs  

E-Print Network [OSTI]

ENERGY KANAGEKBNT OF STEAM DISTRIBUTION SYSTEMS THROUGH BNKRGY AUDITS AND COItPlTl'ERIZED REPORTING PROGRAtIS NORMAN J. RIVERS and HARTIN MANDZUK Armstrong Machine Works, Inc. Three Rivers, Michigan ABSTRACT This presentation will highlight... the economic losses associated with steam distribution systems and how to establish good energy management programs to reduce energy cost by 15 to 25 percent. Recognizing energy losses in steam systems involves I 1. Steam lost through defective valves...

Rivers, N.; Mandzuk, N.

458

GRR/Section 8-ID-a - State Transmission | Open Energy Information  

Open Energy Info (EERE)

8-ID-a - State Transmission 8-ID-a - State Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-ID-a - State Transmission 08IDAStateTransmission.pdf Click to View Fullscreen Contact Agencies Idaho Public Utilities Commission Regulations & Policies IC §67-6508: Local Land Use Planning Duties IC §61-526: Certificate of Public Convenience and Necessity Triggers None specified Click "Edit With Form" above to add content 08IDAStateTransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 8-ID-a.1 - Will the Transmission Project Be Undertaken by a Public Utility?

459

Distributed Sensor Coordination for Advanced Energy Systems  

SciTech Connect (OSTI)

The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

Tumer, Kagan

2013-07-31T23:59:59.000Z

460

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

value for all renewable resource and load zone combinationsvalue for all renewable resource and load zone combinationsidentify attractive renewable resources and the transmission

Mills, Andrew

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

National Transmission Grid Study  

Broader source: Energy.gov (indexed) [DOE]

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

462

Distributed Wind Policy Comparison Tool | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Policy Comparison Tool Distributed Wind Policy Comparison Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Policy Comparison Tool Focus Area: Renewable Energy Topics: Policy Impacts Website: www.eformativeoptions.com/distributed-wind-policy-comparison-tool-news Equivalent URI: cleanenergysolutions.org/content/distributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Feed-in Tariffs This Web-based tool allows users to identify policies that have had the most (and least) impact on improving the bottom line economics of wind

463

Property:EIA/861/ActivityDistribution | Open Energy Information  

Open Energy Info (EERE)

ActivityDistribution ActivityDistribution Jump to: navigation, search This is a property of type Boolean. Description: Activity Distribution Entity engages in power distribution activity (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityDistribution" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn + true + A A & N Electric Coop (Virginia) + true + AEP Texas Central Company + true + AEP Texas North Company + true + AGC Division of APG Inc + true + Access Energy Coop + true + Adams Electric Coop + true + Adams Electric Cooperative Inc + true + Adams Rural Electric Coop, Inc + true + Adams-Columbia Electric Coop + true + Adrian Public Utilities Comm + true +

464

Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Site Analysis Tool (DSAT) Distributed Wind Site Analysis Tool (DSAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Site Analysis Tool (DSAT) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: dsat.cadmusgroup.com/Default.aspx Equivalent URI: cleanenergysolutions.org/content/distributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Distributed Wind Site Analysis Tool (DSAT) is a powerful online tool for conducting detailed site assessments for single turbine projects, from residential to community scale. The tool offers users the ability to analyse potential wind turbine installment projects based on the type of turbine being installed, the terrain of the installment site, and the

465

Energy-efficient networking for content distribution over telecom network infrastructure  

Science Journals Connector (OSTI)

Abstract The use of content-based services over telecom network infrastructures is growing rapidly as user-generated content, over-the-top videos, on-demand videos, personalized TV with CatchUp/PauseLive features, etc. are becoming increasingly popular. To meet the demands of such services, content-delivery networks (or content-distribution networks (CDN)) are being deployed over these telecom network infrastructures in a similar fashion as traditional CDNs. However, with the increasing energy consumption and carbon footprint of the information and communication technology (ICT) industry, these \\{CDNs\\} must be designed to include energy-efficiency measures. Our study presents energy-consumption models, analysis, and content-placement techniques for different types of \\{CDNs\\} over telecom networks to reduce energy usage. Our suggested content-placement strategies exploit variations between storage power consumption and transmission power consumption to achieve energy efficiency. Also, in dynamic traffic scenarios, our content-placement strategies utilize the time-varying traffic irregularities of content-based services. By creating more content replicas during peak load and less replicas during off-peak load, dynamic approaches can save substantial amount of energy. Illustrative numerical examples show a significant improvement in the CDN energy efficiency using these approaches.

Uttam Mandal; Pulak Chowdhury; Christoph Lange; Andreas Gladisch; Biswanath Mukherjee

2013-01-01T23:59:59.000Z

466

The Application of Droop-Control in Distributed Energy Resources to Extend the Voltage Collapse Margin  

SciTech Connect (OSTI)

The growth in distributed energy resources has the potential to reduce system stresses caused by transmission grid congestion by supplying power and voltage regulation closer to load centers. However, the additional voltage regulation provided by these resources can mask the onset of voltage collapse. Local voltage support flattens the slope in the upper region of the power-voltage nose curve. Coordinating voltage-regulation behavior with the droop-control scheme in distributed resources improves the observation of voltage collapse margins. Incorporating distributed resource models in the continuation power flow analysis, allows the exploration of the power transfer gains by the application of distributed resources. The analysis provides insight to the impact of droop control on the behavior of the power-voltage curve and voltage collapse. The analysis is applied to a fixed speed induction generator wind farm with separate reactive compensation and the interconnection to the local power system. Results reveal that coordinating the droop control strategy allows the distributed resource to significantly increase the voltage collapse margin without hiding the threat of voltage stability problems.

Henry, Shawn D. [Florida State University; Rizy, D Tom [ORNL; Baldwin, Thomas L [Florida State University; Kueck, John D [ORNL; Li, Fangxing [ORNL

2008-01-01T23:59:59.000Z

467

Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01200eV  

Science Journals Connector (OSTI)

Abstract Europium is a good absorber of neutrons suitable for use as a nuclear reactor control material. It is also a fission product in the low-yield tail at the high end of the fission fragment mass distribution. Measurements have been made of the stable isotopes with natural and enriched samples. The linear electron accelerator center (LINAC) at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with europium in the energy region from 0.01 to 200eV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 and 25m with 6Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. To prevent air oxidation metal samples were sealed in airtight aluminum cans in an inert environment. Metal samples of natural europium, 47.8atom% 151Eu, 52.2atom% 153Eu, as well as metal samples enriched to 98.77atom% 153Eu were measured. The measured neutron capture resonance integral for 153Eu is (9.90.4)% larger than ENDF/B-VII.1. The capture resonance integral for 151Eu is (71)% larger than ENDF/B-VII.1. Another significant finding from these measurements was a significant increase in thermal total cross section for 151Eu, up (93)% from ENDF/B-VII.1. The thermal total cross section for 153Eu is down (83)% from ENDF/B-VII.1, but it is larger than that of ENDF/B-VII.0. The resolved resonance region has been extended from 100eV to 200eV for both naturally-occurring isotopes. Uncertainties in resonance parameters have been propagated from a number of experimental quantities using a Bayesian analysis. Uncertainties have also been estimated from fitting each Eu sample measurement individually.

G. Leinweber; D.P. Barry; J.A. Burke; M.J. Rapp; R.C. Block; Y. Danon; J.A. Geuther; F.J. Saglime III

2014-01-01T23:59:59.000Z

468

Property:EIA/861/ActivityBuyingTransmission | Open Energy Information  

Open Energy Info (EERE)

ActivityBuyingTransmission ActivityBuyingTransmission Jump to: navigation, search This is a property of type Boolean. Description: Activity Buying Transmission Entity buys transmission service (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityBuyingTransmission" Showing 25 pages using this property. (previous 25) (next 25) A AEP Texas Central Company + true + AEP Texas North Company + true + AGC Division of APG Inc + true + Adams-Columbia Electric Coop + true + Aguila Irrigation District + true + Ak-Chin Electric Utility Authority + true + Alabama Municipal Elec Authority + true + Alabama Power Co + true + Alder Mutual Light Co, Inc + true + Allegheny Electric Coop Inc + true + Ameren Illinois Company + true +

469

GRR/Section 8-TX-a - Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-TX-a - Transmission Siting GRR/Section 8-TX-a - Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-a - Transmission Siting 08TXATransmissionSiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive 25.83: Transmission Construction Reports PUCT Substantive Rule 25.101: Certification Criteria Triggers None specified Click "Edit With Form" above to add content 08TXATransmissionSiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Transmission siting is handled by the Public Utility Commission of Texas

470

Wireless Sensor Networks for the Protection of an Electrical Energy Distribution Infrastructure  

E-Print Network [OSTI]

Wireless Sensor Networks for the Protection of an Electrical Energy Distribution Infrastructure Ant. Keywords: Wireless Sensor Networks, Critical Infrastructure Protection, Electrical Energy Distribution of critical points of failure. Fig. 1. MV/LV electricity distribution infrastructure. The Wireless Sensor

Boyer, Edmond

471

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network [OSTI]

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

472

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book [EERE]

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

473

Distributing many points on spheres: minimal energy and designs  

E-Print Network [OSTI]

This survey discusses recent developments in the context of spherical designs and minimal energy point configurations on spheres. The recent solution of the long standing problem of the existence of spherical $t$-designs on $\\mathbb{S}^d$ with $\\mathcal{O}(t^d)$ number of points by A. Bondarenko, D. Radchenko, and M. Viazovska attracted new interest to this subject. Secondly, D. P. Hardin and E. B. Saff proved that point sets minimising the discrete Riesz energy on $\\mathbb{S}^d$ in the hypersingular case are asymptotically uniformly distributed. Both results are of great relevance to the problem of describing the quality of point distributions on $\\mathbb{S}^d$, as well as finding point sets, which exhibit good distribution behaviour with respect to various quality measures.

Johann S. Brauchart; Peter J. Grabner

2014-07-31T23:59:59.000Z

474

Department of Energy Announces Quadrennial Energy Review Public...  

Broader source: Energy.gov (indexed) [DOE]

effort to make recommendations regarding key infrastructure needed for transmission, storage and distribution of energy. The Denver meeting will examine gas and...

475

U.S. Department of Energy Public Stakeholder Meeting:  

Office of Environmental Management (EM)

6 October 2014 U.S. Department of Energy Public Stakeholder Meeting: Financing Energy Infrastructure (Transmission, Storage, and Distribution) Munich RE - Green Tech Solutions...

476

Amendment No. 1 (August 5, 2010) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2010) More Documents & Publications Energy Efficiency, Renewable Energy and Advanced Transmission and Distribution Technologies Issued: July 29, 2009 Federal Loan Guarantees...

477

Loan Guarantee Solicitation Announcement U.S. Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FOR PROJECTS THAT EMPLOY INNOVATIVE ENERGY EFFICIENCY, RENEWABLE ENERGY AND ADVANCED TRANSMISSION AND DISTRIBUTION TECHNOLOGIES Reference Number DE-FOA-0000140 Amendment Date:...

478

The 2010 Shanghai World Expo: The Challenge for Distributed Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The 2010 Shanghai World Expo: The Challenge for Distributed Energy The 2010 Shanghai World Expo: The Challenge for Distributed Energy Speaker(s): Weijun Gao Date: May 22, 2006 - 12:00pm Location: Bldg. 90 The economy of China is expected continue its breakneck expansion. Beijing will host the summer Olympics in 2008, and Shanghai will be the site of the World Expo in 2010. The entire world is afraid Mothership Earth cannot endure the environmental load caused by China's 13 billion people. Over the past century, the average temperature in Shanghai has increased by 1.5C, more than three times of the global average. The temperature increase in the recent decade was a very rapid 0.11C, and this tendency will continue at least for a few years. The main culprit of such dramatic climate change is directly connected with the increase of energy consumption. For more

479

DOE Electricity Transmission System Workshop  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION SYSTEM WORKSHOP TRANSMISSION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years DoubleTree Crystal City, 300 Army Navy Drive, Arlington, VA November 1-2, 2012 AGENDA Thursday, November 1, 2012 8:00-8:10 Welcome and Kickoff David Sandalow, Acting Undersecretary of Energy 8:10-8:30 Introduction to the Grid Tech Team (GTT), Vision, and Framework Distribution Workshop Summary Dr. Anjan Bose, Grid Tech Team Lead 8:30-8:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 8:50-9:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE)

480

GRR/Section 8-AK-a - Transmission | Open Energy Information  

Open Energy Info (EERE)

8-AK-a - Transmission 8-AK-a - Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-AK-a - Transmission 08AKATransmission.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 08AKATransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under the Alaska Public Utilities Regulatory Act, transmission is included in Alaska's regulation of public utilities. According to AS 42.05.990(5), "public utility" or "utility" includes every corporation whether public, cooperative, or otherwise, company, individual, or association of

Note: This page contains sample records for the topic "transmission distribution energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

GRR/Section 8-MT-a - Transmission Siting Process | Open Energy Information  

Open Energy Info (EERE)

8-MT-a - Transmission Siting Process 8-MT-a - Transmission Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-MT-a - Transmission Siting Process 08MTATransmission (3).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 20 Montana Environmental Policy Act MCA 75-20-301 Findings Necessary for Certification ARM 17.20.1606 Electric Transmission Lines, Need Standard ARM 17.20.907 ARM 17.20.920 ARM 17.20.921 ARM 17.20.923 ARM 17.20.1902 Triggers None specified Click "Edit With Form" above to add content 08MTATransmission (3).pdf 08MTATransmission (3).pdf Error creating thumbnail: Page number not in range.

482

Abstract -In this paper, new formulations for the energy dissipation of lossy transmission lines driven by CMOS inverters are provided, and a new performance metric for the energy optimization under the delay  

E-Print Network [OSTI]

Abstract - In this paper, new formulations for the energy dissipation of lossy transmission lines for the driving-point impedance of lossy coupled transmission lines which itself is derived by solving Telegra stable circuits that are capable of modeling the transmission line for a broad range of frequencies

Pedram, Massoud

483

Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER-CAModel  

E-Print Network [OSTI]

with distributed energy resources as PV or solar thermal. Aswith distributed energy resources as PV or solar thermal.energy resources (DER) as e.g. photovoltaic, solar thermal

Stadler, Michael

2014-01-01T23:59:59.000Z

484

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

solar energy into other useable forms. PV technology converts solar resourcesresource distribution and other factors (e.g. energy transportation cost). Solarsolar resources and thus these areas are candidates for distributed solar energy

Feng, Wei

2014-01-01T23:59:59.000Z

485

Distributed energy resources at naval base ventura county building 1512  

SciTech Connect (OSTI)

This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year.

Bailey, Owen C.; Marnay, Chris

2004-10-01T23:59:59.000Z

486

Recovery Act Interconnection Transmission Planning  

Broader source: Energy.gov [DOE]

Robust and reliable transmission and distribution networks are essential to achieving the Administration's clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these resources to displace petroleum-based fuels in the transportation sector. OE is helping to strengthen the capabilities for long-term analysis and planning in the three interconnections serving the lower 48 United States.

487

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2005............................................................................................ 5 Project Investment Recommendations ............................................................... 6 Actions to Implement Investments

488

STRATEGIC TRANSMISSION INVESTMENT PLAN  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STRATEGIC TRANSMISSION INVESTMENT PLAN Prepared in Support of the 2005............................................................................................ 5 Project Investment Recommendations ............................................................... 5 Actions to Implement Investments

489

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

their renewable resources from solar energy; wind makes upenergy demand. Solar energy is the second largest resource,in this paper. Solar energy is the second largest resource,

Mills, Andrew

2010-01-01T23:59:59.000Z

490

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

reduction in average renewable energy costs WECC-wide byscenarios on renewable energy supply costs and transmissiondifferent renewable energy procurement, technology cost,

Mills, Andrew D

2011-01-01T23:59:59.000Z

491

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

492

Application of the distributed activation energy model to blends devolatilisation  

Science Journals Connector (OSTI)

In this study, an investigation was carried out into the thermal behaviour of coal, petcoke and their blend as a generic feedstock in combustion and IGCC plants for energy production. The samples were pyrolysed in a TG analyzer in nitrogen atmosphere (constant flow of 0.0335m/s) at several heating rates with temperatures ranging from 300 to 1223K. The distributed activation energy model was applied to study the effects of heating rates on the reactions of single solids. The results obtained were used in the calculation of curves mass loss vs. temperature at more realistic heating rates. The algorithm used to obtain the distribution of reactivities for single solids was successfully implemented to allow the prediction of blends performance.

M.V. Navarro; A. Aranda; T. Garcia; R. Murillo; A.M. Mastral

2008-01-01T23:59:59.000Z

493

Abstract -In this paper, new formulations for the energy dissipation of lossy transmission lines driven by CMOS inverters are provided. These  

E-Print Network [OSTI]

inverter inputs. To accomplish this task, a new stable circuit that is capable of modeling the transmission enabling a host of new and powerful applications. Recent studies on the effects caused by the nanometerAbstract - In this paper, new formulations for the energy dissipation of lossy transmission lines

Heydari, Payam

494

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

a small margin only when solar thermal energy is assumed todelivered cost of solar thermal energy. Wind energy, on thecreate a simple energy-balance type solar thermal dispatch

Mills, Andrew

2010-01-01T23:59:59.000Z

495

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

of nearby solar, geothermal, and wind energy resources toenergy demand. Solar energy is the second largest resource,

Mills, Andrew D

2011-01-01T23:59:59.000Z

496

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

497

IEEE Transactions on Vehicular Technology VT_2007_00627 1 Energy Efficient Video Transmission over a  

E-Print Network [OSTI]

system that minimizes the total energy consumption. We propose the Multi-User Based Energy efficient the RF energy and the analog circuit energy, which account for a large part of the energy consumption efficient optimal smoothing algorithm for reducing the RF front-end energy consumption as well as the peak

Kambhampati, Subbarao

498

2013 Distributed Wind Market Report Data | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distributed Wind Market Report Data 2013 Distributed Wind Market Report Data 2013 Distributed Wind Market Report Data Tables.xlsx More Documents & Publications 2013 Distributed...

499

An autonomy-oriented computing mechanism for modeling the formation of energy distribution networks: crude oil distribution in U.S. and Canada  

Science Journals Connector (OSTI)

An efficient, economical, as well as reliable energy distribution system plays important roles in distributing energy resources from energy suppliers to energy consumers in different regions. In this paper, we present a decentralized self-organized mechanism ...

Benyun Shi; Jiming Liu

2010-09-01T23:59:59.000Z

500

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

storage (kWh) Absorption Chiller (kW) Solar Thermal (kW) Energystorage (kWh) Absorption Chiller (kW) Solar Thermal (kW) Energythe energy form for transmission and storage. Solar thermal

Feng, Wei

2014-01-01T23:59:59.000Z