Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region (Redirected from Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details...

2

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details Areas (5) Power Plants (0) Projects...

3

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Walker-Lane Transition Zone Geothermal Region Walker-Lane Transition Zone Geothermal Region (Redirected from Walker-Lane Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern

4

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities[1]

5

Geothermal Literature Review At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geothermal Literature Review At Walker-Lane Geothermal Literature Review At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

6

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

7

Geographic Information System At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration...

8

Geographic Information System At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Transitional Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal...

9

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region edit Details Areas (15)...

10

Thermal Gradient Holes At Walker-Lane Transitional Zone Region...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration...

11

Geographic Information System At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003)...

12

Modeling-Computer Simulations At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration...

13

Modeling-Computer Simulations At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration...

14

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

of California Rift Zone Geothermal Region (Redirected from Gulf of California Rift Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone...

15

Geothermal Lost Circulation Zone Mapping Tool  

DOE Green Energy (OSTI)

Lost circulation is an expensive and often encountered problem when drilling into geothermal formations. A method is needed to more accurately describe loss zones encountered during geothermal drilling to allow for more realistic testing since present testing techniques are inadequate. A Lost Circulation Zone Mapping Tool (LCZMT) is being developed that will quickly locate a loss zone and then provide a visual image of this zone as it intersects the wellbore. A modified Sandia high temperature Acoustic Borehole Televiewer should allow modeling of geothermal loss zones, which would in turn lead to testing that can be performed to evaluate lost circulation materials under simulated downhole conditions. 5 refs., 5 figs.

Bauman, T.J.

1985-01-01T23:59:59.000Z

16

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

17

Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004)  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Pritchett, 2004) Walker-Lane Transitional Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

18

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

19

Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...  

Open Energy Info (EERE)

mW 0.385 GW 3.85e-4 TW Plants Included in Planned Estimate 4 Plants with Unknown Planned Capacity 9 Geothermal Areas within the Central Nevada Seismic Zone Geothermal Region...

20

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

22

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

23

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De  

Open Energy Info (EERE)

Shevenell & De Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Walker-Lane_Transitional_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=399607" Category: Exploration Activities What links here Related changes

24

Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

At Walker-Lane Transitional Zone Region At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Walker-Lane_Transitional_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425676"

25

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

26

Field Mapping At Walker-Lane Transitional Zone Region (Shevenell, Et Al.,  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Shevenell, Et Al., Walker-Lane Transitional Zone Region (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Walker-Lane Transitional Zone Region (Shevenell, Et Al., 2008) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes On a more local scale, Faulds et al. (2003, 2005a, 2005b, 2006) have conducted structural analysis and detailed geologic mapping at a number of sites throughout Nevada and have found that productive geothermal systems typically occur in one of several structural settings, including step-overs in normal fault zones, near the ends of major normal faults where the

27

Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

28

Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett,  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Pritchett, Walker-Lane Transitional Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

29

Geodetic Survey At Walker-Lane Transitional Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Geodetic Survey At Walker-Lane Transitional Zone Geodetic Survey At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

30

Refraction Survey At Walker-Lane Transitional Zone Region (Heimgartner, Et  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Heimgartner, Et Walker-Lane Transitional Zone Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Walker-Lane Transitional Zone Region (Heimgartner, Et Al., 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Michelle Heimgartner, James B. Scott, Weston Thelen, Christopher R. Lopez, John N. Louie (2005) Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Walker-Lane_Transitional_Zone_Region_(Heimgartner,_Et_Al.,_2005)&oldid=399615

31

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

32

Refraction Survey At Walker-Lane Transitional Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Refraction Survey At Walker-Lane Transitional Zone Refraction Survey At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

33

Trace Element Analysis At Walker-Lane Transitional Zone Region (Coolbaugh,  

Open Energy Info (EERE)

Trace Element Analysis At Walker-Lane Transitional Zone Region (Coolbaugh, Trace Element Analysis At Walker-Lane Transitional Zone Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Walker-Lane Transitional Zone Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

34

Self Potential At Walker-Lane Transitional Zone Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general

35

Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy & Van  

Open Energy Info (EERE)

Kennedy & Van Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Walker-Lane Transitional Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

36

Interfacial Transition Zone Bibliography Database  

Science Conference Proceedings (OSTI)

... Saito, M., and Kawamura, M., Effect of Fly Ash and Slag on the Interfacial Zone Between Cement and Aggregate , in ACI SP 114: Fly Ash, Silica ...

2013-05-14T23:59:59.000Z

37

Seismic imaging of the mantle transition zone  

E-Print Network (OSTI)

In this thesis, we developed a generalized Radon transform of SS precursors for large-scale, high-resolution seismo-stratigraphy of the upper mantle transition zone. The generalized Radon transform (GRT) is based on the ...

Cao, Qin, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

38

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

Locating an active fault zone in Coso geothermal field by analyzing seismic Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Details Activities (1) Areas (1) Regions (0) Abstract: Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing

39

Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Walker-Lane Transitional Zone Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

40

Modeling-Computer Simulations At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Modeling-Computer Simulations At Walker-Lane Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Data Acquisition-Manipulation At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Blackwell, Et Al., 2003) Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

42

Geothermometry At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

43

Modeling fault-zone guided waves of microearthquakes in a geothermal  

Open Energy Info (EERE)

fault-zone guided waves of microearthquakes in a geothermal fault-zone guided waves of microearthquakes in a geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Modeling fault-zone guided waves of microearthquakes in a geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Fault-zone guided waves have been identified in microearthquake seismograms recorded at the Coso Geothermal Field, California. The observed guided waves have particle motions and propagation group velocities similar to Rayleigh wave modes. A numerical method has been employed to simulate the guided-wave propagation through the fault zone. By comparing observed and synthetic waveforms the fault-zone width and its P- and S-wave velocity structure have been estimated. It is suggested here that the identification

44

Isotopic Analysis At Walker-Lane Transitional Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Walker-Lane Transitional Isotopic Analysis- Fluid At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

45

Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii  

DOE Green Energy (OSTI)

A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

1992-01-01T23:59:59.000Z

46

Compound and Elemental Analysis At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Coolbaugh, Et Al., 2010) Coolbaugh, Et Al., 2010) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa deposits could serve as exploration guides for hot spring lithium deposits." References

47

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Details Activities (1) Areas (1) Regions (0) Abstract: In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability. At reservoir depths, borehole image, temperature, and mud logs indicate fluid flow is concentrated in extensively fractured damage zones of large faults well-oriented for slip.

48

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

49

The geopressured-geothermal resource: Transition to commercialization  

DOE Green Energy (OSTI)

The Geopressured-Geothermal resource has an estimated 5700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will be held. 11 refs., 8 figs., 1 tab.

Negus-de Wys, J. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Dorfman, M. (Texas Univ., Austin, TX (USA). Dept. of Petroleum Engineering)

1990-01-01T23:59:59.000Z

50

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

51

Compound and Elemental Analysis At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

52

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

53

Heating and cooling the Raft River geothermal transite pipe line  

SciTech Connect

A preliminary transient heat transfer analysis to aid in defining operating limits for the 4000-foot-long transite pipe line at the Raft River geothermal test site was completed. The heat transfer problem was to determine the time required to cool down the line from a 285/sup 0/F operating temperature to 50/sup 0/F and the time to heat up the line from 50/sup 0/F to 285/sup 0/F such that the temperature differential across the pipe wall will not exceed 25/sup 0/F. The pipe and the surrounding soil was modeled with a two-dimensional heat transfer computer code assuming constant convective heat transfer at the soil-atmosphere interface. The results are sensitive to the soil thermal conductivity used in the calculation and imply that measurement of soil thermal conductivity used in the calculation and imply that measurement of soil thermal properties should be made in order to refine the calculations. Also, the effect of variable convective heat transfer at the soil surface should be investigated. However, the results reported here indicate the order of magnitude to be expected for cool-down and heat-up times when operating the transite pipe at the stated condition.

Shaffer, C.J.

1977-06-01T23:59:59.000Z

54

Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan  

DOE Green Energy (OSTI)

Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. Mn-rich smectite precipitated near the mixing front and is likely to form an impermeable barrier between regions with acidic and neutral fluids.

Todaka, Norifumi; Akasaka, Chitosi; Xu, Tianfu; Pruess, Karsten

2003-04-09T23:59:59.000Z

55

Geothermal Literature Review At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and...

56

California/Geothermal | Open Energy Information  

Open Energy Info (EERE)

California/Geothermal California/Geothermal < California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF California Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in California Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Bald Mountain Geothermal Project Oski Energy LLC Susanville, California 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase II - Resource Exploration and Confirmation Black Rock I Geothermal Project CalEnergy Generation Phase III - Permitting and Initial Development North Shore Mono Lake Geothermal Area Walker-Lane Transition Zone Geothermal Region

57

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

58

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

59

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

60

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, P.M.

1979-12-27T23:59:59.000Z

62

3-D seismic acquisition gains momentum in transition zone  

Science Conference Proceedings (OSTI)

The hydrocarbon-rich Gulf of Mexico continues to be an active seismic data acquisition arena, with seismic crews working at a rapid-fire pace to acquire 3-D databases on a regional scale. Lately, however, many contractors are looking shoreward to what will be the next active site for data acquisition and exploratory drilling--the coastal transition zone, which extends roughly five miles either side of the coastline. Diverse terrain causes acquisition efforts to shift frequently between land, water and marsh. Each environment carries its own unique acquisition requirements, which means a wide variety of equipment must be constantly available. Need for multiple permits from multiple sources lends itself to a formidable permitting maze, and environmental problems are prevailing in this sensitive wetlands area. With this in mind, Fairfield and Seismic Exchange, Inc., have teamed in a joint venture to produce the world`s largest non-exclusive 3-D seismic transition zone program. The project will build on Fairfield`s massive shallow water effort, which is nearly complete.

Lawrence, M.A. [Fairfield Industries Inc., Houston, TX (United States)

1996-05-01T23:59:59.000Z

63

Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data  

DOE Green Energy (OSTI)

Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling calculation suggests that the fault zone is {approx} 200m wide, and has a P wave velocity of 4.80 km/s and a S wave velocity of 3.00 km/s, which is sandwiched between two half spaces with relatively higher velocities (P wave velocity 5.60 km/s, and S wave velocity 3.20 km/s). zones having vertical or nearly vertical dipping fault planes.

SGP-TR-150-16

1995-01-26T23:59:59.000Z

64

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell...  

Open Energy Info (EERE)

DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...

65

Compound and Elemental Analysis At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

for geothermal development. These samples are being collected to support more detailed work and assessment at those sites. (e.g., Buffalo Valley and Rawhide-Fairview Peak)....

66

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

67

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

68

Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan  

E-Print Network (OSTI)

November 10-14, 1988, The Geothermal Research Society ofcaused by the mixing of different geothermal fluids, Proc.Twenty-third Workshop on Geothermal Reservoir Engineering,

Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu; Pruess, Karsten

2003-01-01T23:59:59.000Z

69

Detecting a Spin Transition Zone in Earth's Lower Mantle | Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

A 450-million-year-old Protein Reveals Evolution's Steps A 450-million-year-old Protein Reveals Evolution's Steps What Keeps Bugs from Being Bigger? A Mystery No More Understanding Materials Under High Pressure Malaria-resistant Mosquitoes Battle Disease with "Molecular Warhead" Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Detecting a Spin Transition Zone in Earth's Lower Mantle SEPTEMBER 21, 2007 Bookmark and Share Schematic illustration of in situ x-ray emission spectroscopy combined with x-ray diffraction and double-sided laser heating techniques for studies of electronic spin states of iron in ferropericlase (Mg0.75,Fe0.25)O and its crystal structure at relevant pressures and temperatures for the lower

70

Data Acquisition-Manipulation At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped...

71

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

72

Impact of spectral transition zone in reference ENIGMA configuration.  

DOE Green Energy (OSTI)

The gas-cooled fast reactor (GFR) is one of six advanced nuclear energy systems being studied under the auspices of the Gen IV International Forum (GIF). In a bilateral International Nuclear Energy Research Initiative (I-NERI) project French and U.S. national laboratories, industry, and universities are collaborating on the development of the GFR. This effort is led by the ANL in the U.S. and the CEA in France. Some of the attractions of the GFR include: (1) Hard spectrum and core breeding ratio, BR {approx} 1. These features allow minimal waste production, improved transmutation capability, optimal and flexible use of natural resources, potentially better economy (because of use of higher power density relative to current thermal gas-cooled systems), and improved non-proliferation (no fertile blanket); (2) Temperature resistant fuel and structure elements that are favorable to tight fission product confinement and system operation at high temperature; (3) High temperature and transparent helium (He) gas coolant that allows a high thermodynamic conversion efficiency, other energy applications (e.g., hydrogen production), and ease of in-service inspection and repair; and (4) Possible direct energy conversion cycle leading to a simpler design, increased conversion efficiency, and lower investment costs. The French strategy for advanced systems includes the development of the GFR and sodium-cooled fast reactor (SFR) to levels that allow industries to be able to make an informed choice of the fast spectrum system that would provide a sustainable nuclear energy generation option for the future. Current planning calls for the construction of a small experimental research and technology development reactor (ETDR) around 2009 (first operation in 2015) at CEA-Cadarache, France. This would be followed by the construction of a GFR industrial prototype, around 2025. In support of the GFR development efforts, a new physics experimental program (called ENIGMA, Experimental Neutron Investigation of Gas-cooled reactor at Masurca) is being planned for Cadarache. This new experiment would provide better understanding of GFR neutronic features and will be the basis for the extension of current neutronics code validation domain (particularly, the ERANOS code system in France) to the analysis of GFRs. Experimental planning and decisions are ongoing for ENIGMA. One of the items that have been evaluated is the feasibility of obtaining different flux spectra in the ENIGMA reference configuration, giving the flexibility of simulating a large series of proposed gas-cooled fast systems with harder or softer spectra. In order to achieve this goal it was proposed to use a spectral transition zone in the center region of the ENIGMA core configuration. Another goal of the study is to evaluate the impact of the graphite cross-sections on the performance characteristics of the MASURCA configurations. The work was supported by ANL, through the residence of one of the authors at CEA-Cadarache in 2005. In this report, the impacts of the transition zone on the core physics parameters of the reference ENIGMA configuration are summarized.

Aliberti, G.; Palmiotti, G.; Taiwo, T. A.; Tommasi, J.

2005-10-05T23:59:59.000Z

73

Dead Horse Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dead Horse Wells Geothermal Area Dead Horse Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dead Horse Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

74

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

75

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

76

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

77

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

78

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

79

Geothermal Resources Exploration And Assessment Around The Cove  

Open Energy Info (EERE)

Geothermal Resources Exploration And Assessment Around The Cove Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Details Activities (4) Areas (1) Regions (0) Abstract: The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the Basin and Range to the west and the Colorado Plateau to the east. We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different

80

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

82

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

83

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area (Redirected from Winnemucca Dry Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

84

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

85

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area (Redirected from Gabbs Alkali Flat Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

86

Evaluation of equipment and methods to map lost circulation zones in geothermal wells  

DOE Green Energy (OSTI)

A study and evaluation of methods to locate, characterize, and quantify lost circulation zones are described. Twenty-five methods of mapping and quantifying lost circulation zones were evaluated, including electrical, acoustical, mechanical, radioactive, and optical systems. Each tool studied is described. The structured, numerical evaluation plan, used as the basis for comparing the 25 tools, and the resulting ranking among the tools is presented.

McDonald, W.J.; Leon, P.A.; Pittard, G.

1981-05-01T23:59:59.000Z

87

Misinterpretation of Electrical Resistivity Data in Geothermal...  

Open Energy Info (EERE)

Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

88

Reflection Survey At Coso Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

At Coso Geothermal Area (2008) At Coso Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (2008) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis A reflection survey was done to analyze the brittle upper plate structure revealed by reflection seismic data Notes The relationships between upper crustal faults, the brittle-ductile transition zone, and underlying magmatic features imaged by multifold seismic reflection data are consistent with the hypothesis that the Coso geothermal field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex.

89

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

90

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

91

Proceedings: Workshop on Corrosion of Steam Turbine Blading and Disks in the Phase Transition Zone  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). EPRI's Workshop on Corrosion of Steam Turbine Blading and Disks in the PTZ critically reviewed the state of knowledge of corrosion fatigue and stress corrosion cracking of LP blade and disk materials, with particular emphasis on the influence of the local environment.

1998-12-17T23:59:59.000Z

92

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

93

Active Faulting in the Coso Geothermal Field, Eastern California | Open  

Open Energy Info (EERE)

Faulting in the Coso Geothermal Field, Eastern California Faulting in the Coso Geothermal Field, Eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Active Faulting in the Coso Geothermal Field, Eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults sole into or terminate against the brittle-ductile transition zone (BDT) at a depth of about 4 to 5 km. The BDT is arched upward over a volume of crust

94

Isotope Transport and Exchange within the Coso Geothermal System | Open  

Open Energy Info (EERE)

Transport and Exchange within the Coso Geothermal System Transport and Exchange within the Coso Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Isotope Transport and Exchange within the Coso Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: We are investigating the plumbing of the Coso geothermal system and the nearby Coso Hot Springs using finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times. Using detailed seismic reflection data and geologic mapping, we constructed a regional crosssectional model that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The base of the model terminates at the brittle-ductile transition zone. A sensitivity study was

95

Flow in geothermal wells. Part IV. Transition criteria for two-phase flow patterns  

DOE Green Energy (OSTI)

Detailed considerations justifying the criteria for transitions between flow patterns are presented. The following are covered: transition from bubble to plug (or slug) flow, transition from plug flow to froth flow, transition from froth to annular mist flow, and model comparisons. (MHR)

Bilicki, Z.; Kestin, J.

1980-12-01T23:59:59.000Z

96

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

97

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

98

Preservation of an extreme transient geotherm in the Raft River...  

Open Energy Info (EERE)

transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient...

99

Coso geothermal environmental overview study ecosystem quality  

DOE Green Energy (OSTI)

The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

Leitner, P.

1981-09-01T23:59:59.000Z

100

Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository  

SciTech Connect

The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

Bruton, C.J.; Glassley, W.E.; Meike, A.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal induced seismicity program plan  

DOE Green Energy (OSTI)

A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

Not Available

1981-03-01T23:59:59.000Z

102

Southern Colorado Plateau Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Colorado Plateau Geothermal Region Southern Colorado Plateau Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Colorado Plateau Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} "The Colorado Plateau is a high standing crustal block of relatively undeformed rocks surrounded by the highly deformed Rocky Mountains, and Basin and Range Provinces. The Uinta Mountains of Utah and Rocky Mountains of Colorado define the northern and northeastern boundaries of the Plateau. The Rio Grande Rift Valley in New Mexico defines the eastern boundary. The southern boundary is marked by the Mogollon Rim, an erosional cuesta that separates the Colorado Plateau from the extensively faulted Basin and Rang Province. To the west is a broad transition zone where the geologic

103

Regional assessment of geothermal potential along the Balcones and Luling-Mexia-Talco Fault Zones, Central Texas. Final report  

DOE Green Energy (OSTI)

A region-wide inventory and assessment of aquifers known to yield warm water (greater than 90/sup 0/F, 32/sup 0/C) is presented. This study was conducted to ascertain the potential for obtaining geothermal energy for space heating and water heating. The aquifers investigated include the Hosston/Trinity Sands, the Hensel Sand, the Paluxy Sand, the Edwards Limestone, and the Woodbine Sand. Each aquifer was examined in terms of its stratigraphic and structural framework and its hydrogeological properties. (MHR)

Woodruff, C.M. Jr.; McBride, M.W.

1979-05-01T23:59:59.000Z

104

Earth Planets Space, 50, 965975, 1998 Determination of the absolute depths of the mantle transition zone discontinuities  

E-Print Network (OSTI)

-velocityanomalies(hereafterreferred to as HVAs) are found in the mantle transition zone depths beneath the eastern China. The HVAs, which extend that the real lateral scale of HVAs may be smaller. The HVAs are generally believed to be colder than within the cold interior of the HVAs. Therefore, a detailed topographic map of the `660-km' discontinuity

Niu, Fenglin

105

Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island  

DOE Green Energy (OSTI)

The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

1994-07-01T23:59:59.000Z

106

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

107

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

108

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

109

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

110

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

111

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

112

Accommodation Zone | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Accommodation Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Accommodation Zone Dictionary.png Accommodation Zone: Accommodation zones occur at fault intersections consisting of belts of interlocking, oppositely dipping normal faults. Multiple subsurface fault intersections in these zones are a favorable host for geothermal activity. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones

113

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

114

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

115

Analysis of climatic conditions and preliminary assessment of alternative cooling strategies for houses in California transition climate zones  

SciTech Connect

This is a preliminary scoping study done as part of the {open_quotes}Alternatives to Compressive Cooling in California Transition Climates{close_quotes} project, which has the goal of demonstrating that houses in the transitional areas between the coast and the Central Valley of California do not require air-conditioning if they are properly designed and operated. The first part of this report analyzes the climate conditions within the transitional areas, with emphasis on design rather than seasonal conditions. Transitional climates are found to be milder but more variable than those further inland. The design temperatures under the most stringent design criteria, e.g. 0.1 % annual, are similar to those in the Valley, but significantly lower under more relaxed design criteria, e.g., 2% annual frequency. Transition climates also have large day-night temperature swings, indicating significant potential for night cooling, and wet-bulb depressions in excess of 25 F, indicating good potential for evaporative cooling. The second part of the report is a preliminary assessment using DOE-2 computer simulations of the effectiveness of alternative cooling and control strategies in improving indoor comfort conditions in two conventional Title-24 houses modeled in various transition climate locations. The cooling measures studied include increased insulation, light colors, low-emissivity glazing, window overhangs, and exposed floor slab. The control strategies studied include natural and mechanical ventilation, and direct and two-stage evaporative cooling. The results indicate the cooling strategies all have limited effectiveness, and need to be combined to produce significant improvements in indoor comfort. Natural and forced ventilation provide similar improvements in indoor conditions, but during peak cooling periods, these will still be above the comfort zone. Two-stage evaporative coolers can maintain indoor comfort at all hours, but not so direct evaporative coolers.

Huang, Y.J.; Zhang, H.

1995-07-01T23:59:59.000Z

116

Boundary-Layer Transition across a Stratocumulus Cloud Edge in a Coastal Zone  

Science Conference Proceedings (OSTI)

We examine the lateral transition from a stratocumulus-covered boundary layer to a clear-sky convective boundary layer during onshore flow in a coastal environment, using both mobile sodar observations and a numerical model. During four ...

C. E. Skupniewicz; J. W. Glendening; R. F. Kamada

1991-10-01T23:59:59.000Z

117

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

118

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

119

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

120

Navy Geothermal Plan  

SciTech Connect

Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

122

Rift Zone | Open Energy Information  

Open Energy Info (EERE)

Rift Zone Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rift Zone Dictionary.png Rift Zone: A divergent plate boundary within a continent Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip The Rio Grande Rift exemplifies rift zone tectonics - increased volcanic activity and the formation of graben structures (reference: science-art.com) Rift valleys occur at divergent plate boundaries, resulting in large graben structures and increased volcanism. The East African Rift is an example of a continental rift zone with increased volcanism, while the Atlantic's spreading Mid-Ocean Ridge is host to an enormous amount of geothermal

123

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

124

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

125

Property:Geothermal/Awardees | Open Energy Information  

Open Energy Info (EERE)

Awardees Awardees Jump to: navigation, search Property Name Geothermal/Awardees Property Type String Description Awardees (Company / Institution) Pages using the property "Geothermal/Awardees" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Montana Tech of The University of Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + New Mexico Institute of Mining and Technology +

126

Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids  

E-Print Network (OSTI)

We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained through either increasing the temperature or decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have characteristics identical to those that emerge from a purely thermally activated state. The specific changes in STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33% increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in athermal, quasistatic shear studies of STZs.

Penghui Cao; Harold S. Park; Xi Lin

2013-10-25T23:59:59.000Z

127

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

128

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

129

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

130

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

131

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

132

Geothermal Permeability Enhancement - Final Report  

Science Conference Proceedings (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

133

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

134

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

135

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

136

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

137

Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy Information  

Open Energy Info (EERE)

Geothermal/FundingOpportunityAnnouncemt Geothermal/FundingOpportunityAnnouncemt Jump to: navigation, search Property Name Geothermal/FundingOpportunityAnnouncemt Property Type String Description Funding Opportunity Announcement Pages using the property "Geothermal/FundingOpportunityAnnouncemt" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + DE-FOA-0000109 +

138

Subduction Zone | Open Energy Information  

Open Energy Info (EERE)

Subduction Zone Subduction Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Subduction Zone Dictionary.png Subduction Zone: A tectonic process in which one tectonic plate is forced beneath another and sinks into the mantle as the plates converge Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip A classic cartoon illustrating a typical simplified subduction zone. http://www.columbia.edu/~vjd1/subd_zone_basic.htm Subduction zones occur where one tectonic plate is pulled under another. Most often the subducting plate is oceanic crust and contains many hydrous minerals. As the oceanic plate subducts it dewaters into the mantle,

139

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

140

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

142

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

143

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

144

Geological investigation of the Socorro geothermal area. Final report  

DOE Green Energy (OSTI)

The results of a comprehensive geological and geochemical study of the Socorro geothermal area are presented. The following are discussed: geologic setting, structural controls, stratigraphic controls, an ancient geothermal system, modern magma bodies, geothermal potential of the Socorro area, and the Socorro transverse shear zone. (MHR)

Chapin, C.E.; Sanford, A.R.; White, D.W.; Chamberlin, R.M.; Osburn, G.R.

1979-05-01T23:59:59.000Z

145

Geothermal research, Oregon Cascades: Final technical report  

DOE Green Energy (OSTI)

Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

Priest, G.R.; Black, G.L.

1988-10-27T23:59:59.000Z

146

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

147

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

148

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

149

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

150

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

151

Category:Geothermal Controlling Structures | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Geothermal Controlling Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Geothermal Controlling Structures Geothermalpower.jpg Looking for the Geothermal Controlling Structures page? For detailed information on Geothermal Controlling Structures, click here. Pages in category "Geothermal Controlling Structures" The following 14 pages are in this category, out of 14 total. A Accommodation Zone Apex or Salient of Normal Fault C Caldera Rim Margins D Displacement Transfer Zone F Fault Controlled F cont. Fault Intersection Fissure Swarms I Intrusion Margins and Associated Fractures L Lithologically Controlled M Major Normal Fault P Pull-Apart in Strike-Slip Fault Zone S Stepover or Relay Ramp in Normal Fault Zones

152

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

153

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

154

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

155

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

156

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

157

Property:Geothermal/Partner1 | Open Energy Information  

Open Energy Info (EERE)

Partner1 Partner1 Jump to: navigation, search Property Name Geothermal/Partner1 Property Type String Description Partner 1 Pages using the property "Geothermal/Partner1" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + University of Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + TBA + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Los Alamos National Laboratory + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + Lawrence Berkeley National Lab +

158

Property:Geothermal/AwardeeCostShare | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Geothermal/AwardeeCostShare Jump to: navigation, search Property Name Geothermal/AwardeeCostShare Property Type Number Description Awardee Cost Share Pages using the property "Geothermal/AwardeeCostShare" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 9,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 1,082,753 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 4,135,391 +

159

Geothermal Literature Review At Coso Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare multiple theories of the structural control of the geothermal system Notes The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. The identified producing fractures occur in zones which range from 10 - 100s of feet in extent, separated by regions of essentially unfractured rock of similar composition. Wells in the Devil's Kitchen area have encountered fluids in excess of 4500F and flow rates of 1 million lb/hr at depths less than 4000

160

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

162

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

163

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

164

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

165

Property:Geothermal/Impacts | Open Energy Information  

Open Energy Info (EERE)

Impacts Impacts Jump to: navigation, search Property Name Geothermal/Impacts Property Type Text Description Impacts Pages using the property "Geothermal/Impacts" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + If successful, this would mark a major advance in our ability to image potentially productive fluid pathways in fracture-dominated systems. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Successful application of techniques could allow replication to buildings across campus and in City of Butte, including county court house, the Federal court building, World Museum of Mining, and numerous privately owned historic buildings.

166

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

167

Thermal Gradient Holes At Central Nevada Seismic Zone Region...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

168

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

169

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration...

170

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2)...

171

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

172

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

173

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

174

Numerical Modeling At Coso Geothermal Area (1995) | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling At Coso Geothermal Area (1995) Numerical Modeling At Coso Geothermal Area (1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (1995) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1995 Usefulness useful DOE-funding Unknown Exploration Basis Locate an active fault zone by analyzing seismic guided waves from microearthquake data Notes An active fault zone was located in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling

175

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting:  

Open Energy Info (EERE)

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Authors H.M. Bibby, G.F. Risk, T.G. Caldwell and S.L. Bennie Conference World Geothermal Congress 2005; Antalya, Turkey; 2005/04/24 Published ?, 2005 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Citation H.M. Bibby,G.F. Risk,T.G. Caldwell,S.L. Bennie. 2005. Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from

176

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

177

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

178

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

179

Property:Geothermal/DOEFundingLevel | Open Energy Information  

Open Energy Info (EERE)

DOEFundingLevel DOEFundingLevel Jump to: navigation, search Property Name Geothermal/DOEFundingLevel Property Type Number Description DOE Funding Level (total award amount) Pages using the property "Geothermal/DOEFundingLevel" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 5,000,000 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 1,072,744 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 1,999,990 +

180

List of Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

ARRA Projects ARRA Projects Jump to: navigation, search List of Geothermal ARRA Funded Projects CSV State Project Type Topic 2 Awardees Funding Location of Project A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Nevada Validation of Innovative Exploration Technologies Magma Energy 5,000,000 Soda Lake, Nevada A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Montana Topic Area 1: Technology Demonstration Projects Montana Tech of The University of Montana 1,072,744 Butte, Montana A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project New Mexico Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources New Mexico Institute of Mining and Technology 1,999,990 Socorro, New Mexico

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

182

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

183

Property:Geothermal/AwardeeWebsite | Open Energy Information  

Open Energy Info (EERE)

AwardeeWebsite AwardeeWebsite Jump to: navigation, search Property Name Geothermal/AwardeeWebsite Property Type URL Description Awardee Website Pages using the property "Geothermal/AwardeeWebsite" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + http://www.magmaenergycorp.com/s/Home.asp + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + http://www.mtech.edu/ + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + http://www.nmt.edu/ +

184

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

185

Property:Geothermal/FundingSource | Open Energy Information  

Open Energy Info (EERE)

FundingSource FundingSource Jump to: navigation, search Property Name Geothermal/FundingSource Property Type String Description Funding Source Pages using the property "Geothermal/FundingSource" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + American Recovery and Reinvestment Act of 2009 +

186

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

187

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

188

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

189

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

190

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

191

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

192

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

193

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

194

Property:Geothermal/Objectives | Open Energy Information  

Open Energy Info (EERE)

Objectives Objectives Jump to: navigation, search Property Name Geothermal/Objectives Property Type Text Description Objectives Pages using the property "Geothermal/Objectives" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Apply three-dimensional/three-component (3D-3C) reflection seismic technology to define transmissive geothermal structures at the Soda Lake Geothermal area, Churchill County, NV. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Install a heat-pump system in Montana Tech's new Natural Resources Building that will (a) provide efficient, geothermally based, climate control for the building, and (b) demonstrate the efficacy of using mine waters for heat pump systems. At a minimum, the system capacity will be in the 50- to 100-ton range, but could be larger if economics warrant.

195

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

196

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

197

Geothermal Energy Resource Assessment  

DOE Green Energy (OSTI)

This report covers the objectives and the status of a long-range program to develop techniques for assessing the resource potential of liquid-dominated geothermal systems. Field studies underway in northern Nevada comprise a systematic integrated program of geologic, geophysical, and geochemical measurements, necessary to specify a drilling program encompassing heat flow holes, deep calibration holes, and ultimately, deep test wells. The status of Nevada field activities is described. The areas under study are in a region characterized by high heat flow where temperatures at depth in some geothermal systems exceed 180 C. Areas presently being examined include Beowawe Hot Springs in Whirlwind Valley. Buffalo Valley Hot Springs, Leach Hot Springs in Grass Valley, and Kyle Hot Springs in Buena Vista Valley. Geologic studies encompass detailed examinations of structure and lithology to establish the geologic framework of the areas. The geothermal occurrences are characterized by zones of intense fault intersection, which furnish permeable channelways for the introduction of meteoric water into regions of high temperature at depth.

Wollenberg, H.A.; Asaro, F.; Bowman, H.; McEvilly, T.; Morrison, F.; Witherspoon, P.

1975-07-01T23:59:59.000Z

198

Earthquake and Geothermal Energy  

E-Print Network (OSTI)

The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

Kapoor, Surya Prakash

2013-01-01T23:59:59.000Z

199

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

200

Displacement Transfer Zone | Open Energy Information  

Open Energy Info (EERE)

Displacement Transfer Zone Displacement Transfer Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Displacement Transfer Zone Dictionary.png Displacement Transfer Zone: Displacement transfer zones facilitate the transfer of strain between normal and strike-slip faults. Intersections between strike-slip faults in the Walker Lane and N- to NNE-striking normal faults commonly host geothermal systems, focused along the normal faults proximal to their dilational intersections with nearby strike-slip faults. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Structural Analysis of the Desert Peak-Brady Geothermal Fields,  

Open Energy Info (EERE)

Structural Analysis of the Desert Peak-Brady Geothermal Fields, Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Abstract Detailed geologic mapping, delineation of Tertiary strata, analysis of faults and folds, and a new gravity survey have elucidated the structural controls on the Desert Peak and Brady geothermal fields in the Hot Springs Mountains of northwestern Nevada. The fields lie within the Humboldt

202

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana  

Open Energy Info (EERE)

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Details Activities (2) Areas (1) Regions (0) Abstract: Measurements of heat flow and near-surface (< 500 m) geothermal gradients in the Gulf Coastal Plain suggest a zone of low-grade geothermal resources extending from northern Louisiana across south-central Mississippi. Subsurface temperatures exceeding 50°C, suitable for space-heating use, seem probable at depths of 1 km. Thermal conditions within the zone are comparable to those known for areas having attractive thermal energy prospects on the Atlantic Coastal Plain.

203

Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal  

Open Energy Info (EERE)

Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Details Activities (5) Areas (5) Regions (0) Abstract: Hg contents of soils in geothermal areas in the western U.S. were measured and a three-fold distribution was observed: peak, aureole and background. Peak values (up to several 100 ppm Hg) occur in fumaroles of vapour-dominated systems, around hot springs, and in zones overlying steeply dipping, hot-water aquifers. Aureoic values (up to several 100 ppb Hg) are found in zones surrounding the peak areas and delineate areas with shallow geothermal convection. Background values vary between 7 and 40 ppb

204

Conceptual Model At Raft River Geothermal Area (1981) | Open Energy  

Open Energy Info (EERE)

Conceptual Model At Raft River Geothermal Area (1981) Conceptual Model At Raft River Geothermal Area (1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Raft River Geothermal Area (1981) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1981 Usefulness not indicated DOE-funding Unknown Exploration Basis Use geoscience data to develop a conceptual model of the reservoir. Notes The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic

205

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

206

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

207

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

208

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

209

Structural interpretation of Coso Geothermal field, Inyo County, California  

Open Energy Info (EERE)

Coso Geothermal field, Inyo County, California Coso Geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural interpretation of Coso Geothermal field, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: The Coso Geothermal field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in southern California, is an excellent example of a structurally controlled geothermal resource. The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. Wells drilled along this feature have encountered production from distinct fractures in crystalline basement rocks. The identified producing fractures occur in zones which

210

Chemical Logging At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Logging At Raft River Geothermal Area (1979) Logging At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Chemical Logging Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To use new methods to assist geothermal well drilling. Notes Chemical logging resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones

211

McCoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McCoy Geothermal Area McCoy Geothermal Area (Redirected from Mccoy Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McCoy Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

212

Property:Geothermal/OtherPrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

OtherPrincipalInvestigator OtherPrincipalInvestigator Jump to: navigation, search Property Name Geothermal/OtherPrincipalInvestigator Property Type String Description Other Principal Investigators Subproperties This property has the following 2 subproperties: A A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project D Development of Chemical Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Geothermal Project Pages using the property "Geothermal/OtherPrincipalInvestigator" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + John Louie, University of Nevada and Lisa Shevenell, University of Nevada +

213

Twenty-Nine Palms Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Twenty-Nine Palms Geothermal Area Twenty-Nine Palms Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Twenty-Nine Palms Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

214

Acoustic Logs At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Acoustic Logs Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Acoustic logs indicate fractured rock and potentially permeable zones. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Coso_Geothermal_Area_(1977)&oldid=510216"

215

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

216

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

217

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Cuttings Analysis At Coso Geothermal Area (1985-1987) | Open Energy  

Open Energy Info (EERE)

5-1987) 5-1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Coso Geothermal Area (1985-1987) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1985 - 1987 Usefulness useful DOE-funding Unknown Exploration Basis Analyze an indicator of high permeability zones within a geothermal field Notes Petrographic and geochemical analyses of cuttings from six wells in the Coso Hot Springs geothermal field show a systematic variation in the occurrence, texture, and composition of sericite that can be correlated with high permeability production zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic

219

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

220

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

222

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

223

Requirements for downhole equipment used for geothermal-well stimulation. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

The needs for new and improved down-hole stimulation equipment for geothermal wells are identified. The following kinds of equipment are discussed: mechanical downhole recording instruments, electric line logging tools, and downhole tools used for zone isolation.

Not Available

1982-08-01T23:59:59.000Z

224

Finding Hidden Geothermal Resources In The Basin And Range Using...  

Open Energy Info (EERE)

Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Modeling-Computer...

225

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

226

Geothermal: Promotional Video  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

227

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

228

Geothermal: Bibliographic Citation  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

229

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

230

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

231

Geothermal: Contact Us  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

232

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

233

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

234

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

235

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

236

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

237

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

238

The Newcastle geothermal system, Iron County, Utah  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

Blackett, R.E.; Shubat, M.A.; Bishop, C.E. (Utah Geological and Mineral Survey, Salt Lake City, UT (USA)); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. (Utah Univ., Salt Lake City, UT (USA). Dept. of Geology and Geophysics)

1990-03-01T23:59:59.000Z

239

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

240

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

DOE Green Energy (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

242

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

243

Geothermal: Sponsored by OSTI -- Two-phase flow in geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Two-phase flow in geothermal energy sources. Annual report, June 1, 1975--May 31, 1976 Geothermal Technologies...

244

Geothermal: Sponsored by OSTI -- Hybrid Cooling for Geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report Geothermal Technologies Legacy Collection...

245

San Andreas Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

San Andreas Geothermal Region San Andreas Geothermal Region (Redirected from San Andreas) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home San Andreas Geothermal Region Details Areas (4) Power Plants (0) Projects (0) Techniques (1) Map: {{{Name}}} The topographic texture of western California is controlled by the San Andreas fault system, the tectonic expression of the Pacific Plate sliding northwestward along the western margin of the North American Plate. Hundreds of miles long and in places up to a mile wide, the San Andreas Fault Zone has been active since its origin in the Tertiary. About 10 percent of the present plate motion is compressional, shortening and wrinkling the crust to create the parallel coastal northwest-southeast mountain ranges. USGS Physiographic Regions[1]

246

San Andreas Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

San Andreas Geothermal Region San Andreas Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home San Andreas Geothermal Region Details Areas (4) Power Plants (0) Projects (0) Techniques (1) Map: {{{Name}}} The topographic texture of western California is controlled by the San Andreas fault system, the tectonic expression of the Pacific Plate sliding northwestward along the western margin of the North American Plate. Hundreds of miles long and in places up to a mile wide, the San Andreas Fault Zone has been active since its origin in the Tertiary. About 10 percent of the present plate motion is compressional, shortening and wrinkling the crust to create the parallel coastal northwest-southeast mountain ranges. USGS Physiographic Regions[1] References ↑ "USGS Physiographic Regions"

247

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

248

Fault Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Fault Mapping At Raft River Geothermal Area (1993) Fault Mapping At Raft River Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fault Mapping Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis Geologic mapping, strain and kinematic analysis Notes The mountains expose a detachment fault that separates a hanging wall of Paleozoic rocks from Proterozoic and Archean rocks of the footwall. Beneath the detachment lies a 100 to 300m-thick top-to-the-east extensional shear zone. Geologic mapping, strain and kinematic analysis, and 40Ar/39Ar thermochronology suggest that the shear zone and detachment fault had an

249

Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Audio-magnetotelluric geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a

250

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

251

A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY  

SciTech Connect

The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

Takahashi, P.; Seki, A.; Chen, B.

1985-01-22T23:59:59.000Z

252

Geothermal Tomorrow 2008  

Science Conference Proceedings (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

253

Alaska geothermal bibliography  

DOE Green Energy (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.) [comps.

1987-05-01T23:59:59.000Z

254

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

255

Newberry Geothermal | Open Energy Information  

Open Energy Info (EERE)

Newberry Geothermal Jump to: navigation, search Davenport Newberry Holdings (previously named Northwest Geothermal Company) started to develop a 120MW geothermal project on its...

256

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production...

257

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

258

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

259

Chemical logging- a geothermal technique | Open Energy Information  

Open Energy Info (EERE)

logging- a geothermal technique logging- a geothermal technique Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical logging- a geothermal technique Details Activities (1) Areas (1) Regions (0) Abstract: Chemical logging studies conducted at the Department of Energy's Raft River Geothermal Test Site in south central Idaho resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones 15 to 120 m before drill penetration. INEL-1 at the Idaho National Engineering Laboratory site in

260

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New York Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New York Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Lovelock, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

262

McCoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McCoy Geothermal Area McCoy Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McCoy Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

263

Property:Geothermal/LegalNameOfAwardee | Open Energy Information  

Open Energy Info (EERE)

LegalNameOfAwardee LegalNameOfAwardee Jump to: navigation, search Property Name Geothermal/LegalNameOfAwardee Property Type String Description Legal Name of Awardee Pages using the property "Geothermal/LegalNameOfAwardee" Showing 13 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy (U.S.) Corp. + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + Board of Regents, NSHE, on behalf of UNR + An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations in CO2/Brine/Rock Systems Geothermal Project + Regents of the University of Minnesota +

264

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

265

Session: Geopressured-Geothermal  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

266

Definition: Accommodation Zone | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Accommodation Zone Jump to: navigation, search Dictionary.png Accommodation Zone Accommodation zones occur at fault intersections consisting of belts of interlocking, oppositely dipping normal faults. Multiple subsurface fault intersections in these zones are a favorable host for geothermal activity.[2] View on Wikipedia Wikipedia Definition References ↑ James E. Faulds,Nicholas H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA. In: Transactions. GRC Anual Meeting; 2011/10/23; San Diego, CA. Davis, CA: Geothermal Resources

267

Tracer Testing At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2004) Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the EGS potential of the Coso Geothermal Field Notes A dramatic decrease in the ratio of chloride to boron was observed in the liquid discharge of a well proposed for EGS development. The decrease appears to be related to the transformation of some feed zones in the well from liquid-dominated to vapor-dominated. High concentrations of boron are transported to the wellbore in the steam, where it fractionates to the liquid phase flowing in from liquid-dominated feed zones. The high-boron steam is created when the reservoir liquid in some of the feed zones boils

268

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371

269

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401360"

270

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

272

Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements  

Science Conference Proceedings (OSTI)

A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

V. Etyemezian, D. Shafer, J. Miller, I. Kavouras, S. Campbell, D. DuBois, J. King, G. Nikolich, and S. Zitzer

2010-05-18T23:59:59.000Z

273

Geothermal reservoir at Tatapani Geothermal field, Surguja district, Madhya Pradesh, IN  

SciTech Connect

The Tatapani Geothermal field, located on the Son-Narmada mega lineament is one of the most intense geothermal manifestation, with hot spring temperature of 98c. in Central India. 21 Exploratory and thermal gradient boreholes followed by 5 production wells for proposed 300 KWe binary cycle power plant, have revealed specific reservoir parameters of shallow geothermal reservoir of 110c in upper 350 m of geothermal system and their possible continuation to deeper reservoir of anticipated temperature of 160 10c. Testing of five production wells done by Oil and Natural Gas Corporation concurrently with drilling at different depths and also on completion of drilling, have established feeder zones of thermal water at depth of 175-200 m, 280-300 m, maximum temperature of 112.5c and bottom hole pressure of 42 kg/cm. Further interpretation of temperature and pressure profiles, injection test, well head discharges and chemical analysis data has revealed thermal characteristics of individual production wells and overall configuration of .thermal production zones with their permeability, temperature, and discharge characteristics in the shallow thermal reservoir area. Well testing data and interpretation of reservoir parameters therefrom, for upper 350 m part of geothermal system and possible model of deeper geothermal reservoir at Tatapani have been presented in the paper.

Pitale, U.L.; Sarolkar, P.B.; Rawat, H.S.; Shukia, S.N.

1996-01-24T23:59:59.000Z

274

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

275

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

276

Category:Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

of 6 total. G GeothermalExploration GeothermalLand Use GeothermalLeasing GeothermalPower Plant GeothermalTransmission GeothermalWell Field Retrieved from "http:...

277

Improved energy recovery from geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical simulation methods are used to study how the exploitation of different horizons affects the behavior of a liquid-dominated geothermal reservoir. The reservoir model is a schematic representation of the Olkaria field in Kenya. The model consists of a two-phase vapor-dominated zone overlying the main liquid dominated reservoir. Four different cases were studied, with fluid produced from: 1) the vapor zone only, 2) the liquid zone only, 3) both zones and 4) both zones, but assuming lower values for vertical permeability and porosity. The results indicate that production from the shallow two-phase zone, although resulting in higher enthalpy fluids, may not be advantageous in the long run. Shallow production gives rise to a rather localized depletion of the reservoir, whereas production from deeper horizons may yield a more uniform depletion proces, if vertical permeability is sufficiently large.

Boedvarsson, G.S.; Pruess, K.; Lippmann, M.; Bjoernsson, S.

1981-06-01T23:59:59.000Z

278

Guidebook to Geothermal Finance  

Science Conference Proceedings (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

279

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy...

280

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Holocene Magmatic Geothermal Region (Redirected from Holocene Magmatic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Holocene Magmatic Geothermal Region Details...

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal: Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

282

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

283

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

284

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

285

EIA Energy Kids - Geothermal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Geothermal Basics What Is Geothermal Energy? The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within ...

286

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

287

Geothermal: Sponsored by OSTI -- Geothermal pump program  

Office of Scientific and Technical Information (OSTI)

pump program Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

288

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

289

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

290

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

291

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

292

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

293

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

294

Modeling-Computer Simulations At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

295

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

296

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

297

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

298

Geothermal well stimulation treatments  

DOE Green Energy (OSTI)

The behavior of proppants in geothermal environments and two field experiments in well stimulation are discussed. (MHR)

Hanold, R.J.

1980-01-01T23:59:59.000Z

299

Geothermal Energy Technology Guide  

Science Conference Proceedings (OSTI)

Geothermal power production is a renewable technology with a worldwide operating capacity of more than 11,000 MW. Geothermal reservoirs have been a commercial reality in Italy, Japan, the United States, Iceland, New Zealand, and Mexico for many decades. According to the Energy Information Administration, the United States is the world leader in electricity production from geothermal resources with approximately 16,791 GWh of net production in 2012. Future geothermal power generation will depend on ...

2013-12-23T23:59:59.000Z

300

South Dakota geothermal handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Conceptual Model At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine productive zones in the reservoir Notes Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water 1450C reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. References Applegate, J.K.; Donaldson, P.R.; Kinkley, D.L.; Wallace, T.L. (1 January 1976) Borehole geophysics evaluation of the Raft River geothermal reservoir Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Raft_River_Geothermal_Area_(1976)&oldid=473821

302

Conceptual Model At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Determine boiling zones and their relation to production zones by developing a fluid model Notes A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. Models are created using cross-sections and fence diagrams. References Dilley, L.M.; Norman, D.I.; Moore, J.; McCullouch, J. (1 January 2006) FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Retrieved from "http://en.openei.org/w/index.php?title=Conceptual_Model_At_Coso_Geothermal_Area_(2006)&oldid=473688

303

Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Raft River Geothermal Area (1977) Magnetotellurics At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Magnetotellurics Activity Date 1977 Usefulness useful DOE-funding Unknown Notes Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anomalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm-m and at some sites than 1 ohm-m. References Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W. (10 June

304

Northern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

and Range Geothermal Region and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Basin and Range Geothermal Region Details Areas (34) Power Plants (3) Projects (7) Techniques (33) Map: {{{Name}}} Examination of seismicity and late Quaternary faults in Montana and Idaho north of the Snake River Plain shows a geographic correspondence between high seismicity and 24 faults that have experienced surface rupture during the late Quaternary. The Lewis and Clark Zone delineates the northern boundary of this tectonically active extensional region. Earthquakes greater than magnitude 5.5 and all identified late Quaternary faults are confined to the Montana-Idaho portion of the Basin and Range Province south of the Lewis and Clark Zone. Furthermore, all 12 Holocene faults are

305

Geothermal Environmental Impact Assessment: Subsurface Environmental Assessment for Four Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal systems are described for Imperial Valley and The Geysers, California; Klamath Falls, Oregon; and the Rio Grande Rift Zone, New Mexico; including information on location, area, depth, temperature, fluid phase and composition, resource base and status of development. The subsurface environmental assessment evaluates potential groundwater degradation, seismicity and subsidence. A general discussion on geothermal systems, pollution potential, chemical characteristics of geothermal fluids and environmental effects of geothermal water pollutants is presented as background material. For the Imperial Valley, all publicly available water quality and location data for geothermal and nongeothermal wells in and near the East Mesa, Salton Sea, Heber, Brawley, Dunes and Glamis KGRAs have been compiled and plotted. The geothermal fluids which will be reinjected range in salinity from a few thousand to more than a quarter million ppm. Although Imperial Valley is a major agricultural center, groundwater use in and near most of these KGRAs is minimal. Extensive seismicity and subsidence monitoring networks have been established in this area of high natural seismicity and subsidence. The vapor-dominated Geysers geothermal field is the largest electricity producer in the world. Groundwater in this mountainous region flows with poor hydraulic continuity in fractured rock. Ground and surface water quality is generally good, but high boron concentrations in hot springs and geothermal effluents is of significant concern; however, spent condensate is reinjected. High microearthquake activity is noted around the geothermal reservoir and potential subsidence effects are considered minimal. In Klamath Falls, geothermal fluids up to 113 C (235 F) are used for space heating, mostly through downhole heat exchangers with only minor, relatively benign, geothermal fluid being produced at the surface. Seismicity is low and is not expected to increase. Subsidence is not recognized. Of all geothermal occurrences in the Rio Grande Rift, the Valles Caldera is currently of primary interest. injection of geothermal effluent from hydrothermal production wells should remove any hydrologic hazard due to some potentially noxious constituents. Waters circulating in the LASL Hot Dry Rock experiment are potable. Seismic effects are expected to be minimal. Subsidence effects could develop.

Sanyal, Subir; Weiss, Richard

1978-11-01T23:59:59.000Z

306

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

307

A New Geothermal Anomaly In Nicaragua | Open Energy Information  

Open Energy Info (EERE)

A New Geothermal Anomaly In Nicaragua A New Geothermal Anomaly In Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Geothermal Anomaly In Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: The information acquired during reconnaissance surface exploration in Nicaragua suggests a large geothermal reservoir in the region of Masaya-Nandaime. The exploration programme included geological, geophysical, geochemical, as well as hydrogeological investigations. Integration of the results from various disciplines permitted postulation of a conceptual model of the reservoir and of the thermal regime within the zone immediately above and around the reservoir. The reservoir with a temperature in excess of 200°C is emplaced at a depth between 2 and 4 km

308

Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Analysis- Rock At Coso Geothermal Area (1984) Analysis- Rock At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field Notes The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The two earliest rhyolites probably

309

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

310

Paleomagnetic Measurements At Coso Geothermal Area (2006) | Open Energy  

Open Energy Info (EERE)

Paleomagnetic Measurements At Coso Geothermal Area (2006) Paleomagnetic Measurements At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Paleomagnetic Measurements At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Paleomagnetic Measurements Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze fault block kinematics at a releasing stepover of the Eastern California shear zone to determine the partitioning of rotation style Notes Rotations paleomagnetically relative to two different reference frames were measured. At two localities, the secular variation were averaged through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking, a really-extensive lava

311

Assessment of Favorable Structural Settings of Geothermal Systems in the  

Open Energy Info (EERE)

Assessment of Favorable Structural Settings of Geothermal Systems in the Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Abstract We have undertaken a thorough inventory of the structural settings of known geothermal systems (>400 total) in the extensional to transtensional terrane of the Great Basin in the western USA. Of the more than 200 geothermal fields catalogued to date, we found that step-overs or relay ramps in normal fault zones served as the most favorable structural setting, hosting ~32% of the systems. Such areas are characterized by multiple, commonly overlapping fault strands, increased fracture density,

312

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

313

A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) | Open  

Open Energy Info (EERE)

Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Details Activities (0) Areas (0) Regions (0) Abstract: A preliminary magnetotelluric study consisting of twenty measurements, in the frequency range 128-0.016 Hz, was undertaken on the active volcanic island of Nissyros. Two boreholes identify the existence of high enthalpy manifestations. The results correlate well with the borehole logs and delineate, in a 1-D approximation, the existence and symmetry of a possible geothermal reservoir. Some of the main faulting features were detected as well as an inferred highly conductive zone at the centre of the

314

Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia  

SciTech Connect

This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E) Ulumbu mini geothermal power plant.

Sulasdi, Didi

1996-01-26T23:59:59.000Z

315

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

316

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

317

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

318

A Test Of The Transiel Method On The Travale Geothermal Field | Open Energy  

Open Energy Info (EERE)

Of The Transiel Method On The Travale Geothermal Field Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Test Of The Transiel Method On The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest. Author(s): A. Duprat, M. Roudot, S. Spitz Published: Geothermics, 1985

319

Thermodynamic behaviour of simplified geothermal reservoirs  

DOE Green Energy (OSTI)

Starting from the basic laws of conservation of mass and energy, the differential equations that represent the thermodynamic behavior of a simplified geothermal reservoir are derived. Its application is limited to a reservoir of high permeability as it usually occurs in the central zone of a geothermal field. A very practical method to solve numerically the equations is presented, based on the direct use of the steam tables. The method, based in one general equation, is extended and illustrated with a numerical example to the case of segregated mass extraction, variable influx and heat exchange between rock and fluid. As it is explained, the method can be easily coupled to several influx models already developed somewhere else. The proposed model can become an important tool to solve practical problems, where like in Los Azufres Mexico, the geothermal field can be divided in an inner part where flashing occurs and an exterior field where storage of water plays the main role.

Hiriart, G.; Sanchez, E.

1985-01-22T23:59:59.000Z

320

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Property:Geothermal/ProjectDesc | Open Energy Information  

Open Energy Info (EERE)

ProjectDesc ProjectDesc Jump to: navigation, search Property Name Geothermal/ProjectDesc Property Type Text Description Project Description Pages using the property "Geothermal/ProjectDesc" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + The Soda Lake geothermal field is an ideal setting to test the applicability of the 3D-3C reflection seismic method because: it is a producing field with a great deal of geologic and drilling data already available; it is in an alluvial valley where the subsurface structures that carry the geothermal fluids have no surface manifestations; and, there are downhole geophysical logs of fractures and permeable zones that can be used to ground-truth the new data. If the 3D-3C method is successful it will bring a powerful tool into use in the industry to select targets with the permeability, heat, and fluid needed to exploit geothermal resources.

322

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

323

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

324

Preservation of an extreme transient geotherm in the Raft River detachment  

Open Energy Info (EERE)

Preservation of an extreme transient geotherm in the Raft River detachment Preservation of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Preservation of an extreme transient geotherm in the Raft River detachment shear zone Details Activities (1) Areas (1) Regions (0) Abstract: Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 °C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen

325

Pertechnetate (TcO4-) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA  

Science Conference Proceedings (OSTI)

Technetium is an important environmental contaminant introduced by the processing and disposal of irradiated nuclear fuel and atmospheric nuclear tests. Under oxic conditions technetium is soluble and exists as pertechnatate anion (TcO4-), while under anoxic conditions Tc is usually insoluble and exists as precipitated Tc(IV). Here we investigated abiotic Tc(VII) reduction in mineralogically heterogeneous, Fe(II)-containing sediments. The sediments were collected from a 55 m borehole that sampled a semi-confined aquifer at the Hanford Site, USA that contained a dramatic redox transition zone. One oxic facies (18.0-18.3 m) and five anoxic facies (18.3-18.6 m, 30.8-31.1 m, 39.0-39.3 m, 47.2-47.5 m and 51.5-51.8 m) were selected for this study. Chemical extractions, X-ray diffraction, electron microscopy, and Mssbauer spectroscopy were applied to characterize the Fe(II) mineral suite that included: Fe(II)-phyllosilicates, pyrite, magnetite and siderite. The Fe(II) mineral phase distribution differed between the sediments. Sediment suspensions were adjusted to the same 0.5 M HCl extracted Fe(II) concentration (0.6 mM) for Tc(VII) reduction experiments. Aqueous Fe was low in all sediment suspensions (Technetium(VII) reduction occurred in all anoxic sediments at depths greater than 18.3 m and reaction time differed significantly between the sediments (8-219 d). Mssbauer analysis of the Tc-reacted, 30.8-31.1 m sediment confirmed that Tc(VII) was reduced by solid-phase Fe(II), with siderite and Fe(II)-containing phyllosilicates implicated as redox reactive phases. Technetium-XAS analysis demonstrated that Tc associated with sediments was in the Tc(IV) valence state and immobilized as clusters of a TcO2nH2O-like phase. The speciation of redox product Tc(IV) was not affected by reduction rate or Fe(II) mineralogy.

Peretyazhko, Tetyana; Zachara, John M.; Kukkadapu, Ravi K.; Heald, Steve M.; Kutnyakov, Igor V.; Resch, Charles T.; Arey, Bruce W.; Wang, Chong M.; Kovarik, Libor; Phillips, Jerry L.; Moore, Dean A.

2012-09-01T23:59:59.000Z

326

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

327

Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site  

SciTech Connect

A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were quantified through a series of rainfall/runoff simulation tests in which controlled amounts of water were delivered to the soil surface in a specified amount of time. Runoff data were collected from understory and interspace soils on burned ridge and drainage areas. Runoff volume and suspended sediment in the runoff were sampled; the particle size distribution of the sediment was determined by laboratory analysis. Several land surface and soil characteristics associated with runoff were integrated by the calculation of site-specific curve numbers. Several vegetation surveys were conducted to assess post-burn recovery. Data from plots in both burned and unburned areas included species identification, counts, and location. Characterization of fire-affected area included measures at both the landscape scale and at specific sites. Although wind erosion measurements indicate that there are seasonal influences on almost all parameters measured, several trends were observed. PI-SWERL measurements indicated the potential for PM10 windblown dust emissions was higher on areas that were burned compared to areas that were not. Among the burned areas, understory soils in drainage areas were the most emissive, and interspace soils along burned ridges were least emissive. By 34 months after the burn (MAB), at the end of the study, emissions from all burned soil sites were virtually indistinguishable from unburned levels. Like the amount of emissions, the chemical signature of the fire (indicated by the EC-Soil ratio) was elevated immediately after the fire and approached pre-burn levels by 24 MAB. Thus, the potential for wind erosion at the Jacob Fire site, as measured by the amount and type of emissions, increased significantly after the fire and returned to unburned levels by 24 MAB. The effect of fire on the potential for water erosion at the Jacob Fire site was more ambiguous. Runoff and sediment from ridge interspace soils and unburned interspace soils were similar throughout the study period. Seldom, if ever, did runoff and sediment occur in burned drainage area soils. Fo

Miller, Julianne [DRI] DRI; Etyemezian, Vic [DRI] DRI; Cablk, Mary E. [DRI] DRI; Shillito, Rose [DRI] DRI; Shafer, David [DOE Grand Junction, Colorado] DOE Grand Junction, Colorado

2013-06-01T23:59:59.000Z

328

Heat flow determinations and implied thermal regime of the Coso geothermal  

Open Energy Info (EERE)

determinations and implied thermal regime of the Coso geothermal determinations and implied thermal regime of the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Heat flow determinations and implied thermal regime of the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal energy at the Coso Geothermal Area, California, include fumarolic activity, active hot springs, and associated hydrothermally altered rocks. Abundant Pleistocene volcanic rocks, including a cluster of thirty-seven rhyolite domes, occupy a north-trending structural and topographic ridge near the center of an oval-shaped zone of late Cenozoic ring faulting. In an investigation of the thermal regime of the geothermal

329

Thermochronometry At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermochronometry Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes Constraints on the initial orientation and crustal position of the shear zone have been derived from 40Ar/39Ar thermochronology of mineral suites (hornblende, muscovite, biotite, and k-feldspar) collected within and beneath the shear zone along a 27 km transect parallel to the transport direction. References Wells, M.L.; Snee, L.W. (1 April 1993) Geologic and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone

330

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

331

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

332

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

333

Numerical Modeling At Coso Geothermal Area (1997) | Open Energy Information  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Develop tool to identify low velocity zones by modeling fault-zone guided waves of microearthquakes Notes A numerical method has been employed to simulate the guided-wave propagation from microearthquakes through the fault zone. By comparing observed and synthetic waveforms the fault-zone width and its P-wave and S-wave velocity structure have been estimated. It is suggested that the identification and modeling of guided waves is an effective tool to locate fracture-induced, low-velocity fault-zone structures in geothermal fields. References Lou, M.; Rial, J.A. ; Malin, P.E. (1 July 1997) Modeling

334

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 1: Analytical Method  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

335

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 2: Application in Hawaii  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

336

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

337

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

338

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

339

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

340

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

342

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

343

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

344

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

345

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

346

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

347

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

348

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

349

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

350

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

351

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

352

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

353

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

354

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

355

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

356

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

357

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

358

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

359

Reference book on geothermal direct use  

DOE Green Energy (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

360

Ornithological Survey of the Proposed Geothermal Well Site No. 2  

DOE Green Energy (OSTI)

The U.S. Fish and Wildlife Service (USFWS 1983) and the State of Hawaii (DLNR 1986) have listed as endangered six forest bird species for the Island of Hawaii. Two of these birds, the O'u (Psittirostra psittacea) and the Hawaiian hawk (Buteo solitarius) may be present within the Geothermal resource sub-zone (Scott et al. 1986). Thus, their presence could impact future development within the resource area. This report presents the results of a bird survey conducted August 11 and 12, 1990 in the sub-zone in and around the proposed well site and pad for True/Mid Pacific Geothermal Well No.2.

Jeffrey, Jack

1990-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Completion report: Raft River Geothermal Production Well Four (RRGP-4)  

DOE Green Energy (OSTI)

The fourth Raft River well was originally drilled to 866 m (2840 ft), for use as a test injection well. This well allowed the injection of geothermal fluids into the intermediate zone--above the geothermal production zone and below the shallow groundwater aquifers. After this testing, the well was deepened and cased for use as a production well. The well's designation was changed from RRGI-4 to RRGP-4. This report describes the drilling and completion of both drilling projects. Results of well tests are also included.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

362

Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

Elizabeth Battocletti

2006-04-06T23:59:59.000Z

363

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

364

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

365

Geothermal: Sponsored by OSTI -- Economics of geothermal, solar...  

Office of Scientific and Technical Information (OSTI)

Economics of geothermal, solar, and conventional space heating Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

366

Geothermal: Sponsored by OSTI -- Beowawe Geothermal Area evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beowawe Geothermal Area evaluation program. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

367

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

368

Geothermal: Sponsored by OSTI -- STATUS OF PLOWSHARE GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

STATUS OF PLOWSHARE GEOTHERMAL POWER. Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

369

Geothermal: Sponsored by OSTI -- Multi-Fluid Geothermal Energy...  

Office of Scientific and Technical Information (OSTI)

Multi-Fluid Geothermal Energy Production and Storage in Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

370

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

371

Geothermal: Sponsored by OSTI -- Twenty-first workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twenty-first workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

372

Geothermal: Sponsored by OSTI -- Seventeenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Seventeenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

373

Geothermal: Sponsored by OSTI -- Twentieth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twentieth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

374

Geothermal: Sponsored by OSTI -- Nineteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Nineteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

375

Geothermal: Sponsored by OSTI -- Eighteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Eighteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

376

Geothermal: Sponsored by OSTI -- Feasibility of geothermal application...  

Office of Scientific and Technical Information (OSTI)

of geothermal applications for greenhousing and space heating on the Pine Ridge Indian Reservation, South Dakota Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

377

Geothermal: Sponsored by OSTI -- Daemen Alternative Energy/Geothermal...  

Office of Scientific and Technical Information (OSTI)

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

378

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

379

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

380

Geothermal Plan Justification, Geothermal Project 1976  

SciTech Connect

The report provides information for a five year plan for the Fish and Wildlife Service to deal with developments in the geothermal energy sector in the U.S. [DJE-2005

1976-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

382

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

383

Geothermal Well Technology Program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. An overview of the program is presented. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies encountered when current rotary drilling techniques are used for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.

1978-01-01T23:59:59.000Z

384

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

385

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

386

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

387

Geothermal energy for industrial application  

DOE Green Energy (OSTI)

The types of geothermal resources are reviewed briefly. The uses of geothermal energy are covered under electrical generation and non-electric direct uses. (MHR)

Fulton, R.L.

1979-03-01T23:59:59.000Z

388

Injectivity Testing for Vapour Dominated Feed Zones  

DOE Green Energy (OSTI)

Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

Clotworthy, A.W.; Hingoyon, C.S.

1995-01-01T23:59:59.000Z

389

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

390

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

391

Modeling of geothermal systems  

DOE Green Energy (OSTI)

During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1985-03-01T23:59:59.000Z

392

Economics of geothermal energy  

DOE Green Energy (OSTI)

A selected summary is presented of the resource, technical, and financial considerations which influence the economics of geothermal energy in the US. Estimates of resource base and levelized busbar cost of base load power for several types of geothermal resources are compared with similar estimates for more conventional energy resources. Current geothermal electric power plants planned, under construction, and on-line in the US are noted.

Morris, G.E.; Tester, J.W.; Graves, G.A.

1980-01-01T23:59:59.000Z

393

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

394

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

395

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

396

South Dakota geothermal resources  

SciTech Connect

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

397

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

398

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

399

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

400

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored.

402

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

403

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

404

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

405

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2004-05-01T23:59:59.000Z

406

Variation in sericite composition from fracture zones within the Coso Hot  

Open Energy Info (EERE)

Variation in sericite composition from fracture zones within the Coso Hot Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Details Activities (1) Areas (1) Regions (0) Abstract: Two types of white micas are found in drillhole samples within the geothermal system at Coso Hot Springs. Low-permeability zones of the crystalline basement contain coarse-grained relict muscovite, whereas rock alteration near fracture zones at temperatures > 150°C is characterized by abundant finegrained sericite in association with secondary calcite and quartz and unaltered relict microcline. In this hydrothermal sericite there

407

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

408

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

409

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

410

Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process. 2) To evaluate the geology and thermal history of the East Flank, in order to better understand how the rocks will behave during hydro-fracturing. Notes 1) Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between producing and the non-producing

411

Ground Magnetics At Coso Geothermal Area (1984) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Ground Magnetics At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Magnetics Activity Date 1984 Usefulness useful DOE-funding Unknown Notes The magnetic intensity contours match general geologic patterns in varying rock types. Hydrothermally altered rocks along intersecting fault zones show up as strong magnetic lows that form a triangular-shaped area. This area is centered in an area of highest heat flow and is a site of

412

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area (Kennedy & Van Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Dixie Valley study suggests that helium isotopes may provide a new tool for mapping zones of deep permeability and therefore the potential for high fluid temperatures. The permeable zones are identified by local enrichments in 3He relative to a regional helium isotope trend. More work needs to be done, but it appears that helium isotopes may provide the best and perhaps

413

Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico  

Science Conference Proceedings (OSTI)

A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

Huang, Lianjie [Los Alamos National Laboratory; Albrecht, Michael [LOS ALAMOS GEOTHERMAL

2011-01-25T23:59:59.000Z

414

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

415

Hawaii's geothermal program  

Science Conference Proceedings (OSTI)

Opposition to Hawaii's geothermal program, which is coming not only from the usual citizens' and environmental groups, but also from worshippers of a native god and, it has been alleged, growers of marijuana, is discussed. The clash occurs just as geothermal ...

G. Zorpette

1992-02-01T23:59:59.000Z

416

Montana geothermal handbook  

DOE Green Energy (OSTI)

The permits required for various geothermal projects and the approximate time needed to obtain them are listed. A brief discussion of relevant statutes and regulations is included. Some of the state and federal grant and loan programs available to a prospective geothermal developer are described. The names and addresses of relevant state and federal agencies are given. Legal citations are listed. (MHR)

Perlmutter, S.; Birkby, J.

1980-10-01T23:59:59.000Z

417

Geothermal energy program summary  

DOE Green Energy (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

418

Geothermal Financing Workbook  

DOE Green Energy (OSTI)

This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

Battocletti, E.C.

1998-02-01T23:59:59.000Z

419

Property:Geothermal/TargetsMilestones | Open Energy Information  

Open Energy Info (EERE)

TargetsMilestones TargetsMilestones Jump to: navigation, search Property Name Geothermal/TargetsMilestones Property Type Text Description Targets / Milestones Pages using the property "Geothermal/TargetsMilestones" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + The basics of this technology were developed by the oil and gas industry to discern petrologic characteristics of hydrocarbon reservoirs, but the techniques have never been applied to definition and characterization of permeable zones associated with geothermal resources. There is a substantial amount of existing geophysical and wellbore data for the area, and these data will be complemented with modern, state-of-the-art reflection seismic data. Three-component geophones will record full-fold compressional p-wave, converted-wave, and shear-wave data over the 2.5 square miles of proven geothermal resource. The proposed 3D seismic survey involves the generation of ground vibration by "vibroseis" equipment along source points and the recording of reflected sound waves and patterns arising from the different underground geologic strata along receiver lines. The proposed source points are arranged into source lines that run northeast to southwest and are oriented perpendicular to the receiver lines, which run northwest to southeast within the boundary of the project area. The data will be processed first in a conventional way to identify anomalous zones, to which specialized attribute processing will be applied. The results of the processing will be made accessible in a GIS format to facilitate visualization of interrelationships among the data and to build conceptual geologic and/or geothermal reservoir models and define drilling targets.

420

Geothermal significance of magnetotelluric sounding in the eastern Snake  

Open Energy Info (EERE)

significance of magnetotelluric sounding in the eastern Snake significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region Details Activities (1) Areas (1) Regions (0) Abstract: Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anamalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal energy: a brief assessment  

DOE Green Energy (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

422

Geothermal energy: a brief assessment  

SciTech Connect

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

423

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

424

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

425

Geothermal: Distributed Search Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

426

geothermal_test.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

427

geothermal2.qxp  

NLE Websites -- All DOE Office Websites (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

428

Idaho Geothermal Handbook  

SciTech Connect

Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

1979-07-01T23:59:59.000Z

429

Geothermal development in Thailand  

SciTech Connect

San Kampaeng and Fang geothermal areas are considered areas of interest for exploitation of geothermal energy. The technologies of exploration and development have been studied by Thai scientists and engineers during the past four years. The first geothermal deep exploration well was drilled, in cooperation with Japan International Cooperation Agency (JICA), in the San Kampaeng geothermal area. In 1985, supplementary work is planned to define the deep structural setting in greater detail before starting to drill the next deep exploration well. In Fang geothermal area some shallow exploitation wells have been drilled to obtain fluid to feed a demonstration binary system of 120 kWe, with the technical cooperation of BRGM and GEOWATT, France.

Praserdvigai, S.

1986-01-01T23:59:59.000Z

430

Idaho Geothermal Handbook  

DOE Green Energy (OSTI)

Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

1979-07-01T23:59:59.000Z

431

Geothermal Loan Guaranty Program  

DOE Green Energy (OSTI)

Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

None

1977-11-17T23:59:59.000Z

432

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

433

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

434

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

435

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

436

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

437

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

438

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Bibliography Definition of Geothermal Reservoir EngineeringDevelopment of Geothermal Reservoir Engineering. * 1.4 DataF i r s t Geopressured Geothermal Energy Conference. Austin,

Sudo!, G.A

2012-01-01T23:59:59.000Z

439

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

440

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

on the Cerro Prieto Geothermal Field, Baja California,monitoring at the Geysers Geothermal Field, California,~~W. and Faust, C. R. , 1979, Geothermal resource simulation:

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

442

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

443

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network (OSTI)

compaction, computers, geothermal energy, pore-waternot MODELING SUBSIDENCE DUE T GEOTHERMAL FLUID PRODUCTION Opromise f o r developing geothermal energy i n the United

Lippmann, M.J.

2011-01-01T23:59:59.000Z

444

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network (OSTI)

School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

Goldstein, N.E.

2011-01-01T23:59:59.000Z

445

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

446

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region (Redirected from Idaho Batholith) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas...

447

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

~Iilora and J. W. Tester, Geothermal Energy as a Source ofpresented at the Susanville Geothermal Energy Converence,of Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

448

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network (OSTI)

that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

449

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas (24) Power Plants (0) Projects (1)...

450

Sound Geothermal Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Jump to: navigation, search Name Sound Geothermal Corporation Place Sandy, Utah Zip 84094 Sector Geothermal energy Product Sound Geothermal coporation helps...

451

Heat Flow And Geothermal Potential In The South-Central United States |  

Open Energy Info (EERE)

And Geothermal Potential In The South-Central United States And Geothermal Potential In The South-Central United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow And Geothermal Potential In The South-Central United States Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal exploration is typically limited to high-grade hydrothermal reservoirs that are usually found in the western United States, yet large areas with subsurface temperatures above 150 deg. C at economic drilling depths can be found east of the Rocky Mountains. The object of this paper is to present new heat flow data and to evaluate the geothermal potential of Texas and adjacent areas. The new data show that, west of the Ouachita Thrust Belt, the heat flow values are lower than east of the fault zone. Basement heat flow values for the Palo Duro and Fort

452

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes DC resistivity geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be

453

Geothermal reservoir engineering, second workshop summaries, December 1-3, 1976  

DOE Green Energy (OSTI)

Workshop proceedings included the following: (1) During the Overview Session some papers, among others, discussed 'Geothermal Reservoir Engineering Research' and 'Geothermal Reservoir Engineering in Industry'; (2) Session I, Reservoir Physics, included papers on 'Steam Zone Temperature Gradients at the Geysers' and 'Water Influx in a Steam Producing Well'; (3) Session II, Well Testing, included papers on 'Borehole Geophysics in Geothermal Wells--Problems and Progress' and 'Herber-Pressure Interference Study'; (4) Session III, Field Development, included papers on 'A Reservoir Engineering Study of the East Mesa KGRA' and 'Determining the Optimal Rate of Geothermal Energy Extraction'; (5) Session IV, Well Stimulation, included papers on 'Fluid Flow Through a Large Vertical Crack in the Earth's Crust' and 'Explosive Stimulation of Geothermal Wells'; and (6) Session V, Modeling, included papers on 'Steam Transport in Porous Media' and 'Large-Scale Geothermal Field Parameters and Convection Theory.'

Kruger, P.; Ramey, H.J. Jr.

1976-12-01T23:59:59.000Z

454

Convective heat transport in geothermal systems  

DOE Green Energy (OSTI)

Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

Lippmann, M.J.; Bodvarsson, G.S.

1986-08-01T23:59:59.000Z

455

Advanced Geothermal Turbodrill  

DOE Green Energy (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

456

Definition: Displacement Transfer Zone | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Displacement Transfer Zone Jump to: navigation, search Dictionary.png Displacement Transfer Zone Displacement transfer zones facilitate the transfer of strain between normal and strike-slip faults. Intersections between strike-slip faults in the Walker Lane and N- to NNE-striking normal faults commonly host geothermal systems, focused along the normal faults proximal to their dilational intersections with nearby strike-slip faults.[2] View on Wikipedia Wikipedia Definition References ↑ James E. Faulds,Nicholas H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of Geothermal

457

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

458

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

459

Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general

460

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

Note: This page contains sample records for the topic "transition zone geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

462

Geothermal Energy Program overview  

SciTech Connect

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

1991-12-01T23:59:59.000Z

463

Geothermal Electricity Production  

Energy.gov (U.S. Department of Energy (DOE))

Heat from the earthgeothermal energyheats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225-600F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with fossil fuels.

464

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

465

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

466

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

467

Assessment of geothermal development in Puna, Hawaii  

SciTech Connect

The following subjects are discussed: the district of Puna prior to geothermal development, socioeconomic conditions, alternative modes of geothermal development, social benefits and costs of geothermal development, and geothermal development policy and its direction. (MHR)

Kamins, R.M.; Tinning, K.J.

1977-01-01T23:59:59.000Z

468

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

469

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

470

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

471

The Geothermal Technologies Office Congratulates this Year's ...  

The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees. December 11, 2013. On December 10, the Geothermal Energy Association ...

472

Geothermal Technologies Office: Hydrothermal and Resource Confirmation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

473

EERE: Geothermal Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

474

Thermal Response Testing for Geothermal Heat Exchangers ...  

Science Conference Proceedings (OSTI)

Thermal Response Testing for Geothermal Heat Exchangers Begins. The Net-Zero house features a geothermal heat pump ...

2013-03-12T23:59:59.000Z

475

Geothermal Exploration In Akutan, Alaska, Using Multitemporal...  

Open Energy Info (EERE)

In Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Exploration In...

476

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Blewitt,_Et_Al.,_2003)&oldid=401370"

477

Self Potential At Central Nevada Seismic Zone Region (Pritchett, 2004) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Self Potential At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden"

478

RMOTC - Testing - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

479

Geothermal: Distributed Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admi