Sample records for transition metal oxide

  1. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOE Patents [OSTI]

    Frei, Heinz M; Jiao, Feng

    2013-12-24T23:59:59.000Z

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  2. Transition metal-promoted oxygen ion conductors as oxidation catalyst

    SciTech Connect (OSTI)

    Liu, W.; Sarofim, A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering

    1994-12-31T23:59:59.000Z

    A novel metal oxide composite catalyst for the complete oxidation of carbon monoxide and hydrocarbons was prepared by combining oxygen ion conducting materials with active transition metals. The oxygen ion conductors used were typical fluorite-type oxides, such as ceria, zirconia, and others. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of oxygen ion conductors. The intimate contact of the two kinds of materials gave rise to a highly active oxidation catalyst. On Cu-Ce-O composite catalysts, 95% of carbon monoxide was oxidized by air at {approximately} 100 C. Complete methane oxidation on the same catalyst took place at {approximately} 550 C. When the stoichiometric amount of sulfur dioxide was sued to oxidize carbon monoxide, 96% of sulfur dioxide was reduced to elemental sulfur at temperatures above 460 C with 99% of sulfur dioxide conversion. This type of composite catalyst also showed excellent resistance to water poisoning.

  3. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    metals. A research team at the National Renewable Energy Laboratory (NREL) has demonstrated Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 1617 Cole BoulevardTransition metal oxide improves overall efficiency and maintains performance with inexpensive

  4. Route to transition metal carbide nanoparticles through cyanamide and metal oxides

    SciTech Connect (OSTI)

    Li, P.G. [Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 (China)], E-mail: peigangiphy@yahoo.com.cn; Lei, M.; Tang, W.H. [Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 (China)

    2008-12-01T23:59:59.000Z

    We have designed an efficient route to the synthesis of transition metal carbide nanoparticles starting from an organic reagent cyanamide and transition metal oxides. Four technologically important metal carbide nanoparticles such as tungsten carbide, niobium carbide, tantalum carbide and vanadium carbide were synthesized successfully at moderate temperatures. It is found that cyanamide is an efficient carburization reagent and that the metal oxides are completely transmitted into the corresponding carbide nanoparticles. A possible mechanism is proposed to explain the results of the reaction between cyanamide and the metal oxides.

  5. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    transition metal oxides. Acknowledgment This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,

  6. Photoelectron Imaging Spectroscopic Investigations of Transition Metal Silicides and Oxides.

    E-Print Network [OSTI]

    Gunaratne, K. Don

    2012-01-01T23:59:59.000Z

    ??This dissertation presents the experimental progress in the use of photoelectron imaging spectroscopy to probe the electronic structure of negatively charged transition metal silicides and… (more)

  7. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect (OSTI)

    S.E. Ziemniak

    2000-05-18T23:59:59.000Z

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  8. Electrochemical lithiation and delithiation for control of magnetic properties of nanoscale transition metal oxides

    E-Print Network [OSTI]

    Sivakumar, Vikram

    2008-01-01T23:59:59.000Z

    Transition metal oxides comprise a fascinating class of materials displaying a variety of magnetic and electronic properties, ranging from half-metallic ferromagnets like CrO2, ferrimagnetic semiconductors like Fey's, and ...

  9. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget

    E-Print Network [OSTI]

    Alexander, Becky

    processes, volca- noes) or produced within the atmosphere by oxidation of re- duced sulfur speciesTransition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur importance of sulfate production by Fe(III)- and Mn(II)-catalyzed oxidation of S(IV) by O2. We scale

  10. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24T23:59:59.000Z

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  11. Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts. I. Catalyst composition and activity

    SciTech Connect (OSTI)

    Liu, W.; Flytzani-Stephanopoulos, F. [Tufts Univ., Medford, MA (United States)] [Tufts Univ., Medford, MA (United States)

    1995-05-01T23:59:59.000Z

    A novel metal oxide composite catalyst for the total oxidation of carbon monoxide and methane was prepared by combining fluorite oxides with active transition metals. The fluorite oxides, such as ceria and zirconia, are oxygen-ion-conducting materials having catalytic properties usually at high temperatures. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of these oxides. The contact of the two types of materials gave rise to a high active oxidation catalyst. At a space velocity of about 42,000 h{sup {minus}1}, complete carbon monoxide oxidation in air occurred at room temperature on the Au{sub 0.05}[Ce(La)]{sub 0.95}L{sub x} catalyst and at ca. 100{degrees}C on Cu-Ce-O composite catalysts. At the same space velocity, total oxidation of methane on the Cu-Ce-O catalyst doped with La{sub 2}O{sub 3} or SrO took place at ca. 550{degrees}C. The specific carbon monoxide oxidation activity of the Cu-Ce-O catalyst was several orders of magnitude higher than that of conventional copper-based catalysts and comparable or superior to platinum catalysts. This type of composite catalyst also showed excellent resistance to water vapor poisoning. The enhanced catalyst activity and stability resulted from strong interaction of the transition metal and fluorite oxide materials. 44 refs., 14 figs., 5 tabs.

  12. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

  13. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations

    E-Print Network [OSTI]

    Ceder, Gerbrand

    obvious. In this paper, we show by means of density functional theory DFT calcula- tions that a rationalUnderstanding the NMR shifts in paramagnetic transition metal oxides using density functional functional theory DFT calculations in the generalized gradient approximation. For each compound, we calculate

  14. Structure formation upon reactive direct current magnetron sputtering of transition metal oxide films

    SciTech Connect (OSTI)

    Ngaruiya, J.M.; Kappertz, O.; Mohamed, S.H.; Wuttig, M. [I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen, Germany and Jomo Kenyatta University of Agriculture and Technology, Box 62000 Nairobi (Kenya); I. Physikalisches Institut der RWTH Aachen, D-52056 Aachen (Germany)

    2004-08-02T23:59:59.000Z

    A comparative study of reactive direct current magnetron sputtering for different transition metal oxides reveals crystalline films at room temperature for group 4 and amorphous films for groups 5 and 6. This observation cannot be explained by the known growth laws and is attributed to the impact of energetic particles, originating from the oxidized target, on the growing film. This scenario is supported by measured target characteristics, the evolution of deposition stress of the films, and the observed backsputtering.

  15. Correlation effects in (111) bilayers of perovskite transition-metal oxides

    SciTech Connect (OSTI)

    Okamoto, Satoshi [ORNL] [ORNL; Zhu, Wenguang [University of Science and Technology of China] [University of Science and Technology of China; Nomura, Yusuke [University of Tokyo, Japan] [University of Tokyo, Japan; Arita, R. [University of Tokyo, Japan] [University of Tokyo, Japan; Xiao, Di [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Nagaosa, Naoto [University of Tokyo, Japan] [University of Tokyo, Japan

    2014-01-01T23:59:59.000Z

    We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

  16. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect (OSTI)

    Das, Supriyo

    2010-05-16T23:59:59.000Z

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

  17. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    Figure 1.1. Ragone plot of various energy storage systems [metal oxides for energy storage devices A dissertationmetal oxides for energy storage devices by Jong Woung Kim

  18. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect (OSTI)

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01T23:59:59.000Z

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  19. Strain induced electronic structure changes in magnetic transition metal oxides thin films

    SciTech Connect (OSTI)

    van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

    2010-07-08T23:59:59.000Z

    We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

  20. Synthesis of transition metal nitride by nitridation of metastable oxide precursor

    SciTech Connect (OSTI)

    Wang, Huamin; Wu, Zijie; Kong, Jing [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang, E-mail: zqwang@mail.nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China) [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, No. 393 Binshui Road, Xiqing Dist., Tianjin 300387 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)

    2012-10-15T23:59:59.000Z

    Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

  1. Spectroscopic Studies of O-Vacancy Defects in Transition Metal Oxides

    SciTech Connect (OSTI)

    Lucovsky, G.; Luning, J.; Fleming, L.B.; Ulrich, M.D.; Rowe, J.E.; Seo, H.; Lee, S.; Lysaght, P.; Bersuker, G.

    2009-06-03T23:59:59.000Z

    Dielectrics comprised of nano-crystalline HfO{sub 2} in gate stacks with thin SiO{sub 2}/SiON interfacial transition regions display significant asymmetries with respect to trapping of Si substrate injected holes and electrons. Based on spectroscopic studies, and guided by ab initio theory, electron and hole traps in HfO{sub 2} and other transition metal elemental oxides are assigned to O-atom divacancies clustered at internal grain boundaries of nano-crystalline films. Engineering solutions in which grain boundary defects are suppressed include: (i) ultra-thin, <2 nm, HfO{sub 2} fims, (ii) chemically phase separated high HfO2 content silicate films, and (iii) non-crystalline Zr/Hf Si oxynitride films.

  2. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    SciTech Connect (OSTI)

    Xiao, Di [ORNL; Zhu, Wenguang [University of Tennessee, Knoxville (UTK); Ran, Ying [Boston College, Chestnut Hill; Nagaosa, Naoto [University of Tokyo, Tokyo, Japan; Okamoto, Satoshi [ORNL

    2011-01-01T23:59:59.000Z

    Topological insulators (TIs) are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of TIs, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional TIs. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO$_3$ bilayers have a topologically non-trivial energy gap of about 0.15~eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in $e_g$ systems are also discussed.

  3. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect (OSTI)

    Singh, Ranjan [Los Alamos National Laboratory; Xiong, Jie [Los Alamos National Laboratory; Azad, Md A. [Los Alamos National Laboratory; Yang, Hao [Los Alamos National Laboratory; Trugman, Stuart A. [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory

    2012-07-13T23:59:59.000Z

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  4. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect (OSTI)

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01T23:59:59.000Z

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  5. Methane Activation by Transition-Metal Oxides, MOx (M ) Cr, Mo, W; x ) 1, 2, 3) Xin Xu,# Francesco Faglioni, and William A. Goddard, III*

    E-Print Network [OSTI]

    Goddard III, William A.

    Methane Activation by Transition-Metal Oxides, MOx (M ) Cr, Mo, W; x ) 1, 2, 3) Xin Xu,# Francesco, 2002 Recent experiments on the dehydrogenation-aromatization of methane (DHAM) to form benzene using a MoO3/HZSM-5 catalyst stimulated us to examine methane activation by the transition-metal oxide

  6. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect (OSTI)

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05T23:59:59.000Z

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  7. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors

    SciTech Connect (OSTI)

    Gash, A E; Tillotson, T M; Satcher Jr, J H; Hrubesh, L W; Simpson, R L

    2000-09-12T23:59:59.000Z

    We have developed a new sol-gel route to synthesize several transition and main-group metal oxide aerogels. The approach is straightforward, inexpensive, versatile, and it produces monolithic microporous materials with high surface areas. Specifically, we report the use of epoxides as gelation agents for the sol-gel synthesis of chromia aerogels and xerogels from simple Cr(III) inorganic salts. The dependence of both gel formation and its rate was studied by varying the solvent used, the Cr(III) precursor salt, the epoxide/Cr(III) ratio, as well as the type of epoxide employed. All of these variables were shown to affect the rate of gel formation and provide a convenient control of this parameter. Dried chromia aerogels were characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses, results of which will be presented. Our studies have shown that rigid monolithic gels can be prepared from many different metal ions salts, provided the formal oxidation state of the metal ion is greater than or equal to +3. Conversely, when di-valent transition metal salts are used precipitated solids are the products.

  8. The interactions between transition metal nanoparticles and their metal-oxide supports are often critical for heterogeneous metal nanoparticle

    E-Print Network [OSTI]

    Napp, Nils

    for selective hydrogenations (2, 3), oxidations (3­5), and the water-gas shift (WGS) reaction (3, 6). Several to saturation kinetics, with added water affecting the kinetics of the RDS. We explored potential mechanistic oxygen from the support (21, 27). Perhaps most importantly, as Fig. 1A shows, water dramatically

  9. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    SciTech Connect (OSTI)

    Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.

    1997-05-01T23:59:59.000Z

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  10. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  11. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

    1994-01-01T23:59:59.000Z

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  12. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26T23:59:59.000Z

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  13. Fluorescence-based detection methodologies for nitric oxide using transition metal scaffolds

    E-Print Network [OSTI]

    Hilderbrand, Scott A. (Scott Alan), 1976-

    2004-01-01T23:59:59.000Z

    Chapter 1. Fluorescence-Based Detection Methodologies for Nitric Oxide: A Review. Chapter 2. Cobalt Chemistry with Mixed Aminotroponimine Salicylaldimine Ligands: Synthesis, Characterization, and Nitric Oxide Reactivity. ...

  14. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  15. Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells

    E-Print Network [OSTI]

    La O', Gerardo Jose Cordova

    2008-01-01T23:59:59.000Z

    The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

  16. The detection of nitric oxide and its reactivity with transition metal thiolate complexes

    E-Print Network [OSTI]

    Tennyson, Andrew Gregory

    2008-01-01T23:59:59.000Z

    Nitric oxide (NO) is a molecule that is essential for life and regulates both beneficial and harmful processes. Because this gaseous radical influences many aspects of health and disease, we wish to explore the relationship ...

  17. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  18. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  19. Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries

    E-Print Network [OSTI]

    Moore, Charles J. (Charles Jacob)

    2012-01-01T23:59:59.000Z

    A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

  20. Interplay between electronic structure and catalytic activity in transition metal oxide model system

    E-Print Network [OSTI]

    Suntivich, Jin

    2012-01-01T23:59:59.000Z

    The efficiency of many energy storage and conversion technologies, such as hydrogen fuel cells, rechargeable metal-air batteries, and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen ...

  1. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15T23:59:59.000Z

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  2. Method for dry etching of transition metals

    SciTech Connect (OSTI)

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  3. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29T23:59:59.000Z

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  4. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18T23:59:59.000Z

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  5. Project Profile: High Performance Reduction/Oxidation Metal Oxides...

    Office of Environmental Management (EM)

    High Performance ReductionOxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance ReductionOxidation Metal Oxides for Thermochemical Energy...

  6. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  7. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  8. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01T23:59:59.000Z

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  9. Ballistic performance comparison of monolayer transition metal dichalcogenide MX{sub 2} (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors

    SciTech Connect (OSTI)

    Chang, Jiwon; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-02-28T23:59:59.000Z

    We study the transport properties of monolayer MX{sub 2} (M?=?Mo, W; X?=?S, Se, Te) n- and p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) using full-band ballistic non-equilibrium Green's function simulations with an atomistic tight-binding Hamiltonian with hopping potentials obtained from density functional theory. We discuss the subthreshold slope, drain-induced barrier lowering (DIBL), as well as gate-induced drain leakage (GIDL) for different monolayer MX{sub 2} MOSFETs. We also report the possibility of negative differential resistance behavior in the output characteristics of nanoscale monolayer MX{sub 2} MOSFETs.

  10. Tribochemical properties of metastable states of transition metals

    E-Print Network [OSTI]

    Kar, Prasenjit

    2009-05-15T23:59:59.000Z

    challenges in directing the reaction kinetics. This dissertation studied the dynamics and kinetics of oxidation of transitional metals, particularly on tantalum through mechanical forces. This is a new area of research in surface science. Experimentally using...

  11. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08T23:59:59.000Z

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi2-yHyO.xM'O2.(1-x)Li1-zHzMO2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi2-yHy.xM'O2.(1-x)Li1-zHzMO2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi2M'O3.(1-x)LiMO2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  12. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect (OSTI)

    Bitterwolf, Thomas E. [University of Idaho

    2014-12-09T23:59:59.000Z

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  13. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01T23:59:59.000Z

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  14. Au/MxOy/TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives.

    SciTech Connect (OSTI)

    Ma, Zhen [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

    2007-01-01T23:59:59.000Z

    Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually not reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.

  15. Metal oxide nanostructures with hierarchical morphology

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13T23:59:59.000Z

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  16. Approximating Metal-Insulator Transitions

    E-Print Network [OSTI]

    C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

    2014-05-06T23:59:59.000Z

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

  17. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01T23:59:59.000Z

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  18. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  19. Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews,*, Andreas Rohrbacher, Christopher M. Laperle, and Robert E. Continetti

    E-Print Network [OSTI]

    Continetti, Robert E.

    , approximately 10% of the gas sample condensed on the 10K copper plate. For ablation a focused (10 cm f of the laser-ablated metal atoms and O2 in excess argon during condensation at 10 K, have been laser desorbed spectrometry. Adding the C6H5Br chromophore to the Ar/O2 gas mixture also enhanced the metal and oxide ion

  20. Synthesis of transition metal carbonitrides

    DOE Patents [OSTI]

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01T23:59:59.000Z

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  1. NANO - "Green" metal oxides ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely used in...

  2. Spectroscopic studies of metal growth on oxides

    E-Print Network [OSTI]

    Luo, Kai

    2000-01-01T23:59:59.000Z

    : Chemistry SPECTROSCOPIC STUDIES OF METAL GROWTH ON OXIDES A Thesis by KAI LUO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style a d content by: avid W. Goodman.... , Jilin University, P. R. China Chair of Advisory Committee: Dr, David W. Goodman Metal/oxide chemistry and metal cluster growth on oxides are fundamental to our understanding of the catalytic activity and selectivity of metal catalysts, thus...

  3. E-Print Network 3.0 - alkaline-earth metal oxides Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    differ in the nature of the angle... ). Weidner and Hamaya (1983) observed that the transition-metal oxides and the alkaline-earth oxides fail... ... Source: Price, G. David -...

  4. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15T23:59:59.000Z

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  5. THE MICROSTRUCTURAL LOCATION OF THE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR

    E-Print Network [OSTI]

    Clarke, D. E

    2011-01-01T23:59:59.000Z

    I• I ntroduct Ion Metal oxide varistors are ceramic semi-SECTION M METAL' OXIDE PHASE IN A ZINC OXIDE VARISTORTHE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR

  6. Binding Energy of dº Transition Metals to Alkenes By Wave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy of dº Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory. Binding Energy of dº Transition Metals to Alkenes By Wave Function Theory...

  7. Effects of Transition Metals on the Grain Boundary Cohesion in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transition Metals on the Grain Boundary Cohesion in Tungsten. Effects of Transition Metals on the Grain Boundary Cohesion in Tungsten. Abstract: We report on the effects of...

  8. Transition metal fluorides: from superconductors to multiferroics. 

    E-Print Network [OSTI]

    Drathen, Christina

    2013-06-29T23:59:59.000Z

    Transition metal fluorides represent an important family of complex solids displaying a variety of different properties and interesting phenomena. Despite their remarkable behaviour, these classes of materials have not ...

  9. Vibronic spectroscopy of unsaturated transition metal complexes: CrC2H, CrCH3 , and NiCH3

    E-Print Network [OSTI]

    Morse, Michael D.

    to characterize diatomic transition metal oxides, nitrides, and carbides.8­22 In addition to these pure metallicVibronic spectroscopy of unsaturated transition metal complexes: CrC2H, CrCH3 , and NiCH3 Dale J investigation of small transition metal clusters and organo- metallic radicals is that these species serve

  10. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOE Patents [OSTI]

    Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Wagner, Richard W. (Murrysville, PA)

    1996-01-01T23:59:59.000Z

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  11. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOE Patents [OSTI]

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02T23:59:59.000Z

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  12. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  13. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect (OSTI)

    Viswanathan, Tito

    2014-12-30T23:59:59.000Z

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  14. Method of boronizing transition metal surfaces

    DOE Patents [OSTI]

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16T23:59:59.000Z

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  15. Method of boronizing transition metal surfaces

    DOE Patents [OSTI]

    Koyama, Koichiro (Hyogo, JP); Shimotake, Hiroshi (Hinsdale, IL)

    1983-01-01T23:59:59.000Z

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  16. Metallic to insulating transition in disordered pulsed laser deposited silicide thin films.

    E-Print Network [OSTI]

    Abou Mourad, Houssam

    2005-01-01T23:59:59.000Z

    ??A metal-to-insulating transition has been observed in iron, iron oxide, iron silicide and cobalt silicide thin films when deposited on Si substrate with a native… (more)

  17. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01T23:59:59.000Z

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  18. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04T23:59:59.000Z

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  19. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  20. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  1. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28T23:59:59.000Z

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  2. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12T23:59:59.000Z

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  3. [Transition metal mediated transformations of small molecules

    SciTech Connect (OSTI)

    Sen, A.

    1992-01-01T23:59:59.000Z

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of [alpha]-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  4. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  5. Understanding Atom Probe Tomography of Oxide-Supported Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Understanding Atom Probe Tomography of Oxide-Supported Metal...

  6. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04T23:59:59.000Z

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  7. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23T23:59:59.000Z

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  8. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

    1998-01-01T23:59:59.000Z

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  9. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18T23:59:59.000Z

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  10. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

    1994-01-01T23:59:59.000Z

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  11. Spin transition in a four-coordinate iron oxide

    SciTech Connect (OSTI)

    Kawakami, T. [Nihon University, Tokyo; Sutou, S. [Nihon University, Tokyo; Hirama, H. [Nihon University, Tokyo; Sekiya, Y. [Nihon University, Tokyo; Makino, T. [Nihon University, Tokyo; Tsujimoto, Y. [Kyoto University, Japan; Kitada, A. [Kyoto University, Japan; Tassel, C. [Kyoto University, Japan; Kageyama, H. [Kyoto University, Japan; Yoshimura, K. [Kyoto University, Japan; Chen, Xingqiu [ORNL; Fu, Chong Long [ORNL; Okada, T. [University of Tokyo, Tokyo, Japan; Yagi, T. [University of Tokyo, Tokyo, Japan; Hayashi, N. [Kyoto University, Japan; Nasu, S. [Osaka University; Podloucky, R. [Institut fur Physikalische Chemie der RWTH; Takano, M. [Kyoto University, Japan

    2009-01-01T23:59:59.000Z

    The spin transition, or spin crossover, is a manifestation of electronic instability induced by external constraints such as pressure1. Among known examples that exhibit spin transition, 3d ions with d6 electron configurations represent the vast majority, but the spin transition observed thus far has been almost exclusively limited to that between high-spin (S = 2) and low-spin (S = 0) states2-9. Here we report a novel high-spin to intermediate-spin (S = 1) state transition at 33 GPa induced by pressurization of an antiferromagnetic insulator SrFeO2 with a square planar coordination10. The change in spin multiplicity brings to ferromagnetism as well as metallicity, yet keeping the ordering temperature far above ambient. First-principles calculations attribute the origin of the transition to the strong inlayer hybridization between Fe dx 2 -y 2 O p , leading to a pressure-induced electronic instability toward the depopulation of Fe dx 2 -y 2 O p antibonding states. Furthermore, the ferromagnetic S = 1 state is half-metallic due to the inception of half-occupied spin-down (dxz, dyz) degenerate states upon spin transition. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials and provide new avenues toward realizing multi-functional sensors and data-storage devices.

  12. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  13. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  14. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect (OSTI)

    Estochen, E.

    2013-03-20T23:59:59.000Z

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  15. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE...

  16. Single-layer transition metal sulfide catalysts

    DOE Patents [OSTI]

    Thoma, Steven G. (Albuquerque, NM)

    2011-05-31T23:59:59.000Z

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  17. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect (OSTI)

    Yang, Minghui, E-mail: m.yang@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Allen, Amy J.; Nguyen, Minh T. [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States); Ralston, Walter T. [College of Chemistry, University of California, Berkeley 94720-1460, CA (United States); MacLeod, Michelle J. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, MA (United States); DiSalvo, Francis J., E-mail: fjd3@cornell.edu [Department of Chemistry, Cornell University, Ithaca 14853-1301, NY (United States)

    2013-09-15T23:59:59.000Z

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  18. Metal-insulator transition in holography

    E-Print Network [OSTI]

    Aristomenis Donos; Sean A. Hartnoll

    2013-01-19T23:59:59.000Z

    We exhibit an interaction-driven metal-insulator quantum phase transition in a holographic model. Use of a helical lattice enables us to break translation invariance while preserving homogeneity. The metallic phase is characterized by a sharp Drude peak and a d.c. resistivity that increases with temperature. In the insulating phase the Drude spectral weight is transferred into a `mid-infrared' peak and to energy scales of order the chemical potential. The d.c. resistivity now decreases with temperature. In the metallic phase, operators breaking translation invariance are irrelevant at low energy scales. In the insulating phase, translation symmetry breaking effects are present at low energies. We find the near horizon extremal geometry that captures the insulating physics.

  19. Chemistry of Sulfur Oxides on Transition Metals I: Configurations, Energetics, Orbital Analyses, and Surface Coverage Effects of SO2 on Pt(111)

    E-Print Network [OSTI]

    Lin, Xi

    on understanding how SO2 promotes the oxidation of alkanes, such as propane.3-5 To understand the reactivity, Polcik et al. did not pro- pose any detailed structural information for this flat-lying configuration

  20. Reduction of metal oxides through mechanochemical processing

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01T23:59:59.000Z

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  1. Modeling of surface oxidation and oxidation induced damage in metal matrix composites

    E-Print Network [OSTI]

    Ma, Xinzheng

    1995-01-01T23:59:59.000Z

    Surface oxidation in metal matrix composites (MMC's) is modeled by Fickian diffusion of oxygen in both the oxide layer and metal matrix. The oxidation process and the resulting immobilized oxygen at the interface is accounted for by the introduction...

  2. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22T23:59:59.000Z

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  3. Metal-supported solid oxide fuel cells

    SciTech Connect (OSTI)

    Villarreal, I.; Jacobson, C.; Leming, A.; Matus, Y.; Visco, S.; De Jonghe, L.

    2003-01-07T23:59:59.000Z

    Low cost, colloidal deposition methods have been utilized to produce novel solid oxide fuel cell structures on metal alloy support electrodes. YSZ films were deposited on iron-chrome supports on top of a thin Ni/YSZ catalytic layer, and sintered at 1350 degrees C, in a reducing atmosphere. Dense, 20??m YSZ electrolyte films were obtained on highly porous stainless steel substrates.

  4. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI)

    1994-01-01T23:59:59.000Z

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  5. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.

    1994-05-03T23:59:59.000Z

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  6. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17T23:59:59.000Z

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe3+, Cr3+, Al3+, Ga3+, In3+, Hf4+, Sn4+, Zr4+, Nb5+, W6+, Pr3+, Er3+, Nd3+, Ce3+, U3+ and Y3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of FexOy gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  7. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOE Patents [OSTI]

    Iton, Lennox E. (Downers Grove, IL); Maroni, Victor A. (Naperville, IL)

    1991-01-01T23:59:59.000Z

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  8. Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    delocalization of the charge carriers in the spatially extended conduction band cause an ultrafast transition to the metallic state as the valence and conductions bands once...

  9. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  10. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect (OSTI)

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I. [Sandia National Labs., Albuquerque, NM (United States). Process Research Dept.

    1993-07-01T23:59:59.000Z

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  11. Versatile Applications of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Li, Li

    2014-05-29T23:59:59.000Z

    1998, 396, 152. [4] S. Guldin, S. Hüttner, M. Kolle, M. E. Welland, P. Müller-Buschbaum, R. H. Friend, U. Steiner, N. Tétreault, Dye-sensitized solar cell based on a three- dimensional photonic crystal, Nano Lett. 2010, 10, 2303. [5] R. L. Puurunen... and technological fields, in- cluding catalysis, sensors, energy devices (batteries, solar cells and fuel cells), optics and biomedicine.[11] Nanoporous metal oxides have therefore gained tremendous in- terest during the past decades. They show greatly improved...

  12. Method for producing metal oxide aerogels

    SciTech Connect (OSTI)

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25T23:59:59.000Z

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  13. Method for producing metal oxide aerogels

    DOE Patents [OSTI]

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  14. Metal-insulator transitions in IZO, IGZO, and ITZO films

    SciTech Connect (OSTI)

    Makise, Kazumasa, E-mail: makise@nict.go.jp [National Institute of Information and Communications Technology, Kobe 651-2492 (Japan); Hidaka, Kazuya; Ezaki, Syohei; Asano, Takayuki; Shinozaki, Bunju [Department of Physics, Kyushu University, Fukuoka 810-8560 (Japan); Tomai, Shigekazu; Yano, Koki; Nakamura, Hiroaki [Central Research Laboratories, Idemitsu Kosan Co. Ltd, Chiba 299-0293 (Japan)

    2014-10-21T23:59:59.000Z

    In this study, we measured the low-temperature resistivity of amorphous two- and three-dimensional (2D and 3D) indium-zinc oxide, indium-gallium-zinc oxide, and indium-tin-zinc oxide films with a wide range of carrier densities. To determine their critical characteristics at the metal-insulator transition (MIT), we used the Ioffe–Regel criterion. We found that the MIT occurs in a narrow range between k{sub F}??=?0.13 and k{sub F}??=?0.25, where k{sub F} and ? are the Fermi wave number and electron mean free path, respectively. For films in the insulating region, we analyzed ?(T) using a procedure proposed by Zabrodskii and Zinov'eva. This analysis confirmed the occurrence of Mott and Efros–Shklovskii (ES) variable-range hopping. The materials studied show crossover behavior from exp(T{sub Mott}/T){sup 1/4} or exp(T{sub Mott}/T){sup 1/3} for Mott hopping conduction to exp(T{sub ES}/T){sup 1/2} for ES hopping conduction with decreasing temperature. For both 2D and 3D materials, we found that the relationship between T{sub Mott} and T{sub ES} satisfies T{sub ES}???T{sub Mott}{sup 2/3}.

  15. Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes Some otherwise chemically stable fluxes may decompose into suboxides in the presence of welding arcs, thereby providing higher levels of 0 2 in weld metal than those oxides which do not form suboxides ABSTRACT. The stability of metal

  16. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30T23:59:59.000Z

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  17. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Webster, Elizabeth T. (Madison, WI); Xu, Qunyin (Plainsboro, NJ)

    1994-01-01T23:59:59.000Z

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  18. Transition metal-free olefin polymerization catalyst

    DOE Patents [OSTI]

    Sen, Ayusman (State College, PA); Wojcinski, II, Louis M. (State College, PA); Liu, Shengsheng (State College, PA)

    2001-01-01T23:59:59.000Z

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  19. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Broader source: Energy.gov (indexed) [DOE]

    Monolithic Metal Oxide based Composite Nanowire Lean NO x Emission Control Catalysts Pu-Xian Gao Department of Chemical, Materials and Biomolecular Engineering & Institute of...

  20. Electronic structures of transition metal to hydrogen bonds: oxidative addition of dihydrogen to a square planar rhodium complex and quantum mechanical prediction of the geometry of a metal hydride

    E-Print Network [OSTI]

    Halpin, Carolyn F.

    2012-06-07T23:59:59.000Z

    and Johnson have examined the stereoselectivity of the addition of diatonuc hydrogen to iridium(I) complexes. These four- coordinated complexes oxidatively add molecular hydrogen, giving octahedral products. It is evident from their work... to the thermodynamic product shown in Figure 3c. Thus, the incoming hydrogens are contained in a single plane (YZ plane) and the complete reaction profile could be described by as few as 5 parameters (o, 4, 8, R and r which are diagrammed in Figure 6). The distance...

  1. Photochemical reductive elimination of halogen from transition metal complexes

    E-Print Network [OSTI]

    Cook, Timothy R. (Timothy Raymond), 1982-

    2010-01-01T23:59:59.000Z

    This thesis is focused on the synthesis and study of transition metal complexes that undergo halogen elimination when irradiated with UV and visible light. This chemistry is relevant for solar energy storage schemes in ...

  2. Optical properties of two-dimensional transition metal dichalcogenides

    E-Print Network [OSTI]

    Lin, Yuxuan, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    The re-discovery of the atomically thin transition metal dichalcogenides (TMDs), which are mostly semiconductors with a wide range of band gaps, has diversified the family of two-dimensional materials and boosted the ...

  3. Mechanisms of transition-metal gettering in silicon

    SciTech Connect (OSTI)

    MYERS JR.,SAMUEL M.; SEIBT,M.; SCHROTER,W.

    2000-03-23T23:59:59.000Z

    The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed from a mechanistic perspective. Methods for mathematical modeling of gettering are reviewed and illustrated. Needs for further research are discussed.

  4. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  5. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-15T23:59:59.000Z

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  6. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, James A. (Star City, WV)

    1997-01-01T23:59:59.000Z

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  7. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOE Patents [OSTI]

    Maroni, V.A.; von Winbush, S.

    1987-05-01T23:59:59.000Z

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  8. Biofuels production from hydrotreating of vegetable oil using supported noble metals, and transition metal carbide and nitride.

    E-Print Network [OSTI]

    Wang, Huali

    2012-01-01T23:59:59.000Z

    ?? The focus of this research is to prepare non-sulfided hydrotreating catalysts, supported noble metal and transition metal carbide/ nitride, and evaluate their hydrocracking activities… (more)

  9. NREL Demonstrates Efficient Solar Water Splitting by Metal Oxide Photoabsorber (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    New development demonstrates that inexpensive and robust metal oxide photoabsorbers hold great promise as photoanodes for water oxidation.

  10. Flexible metallic seal for transition duct in turbine system

    DOE Patents [OSTI]

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22T23:59:59.000Z

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  11. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01T23:59:59.000Z

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  12. [Transition metal mediated transformations of small molecules]. Progress report

    SciTech Connect (OSTI)

    Sen, A.

    1992-10-01T23:59:59.000Z

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of {alpha}-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  13. Method and apparatus for the production of metal oxide powder

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  14. Method and apparatus for the production of metal oxide powder

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1992-01-01T23:59:59.000Z

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  15. Method and apparatus for the production of metal oxide powder

    DOE Patents [OSTI]

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16T23:59:59.000Z

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  16. Memristor using a transition metal nitride insulator

    DOE Patents [OSTI]

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28T23:59:59.000Z

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  17. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  18. High temperature superconductivity in metallic region near Mott transition

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-11T23:59:59.000Z

    The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

  19. area metal oxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Websites Summary: have generated considerable interest for applications such as thin film displays with improved color of a metal oxide-based QD-LED structure10 injection...

  20. Surface effects and phase stability in metal oxides nanoparticles under visible irradiation

    SciTech Connect (OSTI)

    Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it; Carbonaro, C. M., E-mail: carlo.ricci@dsf.unica.it; Corpino, R., E-mail: carlo.ricci@dsf.unica.it; Chiriu, D., E-mail: carlo.ricci@dsf.unica.it; Stagi, L., E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Universitá degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Canada) (Italy)

    2014-10-21T23:59:59.000Z

    The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO{sub 2}) and in Iron oxide (Fe{sub 2}O{sub 3}): Maghemite is subjected to a phase transformation to ??Fe{sub 2}O{sub 3} (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

  1. Plutonium metal and oxide container weld development and qualification

    SciTech Connect (OSTI)

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01T23:59:59.000Z

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  2. Noble metal catalysts for oxidation of mercury in flue gas

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2008-04-01T23:59:59.000Z

    The use of precious metals and platinum group metals as catalysts for oxidation of mercury in flue gas is an active area of study. To date, field studies have recently focused on gold and palladium catalysts installed at pilot-scale. In this work, we introduce bench-scale results for gold, platinum, and palladium catalysts tested in realistic simulated flue gas. Initial results reveal intriguing characteristics of catalytic mercury oxidation and provide insight for future research.

  3. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01T23:59:59.000Z

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  4. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01T23:59:59.000Z

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  5. Electrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase Separated Manganite Wires

    E-Print Network [OSTI]

    Tennessee, University of

    characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown, electrophoretic switching, transition metal oxides Resistive switching is observed across many different material, Elbio Dagotto,, Jian Shen,*,,# and T. Zac Ward*, Materials Science and Technology Division, Oak Ridge

  6. Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene

    E-Print Network [OSTI]

    Hod, Oded

    Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons Oded Hod,* Vero´nica Barone theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene with nanometer scale dimen- sions. Recently, a new type of graphene-based material was experimentally realized.12

  7. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfor aOxide Nanoparticles. |

  8. Metal-oxide-based energetic materials and synthesis thereof

    DOE Patents [OSTI]

    Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2006-01-17T23:59:59.000Z

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  9. Hall effect at a tunable metal-insulator transition

    E-Print Network [OSTI]

    Teizer, Winfried; Hellman, F.; Dynes, RC.

    2003-01-01T23:59:59.000Z

    Using a rotating magnetic field, the Hall effect in three-dimensional amorphous GdxSi1-x has been measured in the critical regime of the metal-insulator transition for a constant total magnetic field. The Hall coefficient R-0 is negative, indicating...

  10. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, K.C.; Kodas, T.T.

    1994-01-11T23:59:59.000Z

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  11. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01T23:59:59.000Z

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  12. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOE Patents [OSTI]

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27T23:59:59.000Z

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  13. E-Print Network 3.0 - alb2-type transition-metal diborides Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alb2-type transition-metal diborides Search Powered by Explorit Topic List Advanced Search Sample search results for: alb2-type transition-metal diborides Page: << < 1 2 3 4 5 > >>...

  14. E-Print Network 3.0 - adsorbate-modified transition metal Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adsorbate-modified transition metal Search Powered by Explorit Topic List Advanced Search Sample search results for: adsorbate-modified transition metal Page: << < 1 2 3 4 5 > >> 1...

  15. E-Print Network 3.0 - acidic transition metals Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquids, chlorates, nitrites, sulfur, finely... hypochlorite, all oxidizing agents Carbon tetrachloride Sodium Chlorates Ammonium salts, acids, powdered metals... , copper,...

  16. Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides

    SciTech Connect (OSTI)

    Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.; Ihm, Jisoon

    2001-04-09T23:59:59.000Z

    The effects of vacancies on mechanical properties of the transition metal carbides and nitrides are studied using the ab initio pseudopotential approach. Calculated shear elastic stiffness and electronic structures show that the vacancy produces entirely different effects on the mechanical strength of groups IVb nitrides and Vb carbides. It is found that the occupation of shear-unstable metallic dd bonding states changes essentially in an opposite way for the carbides and nitrides in the presence of vacancies, resulting in different responses to shear stress. Our study provides an atomistic understanding of the anomaly in hardness for these substoichiometric materials.

  17. X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films

    E-Print Network [OSTI]

    X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic

  18. Electronic structure and pairwise interactions in substoichiometric transition metal carbides and nitrides

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1001 Electronic structure and pairwise interactions in substoichiometric transition metal carbides observations expéri- mentales. Abstract 2014 In substoichiometric transition metal carbides and nitrides This paper is devoted to the study of the ordering processes in substoichiometric transition metal carbi- des

  19. Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles

    E-Print Network [OSTI]

    Wu, Zhigang

    Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first 2005 The elastic properties of selected transition-metal TM nitrides and carbides in B1 structure the transition-metal nitrides and carbides remain unclear and a challenge for engineering hard materials

  20. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect (OSTI)

    Huang, X. [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Ling, Z. [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Dai, L. H., E-mail: lhdai@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 10081 (China)

    2014-10-14T23:59:59.000Z

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  1. Investigation of methods for the selective removal and characterization of transition metals associated with solids in the marine environment

    SciTech Connect (OSTI)

    Van Valin, R.; Morse, J.W.

    1981-02-01T23:59:59.000Z

    The operation of an OTEC plant will result in the mixing of large volumes of seawater from different depths within the ocean. Because suspended particulate material is intimately involved in marine food webs and transition metals, such as copper, can have toxic effects, it is important to develop a sound methodology for characterizing and quantifying transition metal behavior associated with the solid material. The characterization of solid-phase-associated transition metals in the marine environment has largely been directed at marine sediments. These studies have generally indicated that it is not possible to uniquely identify the solid phases or chemical speciation of a given metal. There are many reasons for this difficulty, but the probable major analytical problems arise from the fact that many of the transition metals of interest are present only in trace concentrations as adsorbed species on amorphous oxides or as coprecipitates. In one approach transition metals are classified according to how easily they are solubilized when exposed to different types of chemical attack, as defined in chemical extraction schemes. In this study, several of the most widely accepted extraction techniques were compared for many of the most commonly measured transition metals to a variety of marine sediments. Based on the results of this study, the sequential extraction scheme of Tessler et al. (1979) is the recommended method for the characterization of solid-phase associated transition metals. An increase of the reducing agent concentration in the intermediate step and temperature decrease with an additional HCl digestion in the residual step are recommended as improvements, based on the results of the individual extraction method studies.

  2. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    DOE Patents [OSTI]

    Bazan, Guillermo C. (Goleta, CA); Chen, Yaofeng (Shanghai, CN)

    2011-10-25T23:59:59.000Z

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  3. Criteria for safe storage of plutonium metals and oxides

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This standard establishes safety criteria for safe storage of plutonium metals and plutonium oxides at DOE facilities; materials packaged to meet these criteria should not need subsequent repackaging to ensure safe storage for at least 50 years or until final disposition. The standard applied to Pu metals, selected alloys (eg., Ga and Al alloys), and stabilized oxides containing at least 50 wt % Pu; it does not apply to Pu-bearing liquids, process residues, waste, sealed weapon components, or material containing more than 3 wt % {sup 238}Pu. Requirements for a Pu storage facility and safeguards and security considerations are not stressed as they are addressed in detail by other DOE orders.

  4. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect (OSTI)

    Jernigan, G.G. [California Univ., Berkeley, CA (United States). Dept. of Chemistry; [Lawrence Berkeley Lab., CA (United States). Materials and Chemical Sciences Div.

    1994-10-01T23:59:59.000Z

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  5. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA)

    1992-12-29T23:59:59.000Z

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  6. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29T23:59:59.000Z

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  7. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOE Patents [OSTI]

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30T23:59:59.000Z

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  8. Metal current collect protected by oxide film

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2004-05-25T23:59:59.000Z

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  9. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13T23:59:59.000Z

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  10. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries

    SciTech Connect (OSTI)

    J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

    2011-12-31T23:59:59.000Z

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  11. All-alkoxide synthesis of strontium-containing metal oxides

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  12. EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes

    E-Print Network [OSTI]

    EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes and Technology Clear Water Bay, Kowloon, Hong Kong Abstract Indium-tin oxide anodes capped with certain oxides-emitting diodes (OLEDs). The oxides of tin, zinc, praseodymium, yttrium, gallium, terbium and titanium have been

  13. Aliovalent Substitution in Mixed Ni-Mn-Co Oxide Cathodes

    E-Print Network [OSTI]

    Kam, Kinson C.

    2012-01-01T23:59:59.000Z

    transition metal oxides, aliovalent substitution Acknowledgment This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,

  14. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30T23:59:59.000Z

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  15. Electrical excitation of colloidally synthesized quantum dots in metal oxide structures

    E-Print Network [OSTI]

    Wood, Vanessa Claire

    2010-01-01T23:59:59.000Z

    This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

  16. Catalytic graphitization of carbon aerogels by transition metals

    SciTech Connect (OSTI)

    Maldonado-Hodar, F.J.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y.; Yamada, Y.

    2000-05-02T23:59:59.000Z

    Carbon aerogels and Cr-, Fe-, Co-, and Ni-containing carbon aerogels were obtained by pyrolysis, at temperatures between 500 and 1,800 C, of the corresponding aerogels prepared by the sol-gel method from polymerization of resorcinol with formaldehyde. All samples were characterized by mercury porosimetry, nitrogen adsorption, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Results obtained show that carbon aerogels are, essentially, macroporous materials that maintain large pore volumes even after pyrolysis at 1,800 C. For pyrolysis at temperatures higher than 1,000 C, the presence of the transition metals produced graphitized areas with three-dimensional stacking order, as shown by HRTEM, XRD, and Raman spectroscopy. HRTEM also showed that the metal-carbon containing aerogels were formed by polyhedral structures. Cr and Fe seem to be the best catalysts for graphitization of carbon aerogels.

  17. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA); Lincoln, Lanny P. (Woodward, IA)

    1992-02-11T23:59:59.000Z

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  18. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11T23:59:59.000Z

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  19. Metal-insulator Transition by Holographic Charge Density Waves

    E-Print Network [OSTI]

    Yi Ling; Chao Niu; Jianpin Wu; Zhuoyu Xian; Hongbao Zhang

    2014-08-06T23:59:59.000Z

    We construct a gravity dual for charge density waves (CDW) in which the translational symmetry along one spatial direction is spontaneously broken. Our linear perturbation calculation on the gravity side produces the frequency dependence of the optical conductivity, which exhibits the two familiar features of charge density waves, namely the pinned collective mode and gapped single-particle excitation. These two features indicate that our gravity dual also provides a new mechanism to implement the metal to insulator phase transition by CDW, which is further supported by the fact that d.c. conductivity decreases with the decreased temperature below the critical temperature.

  20. Cross-plane thermal properties of transition metal dichalcogenides

    SciTech Connect (OSTI)

    Muratore, C. [Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469 (United States) [Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Varshney, V. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States) [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Universal Technology Corporation, Dayton, Ohio 45432 (United States); Gengler, J. J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States) [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Spectral Energies LLC, Dayton, Ohio 45431 (United States); Hu, J. J.; Bultman, J. E. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States) [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); University of Dayton Research Institute, Dayton, Ohio 45469 (United States); Smith, T. M. [Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210 (United States)] [Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Shamberger, P. J.; Roy, A. K.; Voevodin, A. A. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Qiu, B.; Ruan, X. [Department of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-02-25T23:59:59.000Z

    In this work, we explore the thermal properties of hexagonal transition metal dichalcogenide compounds with different average atomic masses but equivalent microstructures. Thermal conductivity values of sputtered thin films were compared to bulk crystals. The comparison revealed a >10 fold reduction in thin film thermal conductivity. Structural analysis of the films revealed a turbostratic structure with domain sizes on the order of 5-10 nm. Estimates of phonon scattering lengths at domain boundaries based on computationally derived group velocities were consistent with the observed film microstructure, and accounted for the reduction in thermal conductivity compared to values for bulk crystals.

  1. Transition-metal silicides as materials for magnet-semiconductor heterostructures*

    E-Print Network [OSTI]

    Transition-metal silicides as materials for magnet-semiconductor heterostructures* Peter Kratzer as of binary late transition metal monosilicides, in contact with the Si surface. For the Heusler alloy Co2MnSi, we could show that the 001 surface retains the half-metallic character of the bulk if a fully Mn

  2. Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1-xRuxB2

    E-Print Network [OSTI]

    Tolbert, Sarah

    cannot be used to cut steel or other ferrous metals because of the formation of iron carbide at elevatedIncompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1-xRuxB2 Michelle B materials has prompted studies of transition metal diboride solid solutions. We have synthesized pure RuB2

  3. Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    on the moon and on Mars for the generation of oxygen along with the production of structural metalsProduction of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful

  4. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOE Patents [OSTI]

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07T23:59:59.000Z

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

  5. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01T23:59:59.000Z

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  6. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect (OSTI)

    Jung, Daniel [School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Kettemann, Stefan [School of Engineering and Science, Jacobs University Bremen gGmbH,Campus Ring 1, 28759 Bremen, Germany and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)

    2014-08-20T23:59:59.000Z

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  7. Reactions of S-nitrosothiols with biomimetic iron complexes and other transition metals

    E-Print Network [OSTI]

    Victor, Eric, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Chapter 1. Bioinorganic Chemistry of Nitric Oxide and S-Nitrosothiols The interplay of nitric oxide (NO), biological thiols, and metals has been a topic of intense study since the discovery of NO as the endothelium-derived ...

  8. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOE Patents [OSTI]

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27T23:59:59.000Z

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  9. ARC DISCHARGE SYNTHESIS AND MORPHOLOGY CONTROL OF EARLY TRANSITION METAL CARBIDE NANOPATICLES.

    E-Print Network [OSTI]

    Grove , David

    2010-01-01T23:59:59.000Z

    ??This work is directed to the understanding of the synthesis and morphology control of early transition metal carbides. Chapter 1 gives an introduction to fcc… (more)

  10. Transition metal interaction and Ni-Fe-Cu-Si phases in silicon T. Buonassisi,b

    E-Print Network [OSTI]

    precipitation may reduce the lattice mismatch compared to single-metal precipitates, rendering mixed-metal-silicide recombination activity of metal silicide clusters. Common solar cell materials are not contaminated with justTransition metal interaction and Ni-Fe-Cu-Si phases in silicon M. Heuer,a T. Buonassisi,b A. A

  11. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

    1999-01-01T23:59:59.000Z

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  12. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, J.E.; Kelly, T.F.

    1999-06-01T23:59:59.000Z

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  13. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  14. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  15. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  16. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16T23:59:59.000Z

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  17. The Role of Carbon in Catalytically Stabilized Transition Metal Sulfides

    SciTech Connect (OSTI)

    Kelty,S.; Berhault, G.; Chianelli, R.

    2007-01-01T23:59:59.000Z

    Since WWII considerable progress has been made in understanding the basis for the activity and the selectivity of molybdenum and tungsten based hydrotreating catalysts. Recently, the focus of investigation has turned to the structure of the catalytically stabilized active catalyst. The surface of the catalytically stabilized MoS2 has been shown to be carbided with the formula MoSxCy under hydrotreating conditions. In this paper we review the basis for this finding and present new data extending the concept to the promoted TMS (transition metal sulfides) systems CoMoC and NiMoC. Freshly sulfided CoMoS and NiMoS catalyst have a strong tendency to form the carbided surface phases from any available carbon source.

  18. Optical limiting of layered transition metal dichalcogenide semiconductors

    E-Print Network [OSTI]

    Dong, Ningning; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01T23:59:59.000Z

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions.

  19. Alkali monolayers on transition metal surfaces: electronic promotion in catalysis

    SciTech Connect (OSTI)

    Garfunkel, E.

    1983-08-01T23:59:59.000Z

    Potassium monolayers on the platinum (111) crystal surface were studied most extensively. Ultraviolet photoelectron spectroscopy showed a large decrease in the work function of the surface when potassium was adsorbed. The heat of desorption of potassium decreased with increasing coverage. Low energy electron diffraction (LEED) showed that potassium forms hexagonal (close packed) overlayer structures. The effects of potassium on the chemisorption of various small molecules on Pt(111) were studied. Oxygen and nitric oxide were readily adsorbed and dissociated by potassium, forming stable potassium-oxide complexes on the surface. Adsorption heat of carbon monoxide on Pt(111) increased with potassium coadsorption. High resolution electron energy loss spectroscopy showed that the carbon-oxygen bond of adsorbed carbon monoxide was weakened by potassium. Adsorption heat of benzene, however, was decreased by coadsorbed potassium. A molecular orbital explanation was given to explain the effects of potassium. CO hydrogenation reactions performed on metal foils showed that the addition of alkali adlayers tends to decrease the overall rate of reaction. Changes in selectivity were noted, shifting the product distribution in favor of higher molecular weight species and from alkanes to alkenes.

  20. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  1. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  2. OXYGEN REDUCTION WITH CARBON SUPPORTED METALLIC CLUSTER CATALYSTS IN ALKALINE ELECTROLYTE

    E-Print Network [OSTI]

    Ross Jr., Philip N.

    2013-01-01T23:59:59.000Z

    transition metal oxide clusters. Acknowledgements This work was supported by the Assistant Secretary of Conservation and Renewable Energy,

  3. Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    Compositionally uniform mixed metals, metal oxides, and alloys are used extensively as corrosion protective and catalysts. I-~For example, nickel-containing oxides and alloys are used for oxidative protection of very. Although Cu-Ni alloy deposition has been stud- ied for many years, none of the previous approaches has led

  4. Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systems

    SciTech Connect (OSTI)

    McDonnell, S.; Dong, H.; Hawkins, J. M.; Brennan, B.; Milojevic, M.; Aguirre-Tostado, F. S.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

    2012-04-02T23:59:59.000Z

    The Al{sub 2}O{sub 3}/GaAs and HfO{sub 2}/GaAs interfaces after atomic layer deposition are studied using in situ monochromatic x-ray photoelectron spectroscopy. Samples are deliberately exposed to atmospheric conditions and interfacial oxide re-growth is observed. The extent of this re-growth is found to depend on the dielectric material and the exposure temperature. Comparisons with previous studies show that ex situ characterization can result in misleading conclusions about the interface reactions occurring during the metal oxide deposition process.

  5. Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides

    SciTech Connect (OSTI)

    Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-10-01T23:59:59.000Z

    By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

  6. A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for transition metals, carbon, and transition metal carbides, which has been optimized through a systematicA tight-binding potential for atomistic simulations of carbon interacting with transition metals of the transition metal, is used to obtain a transferable tight-binding model of the carbon-carbon, metal-metal

  7. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schutte, Erick J. (Thornton, CO); Rolfe, Sara L. (Loveland, CO)

    2010-11-02T23:59:59.000Z

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  8. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  9. Superhydrophobic Metal-Oxide Thin Film Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSuminDeposition of Metal FilmsIndustrial

  10. THE MICROSTRUCTURAL LOCATION OF THE INTERGRANULAR METAL OXIDE PHASE IN A ZINC OXIDE VARISTOR

    E-Print Network [OSTI]

    Clarke, D. E

    2011-01-01T23:59:59.000Z

    OXIDE PHASE IN A ZINC OXIDE VARISTOR MICROSI'RUCTIJRALMETAL OXIDE PHASE IN A ZINC OXIDE VARISTOR David R. Clarke

  11. First spectroscopic investigation of the 4d transition metal monocarbide MoC

    E-Print Network [OSTI]

    Morse, Michael D.

    C simply fills the 2 orbital. Next in the 4d metal-carbide series is another well studied mol- ecule, RhFirst spectroscopic investigation of the 4d transition metal monocarbide MoC Dale J. Brugh transition metal monocarbides, of which only FeC,1­3 CoC,4,5 and NiC Ref. 6 have been studied in detail

  12. Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1

    E-Print Network [OSTI]

    -temperature annealing, co-localized single-metal silicide phases are observed, consistent with classical models, upon supersaturation, precipitate into their solid equilibrium metal silicide phase (e.g., FeSi2 [6Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1 , A

  13. Metal-based turn-on fluorescent probes for nitric oxide sensing

    E-Print Network [OSTI]

    Lim, Mi Hee

    2006-01-01T23:59:59.000Z

    Chapter 1. Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide. Nitric oxide, a reactive free radical, regulates a variety of biological processes. The absence of tools to detect NO directly, rapidly, specifically ...

  14. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA)

    1987-01-01T23:59:59.000Z

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  15. The synthesis and structural characterization of novel transition metal fluorides

    SciTech Connect (OSTI)

    Casteel, W.J. Jr.

    1992-09-01T23:59:59.000Z

    High purity KMF{sub 6} and K{sub 2}MF{sub 6} salts (M = Mo,Re, Ru, Os, Ir, Pt) are obtained from reduction hexafluorides. A rhombohedral unit cell is observed for KReF{sub 6}. Fluoride ion capture by Lewis acids from the hexafluorometallate (IV) salts affords high purity tetrafluorides for M = Mo, Re, Ru, Os, and Pd. The structure of RuF{sub 4} is determined from X-ray synchrotron and neutron powder data. Unit cells based on theorthorhombic PdF{sub 4} type cell are derived from X-ray powder data for ReF{sub 4} and OsF{sub 4}. Fluoride ion capture from KAgF{sub 4} provides the thermally unstable trifluoride as a bright, red, diamagnetic solid. The structure solution of AgF{sub 3} and redetermination of the AuF{sub 3} structure from X-ray synchrotron and neutron powder data demonstrate that the two are isostnictural. Thermal decomposition product of AgF{sub 3} is the mixed valence compound Ag{sup II}Ag{sub 2}{sup III}F{sub 8}. Several new salts containing the (Ag - F){sub n}{sup n+} chain cation are prepared. The first linear (Ag - F){sub n}{sup n+} chain is observed in AgF{sup +}BF{sub 4 {sup {minus}}} which crystallizes in a tetragonal unit. AgFAuF{sub 4} has a triclinic unit cell and is isostructural with CuFAuF{sub 4}. AgFAuF{sub 6} has an orthorhombic unit cell and appears to be isostructural with AgFAsF{sub 6}. A second mixed valence silver fluoride, Ag{sup II}Ag{sup III}F{sub 5}, is prepared, which magnetic measurements indicate is probably an AgF{sup +} salt. Magnetic data for all of the AgF{sup +} salts exhibit low magnitude, temperature independent paramagnetism characteristic of metallic systems. Cationic AG(II) in acidic AHF solutions is a powerful oxidizer, capable of oxidizing Xe to Xe(II) and O{sub 2} to O{sub 2}{sup +}. Reactions with C{sub 6}F{sub 6} and C{sub 3}F{sub 6} suggest an electron capture mechanism for cationic AG(II) oxidations.

  16. E-Print Network 3.0 - active complementary metal-oxide-semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion-implanted p and n dopants in germanium Summary: wavelength spectrum allowing optoelectronic integra- tion to enhance complementary-metal-oxide- semiconductor... lim- its in...

  17. E-Print Network 3.0 - area metal-oxide-semiconductor electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inversion layer mobility Joo-Hiuk Son,a) Seongtae... measured absorption of terahertz radiation pulses by metal-oxide-semiconductor MOS inversion layers... of the...

  18. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    SciTech Connect (OSTI)

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23T23:59:59.000Z

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  19. Modeling and experimental studies of oxide covered metal surfaces: TiO{sub 2}/Ti a model system. Progress report

    SciTech Connect (OSTI)

    Smyrl, W.H.

    1991-12-31T23:59:59.000Z

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  20. Modeling and experimental studies of oxide covered metal surfaces: TiO sub 2 /Ti a model system

    SciTech Connect (OSTI)

    Smyrl, W.H.

    1991-01-01T23:59:59.000Z

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  1. E-Print Network 3.0 - activated yttrium oxide Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    copper oxide," G. Srinivasan, Guo-mei Wu, and T. T. Srinivasan, J... frequencies in transition metal ion substituted yttrium barium copper oxide superconductors," G. Srinivasan......

  2. Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Bond-order potential for transition metal carbide cluster for the growth simulation of a single for transition metal carbide cluster is developed in the form of the bond-order type potential function-order potential; Carbon nanotube; transition metal carbide cluster *Corresponding Author. Fax: +81-3-5841-8653 E

  3. Doping-induced metal-insulator transition in aluminum-doped 4H silicon P. Achatz,1,2,a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Doping-induced metal-insulator transition in aluminum-doped 4H silicon carbide P. Achatz,1,2,a J an experimental determination of the doping-induced metal-insulator transition in aluminum-doped 4H silicon concentration lying between 6.4 and 8.7 1020 cm-3 for the metal-insulator transition in these epilayers grown

  4. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect (OSTI)

    Craig E. Barnes

    2013-03-05T23:59:59.000Z

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  5. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOE Patents [OSTI]

    Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

    2003-09-02T23:59:59.000Z

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  6. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    SciTech Connect (OSTI)

    Jones, G

    2011-08-18T23:59:59.000Z

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  7. Studies on supported metal oxide-oxide support interactions (an incorporation model)

    SciTech Connect (OSTI)

    Yi Chen; Lin Dong; Y.S. Jin; Bing Xu; Weijie Ji [Nanjing Univ. (China)

    1996-12-31T23:59:59.000Z

    XRD, XPS, SSIMS, LRS, and FT-IR are used to explore the valency, composition and structure of the dispersed metal oxide species on supports with different structures, i.e., on ceria and {gamma}-alumina. The results indicated that the dispersion of various ionic compounds are proceeded by the incorporation of the metal cations into the surface vacant sites on the support provided that the loading amounts of the compounds are not higher than their dispersion capacities. The key factors determining the dispersion capacities of the ionic compounds are: (1) the surface structure of the support which determines the size and number of the vacant sites available. (2) the valency of the dispersed ionic compound and the size of the anion, from which the shielding effect of the capping anion(s) can be evaluated, and (3) the sizes of the dispersed cations and the vacant sites on the surface, from which the sites can be used for incorporation can be identified. The Quantitative results deduced from the incorporation model and from the independent experiments are consistent, providing further evidence that the model captures the essentials of the interactions between the dispersed metal oxide and support.

  8. Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles

    SciTech Connect (OSTI)

    Turkowski, Volodymyr; Babu, Suresh; Le, Duy; Kumar, Amit; Haldar, Manas K.; Wagh, Anil V.; Hu, Zhongjian; Karakoti, Ajay S.; Gesquiere, Andre J.; Law, Benedict; Mallik, Sanku; Rahman, Talat S.; Leuenberger, Michael N.; Seal, Sudipta

    2012-06-26T23:59:59.000Z

    Semiconductor nanoparticles conjugated with organic- and dye-molecules to yield high efficiency visible photoluminescence (PL) hold great potential for many future technological applications. We show that folic acid (FA)-conjugated to nanosize TiO2 and CeO2 particles demonstrates a dramatic increase of photoemission intensity at wavelengths between 500 and 700 nm when derivatized using aminopropyl trimethoxysilane (APTMS) as spacer-linker molecules between the metal oxide and FA. Using density-functional theory (DFT) and time-dependent DFT calculations we demonstrate that the strong increase of the PL can be explained by electronic transitions between the titania surface oxygen vacancy (OV) states and the low-energy excited states of the FA/APTMS molecule anchored onto the surface oxygen bridge sites in close proximity to the OVs. We suggest this scenario to be a universal feature for a wide class of metal oxide nanoparticles, including nanoceria, possessing a similar band gap (3 eV) and with a large surface-vacancy-related density of electronic states. We demonstrate that the molecule-nanoparticle linker can play a crucial role in tuning the electronic and optical properties of nanosystems by bringing optically active parts of the molecule and of the surface close to each other.

  9. Transition metal oxides on organic semiconductors Yongbiao Zhao a

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    semiconductors (OSs) structure has been widely used in inverted organic optoelectronic devices, including toward in simplifying the fabrication process of the organic optoelectronic devices. Ã? 2014 Elsevier B], have gained great attention because of their wide applications in optoelectronic devices composed

  10. Copyright A. J. Millis 2013 Columbia University Transition Metal Oxides

    E-Print Network [OSTI]

    Millis, Andrew

    __^['856'#"0+,A +3 `X[3 `X[3 +3+3[W +3 +3 +3 BT5C'aL^b 'cAX BT5C'aL^W 'cAX BT5C'aL^W 'cAX 'cK'd +3 +4 `W[5 `b[W[a[6 `b[W[5[e `b[4[a[e +3[W[a[e BT5C'aLf 'cAX BT5C'aL^_ 'cAX BT5C'aL^^ 'cAX BT5C'aL^X 'cAX - - BT5C'e6^ 'cAX BT5C'e6X 'cAX BT5C'aLX 'e6^ 'cAX BT5C'aLb 'e6^ 'cAX BT5C'aLW 'e6^ 'cAX BT5C'aLe 'cAX BT5

  11. Models for transition metal oxides and for protein design

    E-Print Network [OSTI]

    Zhou, Fei, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    A large number of properties of solid state materials can now be predicted with standard first-principles methods such as the Local Density (LDA) or Generalized Gradient Approximation (GGA). However, known problems exist ...

  12. Sandia National Laboratories: electronic conducting transition metal oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuels economicallyefficientelectronic

  13. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    DOE Patents [OSTI]

    Wickham, David (Boulder, CO); Cook, Ronald (Lakewood, CO)

    2008-10-28T23:59:59.000Z

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  14. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOE Patents [OSTI]

    Horwitz, Earl P. (Argonne, IL); Chiarizia, Renato (Argonne, IL)

    1996-01-01T23:59:59.000Z

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  15. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22T23:59:59.000Z

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  16. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    SciTech Connect (OSTI)

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16T23:59:59.000Z

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  17. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  18. Electrical characterization of metal-to-insulator transition in iron silicide thin films on sillicone substrates.

    E-Print Network [OSTI]

    Weerasinghe, Hasitha C

    2006-01-01T23:59:59.000Z

    ??Iron Silicide (FeSi) films deposited on silicon substrates with the native SiO2 layer have shown a Metal-to-Insulator Transition (MIT) of more than four order of… (more)

  19. Measuring the Kernel TimeDependent Density Functional Theory with XRay Absorption Spectroscopy Transition Metals

    E-Print Network [OSTI]

    Gross, E.K.U.

    Transition Metals Scherz, Gross, Appel, Sorg, K. Baberschke, and Wende Fachbereich Physik, Freie Universita­Kohn approximation prob­ lem shown, new approximation suggested. But the value DFT constructing approxi­ mation

  20. The nature of the metal-insulator transition in silicon germanide quantum wells.

    E-Print Network [OSTI]

    Lam, Jennifer Eleanor.

    2009-01-01T23:59:59.000Z

    ??A study of the temperature dependence of the resistivity of gated SiGe quantum well structures has revealed a metal-insulator transition as a function of carrier… (more)

  1. Transition metal gettering studies and simulation for the optimization of silicon photovoltaic device processing

    E-Print Network [OSTI]

    Smith, Aimée Louise, 1971-

    2002-01-01T23:59:59.000Z

    We use what is known about transition metal (TM) defect thermodynamic driving forces and kinetic responses to make predictive simulation of gettering during solar cell fabrication possible. We have developed a simulator ...

  2. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

    1991-01-01T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  3. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

    1990-01-01T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  4. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2006-10-25T23:59:59.000Z

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  5. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1990-08-28T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  6. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1991-10-15T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  7. An ultrahigh vacuum facility for the co-deposition of amorphous transition metal alloy thin films

    E-Print Network [OSTI]

    Nicoli, Victor Michael

    1984-01-01T23:59:59.000Z

    AN ULTRAHIGH VACUUM FACILITY FOR THE CO-DEPOSITION OF AMORPHOUS TRANSITION METAL ALLOY THIN FILMS A Thesis by VICTOR MICHAEL NICOLI Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1984 Major Subject: Physics AN ULTRAHIGH VACUUM FACILITY FOR THE CO-DEPOSITION OF AMORPHOUS TRANSITION METAL ALLOY THIN FILMS A Thes1s by VICTOR MICHAEL NICOLI Approved as to style and content by: ona . aug (Cha...

  8. Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation

    E-Print Network [OSTI]

    Hamlin, Kellee Hall

    2012-06-07T23:59:59.000Z

    SULFUR RESISTANCE OF GROUP VIII TRANSITION METAL PROMOTED NICKEL CATALYSTS FOR SYNTHESIS GAS METHANATION A Thesis by KELLEE HALL HAMLIN Submitted to the Graduate College of Texas AgrM University in partial fulfillment of the requirement...: Aydin Akger n (Chairman of Co 'ttee) Ahme M. Gadalla (Member) Michael . Rosynek (Member) aries D. Holland . ( ead of Department) May 1986 ABSTRACT Sulfur Resistance of Group VIII Transition Metal Promoted Nickel Catalysts For Synthesis Gas...

  9. Surface phases and their influence on metal-oxide interfaces. Progress report

    SciTech Connect (OSTI)

    Blakely, J.

    1993-01-01T23:59:59.000Z

    This project is concerned with adsorbed monolayers on metal surfaces and their effects on oxidation kinetics and metal-oxide adhesion; proposed work is a study of metallurgy of 2-dimensional systems with emphasis on binary adsorbed layers. Experimental techniques which can be used include electron diffraction, atomic force and tunneling microscopy, environmental SEM, and secondary electron spectroscopies. Intention is to try to extract information on adsorbate interactions through comparison with model predictions; initially simple pair interaction potentials will be used. Atomic steps on single crystal surfaces, which affect nucleation/growth of overlayers, will be extended to metal oxide systems to form atomic step arrays as preferential sites for surface nucleation of oxides etc. Adsorbed (or segregated) monolayers at metal/oxide interfaces also affect adhesion and further oxidation. S and O adsorption on Ni and NiFe alloy surfaces were studied and are discussed.

  10. Enhanced visible-light absorption of mesoporous TiO2 by co-doping with transition-metal/nitrogen ions

    SciTech Connect (OSTI)

    Mathis, John [Embry-Riddle Aeronautical University; Bi, Zhonghe [ORNL; Bridges, Craig A [ORNL; Kidder, Michelle [ORNL; Paranthaman, Mariappan Parans [ORNL

    2013-01-01T23:59:59.000Z

    Titanium (IV) oxide, TiO2, has been the object of intense scrutiny for energy applications. TiO2 is inexpensive, non-toxic, and has excellent corrosion resistance when exposed to electrolytes. A major drawback preventing the widespread use TiO2 for photolysis is its relatively large band gap of ~3eV. Only light with wavelengths shorter than 400 nm, which is in the ultraviolet portion of the spectrum, has sufficient energy to be absorbed. Less than 14 percent of the solar irradiation reaching the earth s surface has energy exceeding this band gap. Adding dopants such as transition metals has long been used to reduce the gap and increase photocatalytic activity by accessing the visible part of the solar spectrum. The degree to which the band gap is reduced using transition metals depends in part on the overlap of the d-orbitals of the transition metals with the oxygen p-orbitals. Therefore, doping with anions such as nitrogen to modify the cation-anion orbital overlap is another approach to reduce the gap. Recent studies suggest that using a combination of transition metals and nitrogen as dopants is more effective at introducing intermediate states within the band gap, effectively narrowing it. Here we report the synthesis of mesoporous TiO2 spheres, co-doped with transition metals and nitrogen that exhibit a nearly flat absorbance response across the visible spectrum extending into the near infrared.

  11. Epitaxial Growth and Properties of Doped Transition Metal and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of crystalline oxide film growth using vacuum methods is reviewed and discussed with an eye toward gaining fundamental insights into the relationships between growth process and...

  12. Strong Bond Activation with Late Transition-Metal Pincer Complexes as a Foundation for Potential Catalysis

    E-Print Network [OSTI]

    Zhu, Yanjun

    2012-07-16T23:59:59.000Z

    introduction for pincer ligands ................................................ 1 1.2 Synthesis of pincer ligated transition metal complexes ........................ 3 1.3 Structural preference for group 9/10 metal complexes (4d and 5d) ...... 9 1... ..................................................................................... 126 V SYNTHESIS, CHARACTERIZATION, AND REACTIVITY OF A RHODIUM DIFLUOROCARBENE COMPLEX SUPPORTED BY PNP PINCER LIGAND ........................................................................................ 144 5.1 Introduction...

  13. Copper-induced oxidative stress in three-spined stickleback : relationship with hepatic metal levels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    contamination of aquatic ecosystems by heavy metals. Among them, copper is a widespread pollutant found, 1999). Although this metal is a required element, high concentrations appear to be toxic to freshwater1 Copper-induced oxidative stress in three-spined stickleback : relationship with hepatic metal

  14. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07T23:59:59.000Z

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  15. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19T23:59:59.000Z

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  16. New Routes to Transition Metal-Carbido Species: Synthesis and Characterization of the Carbon-Centered Trigonal Prismatic Clusters

    E-Print Network [OSTI]

    New Routes to Transition Metal-Carbido Species: Synthesis and Characterization of the Carbon 94720-1460 Received May 5, 2003; E-mail: jlong@cchem.berkeley.edu Transition metal-carbon clusters have long been of interest as fragments of refractory metal carbides and models for intermediates

  17. Mechanisms of transition-metal catalyzed additions to olefins

    E-Print Network [OSTI]

    Nowlan, Daniel Thomas

    2005-08-29T23:59:59.000Z

    ....................................................................................................... 33 10 Reaction schematic for 13C KIE studies on free-radical polymerization and ATRP ........... 34 11 Transition structures for (a) the addition of methyl radical to ethylene and (b) the addition of formylmethyl radical to acrolein...

  18. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect (OSTI)

    Kwon, K.D.; Sposito, G.

    2010-02-01T23:59:59.000Z

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  19. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Rodriguez, Brandon A. (Evanston, IL); Delferro, Massimiliano (Chicago, IL)

    2012-08-07T23:59:59.000Z

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  20. Ternary rare earth and actinoid transition metal carbides viewed as carbometalates

    SciTech Connect (OSTI)

    Dashjav, Enkhtsetseg [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kreiner, Guido [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Schnelle, Walter [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Wagner, Frank R. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kniep, Ruediger [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, D-01187 Dresden (Germany)], E-mail: Kniep@cpfs.mpg.de; Jeitschko, Wolfgang [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Wilhelm-Klemm-Strasse 8, D-48149 Muenster (Germany)], E-mail: jeitsch@uni-muenster.de

    2007-02-15T23:59:59.000Z

    Ternary carbides A{sub x}T{sub y}C{sub z} (A=rare earth metals and actinoids; T=transition metals) with monoatomic species C{sup 4-} as structural entities are classified according to the criteria (i) metal to carbon ratio, (ii) coordination number of the transition metal by carbon atoms, and (iii) the dimensionality of the anionic network [T{sub y}C{sub z}]{sup n-}. Two groups are clearly distinguishable, depending on the metal to carbon ratio. Those where this ratio is equal to or smaller than 2 may be viewed as carbometalates, thus extending the sequence of complex anions from fluoro-, oxo-, and nitridometalates to carbometalates. The second group, metal-rich carbides with metal to carbon ratios equal to or larger than 4 is better viewed as typical intermetallics (''interstitial carbides''). The chemical bonding properties have been investigated by analyzing the Crystal Orbital Hamilton Population (COHP). The chemical bonding situation with respect to individual T-C bonds is similar in both classes. The main difference is the larger number of metal-metal bonds in the crystal structures of the metal-rich carbides.

  1. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOE Patents [OSTI]

    Narayan, Jagdish (Knoxville, TN); Chen, Yok (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  2. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect (OSTI)

    Paul, Sanhita, E-mail: raj@iiserkol.ac.in; Ghosh, Anirudha, E-mail: raj@iiserkol.ac.in; Raj, Satyabrata, E-mail: raj@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Nadia -741252, West Bengal (India)

    2014-04-24T23:59:59.000Z

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  3. Characterization of a Fe/Y{sub 2}O{sub 3} metal/oxide interface using neutron and x-ray scattering

    SciTech Connect (OSTI)

    Watkins, E. B.; Majewski, J., E-mail: demkowicz@mit.edu, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kashinath, A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Computational Modeling Technology, Aramco Research Center—Boston, Cambridge, Massachusetts 02139 (United States); Wang, P. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Intel Corporation, Hillsboro, Oregon, 97006 (United States); Baldwin, J. K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Demkowicz, M. J., E-mail: demkowicz@mit.edu, E-mail: jarek@lanl.gov [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28T23:59:59.000Z

    The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y{sub 2}O{sub 3} metal/oxide heterophase interface using neutron and x-ray reflectometry. These findings suggest that the Fe/Y{sub 2}O{sub 3} interface is a transitional zone approximately ?64?Å-thick containing mixtures or compounds of Fe, Y, and O. Our results illustrate the complex chemical and magnetic nature of Fe/oxide interfaces and demonstrate the utility of combined neutron and x-ray techniques as tools for characterizing them.

  4. A general holographic metal/superconductor phase transition model

    E-Print Network [OSTI]

    Yan Peng; Yunqi Liu

    2014-10-27T23:59:59.000Z

    We study the scalar condensation of a general holographic superconductor model in AdS black hole background away from the probe limit. We find the model parameters together with the scalar mass and backreaction can determine the order of phase transitions completely. In addition, we observe two types of discontinuities of the scalar operator in the case of first order phase transitions. We analyze in detail the effects of the scalar mass and backreaction on the formation of discontinuities and arrive at an approximate relation between the threshold model parameters. Furthermore, we obtain superconductor solutions corresponding to higher energy states and examine the stability of these superconductor solutions.

  5. A general holographic metal/superconductor phase transition model

    E-Print Network [OSTI]

    Yan Peng; Yunqi Liu

    2015-03-03T23:59:59.000Z

    We study the scalar condensation of a general holographic superconductor model in AdS black hole background away from the probe limit. We find the model parameters together with the scalar mass and backreaction can determine the order of phase transitions completely. In addition, we observe two types of discontinuities of the scalar operator in the case of first order phase transitions. We analyze in detail the effects of the scalar mass and backreaction on the formation of discontinuities and arrive at an approximate relation between the threshold model parameters. Furthermore, we obtain superconductor solutions corresponding to higher energy states and examine the stability of these superconductor solutions.

  6. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Improved Performance. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance. Abstract: We report on CdSCdTe photovoltaic devices...

  7. Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films

    E-Print Network [OSTI]

    Osedach, Timothy P.

    We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

  8. Low temperature lithographically patterned metal oxide transistors for large area electronics

    E-Print Network [OSTI]

    Wang, Annie I. (Annie I-Jen), 1981-

    2011-01-01T23:59:59.000Z

    Optically transparent, wide bandgap metal oxide semiconductors are a promising candidate for large-area electronics technologies that require lightweight, temperature-sensitive flexible substrates. Because these thin films ...

  9. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOE Patents [OSTI]

    Iyer, Vivekanantan S. (Delft, NL); Vollhardt, K. Peter C. (Oakland, CA)

    2007-08-28T23:59:59.000Z

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  10. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect (OSTI)

    Marking, G.A.

    1994-01-04T23:59:59.000Z

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  11. Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide

    SciTech Connect (OSTI)

    Freeman, Eugene, E-mail: exf181@psu.edu; Shukla, Nikhil; Datta, Suman [Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Stone, Greg; Engel-Herbert, Roman; Gopalan, Venkatraman [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Paik, Hanjong [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)] [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Moyer, Jarrett A. [Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)] [Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cai, Zhonghou; Wen, Haidan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States) [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2013-12-23T23:59:59.000Z

    The structural evolution of tensile strained vanadium dioxide thin films was examined across the electrically driven insulator-to-metal transition by nanoscale hard X-ray diffraction. A metallic filament with rutile (R) structure was found to be the dominant conduction pathway for an electrically driven transition, while the majority of the channel area remained in the monoclinic M1 phase. The filament dimensions were estimated using simultaneous electrical probing and nanoscale X-ray diffraction. Analysis revealed that the width of the conducting channel can be tuned externally using resistive loads in series, enabling the M1/R phase ratio in the phase coexistence regime to be tuned.

  12. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01T23:59:59.000Z

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  13. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01T23:59:59.000Z

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  14. Characterization of metal oxide layers grown on CVD graphene

    SciTech Connect (OSTI)

    Matsubayashi, Akitomo; Abel, Joseph; Prasad Sinha, Dhiraj; Lee, Ji Ung; LaBella, Vincent P. [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

    2013-03-15T23:59:59.000Z

    Growth of a fully oxidized aluminum oxide layer with low surface roughness on graphene grown by chemical vapor deposition is demonstrated. This is accomplished by the deposition of a 0.2 nm thick titanium seed layer on the graphene prior to the deposition of the aluminum under ultra high vacuum conditions, which was subsequently oxidized. The stoichiometry and surface roughness of the oxide layers were measured for a range of titanium and aluminum depositions utilizing ex situ x-ray photoelectron spectrometry and atomic force microscopy. These fully oxidized films are expected to produce good dielectric layers for use in graphene based electronic devices.

  15. Steam Reforming on Transition-metal Carbides from Density-functional Theory

    SciTech Connect (OSTI)

    Vojvodic, Aleksandra

    2012-05-11T23:59:59.000Z

    A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  16. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    SciTech Connect (OSTI)

    Zhihong Tang

    2007-12-01T23:59:59.000Z

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti{sub 5}Si{sub 3}-based alloys was investigated. Oxidation behavior of Ti{sub 5}Si{sub 3}-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti{sub 5}Si{sub 3} by nucleation and growth of nitride subscale. Ti{sub 5}Si{sub 3.2} and Ti{sub 5}Si{sub 3}C{sub 0.5} alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi{sub 2} coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo{sub 3}Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo{sub 3}Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb{sub SS} + NbB was determined to occur at 2104 {+-} 5 C by DTA.

  17. Synthesis of high T.sub.C superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    DOE Patents [OSTI]

    Gao, Wei (Somerville, MA); Vander Sande, John B. (Newbury, MA)

    1998-01-01T23:59:59.000Z

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method.

  18. E-Print Network 3.0 - actinoid metal-transition metal-boron Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science 97 Catalyst-Free Synthesis and Characterization of Metastable Boron Carbide Nanowires Summary: . Rogl, Phase Diagrams of Ternary Metal-Boron-Carbon Systems,...

  19. Controlled incorporation of mid-to-high Z transition metals in CVD diamond

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Kucheyev, S O; Wang, Y M; El-Dasher, B; Teslich, N E; Hamza, A V; Obloh, H; Mueller-Sebert, W; Wolfer, M; Fuchs, T; Grimm, M; Kriele, A; Wild, C

    2010-01-08T23:59:59.000Z

    We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the doping level were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.

  20. The structures of CO, NO and benzene on various transition metal surfaces: Overview of LEED (low-energy electron diffraction) and HREELS (high-resolution electron energy loss) results

    SciTech Connect (OSTI)

    Ohtani, H.; Van Hove, M.A.; Somorjai, G.A.

    1987-06-01T23:59:59.000Z

    Recent results are summarized concerning the adsorption structures of carbon monoxide (CO) and nitric oxide (NO) chemisorbed on various transition metal surfaces, and of benzene (C6H6) on Pd, Rh and Pt(111). These results were for the most part obtained with intensity analysis of low-energy electron diffraction (LEED) and high-resolution electron energy loss spectroscopy (HREELS).

  1. Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A

    2014-01-28T23:59:59.000Z

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  2. Electronically conducting metal oxide nanoparticles and films for optical sensing applications

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A

    2014-09-16T23:59:59.000Z

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  3. Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure, Dynamics and Reactivity

    E-Print Network [OSTI]

    Guidoni, Leonardo

    Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure). We have recently developed a QM/MM extension of a Car-Parrinello scheme [5]. These hybrid Car functional theory embedded in a classical force field description. The power of such a combined Car

  4. Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films

    E-Print Network [OSTI]

    Wu, Junqiao

    Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin properties of high-quality VO2 thin films across its metal-insulator phase transition. Detailed x-ray deposition,9 sol-gel deriving,10 sputtering,11 and pulsed laser deposition,12 the study of VO2 is reviving

  5. Vacancies and small vacancy clusters in BCC transition metals : calculation of binding energy, atomic relaxation and electronic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    921 Vacancies and small vacancy clusters in BCC transition metals : calculation of binding energy(E) and gi(03C9), for vacancy-type lattice defects in BCC transition metals : The short-range repulsive energies between neighbouring atomic sites are simulated by a Born-Mayer potential. Binding energies of di-vacancies

  6. Journal of Crystal Growth 287 (2006) 402407 Transition metals in photovoltaic-grade ingot-cast multicrystalline

    E-Print Network [OSTI]

    Journal of Crystal Growth 287 (2006) 402­407 Transition metals in photovoltaic-grade ingot silicon (mc-Si) ingot casting for cost-effective solar cell wafer production. Highly sensitive to the invited talk ``Transition metals in photovoltaic-grade multicrystalline silicon'' by A.A. Istratov, T

  7. Coherent/incoherent metal transition in a holographic model

    E-Print Network [OSTI]

    Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin

    2014-12-13T23:59:59.000Z

    We study AC electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities in a holographic model, which is based on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation due to massless scalar fields linear to spatial coordinate. The model has three field theory parameters: temperature($T$), chemical potential($\\mu$), and effective impurity($\\beta$). At low frequencies, if $\\beta \\mu$ the shape of peak deviates from the Drude form(incoherent metal). At intermediate frequencies($T<\\omega<\\mu$), we have analysed numerical data of three conductivities($\\sigma, \\alpha, \\bar{\\kappa}$) for a wide variety of parameters, searching for scaling laws, which are expected from either experimental results on cuprates superconductors or some holographic models. In the model we study, we find no clear signs of scaling behaviour.

  8. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, Wei (Cambridge, MA); Flytzani-Stephanopoulos, Maria (Winchester, MA)

    1996-01-01T23:59:59.000Z

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  9. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19T23:59:59.000Z

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  10. Holographic entanglement entropy in metal/superconductor phase transition with Born-Infeld electrodynamics

    E-Print Network [OSTI]

    Weiping Yao; Jiliang Jing

    2014-08-11T23:59:59.000Z

    We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the Born-Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the properties of the phase transition. For the operator $$, we find that the entanglement entropy decreases (or increases) with the increase of the Born-Infeld parameter $b$ in the metal (or superconducting) phase. For the operator $$, we observe that, with the increase of the Born-Infeld parameter, the entanglement entropy in the metal phase decreases monotonously but the entropy in the superconducting phase first increases and forms a peak at some threshold $b_{T}$, then decreases continuously. Moreover, the value of $b_{T}$ becomes smaller as the width of the subsystem $A$ decreases.

  11. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13T23:59:59.000Z

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  12. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

    1992-01-01T23:59:59.000Z

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  13. Distinct Length Scales in the VO{sub 2} Metal–Insulator Transition Revealed by Bi-chromatic Optical Probing

    SciTech Connect (OSTI)

    Wang, Lei [College of William and Mary, Williamsburg, VA (United States); Novikova, Irina B. [College of William and Mary, Williamsburg, VA (United States); Klopf, John M. [JLAB, Newport News, VA (United States); Madaras, Scott E. [JLAB, Newport News, VA (United States); Williams, Gwyn P. [College of William and Mary, Williamsburg, VA (United States); Madaras, Eric [Nasa Langley Research Center, Hampton, VA (United States); Lu, Liwei [Univ. of Virginia, Charlottesville, VA (United States); Wolf, Stuart A. [Univ. of Virginia, Charlottesville, VA (United States); Lukaszew, Rosa A. [College of William and Mary, Williamsburg, VA (United States)

    2014-01-01T23:59:59.000Z

    Upon a heating-induced metal–instulator transition (MIT) in VO{sub 2}, microscopic metallic VO{sub 2} puddles nucleate and coarsen within the insulating matrix. This coexistence of the two phases across the transition spans distinct length scales as their relative domain sizes change. Far-field optical probing is applied to follow the dynamic evolution of the highly correlated metallic domains as the MIT progresses.

  14. Bulk diffusion induced structural modifications of carbon-transition metal nanocomposite films

    SciTech Connect (OSTI)

    Berndt, M.; Abrasonis, G.; Kovacs, Gy. J.; Krause, M.; Munnik, F.; Heller, R.; Kolitsch, A.; Moeller, W.

    2011-03-15T23:59:59.000Z

    The influence of transition metal (TM = V,Co,Cu) type on the bulk diffusion induced structural changes in carbon:TM nanocomposite films is investigated. The TMs have been incorporated into the carbon matrix via ion beam co-sputtering, and subsequently the films have been vacuum annealed in the temperature range of 300 - 700 deg. C. The structure of both the dispersed metal rich and the carbon matrix phases has been determined by a combination of elastic recoil detection analysis, x-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The as-grown films consist of carbidic (V and Co) and metallic (Cu) nanoparticles dispersed in the carbon matrix. Thermal annealing induces surface segregation of Co and Cu starting at {>=} 500 deg. C, preceded by the carbide-metal transformation of Co-carbide nanoparticles at {approx} 300 deg. C. No considerable morphological changes occur in C:V films. In contrast to the surface diffusion dominated regime where all the metals enhance the six-fold ring clustering of C, in the bulk diffusion controlled regime only Co acts as a catalyst for the carbon graphitization. These results are consistent with the metal-induced crystallization mechanism in the C:Co films. The results are discussed on the basis of the metal-carbide phase stability, carbon solubility in metals or their carbides, and interface species.

  15. CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES

    SciTech Connect (OSTI)

    RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

    2000-07-09T23:59:59.000Z

    High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

  16. Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere

    SciTech Connect (OSTI)

    Van den Sype, J.S.

    1993-07-13T23:59:59.000Z

    A process is described for producing crystalline fibers, textiles or shapes comprised of YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] where x varies from about 0 to about 0.4, said process comprising: (a) impregnating a preformed organic polymeric material with three metal compounds to provide metal elements in said material in substantially the atomic ratio occurring in said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; (b) heating said impregnated material in a weakly oxidizing atmosphere containing from about 0.05% to about 2% oxygen by volume to a temperature sufficiently high to at least partially pyrolize and oxidize said organic material and at least partially oxidize said metal compounds substantially without ignition of said organic material and without formation of a molten phase or reaching a decomposition temperature of said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; and (c) cooling the resulting material in at least a moderately oxidizing atmosphere to room temperature so as to obtain said fibers, textiles or shapes.

  17. Surface Oxidation and Dissolution of Metal Nanocatalysts in Acid Medium

    E-Print Network [OSTI]

    Callejas-Tovar, Juan

    2012-10-19T23:59:59.000Z

    to study the degradation and dealloying in nanocatalysts. The results on the degradation of Pt nanoparticles under different potential regimes demonstrate that the dissolution depends on the potential path to which the nanocatalyst is exposed. Metal atoms...

  18. Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: Single photon ionization at 26.5 eV

    E-Print Network [OSTI]

    Rocca, Jorge J.

    . INTRODUCTION Transition metals, as well as their oxides, carbides, ni- trides, and sulfides, are unique bonds at a surface.1 Transition metal oxides are employed extensively as catalysts in the chemical. During the ionization process the metal oxide clusters are almost free of fragmentation. The most stable

  19. The chemistry of transition metal complexes related to solar energy storage : H? production and small molecule (CO? and HX; X = Cl, Br) chemistry.

    E-Print Network [OSTI]

    Lee, Changhoon, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The studies in this thesis have focused on the chemistry of transition metal complexes related to solar energy storage: electrochemical H? production, HX splitting and CO? activation mediated by transition metal complexes. ...

  20. Metallic magnetism and change of conductivity in the nano to bulk transition of cobalt ferrite

    SciTech Connect (OSTI)

    Arunkumar, A.; Vanidha, D.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry–605 014 (India); Oudayakumar, K. [Department of Physics, Sri Manakula Vinayagar Engineering College, Puducherry–605 107 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry–605 014 (India)

    2013-11-14T23:59:59.000Z

    Variations in conductivity with particle size have been observed in cobalt ferrite, when synthesized by solgel auto-combustion method. Impedance analysis reveals metallic and semiconducting behavior at room temperature for a particle size of 6?nm and 52?nm, respectively. Upon thermal activation, metallic to semiconducting phase transition has been observed as a function of particle size and vice-versa. Grainboundary Resistance (R{sub gb}), increased drastically with particle size (19?M? for 6?nm and 259?M? for 52?nm) at room temperature. AC conductivity and dielectric constants exhibit similar metallic to semiconducting phase transition at 6?nm and semiconducting behavior at 52?nm with temperature in the selected frequencies. Enhanced magnetic moment with an increase in the grain size along with decreased coercivity (1444?G to 1146?G) reveals transition from single domain to multi-domain. Increased inter-particle interaction is responsible for metallicity at the nano level and on the contrary semiconductivity is attributed to bulk.

  1. Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    SciTech Connect (OSTI)

    Recht, Daniel; Aziz, Michael J. [Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138 (United States)] [Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138 (United States); Smith, Matthew J.; Grade?ak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Charnvanichborikarn, Supakit; Williams, James S. [Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia)] [Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Sullivan, Joseph T.; Winkler, Mark T.; Buonassisi, Tonio [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139 (United States); Mathews, Jay; Warrender, Jeffrey M. [Benet Laboratories, U.S. Army ARDEC, Watervliet, New York 12189 (United States)] [Benet Laboratories, U.S. Army ARDEC, Watervliet, New York 12189 (United States)

    2013-09-28T23:59:59.000Z

    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v{sub D,} of Au and Zn, and put lower bounds on v{sub D} of the other metals ranging from 10{sup 2} to 10{sup 4} m/s. Knowledge of v{sub D} is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10{sup 19} Au/cm{sup 3} without cellular breakdown. Values of v{sub D} are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D{sub s}(T{sub m}), and the equilibrium partition coefficient, k{sub e}, are shown to simultaneously affect v{sub D}. We demonstrate a correlation between v{sub D} and the ratio D{sub s}(T{sub m})/k{sub e}{sup 0.67}, which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D{sub s}(T{sub m})/k{sub e}{sup 0.67} might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM.

  2. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    SciTech Connect (OSTI)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16T23:59:59.000Z

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  3. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect (OSTI)

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21T23:59:59.000Z

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  4. Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene

    SciTech Connect (OSTI)

    Iyikanat, F., E-mail: fadiliyikanat@iyte.edu.tr; Senger, R. T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H., E-mail: hasan.sahin@uantwerpen.be; Peeters, F. M. [Department of Physics, University of Antwerp, 2610 Antwerp (Belgium)

    2014-09-01T23:59:59.000Z

    The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures.

  5. The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects in transition metal nitrides and carbides

    E-Print Network [OSTI]

    Paxton, Anthony T.

    in transition metal nitrides and carbides This article has been downloaded from IOPscience. Please scroll down-loss spectroscopy: many-electron and magnetic effects in transition metal nitrides and carbides A T Paxton, M van energies are systematically overestimated by 4.22 ± 0.44 eV in twelve transition metal carbides

  6. Electronic structure of the 4d transition metal carbides: Dispersed fluorescence spectroscopy of MoC, RuC, and PdC

    E-Print Network [OSTI]

    Morse, Michael D.

    Electronic structure of the 4d transition metal carbides: Dispersed fluorescence spectroscopy of Mo transition metal carbides is also provided. © 2001 American Institute of Physics. DOI: 10.1063/1.1316042 I, and astrochemistry. Within the 4d se- ries, the diatomic transition metal carbides have aroused considerable interest

  7. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J

    2008-07-01T23:59:59.000Z

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  8. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOE Patents [OSTI]

    Chambers, Scott A.

    2006-02-21T23:59:59.000Z

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  9. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Littlejohn, David (Oakland, CA); Shi, Yao (Berkeley, CA)

    1997-08-19T23:59:59.000Z

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  10. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19T23:59:59.000Z

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  11. Surface interactions in nonreactive coadsorption: H/sub 2/ and CO on transition-metal surfaces

    SciTech Connect (OSTI)

    White, J.M.

    1983-03-17T23:59:59.000Z

    A short overview is given of the nonreactive coadsorption of hydrogen and carbon monoxide on transition metals with particular attention given to Ni(100) single-crystal surfaces where complex interactions are noted. Data derived from several complimentary surface science techniques are presented. Different organizations of the coadsorbed species are found on different crystal faces emphasizing structure sensitivity. The relation between these results and catalytic processes is noted.

  12. Color-control of the persistent luminescence of cadmium silicate doped with transition metals

    SciTech Connect (OSTI)

    Abreu, Carolina M., E-mail: carolabreu.fisica@gmail.com [Laboratory of Advanced Ceramics Materials, Physics Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil); Silva, Ronaldo S.; Valerio, Mário E.G.; Macedo, Zélia S. [Laboratory of Advanced Ceramics Materials, Physics Department, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil)

    2013-04-15T23:59:59.000Z

    The structural and optical characterization of cadmium silicate (CdSiO{sub 3}) doped with transition metals is reported. This crystalline system presents intrinsic luminescence and is usually studied as host matrix for rare earth ions. In this work, CdSiO{sub 3} was doped with Mn, Ni and Cr to produce multicolored luminescent materials. Single crystalline CdSiO{sub 3} was obtained via solid state synthesis at 1000 °C/8 h. The valence of the dopants inserted in the host matrix was determined via XANES as 3+ for Cr, 2+ for Ni and both 2+ and 3+ for Mn, according to XANES studies. The optical absorption spectra of the samples presented wide bands in the visible region that were associated with the internal transitions of the dopants. All the samples presented photoluminescent bands near 420 nm, 496 nm and 591 nm, with different relative intensities that yield characteristic luminescence colors ranging from blue to red. - Graphical abstract: Phosphorescence of cadmium silicate doped with transition metals: nature of defects and possible luminescent channels. Highlights: ? CdSiO{sub 3} was doped with Mn, Ni and Cr to produce multicolored phosphors. ? Valence of the dopants was determined as 3+ for Cr, 2+ for Ni and 2+ and 3+ for Mn. ? The presence of absorption bands in the visible region led to self-absorption. ? Self-absorption in some cases can decrease the light output. ? Luminescent channels were created and related to internal transitions of the dopants.

  13. Metal oxide/organic interface investigations for photovoltaic devices

    E-Print Network [OSTI]

    Pachoumi, Olympia

    2014-10-07T23:59:59.000Z

    summarises work I have carried out as a PhD student of the Optoelectronics Group at Cavendish Laboratory of the University of Cambridge since October 2010. I am thankful to the Engineering and Physical Sciences Research Council and the A.G. Leventis... are often used in many other optoelectronic devices such as photovoltaics and light emitting diodes. Sufficiently conducting oxides with the appropriate electron affinities and ionisation potentials, can be employed as charge transport and injection layers...

  14. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOE Patents [OSTI]

    Gash, Alexander E. (Livermore, CA); Satcher, Joe H. (Patterson, CA); Simpson, Randy (Livermore, CA)

    2004-11-16T23:59:59.000Z

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  15. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30T23:59:59.000Z

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  16. Stabilization of Layered Metal Oxides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * Analyzer IDepartmentLayered Metal

  17. Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces

    E-Print Network [OSTI]

    Pennycook, Steve

    Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces Juan Salafranca, Nashville, Tennessee 37235, United States *S Supporting Information ABSTRACT: The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However

  18. Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes

    E-Print Network [OSTI]

    Nair, Sankar

    Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes ScienceDaily (Aug. 29, 2007) -- Moving beyond carbon nanotubes, researchers are developing insights-walled inorganic nanotubes could be useful in a range of nanotechnology applications that require precise control

  19. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden

    SciTech Connect (OSTI)

    Berglund, A.M.M. [Department of Ecology and Environmental Science, Umea University, SE-901 87 Umea (Sweden)], E-mail: asa.berglund@emg.umu.se; Sturve, J.; Foerlin, L. [Department of Zoology, Goeteborg University, Box 463, SE-405 30 Gothenburg (Sweden); Nyholm, N.E.I. [Department of Ecology and Environmental Science, Umea University, SE-901 87 Umea (Sweden)

    2007-11-15T23:59:59.000Z

    Metals have been shown to induce oxidative stress in animals. One of the most metal polluted terrestrial environments in Sweden is the surroundings of a sulfide ore smelter plant located in the northern part of the country. Pied flycatcher nestlings (Ficedula hypoleuca) that grew up close to the industry had accumulated amounts of arsenic, cadmium, mercury, lead, iron and zinc in their liver tissue. The aim of this study was to investigate if pied flycatcher nestlings in the pollution gradient of the industry were affected by oxidative stress using antioxidant molecules and enzyme activities. The antioxidant assays were also evaluated in search for useful biomarkers in pied flycatchers. This study indicated that nestlings in metal contaminated areas showed signs of oxidative stress evidenced by up regulated hepatic antioxidant defense given as increased glutathione reductase (GR) and catalase (CAT) activities and slightly but not significantly elevated lipid peroxidation and glutathione-S-transferase (GST) activities. Stepwise linear regression indicated that lipid peroxidation and CAT activities were influenced mostly by iron, but iron and lead influenced the CAT activity to a higher degree. Positive relationships were found between GST and lead as well as GR activities and cadmium. We conclude that GR, CAT, GST activities and lipid peroxidation levels may function as useful biomarkers for oxidative stress in free-living pied flycatcher nestlings exposed to metal contaminated environments.

  20. Self-assembly of oxide-supported metal clusters into ring-like Kristoffer Meinander,

    E-Print Network [OSTI]

    Nordlund, Kai

    Self-assembly of oxide-supported metal clusters into ring-like structures Kristoffer Meinander, Kai, Finland Abstract Self-assembly is a phenomenon that continuously occurs at the nanoscale, as atoms form of these organized systems, but the precise mechanism, with which this self-assembly progresses, is seldom known

  1. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    DOE Patents [OSTI]

    Gillaspie, Dane T; Weir, Douglas G

    2014-04-01T23:59:59.000Z

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  2. Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

  3. High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen

    E-Print Network [OSTI]

    Sibener, Steven

    High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen K. D. Gibson, Mark Viste, Errol C. Sanchez, and S. J. Sibener The James Franck Institute; accepted 30 November 1998 Exposure of Rh 111 to atomic oxygen leads to the facile formation of a full

  4. AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion

    E-Print Network [OSTI]

    Konezny, Steven J.

    AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny% solar-to-electric energy conversion efficiency) exploited the large surface area of nanoporous thin for solar photoconversion is analyzed using a model based on fluctuation-induced tunneling conduction (FITC

  5. Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goteborg, Sweden States § Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Goteborg

  6. Ab initio study of structural stability of small 3d late transition metal clusters: Interplay of magnetization and hybridization

    E-Print Network [OSTI]

    Datta, Soumendu

    Using first-principles density-functional-theory–based calculations, we analyze the structural stability of small clusters of 3d late transition metals. We consider the relative stability of the two structures: layer-like ...

  7. Experimental and Theoretical Studies on the Reaction of H2 with NiO: Role of O Vacancies and Mechanism for Oxide

    E-Print Network [OSTI]

    Frenkel, Anatoly

    , metal oxides are also used as supports of many other catalytic materials (metals, sulfides, carbides are poorly understood in most situations.7 Among the transition-metal oxides, the reduction of H2. I. Introduction Metal oxides are used as catalysts in a large variety of commercial processes

  8. Synthesis of high {Tc} superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    DOE Patents [OSTI]

    Gao, W.; Vander Sande, J.B.

    1998-07-28T23:59:59.000Z

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method. 5 figs.

  9. Metal Current Collector Protected by Oxide Film - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvanced Materials Advanced Materials FindMetal

  10. Atmosphere, Interior, and Evolution of the Metal-Rich Transiting Planet HD 149026b

    E-Print Network [OSTI]

    J. J. Fortney; D. Saumon; M. S. Marley; K. Lodders; R. S. Freedman

    2006-01-03T23:59:59.000Z

    We investigate the atmosphere and interior of the new transiting planet HD 149026b, which appears to be very rich in heavy elements. We first compute model atmospheres at metallicities ranging from solar to ten times solar, and show how for cases with high metallicity or inefficient redistribution of energy from the day side, the planet may develop a hot stratosphere due to absorption of stellar flux by TiO and VO. The spectra predicted by these models are very different than cooler atmosphere models without stratospheres. The spectral effects are potentially detectable with the Spitzer Space Telescope. In addition the models with hot stratospheres lead to a large limb brightening, rather than darkening. We compare the atmosphere of HD 149026b to other well-known transiting planets, including the recently discovered HD 189733b, which we show have planet-to-star flux ratios twice that of HD 209458 and TrES-1. The methane abundance in the atmosphere of HD 189733b is a sensitive indicator of atmospheric temperature and metallicity and can be constrained with Spitzer IRAC observations. We then turn to interior studies of HD 149026b and use a grid of self-consistent model atmospheres and high-pressure equations of state for all components to compute thermal evolution models of the planet. We estimate that the mass of heavy elements within the planet is in the range of 60 to 93 M_earth. Finally, we discuss trends in the radii of transiting planets with metallicity in light of this new member of the class.

  11. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    E-Print Network [OSTI]

    Indubala I. Satija; Daniel C. Dakin; Charles W. Clark

    2006-07-10T23:59:59.000Z

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. Such transitions have been extensively studied for magnetic fields corresponding to Abelian gauges; they occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields, which can be realized with atoms with two pairs of degenerate internal states. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum and the minimum energy viewed as a function of momentum exhibits a step structure. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.

  12. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08T23:59:59.000Z

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  13. Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride

    E-Print Network [OSTI]

    Gong, Xingao

    Nitride Bing Huang,1 Hongjun Xiang,2 Jaejun Yu,3 and Su-Huai Wei1 1 National Renewable Energy LaboratoryEffective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron devices but is still challenging. Here we suggest that the magnetic and charge states of transition

  14. Fast 8 kV metal-oxide semiconductor field-effect transistor switch R. E. Continetti, D. R. Cyr,al and D. M. Neumarkb)

    E-Print Network [OSTI]

    Neumark, Daniel M.

    V. A key to this approach is the use of a metal-oxide varistor (MOV) to clamp the voltage acrossa givenFast 8 kV metal-oxide semiconductor field-effect transistor switch R. E. Continetti, D. R. Cyr transformer-isolatedpower metal-oxide semiconductor field-effect transistors in seriesis described

  15. Method of making a catalytic metal oxide selective for the conversion of a gas and a coating system for the selective oxidation of hydrocarbons and carbon monoxide

    SciTech Connect (OSTI)

    Logothetis, E.M.; Soltis, R.E.

    1993-07-20T23:59:59.000Z

    A method is described of making a catalytic metal oxide selective to catalyzing the conversion of given gas species, comprising: intimately supporting a solid film of catalytic metal oxide on an electrically conducting material, said film having an exposed outer surface spaced no greater than 1,000 angstroms from said conducting material and said conducting material being matched to the composition of said oxide to change the electron state of the exposed outer surface to promote a reaction between given gas species and said oxide, said metal oxide being selected from the group consisting of TiO[sub 2], SnO[sub 2], FeO, SrTiO[sub 3], and CoO, and said conducting material being selected from the group consisting of Au, Pt, TiN, Pd, Rh, Ni, and Co.

  16. Growth and phase transition characteristics of pure M-phase VO{sub 2} epitaxial film prepared by oxide molecular beam epitaxy

    SciTech Connect (OSTI)

    Fan, L. L.; Chen, S.; Wu, Y. F.; Chen, F. H.; Chu, W. S.; Chen, X.; Zou, C. W. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)] [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Wu, Z. Y. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China) [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China)

    2013-09-23T23:59:59.000Z

    VO{sub 2} epitaxial film with large size has been prepared by oxide-molecular beam epitaxy method on Al{sub 2}O{sub 3} (0001) substrate. The VO{sub 2} film shows a perfect crystal orientation, uniformity, and distinct metal-insulator phase transition (MIT) characteristics. It is observed that the MIT character is closely associated with the crystal defects such as oxygen vacancies. By controlling the growth condition, the MIT temperature can be tuned through modifying the content of oxygen vacancies. The role of the oxygen vacancies on the phase transition behavior of this VO{sub 2} film is discussed in the framework of the hybridization theory and the valence state of vanadium.

  17. Effect of the Support on the Electronic Structure of Au Nanoparticles Supported on Transition Metal Carbides: Choice of the Best Substrate for Au Activation

    SciTech Connect (OSTI)

    Rodriguez, J.A.; Florez, E.; Feria, L.; Viñes, F.; Illas, F.

    2009-10-16T23:59:59.000Z

    Periodic density functional theory calculations on large supercells have been carried out to investigate the atomic and electronic structure of small gold particles (Au{sub 2}, Au{sub 4}, Au{sub 9}, Au{sub 13}, and Au{sub 14}) supported on the (001) surface of various transition metal carbides (TiC, ZrC, VC, and {delta}-MoC). All the supported Au particles exhibited strong interactions with the C sites of the metal-carbide surfaces. Nevertheless, the interactions between adsorbed Au atoms were attractive, thus ultimately facilitating nucleation of two- or three-dimensional metal particles. The presence of the underlying carbide strongly modified the electronic structure and charge density of the supported metal particles resulting in the experimentally proven improved catalytic performance of the resulting systems as compared with cases where the support is an oxide. The electronic perturbations were quite strong for two-dimensional gold particles directly in contact with the carbide substrates and gradually decreased for two-layer and three-layer thick supported particles. While all the metal carbides examined induced a qualitatively similar perturbation on the supported Au particles, the effect is significantly larger for ZrC thus suggesting that the resulting model catalyst would perform even better than the already tried Au/TiC system.

  18. Effect of the Support on the Electronic Structure of Au Nanoparticles Supported on Transition Metal Carbides: Choice of the Best Substrate for Au Activation

    SciTech Connect (OSTI)

    Florez, E.; Feria, L; Vines, F; Rodriguez, J; Illas, F

    2009-01-01T23:59:59.000Z

    Periodic density functional theory calculations on large supercells have been carried out to investigate the atomic and electronic structure of small gold particles (Au{sub 2}, Au{sub 4}, Au{sub 9}, Au{sub 13}, and Au{sub 14}) supported on the (001) surface of various transition metal carbides (TiC, ZrC, VC, and {delta}-MoC). All the supported Au particles exhibited strong interactions with the C sites of the metal-carbide surfaces. Nevertheless, the interactions between adsorbed Au atoms were attractive, thus ultimately facilitating nucleation of two- or three-dimensional metal particles. The presence of the underlying carbide strongly modified the electronic structure and charge density of the supported metal particles resulting in the experimentally proven improved catalytic performance of the resulting systems as compared with cases where the support is an oxide. The electronic perturbations were quite strong for two-dimensional gold particles directly in contact with the carbide substrates and gradually decreased for two-layer and three-layer thick supported particles. While all the metal carbides examined induced a qualitatively similar perturbation on the supported Au particles, the effect is significantly larger for ZrC thus suggesting that the resulting model catalyst would perform even better than the already tried Au/TiC system.

  19. Metal oxide coating of carbon supports for supercapacitor applications.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Tribby, Louis, J (University of New Mexico, Albuquerque, NM); Lakeman, Charles D. E. (TPL, Inc., Albuquerque, NM); Han, Sang M. (University of New Mexico, Albuquerque, NM); Lambert, Timothy N.; Fleig, Patrick F. (TPL, Inc., Albuquerque, NM)

    2008-07-01T23:59:59.000Z

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  20. Electrically induced insulator to metal transition in epitaxial SmNiO{sub 3} thin films

    SciTech Connect (OSTI)

    Shukla, Nikhil, E-mail: nss152@psu.edu; Dasgupta, Sandeepan; Datta, Suman [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Joshi, Toyanath; Borisov, Pavel; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2014-07-07T23:59:59.000Z

    We report on the electrically induced insulator to metal transition (IMT) in SmNiO{sub 3} thin films grown on (001) LaAlO{sub 3} by pulsed laser deposition. The behavior of the resistivity as a function of temperature suggests that the primary transport mechanism in the SmNiO{sub 3} insulating state is dominated by Efros-Shklovskii variable range hopping (ES-VRH). Additionally, the magnetic transition in the insulating state of SmNiO{sub 3} modifies the characteristics of the ES-VRH transport. Systematic DC and pulsed current-voltage measurements indicate that current-induced joule heating is the fundamental mechanism driving the electrically induced IMT in SmNiO{sub 3}. These transport properties are explained in context of the IMT in SmNiO{sub 3} being related to the strong electron-lattice coupling.

  1. Electronic Structure of Transition Metal-Cysteine Complexes From X-Ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Leung, B.O.; Jalilehvand, F.; Szilagyi, R.K.

    2009-05-19T23:59:59.000Z

    The electronic structures of Hg{sup II}, Ni{sup II}, Cr{sup III}, and Mo{sup V} complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  2. Steam reforming on transition-metal carbides from density-functional theory

    E-Print Network [OSTI]

    Vojvodic, Aleksandra

    2009-01-01T23:59:59.000Z

    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  3. Phase transition and metallization of FeO at high pressures and temperatures

    SciTech Connect (OSTI)

    Fischer, Rebecca A.; Campbell, Andrew J.; Lord, Oliver T.; Shofner, Gregory A.; Dera, Przemyslaw; Prakapenka, Vitali B. (Maryland); (UC); (UCL)

    2012-05-10T23:59:59.000Z

    Wuestite, Fe{sub 1-x}O, is an important component in the mineralogy of Earth's lower mantle and may also be a component of the core. Therefore its high pressure-temperature behavior, including its electronic structure, is essential to understanding the nature and evolution of Earth's deep interior. We performed X-ray diffraction and radiometric measurements on wuestite in a laser-heated diamond anvil cell, finding an insulator-metal transition at high pressures and temperatures. Our data show a negative slope for this apparently isostructural phase boundary, which is characterized by a volume decrease and emissivity increase. The metallic phase of FeO is stable at conditions of the lower mantle and core, which has implications for the high P-T character of Fe-O bonds, magnetic field propagation, and lower mantle conductivity.

  4. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24T23:59:59.000Z

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  5. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect (OSTI)

    Hoffman, M.Z.

    1992-07-31T23:59:59.000Z

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  6. Mechanical Instability and Ideal Shear Strength of Transition Metal Carbides and Nitrides

    SciTech Connect (OSTI)

    Jhi, Seung-Hoon; Louie, Steven G.; Cohen, Marvin L.; Morris, J. W.

    2001-08-13T23:59:59.000Z

    The ideal shear strength of transition metal carbides and nitrides is calculated with the use of the ab initio pseudopotential density functional method. The microscopic mechanism that limits the ideal strength is studied using full atomic and structural relaxation and the results of electronic structure calculations. It is shown that plasticity in perfect crystals can be triggered by electronic instabilities at finite strains. Our study explicitly demonstrates that the ideal strength in these materials is limited by the elastic instability which is in turn initiated by electronic instabilities. The potential application of alloy hardening due to the onset of instabilities at different strains is also discussed.

  7. Behavior of the thermopower in amorphous materials at the metal-insulator transition C. Villagonzalo , R. A. Romer, and M. Schreiber

    E-Print Network [OSTI]

    Chemnitz, Technische Universität

    is the metal-insulator transition (MIT). This quantum phase transition from a good conducting material values or vice versa at low temperature T . This corresponds to a change of thermal conductors fromBehavior of the thermopower in amorphous materials at the metal-insulator transition C

  8. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect (OSTI)

    Han, M.K.

    2006-05-06T23:59:59.000Z

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  9. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect (OSTI)

    Mi-Kyung Han

    2006-05-01T23:59:59.000Z

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  10. The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten.

    SciTech Connect (OSTI)

    Samolyuk, German D [ORNL; Stoller, Roger E [ORNL; Osetskiy, Yury N [ORNL

    2013-01-01T23:59:59.000Z

    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. We investigate the dislocation core structure, Peierls stress and barrier of $1/2\\langle111\\rangle$ screw dislocations in binary tungsten-transition metal alloys (W$_{1-x}$TM$_{x}$) based on first principles electronic structure calculations. The periodic quadrupole approach was applied to model the structure of $1/2\\langle111\\rangle$ dislocation. The alloying with transition metals was modeled using the virtual crystal approximation. In order to verify the applicability of this approach, the equilibrium lattice parameter and elastic constants were calculated for tungsten alloyed with the set of transition metals. Reasonable agreement was obtained between results using the virtual crystal approximation and those using both a conventional super-cell approach and existing experimental data. Increasing the concentration of a transition metal from the VIIIA group leads to reduction of the $C^\\prime$ elastic constant and increase of elastic anisotropy A=$C_{44}/C^\\prime$. It was demonstrated that alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similar to results obtained for W$_{1-x}$Re$_{x}$ alloys in the earlier work of Romaner {\\it et al} (Phys. Rev. Lett. 104, 195503 (2010)). Following the core symmetry change, the values of the Peierls stress and barrier are reduced. This combination of two effects could lead to increased ductility in a tungsten-based alloy\\comments. Our results demonstrate that similar effects could be achieved with any of the transition metals from the VIIIA group.

  11. Final Report: Catalytic Hydrocarbon Reactions over Supported Metal Oxides, August 1, 1995 - July 31, 1999

    SciTech Connect (OSTI)

    Ekerdt, John G.

    1999-07-31T23:59:59.000Z

    The research program focused on the catalysis of hydrodesulfurization (HDS) over molybdenum-based catalysts and how catalyst composition, redox ability, structure and neighboring sites control the catalytic properties of metal oxides. We sought to understand the catalytic features/sites that control hydrogenation, hydrogenolysis, and isomerization during HDS. Unprompted silica-supported molybdenum oxides and molybdenum sulfides were studied. Model catalyst systems were prepared from organometallic precursors or cluster compounds to generate supported structures that feature Mo(II) and Mo(IV) cations that are isolated or in ensembles and that have either Mo-O or Mo-S bonds. Conventional MOS{sub 2} catalysts, which contain both edge and rim sites, were be studied. Finally, single-layer MOS{sub 2} structures were also prepared from 2H-MoS{sub 2} powder so that the model systems could be compared against a disulfide catalyst that only involves rim sites. Catalytic reactions for thiophene and tetrahydrothione were studied over the various catalysts. Oxidation states were determined using X-ray photoelectron spectroscopy. X-ray crystallography was used to characterize and follow changes in the MOS{sub 2} structures. The program on metal oxides prepared supported oxides that have a specific structure and oxidation state to serve as model templates for the more complex commercial catalysts and then employed these structures in reaction studies. This focus area examined the relationships between structure and cation redox characteristics in oxidation catalysis. Infrared and Raman spectroscopy were used to characterize the cations and reaction intermediates.

  12. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    DOE Patents [OSTI]

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16T23:59:59.000Z

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  13. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    2012-05-08T23:59:59.000Z

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  14. The steady-state thermal-hydraulic performance of 3500 MWth metal and oxide fueled LMRs

    SciTech Connect (OSTI)

    Vilim, R.B.; Hill, R.N.

    1989-03-01T23:59:59.000Z

    The thermal-hydraulic performance of a 3500 MWth metal and oxide fueled LMR is reported. Orifice zones are defined and coolant flowrates are given for use in safety analyses. The flux calculations were carried out in three-dimensional hexagonal-Z geometry using a finite differenced diffusion theory code. The heating calculations included the transport and deposition of gamma energy. The assembly temperature calculations were performed using a subchannel code.

  15. Surface Science Letters Bulk-defect dependent adsorption on a metal oxide surface

    E-Print Network [OSTI]

    Diebold, Ulrike

    -6028(01)01067-6 #12;Titanium dioxide is a wide-band gap semicon- ductor (Egap 3 eV) that can easily be reducedSurface Science Letters Bulk-defect dependent adsorption on a metal oxide surface: S/TiO2(1 1 0) E Abstract The adsorption of molecular sulfur on TiO2(1 1 0)(1 Ã? 1) has been studied with scanning tunneling

  16. Thermodynamics of the ferromagnetic phase transition in nearly half metallic CoS2 at high pressures

    SciTech Connect (OSTI)

    Elkin, F. S. [Institute for High Pressure Physics of Russian Academy of Sciences; Zibrov, I. P. [Institute for High Pressure Physics of Russian Academy of Sciences; Novikov, A. P. [Institute for High Pressure Physics of Russian Academy of Sciences; Khasanov, S. S. [Institute for Solid State Physics Russian Academy of Sciences; Sidorov, V. A. [Institute for High Pressure Physics of Russian Academy of Sciences; Petrova, A. E. [Institute for High Pressure Physics of Russian Academy of Sciences; Lograsso, Thomas A. [Ames Laboratory; Thompson, J. D. [Los Alamos National Laboratory; Stishov, S. M. [Institute for High Pressure Physics of Russian Academy of Sciences

    2013-12-06T23:59:59.000Z

    The volume change and heat capacity at the ferromagnetic phase transition in COS2 were measured at high pressures using X-rays generated by the Argonne synchrotron light source and by ac-calorimetry, respectively. The transition entropy, calculated on the basis of these experimental data, drops along the transition line due to quantum degradation, as required by Nernst's law. The volume change increases strongly along the transition line, which is explained by specifics of the compressibility difference of coexisting phases that results from nearly half metallic nature of the ferromagnetic phase of COS2. (C) 2013 Elsevier Ltd. All rights reserved.

  17. Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications

    SciTech Connect (OSTI)

    Ohodnicki, Paul R., Jr.; Wang, Congjun; Andio, Mark

    2013-07-31T23:59:59.000Z

    The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

  18. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    SciTech Connect (OSTI)

    Jiang, Xiang-Wei, E-mail: xwjiang@semi.ac.cn; Li, Shu-Shen [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-12T23:59:59.000Z

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length ?, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600??A/?m at V{sub g}?=?V{sub d}?=?0.5?V when 2?nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnel transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.

  19. DFT calculations of EPR parameters of transition metal complexes: Implications for catalysis

    SciTech Connect (OSTI)

    Saladino, Alexander C.; Larsen, Sarah C.

    2005-07-15T23:59:59.000Z

    Transition metal and ligand hyperfine coupling constants for paramagnetic vanadium and copper model complexes have been calculated using DFT methods that are available in commercial software packages. Variations in EPR parameters with ligand identity and ligand orientation are two of the trends that have been investigated with DFT calculations. For example, the systematic variation of the vanadium hyperfine coupling constant with orientation for an imidazole ligand in a VO2+ complex has been observed experimentally and has also been reproduced by DFT calculations. Similarly, changes in the vanadium hyperfine coupling constant with ligand binding have been calculated using model complexes and DFT methods. DFT methods were also used to calculate ligand hyperfine coupling constants in transition metal systems. The variation of the proton hyperfine coupling constant with water ligand orientation was investigated for [VO(H2O)5]2+ and the results were used to interpret high resolution EPR data of VO2+-exchanged zeolites. Nitrogen hyperfine and quadrupole coupling constants for VO2+ model complexes were calculated and compared with experimental data. The computational results were used to enhance the interpretation of the EPR data for vanadium-exchanged zeolites which are promising catalytic materials. The implications of the DFT calculations of EPR parameters with respect to catalysis will be discussed

  20. Compressibilities and phonon spectra of high-hardness transition metal-nitride materials

    SciTech Connect (OSTI)

    Shebanova, O.; Soignard, E.; Mcmillan, P.F. (ASU); (UCL)

    2010-01-20T23:59:59.000Z

    We report compressibilities measured by synchrotron X-ray diffraction and phonon spectra from Raman scattering at high pressure in the diamond anvil cell (DAC) for cubic transition metal nitrides TiN{sub 1-x}, {gamma}-Mo{sub 2}N and VN{sub x}. The high-hardness metal nitride compounds have large values of the bulk modulus. B1-structured nitrides normally have no allowed first-order Raman spectra. However, they exhibit broad bands that reflect the vibrational density of states g({omega}) associated with breakdown of q=0 selection rules because of the presence of N{sup 3-} vacancies on anion sites. Peaks in g({omega}) at low frequency are identified with the longitudinal and transverse acoustic (TA) branches. The maximum in the TA band is correlated with the superconducting transition temperature in these materials (T{sub c}). In situ Raman scattering measurements in the DAC thus permit predictions of the T{sub c} variation with pressure for cubic nitrides and isostructural carbide materials.

  1. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    SciTech Connect (OSTI)

    Krishnan Balasubramanian

    2009-07-18T23:59:59.000Z

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high-level nuclear wastes. In collaboration with experimental co

  2. Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions

    SciTech Connect (OSTI)

    Rodriguez J. A.; Illas, F.

    2012-01-01T23:59:59.000Z

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.

  3. Protective coating on positive lithium-metal-oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

    2006-05-23T23:59:59.000Z

    A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

  4. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors

    E-Print Network [OSTI]

    Karahan, Aydin

    2009-01-01T23:59:59.000Z

    A robust and reliable code to model the irradiation behavior of metal and oxide fuels in sodium cooled fast reactors is developed. Modeling capability was enhanced by adopting a non-empirical mechanistic approach to the ...

  5. CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum

    E-Print Network [OSTI]

    Goodman, Wayne

    paper.1 Figure 1b shows the corresponding polarization modulation infrared reflection absorptionCO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium

  6. Evaluation of the thermodynamic properties of hydrated metal oxide nanoparticles by INS techniques

    SciTech Connect (OSTI)

    Spencer, Elinor [Virginia Polytechnic Institute and State University] [Virginia Polytechnic Institute and State University; Ross, Dr. Nancy [Virginia Polytechnic Institute and State University] [Virginia Polytechnic Institute and State University; Parker, Stewart F. [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Kolesnikov, Alexander I [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In this contribution we will present a detailed methodology for the elucidation of the following aspects of the thermodynamic properties of hydrated metal oxide nanoparticles from high-resolution, low-temperature inelastic neutron scattering (INS) data: (i) the isochoric heat capacity and entropy of the hydration layers both chemi- and physisorbed to the particle surface; (ii) the magnetic contribution to the heat capacity of the nanoparticles. This will include the calculation of the vibrational density of states (VDOS) from the raw INS spectra, and the subsequent extraction of the thermodynamic data from the VDOS. This technique will be described in terms of a worked example namely, cobalt oxide (Co3O4 and CoO). To complement this evaluation of the physical properties of metal oxide nanoparticle systems, we will emphasise the importance of high-resolution, high-energy INS for the determination of the structure and dynamics of the water species, namely molecular (H2O) and dissociated water (OH, hydroxyl), confined to the oxide surfaces. For this component of the chapter we will focus on INS investigations of hydrated isostructural rutile (a-TiO2) and cassiterite (SnO2) nanoparticles. We will complete this discussion of nanoparticle analysis by including an appraisal of the INS instrumentation employed in such studies with particular focus on TOSCA [ISIS, Rutherford Appleton Laboratory (RAL), U.K.] and the newly developed spectrometer SEQUOIA [SNS, Oak Ridge National Laboratory (ORNL), U.S.A].

  7. Electronic and mechanical properties of 5d transition metal mononitrides via first principles

    SciTech Connect (OSTI)

    Zhao Erjun [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wu Zhijian [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: zjwu@ciac.jl.cn

    2008-10-15T23:59:59.000Z

    The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, six structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and AuN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN. For LaN, HfN and TaN, the formation enthalpy is negative for all the considered structures, while from WN to AuN, except wurtzite structure in ReN, the formation enthalpy is positive. The calculated density of states shows that they are all metallic. ReN in NiAs structure has the largest bulk modulus, 418 GPa. The largest shear modulus 261 GPa is from TaN in WC structure. Trends are discussed. - Graphical abstract: Formation enthalpy per formula unit {delta}H (eV) for all the considered structures of 5d transition metal mononitrides MN (M=La-Au). It was shown that the formation enthalpy increases from LaN to AuN. The nitrides with negative values indicate that they can be synthesized experimentally at ambient conditions.

  8. First-Principles Study of MetalCarbide/Nitride Adhesion: Al/VC vs. Al/VN Donald J. Siegel

    E-Print Network [OSTI]

    Adams, James B

    -oxide ce- ramics. Within this class, the transition metal carbides and ni- trides are a particularly knowledge, there have been only three studies of adhesion between metals and transition metal carbidesFirst-Principles Study of Metal­Carbide/Nitride Adhesion: Al/VC vs. Al/VN Donald J. Siegel

  9. Particle size effects of methylcyclopentane hydrogenolysis and SMSI in lanthanide oxide-supported 1%-platinum metal catalysts

    E-Print Network [OSTI]

    Terhune, Kyte Hamilton

    1985-01-01T23:59:59.000Z

    PARTICLE SIZE EFFECTS OF METHYLCYCLOPENTANE HYDROGENOLYSIS AND SMSI IN LANTHANIDE OXIDE-SUPPORTED 1%-PLATINUM METAL CATALYSTS A Thesis by KYTE HAMILTON TERHUNE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1985 Major Subject: Chemistry PARTICLE SIZE EFFECTS OF METHYLCYCLOPENTANE HYDROGENOLYSIS AND SMSI IN LANTHANIDE OXIDE-SUPPORTED 1%-PLATINUM METAL CATALYSTS A Thesis by KYTE HAMILTON TERHUNE...

  10. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    SciTech Connect (OSTI)

    Shi, Liang; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2007-07-01T23:59:59.000Z

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobactersulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1-and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  11. Modifications of the surface properties of metals by oxide overlayers: 1, Oxidized zirconium deposited on the Pt(100) single crystal surface

    SciTech Connect (OSTI)

    Bardi, U.; Ross, P.N.

    1986-06-01T23:59:59.000Z

    Metallic zirconium was deposited on a single crystal Pt(100) surface by thermal evaporation in UHV conditions. The deposit was oxidized by exposure to oxygen immediately after deposition. Oxidized zirconium was found to grow on the platinum ace by the layer-by-layer mechanism. The adsorption of carbon monoxide on the surface was studied as a function of the zirconium coverage. The results show that oxidized zirconium forms a chemically inert layer which blocks the adsorptive sites of the underlying platinum substrate. The properties of the free Pt surface were unaffected by the presence of the oxidized zirconium layer.

  12. Electronic Excitations and Metal-Insulator Transition inPoly(3-hexylthiophene) Organic Field-Effect Transistors

    SciTech Connect (OSTI)

    Sai, N.; Li, Z.Q.; Martin, M.C.; Basov, D.N.; Di Ventra, M.

    2006-11-07T23:59:59.000Z

    We carry out a comprehensive theoretical and experimentalstudy of charge injection in poly(3-hexylthiophene) (P3HT) to determinethe most likely scenario for metal-insulator transition in this system.Wecalculate the optical-absorption frequencies corresponding to a polaronand a bipolaron lattice in P3HT. We also analyze the electronicexcitations for three possible scenarios under which a first- or asecond-order metal-insulator transition can occur in doped P3HT. Thesetheoretical scenarios are compared with data from infrared absorptionspectroscopy on P3HT thin-film field-effect transistors (FETs). Ourmeasurements and theoretical predictions suggest that charge-inducedlocalized states in P3HT FETs are bipolarons and that the highest dopinglevel achieved in our experiments approaches that required for afirst-order metal-insulator transition.

  13. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011 499 TiSi2 Nanocrystal Metal Oxide Semiconductor Field

    E-Print Network [OSTI]

    Yang, Zheng

    IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011 499 TiSi2 Nanocrystal Metal Oxide memory window, faster writing and erasing, and longer retention lifetime as a result of the metallic property of the silicide NCs. Due to thermally stable, CMOS compatible properties, TiSi2 NCs are highly

  14. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Draper, Robert (Pittsburgh, PA)

    2012-01-17T23:59:59.000Z

    A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).

  15. From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides

    E-Print Network [OSTI]

    Vojvodic, Aleksandra; Ruberto, Carlo; Lundqvist, Bengt I

    2009-01-01T23:59:59.000Z

    Adsorption and catalytic properties of the polar (111) surface of transition-metal carbides (TMC's) are investigated by density-functional theory. Atomic and molecular adsorption are rationalized with the concerted-coupling model, in which two types of TMC surface resonances (SR's) play key roles. The transition-metal derived SR is found to be a single measurable descriptor for the adsorption processes, implying that the Br{\\o}nsted-Evans-Polanyi relation and scaling relations apply. This gives a picture with implications for ligand and vacancy effects and which has a potential for a broad screening procedure for heterogeneous catalysts.

  16. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect (OSTI)

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28T23:59:59.000Z

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  17. Variation of the shape and morphological properties of silica and metal oxide powders by electro homogeneous precipitation

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Sisson, Warren G. (Oak Ridge, TN); Brunson, Ronald R. (Lenoir City, TN)

    1997-01-01T23:59:59.000Z

    The present invention provides a method for preparing irreversible linear aggregates (fibrils) of metal oxide powders by utilizing static or pulsed DC electrical fields across a relatively non-conducting liquid solvent in which organometal compounds or silicon alkoxides have been dissolved. The electric field is applied to the relatively non-conducting solution throughout the particle formation and growth process promoting the formation of either linear aggregates (fibrils) or spherical shaped particles as desired. Thus the present invention provides a physical method for altering the size, shape and porosity of precursor hydrous metal oxide or hydrous silicon oxide powders for the development of advanced ceramics with improved strength and insulating capacity.

  18. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    SciTech Connect (OSTI)

    Andrews, Mark

    1997-01-08T23:59:59.000Z

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  19. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect (OSTI)

    Hoffman, M.Z.

    1991-12-31T23:59:59.000Z

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  20. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect (OSTI)

    Lu, Yuan; Zuo, Xu, E-mail: xzuo@nankai.edu.cn [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Feng, Min [School of Physics, Nankai University, Tianjin 300071 (China); Shao, Bin [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-05-07T23:59:59.000Z

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM?=?Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  1. Magnetically Driven Metal-Insulator Transition in NaOsO3

    SciTech Connect (OSTI)

    Calder, Stuart A [ORNL; Christianson, Andrew D [ORNL; Lumsden, Mark D [ORNL; Lang, Jonathan [Argonne National Laboratory (ANL); Stone, Matthew B [ORNL; McMorrow, D. F. [University College, London; Garlea, Vasile O [ORNL; Kim, Jong-Woo [Argonne National Laboratory (ANL); Schlueter, J. A. [Argonne National Laboratory (ANL); Shi, Y. G. [Chinese Academy of Sciences; Yamaura, K. [National Institute for Materials Science, Tsukuba, Japan; Sun, Y. S. [MANA; Tsujimoto, Y. [Kyoto University, Japan

    2012-01-01T23:59:59.000Z

    The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder), and Peierls (local- ization via distortion of a periodic one-dimensional lattice) mechanisms. One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and x-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. While candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT.

  2. Effects of anneals in ammonia on the interface trap density near the band edges in 4Hsilicon carbide metal-oxide-semiconductor capacitors

    E-Print Network [OSTI]

    Pantelides, Sokrates T.

    ­silicon carbide metal-oxide-semiconductor capacitors Gilyong Chung, Chin Che Tin, and John R. Williamsa) Physics. Silicon carbide is the only wide band gap semiconductor that has a native oxide, and metal temperature capacitance­voltage measurements are reported for SiO2/4H­SiC n and p type metal

  3. Electro-Ionics at metal oxide interfaces Hellsing (520720), Winkler, Wahnstrm, Olsson, Knee, Granath CURRICULUM VITAE Bo Hellsing (520720-3950)

    E-Print Network [OSTI]

    Hellsing, Bo

    Electro-Ionics at metal oxide interfaces Hellsing (520720), Winkler, Wahnström, Olsson, Knee: Electronic properties of Metal Quantum Wells and Varistor Materials" PhD: Asier Eiguren (2003), "Electron Chis (May 2006), "Electron and #12;Electro-Ionics at metal oxide interfaces Hellsing (520720), Winkler

  4. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOE Patents [OSTI]

    Yang, Jihui (Lakeshore, CA); Shi, Xun (Troy, MI); Bai, Shengqiang (Shanghai, CN); Zhang, Wenqing (Shanghai, CN); Chen, Lidong (Shanghai, CN); Yang, Jiong (Shanghai, CN)

    2012-01-17T23:59:59.000Z

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  5. Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles

    SciTech Connect (OSTI)

    Rankin, Rees B.; Greeley, Jeffrey P.

    2012-10-19T23:59:59.000Z

    We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functions of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.

  6. Magnetic properties of transition metal doped AlN nanosheet: First-principle studies

    SciTech Connect (OSTI)

    Shi, Changmin; Qin, Hongwei, E-mail: qin-hw@vip.163.com; Zhang, Yongjia; Hu, Jifan; Ju, Lin [School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100 (China)

    2014-02-07T23:59:59.000Z

    We carry out our first-principles calculations within density functional theory to study the 3d transition metal (TM) doped AlN nanosheets. The calculated results indicate that a stoichiometric AlN nanosheet is graphene-like structure and nonmagnetic. The TM impurities can induce magnetic moments, localized mainly on the 3d TM atoms and neighboring N atoms. Our calculated results of TM-doped nanosheet systems indicate a strong interaction between 3d orbit of TM atom and the 2p orbit of N atoms. In addition, the Mn- and Ni-doped AlN nanosheet with half-metal characters seems to be good candidates for spintronic applications. When substituting two Al atoms, the relative energies of the states between ferromagnetic and antiferromagnetic coupling are investigated sufficiently. The exchange coupling of Co- and Ni-doped AlN nanosheets exhibits a transformation with different distances of two TM atoms and that of Cr-, Mn-, and Fe-doped AlN nanosheets is not changed.

  7. Final Scientific Report : Development of Transition Metal/ Chalcogen Based Cathode Catalysts for PEM Fuel Cells

    SciTech Connect (OSTI)

    Campbell, Stephen, A.

    2008-02-29T23:59:59.000Z

    The aim of this project was to investigate the potential for using base metal sulfides and selenides as low cost replacements for precious metal catalysts, such as platinum, currently being used in PEM fuel cells. The approach was to deposit thin films of the materials to be evaluated onto inert electrodes and evaluate their activity for the cathode reaction (oxygen reduction) as well as ex-situ structural and compositional characterization. The most active materials identified are CoS2 and the 50:50 solid solution (Co,Ni)S2. However, the OCP of these materials is still considered too low, at 0.83V and 0.89V vs. RHE respectively, for testing in fuel cells. The methods employed here were necessary to compare with the activity of platinum as, when nano-dispersed on carbon supports, the active surface area of these materials is difficult to measure, making comparisons inaccurate. This research adds to the knowledge of potential candidates for platinum replacement in order to reduce the cost of PEM fuel cell technology and promote commercialization. Although the fabrication methods employed here are strictly experimental, methods were also developed to produce nano-dispersed catalysts with similar compositions, structure and activity. Cycling of these catalysts to highly oxidizing potentials resulted in an increase of the open circuit voltage to approach that of platinum, however, it proved difficult to determine why using these dispersed materials. The potential for non-precious, non-metallic, low cost, compound catalysts for PEM fuel cells has been investigated and demonstrated.

  8. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect (OSTI)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02T23:59:59.000Z

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  9. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect (OSTI)

    Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

    2005-06-01T23:59:59.000Z

    Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

  10. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials.

    SciTech Connect (OSTI)

    Koenig, G. M.; Belharouak, I.; Deng, H.; Amine, K.; Sun, Y. K. (Chemical Sciences and Engineering Division)

    2011-04-12T23:59:59.000Z

    We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the particles was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2}, which was electrochemically evaluated as the active cathode material in a lithium battery. The Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2} material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions.

  11. MetalBosonic InsulatorSuperconductor Transition in Boron-Doped Granular Diamond Gufei Zhang,1,* Monika Zeleznik,2

    E-Print Network [OSTI]

    Bristol, University of

    . Second, the giant RðTÞ peak is observed in heavily boron-doped polycrystalline diamond thick filmsMetal­Bosonic Insulator­Superconductor Transition in Boron-Doped Granular Diamond Gufei Zhang,1 the onset of superconductivity in heavily boron-doped diamond. This anomalous RðTÞ peak in a 3D system

  12. Time-resolved x-ray absorption spectroscopy of photoinduced insulator-metal transition in a colossal magnetoresistive manganite

    SciTech Connect (OSTI)

    Rini, M.; Tobey, R.; Wall, S.; Zhu, Y.; Tomioka, Y.; Tokura, Y.; Cavalleri, A.; Schoenlein, R.W.

    2008-08-01T23:59:59.000Z

    We studied the ultrafast insulator-metal transition in a manganite by means of picosecond X-ray absorption at the O K- and Mn L-edges, probing photoinduced changes in O-2p and Mn-3d electronic states near the Fermi level.

  13. First-principles prediction of redox potentials in transition-metal compounds with LDA+U Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    E-Print Network [OSTI]

    Ceder, Gerbrand

    , such as those at which lithium intercalates in transition metal compounds. We argue that this inaccuracy this approach, the experimental lithium intercalation voltages of a number of transition metal compounds corrosion, fuel cells and rechargeable Li batteries, and the ability to study these processes from first

  14. 3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu

    E-Print Network [OSTI]

    Chen, Long-Qing

    3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y September 2009; published 18 November 2009 In this work, appropriate description of interactions of 3d transition metals in aluminum Al-3d is attained from first-principles using LDA+U potential within density

  15. Synchronization of pairwise-coupled, identical, relaxation oscillators based on metal-insulator phase transition devices: A Model Study

    E-Print Network [OSTI]

    Abhinav Parihar; Nikhil Shukla; Suman Datta; Arijit Raychowdhury

    2014-08-11T23:59:59.000Z

    Computing with networks of synchronous oscillators has attracted wide-spread attention as novel materials and device topologies have enabled realization of compact, scalable and low-power coupled oscillatory systems. Of particular interest are compact and low-power relaxation oscillators that have been recently demonstrated using MIT (metal- insulator-transition) devices using properties of correlated oxides. This paper presents an analysis of the dynamics and synchronization of a system of two such identical coupled relaxation oscillators implemented with MIT devices. We focus on two implementations of the oscillator: (a) a D-D configuration where complementary MIT devices (D) are connected in series to provide oscillations and (b) a D-R configuration where it is composed of a resistor (R) in series with a voltage-triggered state changing MIT device (D). The MIT device acts like a hysteresis resistor with different resistances in the two different states. The synchronization dynamics of such a system has been analyzed with purely charge based coupling using a resistive (Rc) and a capacitive (Cc) element in parallel. It is shown that in a D-D configuration symmetric, identical and capacitively coupled relaxation oscillator system synchronizes to an anti-phase locking state, whereas when coupled resistively the system locks in phase. Further, we demonstrate that for certain range of values of Rc and Cc, a bistable system is possible which can have potential applications in associative computing. In D-R configuration, we demonstrate the existence of rich dynamics including non-monotonic flows and complex phase relationship governed by the ratios of the coupling impedance. Finally, the developed theoretical formulations have been shown to explain experimentally measured waveforms of such pairwise coupled relaxation oscillators.

  16. A unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear resonance and inelastic neutron scattering

    SciTech Connect (OSTI)

    Limbach, H.H.; Ulrich, S.; Buntkowsky, G. [Freie Univ. Berlin (Germany). Inst. fuer Organische Chemie; Sabo-Etienne, S.; Chaudret, B. [Toulouse-3 Univ., 31 (France). Lab. de Chimie de Coordination du C.N.R.S.; Kubas, G.J.; Eckert, J. [Los Alamos National Lab., NM (United States)

    1995-08-12T23:59:59.000Z

    In this paper a unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) is presented. It is shown that both exchange processes coexist i.e. do not transform into each other although they may dominate the spectra in different temperature ranges. This superposition is the consequence of the incorporation of the tunnel frequency J of the coherent process into the nuclear two-spin hamiltonian of hydrogen pairs which allows to treat the problem using the well known density matrix theory of NMR line-shapes developed by Alexander and Binsch. It is shown that this theory can also be used to predict the line-shapes of the rotational tunneling transitions observed in the INS spectra of transition metal dihydrogen complexes and that both NMR and INS spectra depend on similar parameters.

  17. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides M. K. Aydinol, A. F. Kohan, and G. Ceder

    E-Print Network [OSTI]

    Ceder, Gerbrand

    -metal-oxides due to their application potential as rechargeable battery electrodes1 and electrochromic displays.2. In electrochromic applications, band filling is used to adjust the electronic and optical properties.3 Figure 1-potential difference between cathode and anode is desirable as this leads to a high OCV. For electrochromic

  18. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    SciTech Connect (OSTI)

    Guodong Du

    2004-12-19T23:59:59.000Z

    In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl{sub 2} (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh), with aromatic aldehydes or aryl ketones resulted in reductive coupling of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph){sub 2}C(Ph){sub 2}O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti({eta}{sup 2}-PhC{triple_bond}CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and {alpha}-hydroxy ketones to benzaldehyde and {alpha}-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of {alpha}-ketols to {alpha}-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  19. First-principles study of thin magnetic transition-metal silicide films on Si(001) Hua Wu, Peter Kratzer, and Matthias Scheffler

    E-Print Network [OSTI]

    First-principles study of thin magnetic transition-metal silicide films on Si(001) Hua Wu, Peter of ferromag- netic FM materials have been suggested for the fabrication of metal/semiconductor heterojunctions s : 75.70. i, 73.20.At, 68.35.Md I. INTRODUCTION Metal-semiconductor heterojunctions have received much

  20. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes

    SciTech Connect (OSTI)

    Leung, L.W.H.; Weaver, M.J.

    1987-08-19T23:59:59.000Z

    Thin (ca. one to three monolayers) films of platinum and palladium electrodeposited on electrochemically roughened gold are observed to yield surface-enhanced Raman (SER) spectra for adsorbed carbon monoxide. The major vibrational band(s) on these surfaces are diagnosed from their frequencies as arising from C-O stretching vibrations, nu/sub CO/ bound to the transition-metal overlayers rather than to residual gold sites. The observed SFR nu/sub CO/ frequencies are closely similar to (within ca. 10 cm/sup -1/ of) those obtained for these systems from potential-difference infrared (PDIR) spectra. The major SERS and PDIR nu/sub CO/ features for the platinum and palladium surfaces appear at 2060-2090 and 1965-1985 cm/sup -1/, respectively, consistent with the presence of terminal and bridging CO on these two electrodes. The infrared as well as electrochemical properties of these systems are closely similar to those for the corresponding polycrystalline bulk electrodes. A difference between the SER- and IR-active adsorbed CO, however, is that the former undergoes electrooxidation on both surfaces at 0.2-0.3 V higher overpotentials than the latter form. Examination of the potential-dependent SERS bands for metal oxide vibrations, nu/sub PtO/, on the platinum surface shows that the electrooxidation potential for the SERS-active adsorbed CO coincides with that for the appearance of the nu/sub PtO/ band. Some broader implications to the utilization of SERS for examining transition-metal surfaces are pointed out.

  1. Specific-Heat of the Organic Metal Bis(tetrathiotetracene) Tri-Iodide from 20-K to 100-K, the Vicinity of the Metal-Nonmetal Phase-Transition

    E-Print Network [OSTI]

    CORT, B.; Naugle, Donald G.

    1981-01-01T23:59:59.000Z

    selenium ana- log, the transition-metal complex KCP, ' and tetrathiofulvalenium-thiocyanate [TTF(SCN) 0588] and its selenium analog' which are similar to the organic metal studied in this work. That the metallic state is stabilized by impurities...PHYSICAL REVIEW B VOLUME 24, NUMBER 7 1 OCTOBER 1981 Specific heat of the organic metal bis(tetrathiotetracene) tri-iodide from 20 to 100 K, the vicinity of the metal-nonmetal phase transition B. Cort' and D. G. Naugle Department of Physics...

  2. Electron/phonon coupling in group-IV transition-metal and rare-earth nitrides

    SciTech Connect (OSTI)

    Mei, A. B.; Rockett, A. [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States)] [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden)] [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden); Petrov, I.; Greene, J. E. [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States) [Departments of Materials Science, Physics, and the Materials Research Laboratory, University of Illinois, 104 South Goodwin, Urbana, Illinois 61801 (United States); Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-58183 Linköping (Sweden)

    2013-11-21T23:59:59.000Z

    Transport electron/phonon coupling parameters and Eliashberg spectral functions ?{sub tr}{sup 2}F(??) are determined for group-IV transition-metal (TM) nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 < T < 300 K) resistivity measurements of high-crystalline-quality stoichiometric epitaxial films grown on MgO(001) by magnetically-unbalanced reactive magnetron sputtering. Transport electron/phonon coupling parameters ?{sub tr} vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in ?{sub tr} among the TM nitrides and the weak coupling in CeN are consistent with measured superconducting transition temperatures 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and <4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in ?{sup 2}F(??), corresponding to regions in energy-space for which electrons couple to acoustic ??{sub ac} and optical ??{sub op} phonon modes, are centered at ??{sub ac} = 33 and ??{sub op} = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15 ± 0.1 for all four nitrides, indicating similar electron/phonon coupling strengths ?{sub tr}(??) for both modes.

  3. E-Print Network 3.0 - apparent metal-insulator transition Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mathmatiques Collection: Mathematics 51 Superconductor-Correlated metal-Superconductor Josephson junctions Summary: -potential approximation which displays a metal-insulator...

  4. Gate Metal-Induced Diffusion and Interface Reactions in Hf Oxide Films on Si

    SciTech Connect (OSTI)

    Goncharova, Lyudmila V.; Dalponte, Mateus; Celik, Ozgur; Garfunkel, Eric; Gustafsson, Torgny [Departments of Physics and Chemistry, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08854 (United States); Lysaght, Pat S.; Bersuker, Gennadi I. [Sematech, Austin, Texas 78741 (United States)

    2007-09-26T23:59:59.000Z

    When metal electrodes are deposited on a high-{kappa} metal-oxide/SiO{sub 2}/Si stack, chemical interactions may occur both at the metal/high-{kappa} and the high-{kappa}/Si interfaces, causing changes in electrical performance. We report here results from medium energy ion scattering (MEIS) and x-ray photoelectron (XPS) studies of oxygen and silicon transport and interfacial layer reactions in multilayer gate stacks. Our results show that Ti deposition on HfO{sub 2}/SiO{sub 2}/Si stacks causes reduction of the SiO{sub 2} interfacial layer and (to a lesser extent) the HfO{sub 2} layer. Silicon atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for titanium-silicon interdiffusion through the high-{kappa} film in the presence of a titanium gate in crystalline HfO{sub 2} films is also reported.

  5. Catalytic hydrogenation and gas permeation properties of metal-containing poly(phenylene oxide) and polysulfone

    SciTech Connect (OSTI)

    Hanrong Gao; Yun Xu; Shijian Liao; Ren Liu; Daorong Yu (Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics)

    1993-11-10T23:59:59.000Z

    Metal-containing polymers, PPL-DPP-Pd, PPO-CPA-Pd, PSF-DPP-Pd, PSF-CPA-Pd (PDD = diphenylphosphinyl, CPA = o-carboxy phenyl amino), PPO-M (M = Pd,Cu,Co,Ni), and PSF-Pd, were prepared by incorporating metal chloride with either modified or unmodified poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polysulfone (PSF). The Pd-containing polymers exhibit catalytic activity in the hydrogenation of cyclopentadiene under mild conditions both in alcohol solution and in the gas phase. The selectivity in the hydrogenation of diene to monoene in the gas phase can be controlled by adjusting the hydrogen partial pressure. The metal-containing polymers, PPL-M and PSF-Pd, can be cast easily into the membranes. The H[sub 2]/N[sub 2] permselectivity for PPO-M is higher than that for unmodified PPO, whereas the permeability of H[sub 2] changes slightly. The H[sub 2] permeability and H[sub 2]/N[sub 2] permselectivity for the PPO-Pd membrane are up to 67.5 barrers and 135, respectively.

  6. Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2008-10-14T23:59:59.000Z

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

  7. Dilute magnetic semiconductor and half-metal behaviour mediated by 3d transition-metal doped in black/blue phosphorene

    E-Print Network [OSTI]

    Yu, Weiyang; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2015-01-01T23:59:59.000Z

    Using first-principles calculations, we present a theoretical study of the structural, electronic and magnetic properties of 3d transition metal (TM) atoms interacting with phosphorus monovacancies in two-dimensional black/blue phosphorene. We pay special attention to the magnetic properties of these substitutional impurities and find that they can be fully understood by a simple model based on the Hund's rule. For TM-doped black phosphorene, the calculated band structures of substitutional Ti, Cr, Mn, Fe and Ni impurities show dilute magnetic semiconductor (DMS) properties while those of substitutional Sc, V and Co impurities show nonmagnetic property. For TM-doped blue phosphorene, the calculated band structures of substitutional V, Cr, Mn and Fe impurities show DMS properties, and those of substitutional Ti and Ni impurities show half-metal properties, while Sc and V impurities show nonmagnetic property. We identify three different regimes associated with the occupation of different phosphorus-metal hybrid...

  8. Gas-phase chemical reactions of transition metal clusters with simple molecules

    SciTech Connect (OSTI)

    Riley, S.J.; Parks, E.K.

    1986-01-01T23:59:59.000Z

    Chemical reactions of isolated transition metal clusters are studied in a laser-vaporization cluster source coupled to a continuous-flow reactor. Detection of reaction products is via laser ionization and time-of-flight mass spectrometry. Experimental probes that have been developed include: (1) kinetics measurements, in which the disappearance of bare cluster signal with increasing reagent gas flow is used to determine absolute reaction rate constants for the addition of the first adsorbate molecule; (2) product composition measurements, in which inferences as to cluster structure and the nature of surface binding sites are derived by determining the total number of adsorbates the clusters can accommodate; (3) laser-induced desorption experiments, from which adsorbate binding energies can be derived; and (4) the observation of actual chemical reactions on cluster surfaces, such as hydrogen/deuterium exchange or adsorbate photochemistry. In addition, a new experimental procedure has been developed that, in a single series of measurements, provides measures of the first three parameters listed above. A review is given of earlier studies of the reaction of iron clusters with hydrogen. More recent results on the reaction of iron clusters with ammonia, and the reaction of ammoniated iron clusters with hydrogen, are also presented.

  9. First-principles prediction of magnetic superatoms in 4d-transition-metal-doped magnesium clusters

    SciTech Connect (OSTI)

    Ge, Gui-Xian [National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093 (China) [National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093 (China); Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Xinjiang 832003 (China); Han, Yan; Wan, Jian-Guo, E-mail: wanjg@nju.edu.cn; Wang, Guang-Hou [National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093 (China)] [National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhao, Ji-Jun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2013-11-07T23:59:59.000Z

    We theoretically predict magnetic superatoms in the 4d-transition-metal-doped Mg{sub 8} clusters using a spin-polarized density functional theory method. We demonstrate that TcMg{sub 8} is highly energetically stable in both structure and magnetic states, and identify it as a magnetic superatom with a magnetic moment as large as 5 ?{sub B}. The magnetic TcMg{sub 8} with 23 valence electrons has a configuration of 1S{sup 2}1P{sup 6}1D{sup 10} closed shell and 2S{sup 1}2D{sup 4} open shell, complying with Hund's rule similar to the single atom. We elucidate the formation mechanism of the magnetic TcMg{sub 8} superatom based on the detailed analysis of molecular orbitals, and attribute it to the large exchange interaction and moderate crystal field effect. Finally, we predict that the magnetic TcMg{sub 8} may exhibit semiconductor-like property with spin polarization characteristics.

  10. Most spin-1/2 transition-metal ions do have single ion anisotropy

    SciTech Connect (OSTI)

    Liu, Jia; Whangbo, Myung-Hwan, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 (United States); Koo, Hyun-Joo [Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Xiang, Hongjun, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 (China); Kremer, Reinhard K. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2014-09-28T23:59:59.000Z

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  11. Kh a 1,2 hyperesatellites of 3d transition metals and their photoexcitation energy dependence.

    SciTech Connect (OSTI)

    Diamant, R.; Kao, C.; Huotari, S; Hamalainen, K; Sharon, R; Deutsch, M.

    2009-06-25T23:59:59.000Z

    Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K{sup h} {alpha}{sub 1,2} hypersatellites (HSs), were measured for the 3d transition metals, Z = 23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K{alpha}{sub 1,2}, the K{sup h}{alpha}{sub 1}-K{sup h}{alpha}{sub 2} splitting, and the K{sup h}{alpha}{sub 1}/K{sup h}{alpha}{sub 2} intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.

  12. Porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1997-03-04T23:59:59.000Z

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  13. Porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

    1997-01-01T23:59:59.000Z

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  14. Picosecond soft X-ray absorption measurement of the photo-inducedinsulator-to-metal transition in VO2.

    SciTech Connect (OSTI)

    Cavalleri, Andrea; Chong, Henry H.W.; Fourmaux, Sylvain; Glover,Thornton E.; Heimann, Phil A.; Kieffer, Jean Claude; Mun, B. Simon; Padmore, Howard A.; Schoenlein, Robert W.

    2004-02-01T23:59:59.000Z

    We directly measure the photoinduced insulator-to-metal transition in VO2 using time-resolved near-edge x-ray absorption. Picosecond pulses of synchrotron radiation are used to detect the redshift in the vanadium L3edge at 516 eV, which is associated with the transient collapse of the low-temperature band gap. We identify a two-component temporal response, corresponding to an ultrafast transformation over a 50 nm surface layer, followed by 40 m/s thermal growth of the metallic phase into the bulk.

  15. Strong segregation gettering of transition metals by implantation-formed cavities and boron-silicide precipitates in silicon

    SciTech Connect (OSTI)

    Myers, S.M.; Petersen, G.A.; Follstaedt, D.M.; Headley, T.J. [and others

    1996-06-01T23:59:59.000Z

    We have mechanistically and quantitatively characterized the binding of transition-metal impurities in Si to cavities formed by He implantation and to B-Si precipitates resulting from B implantation. Both sinks are inferred to act by the segregation of metal atoms to pre-existing low-energy sites, namely surface chemisorption sites in the case of cavities and bulk solution sites in the case of the B-Si phase. These gettering processes exhibit large binding energies, and they are predicted to remain active for arbitrarily small initial impurity concentrations as a result of the segregation mechanisms. Both appear promising for gettering in Si devices.

  16. Semiconducting chalcogenide buffer layer for oxide heteroepitaxy on Si,,001...

    E-Print Network [OSTI]

    Olmstead, Marjorie

    controlled laminar growth of a crystalline transition metal oxide on Si 001 without SiOx or silicide/or silicides at the Si/oxide interface. Subnanometer buffer layers can prevent interface reac- tions while, also enables flexible strain relief. We observe nei- ther oxide nor silicide formation at the buried Si

  17. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, Uday B. (Malden, MA); Gazula, Gopala K. M. (Somerville, MA); Hasham, Ali (Karachi, PK)

    1996-01-01T23:59:59.000Z

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  18. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18T23:59:59.000Z

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  19. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    SciTech Connect (OSTI)

    Bercaw, John E. [California Institute of Technology

    2014-05-23T23:59:59.000Z

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  20. Transient radiation hardened CMOS (complementary metal oxide semiconductor) operational amplifiers. Master's thesis

    SciTech Connect (OSTI)

    Trombley, G.J.

    1989-01-01T23:59:59.000Z

    General strategies are developed for designing radiation hardened bulk and silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) operational amplifiers. Comparisons are made between each technology concerning photocurrent mechanisms and the inherent advantages of SOI CMOS. Methods are presented for analysing circuit designs and minimizing the net photocurrent responses. Analysis is performed on standard operational amplifier circuits and subcircuits to demonstrate the usefulness of these methods. Radiation hardening topics discussed include superior radiation hardened topologies, photocurrent compensation and its limitations, and methods to ensure a preferred direction of photocurrent response. Several operational amplifier subcircuits are compared for their hardness characteristics. Folded cascode and three-stage operational amplifiers were fabricated on an SOI CMOS test chip supported by Texas Instruments, Incorporated. At the time of publication, the circuit operation was verified but radiation data were not yet available.

  1. Method for producing metal oxide aerogels having densities less than 0.02 g/cc

    SciTech Connect (OSTI)

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.

  2. Method for producing metal oxide aerogels having densities less than 0. 02 g/cc

    DOE Patents [OSTI]

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1994-01-04T23:59:59.000Z

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm[sup 3] to those with a density of more than 0.8 g/cm[sup 3], by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm[sup 3]. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm[sup 3], with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described. 7 figures.

  3. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  4. Heterojunction thin films based on multifunctional metal oxides for photovoltaic application

    SciTech Connect (OSTI)

    Prabhu, M.; Soundararajan, N.; Ramachandran, K. [School of Physics, Madurai Kamaraj University, Madurai - 625021 (India); Marikkannan, M.; Mayandi, J. [School of Chemistry, Madurai Kamaraj University, Madurai - 625021 (India)

    2014-04-24T23:59:59.000Z

    Metal oxides based multifunctional heterojunction thin films of ZnO/SnO{sub 2} and ZnO/SnO{sub 2}/CuO QDs were prepared by spin-coating technique. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The optical absorption studies revealed that the film thickness has considerable effect on the band gap values and is found to be in the range of 3.73–3.48 eV. The photoluminescence spectra showed several weak visible emission peaks related to the deep level defects (450-575 nm). Finally, the current density-voltage (J-V) characteristic of ZnO/SnO{sub 2}/CuO QDs (ZSCI) based heterojunction thin film coated on ITO is also reported.

  5. Corrosion and Protection of Metallic Interconnects in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-12-09T23:59:59.000Z

    Energy security and increased concern over environmental protection have spurred a dramatic world-wide growth in research and development of fuel cells, which electrochemically convert incoming fuel into electricity with no or low pollution. Fuel cell technology has become increasingly attractive to a number of sectors, including utility, automotive, and defense industries. Among the various types of fuel cells, solid oxide fuel cells (SOFCs) operate at high temperature (typically 650-1,000 C) and have advantages in terms of high conversion efficiency and the flexibility of using hydrocarbon fuels, in addition to hydrogen. The high temperature operation, however, can lead to increased mass transport and interactions between the surrounding environment and components that are required to be stable during a lifetime of thousands of hours and up to hundreds of thermal cycles. For stacks with relatively low operating temperatures (<800 C), the interconnects that are used to electrically connect a number of cells in series are typically made from cost-effective metals or alloys. The metallic interconnects must demonstrate excellent stability in a very challenging environment during SOFC operation, as they are simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing environment (hydrogen or a reformed hydrocarbon fuel) on the anode side. Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain impurities, such as sulfides. Since the fuel is usually a reformed hydrocarbon fuel, such as natural gas, coal gas, biogas, gasoline, etc., the interconnect is exposed to a wet carbonaceous environment at the anode side. Finally, the interconnect must be stable towards any adjacent components, such as electrodes, seals and electrical contact materials, with which it is in physical contact.

  6. STRATEGIC COMBINATION OF TRANSITION METAL-CATALYZED REACTIONS FOR ECONOMICAL ONE-POT SYNTHESES OF N-HETEROCYCLES

    E-Print Network [OSTI]

    Raikar, Sandeep

    2013-08-31T23:59:59.000Z

    in yield and efficiency. Thus, increasing the efficiency and minimizing the wastes is the need of the hour.1 An attractive solution towards this problem would be strategically sequencing the powerful carbon-carbon bond-forming reactions... environmentally and economically. In particular, sequential transition metal-catalyzed reactions are well-suited for one-pot processes due to their broad range of carbon-carbon bond formation and functional group tolerance.5-6 Sequential...

  7. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides

    SciTech Connect (OSTI)

    Sharma, Munish, E-mail: munishsharmahpu@live.com, E-mail: pk-ahluwalia7@yahoo.com; Kumar, Ashok; Ahluwalia, P. K., E-mail: munishsharmahpu@live.com, E-mail: pk-ahluwalia7@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Pandey, Ravindra [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)

    2014-08-14T23:59:59.000Z

    Tunability of the electronic properties of two-dimensional bilayer hetero structures of transition-metal dichalcogenides (i.e., MX{sub 2}-M?X?{sub 2} with (M, M??=?Mo, W; X, X??=?S, Se) is investigated. Application of both strain and electric field is found to modify the band gap and carrier effective mass in the hybrid bilayers considered. The calculated results based on density functional theory suggest that the tensile strain considerably changes the band gap of semiconducting bilayers; it makes the band gap to be indirect, and later initiates the semiconductor-to-metal transition. Application of the external electric fields, on the other hand, shows asymmetric variation in the band gap leading to the closure of the gap at about 0.5–1.0?V/Å. Tuning of the band gap and carrier effective mass in such a controlled manner makes the hybrid bilayers of transition metal dichalcogenides to be promising candidates for application in electronic devices at nanoscale.

  8. AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate

    E-Print Network [OSTI]

    York, Robert A.

    AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium-effect transistors have been formed by incorporating barium strontium titanate (BST) deposited by rf magnetron in increased leakage. Due to its large dielectric constant, barium strontium ti- tanate [Ba1-xSrxTiO3, (BST

  9. Fast photoreactions of ethanol and MTBE on tropospheric metal oxide particles

    SciTech Connect (OSTI)

    Idriss, H.; Seebauer, E.G. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31T23:59:59.000Z

    Ethanol (EtOH) and tert-Butyl methyl ether (MTBE) are both finding increased use as oxygenated additives to fuels. However, the environmental fate in the troposphere of these species is unclear when they escape as fugitive emissions. In several locations there are reports of human illness in response to MTBE in particular. Volatile organic compounds (VOC`s) such as these are generally thought to react by a variety of homogeneous free-radical mechanisms, usually beginning with attack by OH radical. However, we show by laboratory kinetic studies that the heterogeneous photoreaction on solid suspended metal-oxide particulates such as fly ash proceeds with a comparable rate, especially in urban environments. EtOH reacts to form acetaldehyde, and EtOH forms isobutene, methanol, and formaldehyde. Our work appears to be the first-ever demonstration that VOC`s can react as fast by a heterogeneous mechanism as by a homogeneous one in the atmosphere. Experiments by various optical and kinetic techniques show that the active phases in fly ash are Fe oxides, which are fairly abundant in other atmospheric particulates as well.

  10. High-temperature corrosion of metallic alloys in an oxidizing atmosphere containing NaCl

    SciTech Connect (OSTI)

    Federer, J.I.

    1989-02-01T23:59:59.000Z

    A particular heat-exchanger application involved metallic alloys exposed to flue gases of an aluminum remelt furnace. Because the flue gases might contain NaCl and other halides, the corrosion behavior of the alloys was to be investigated. Planned direct exposure of candidate alloys to the flue gases, however, was not conducted because of premature termination of the project. Complementary laboratory testing was conducted on seven commercially available alloys and two nickel aluminides. These materials were exposed to an oxidizing atmosphere containing 0.06 wt % NaCl for 1100 h at 1000/degree/C. Most of the alloy exhibited grain-boundary attack, which resulted in complete oxidation of enveloped grains. The alloys Incoloy MA-956, Incoloy 800, Inconel 625, Inconel 601, Hastelloy X, Haynes 188, and nickel aluminide IC-50 were substantially more corroded than Alloy 214 and nickel aluminide IC-221. The latter two alloys, therefore, would probably be superior to the others in application involving flue gases containing NaCl. Strength fabricability, and weldability, which are briefly discussed, would also affect selection of materials. 8 refs., 12 figs., 5 tabs.

  11. Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks

    SciTech Connect (OSTI)

    Goncharova, L. V.; Dalponte, M.; Gustafsson, T.; Celik, O.; Garfunkel, E.; Lysaght, P. S.; Bersuker, G. [Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, 136 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, and Laboratory for Surface Modification, Rutgers University, 610 Taylor Rd., Piscataway, New Jersey 08854 (United States); SEMATECH, 2705 Montopolis Dr., Austin, Texas 78741 (United States)

    2007-03-15T23:59:59.000Z

    The properties of high-{kappa} metal oxide gate stacks are often determined in the final processing steps following dielectric deposition. We report here results from medium energy ion scattering and x-ray photoelectron spectroscopy studies of oxygen and silicon diffusion and interfacial layer reactions in multilayer gate stacks. Our results show that Ti metallization of HfO{sub 2}/SiO{sub 2}/Si stacks reduces the SiO{sub 2} interlayer and (to a more limited extent) the HfO{sub 2} layer. We find that Si atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for Ti-Si interdiffusion through the high-{kappa} film in the presence of a Ti gate in the crystalline HfO{sub 2} films is also reported. This diffusion is likely to be related to defects in crystalline HfO{sub 2} films, such as grain boundaries. High-resolution transmission electron microscopy and corresponding electron energy loss spectroscopy scans show aggressive Ti-Si intermixing and oxygen diffusion to the outermost Ti layer, given high enough annealing temperature. Thermodynamic calculations show that the driving forces exist for some of the observed diffusion processes.

  12. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro 

    E-Print Network [OSTI]

    McNeilly, Jane D; Heal, Mathew R; Beverland, Iain J; Howe, Alan; Gibson, Mark D; Hibbs, Leon; MacNee, William; Donaldson, Ken

    2004-01-01T23:59:59.000Z

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched ...

  13. Comparison of monolith-supported metals for the direct oxidation of methane of syngas

    SciTech Connect (OSTI)

    Torniainen, P.M.; Chu, X.; Schmidt, L.D. (Univ. of Minnesota, Minneapolis (United States))

    1994-03-01T23:59:59.000Z

    The partial oxidation of CH[sub 4] in O[sub 2] near atmospheric pressure to produce syngas was investigated on monolith-supported Rh, Ni, Pt, Ir, Pd, Pd-La[sub 2]O[sub 3], Fe, Co, Re, and Ru catalysts in an autothermal flow reactor at residence times of [approximately]10 msec (GHSV [approximately] 100,000 hr[sup [minus]1]). Optimal CH[sub 4] conversion and CO and H[sub 2] selectivities of 0.89, 0.95, and 0.90, respectively, were achieved on Rh at 1000[angstrom]C with no loss in activity over many hours. Ni showed similar conversion and selectivities but deactivated. Experiments with up to 25 vol% H[sub 2]O added to the feed showed little evidence of the occurrence of steam reforming and water-gas shift reactions. Pt and Ir sustained stable reaction but a lower selectivities and conversion than Rh or Ni. Pd, Pd-La[sub 2]O[sub 3], and Co deactivated rapidly, while Re, Ru, and Fe would not sustain autothermal reaction. Ni and Re deactivated by volatilization and metal loss, while Pd-La[sub 2]O[sub 3] deactivated by carbon formation, and Pd deactivated by a combination of metal loss and carbon formation. Pd produced up to 14% selectivity to C[sub 2]H[sub 4] and C[sub 2]H[sub 4] and C[sub 2]H[sub 6], Pd-La[sub 2]O[sub 3] up to 5%, Pt [approximately] 1%, and other metals less than 0.2%. 10 refs., 5 figs., 1 tab.

  14. INFLUENCE OF OXIDE GROWTH AND METAL CREEP ON STRAIN DEVELOPMENT IN THE STEAM-SIDE OXIDE IN BOILER TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

    2010-01-01T23:59:59.000Z

    This effort is concerned with developing a quantitative description of the exfoliation behavior of oxide scales grown inside steam tubes in a pressure boiler. Consideration of the development of stress/strain in growing oxides has included expansion mismatch-induced strains during thermal cycling as well as inelastic mechanical effects from oxide/alloy creep phenomena and volume change from oxide growth. The magnitude of the parameters used has been closely matched to actual boiler operating practice. The creep model used was validated against published data. Representation of oxide growth-induced strain was found to be a difficult challenge because the processes involved are not fully understood. In addition to the traditional uniaxial (radial) and dilatational models, lateral growth models are discussed in the context of experimentally-derived criteria, such as the level of elastic strains involved in oxide exfoliation. It was found that strain variation in the oxide cannot be neglected.

  15. Variation of the shape and morphological properties of silica and metal oxide powders by electro homogeneous precipitation

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Sisson, W.G.; Brunson, R.R.

    1997-02-18T23:59:59.000Z

    The present invention provides a method for preparing irreversible linear aggregates (fibrils) of metal oxide powders by utilizing static or pulsed DC electrical fields across a relatively non-conducting liquid solvent in which organometal compounds or silicon alkoxides have been dissolved. The electric field is applied to the relatively non-conducting solution throughout the particle formation and growth process promoting the formation of either linear aggregates (fibrils) or spherical shaped particles as desired. Thus the present invention provides a physical method for altering the size, shape and porosity of precursor hydrous metal oxide or hydrous silicon oxide powders for the development of advanced ceramics with improved strength and insulating capacity. 3 figs.

  16. Measuring the Kernel of Time-Dependent Density Functional Theory with X-Ray Absorption Spectroscopy of 3d Transition Metals

    E-Print Network [OSTI]

    Gross, E.K.U.

    of 3d Transition Metals A. Scherz,* E. K. U. Gross, H. Appel, C. Sorg, K. Baberschke, and H. Wende, and a new approximation suggested. But the true value of DFT is in constructing one XC approxi- mation

  17. A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars

    E-Print Network [OSTI]

    Tristan Guillot; Nuno C. Santos; Frédéric Pont; Nicolas Iro; Claudio Melo; Ignasi Ribas

    2006-05-31T23:59:59.000Z

    Nine extrasolar planets with masses between 110 and 430M are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. Aims: We seek to better understand the composition of transiting extrasolar planets by considering them as an ensemble, and by comparing the obtained planetary properties to that of the parent stars. Methods: We use evolution models and constraints on the stellar ages to derive the mass of heavy elements present in the planets. Possible additional energy sources like tidal dissipation due to an inclined orbit or to downward kinetic energy transport are considered. Results: We show that the nine transiting planets discovered so far belong to a quite homogeneous ensemble that is characterized by a mass of heavy elements that is a relatively steep function of the stellar metallicity, from less than 20 earth masses of heavy elements around solar composition stars, to up to 100M for three times the solar metallicity (the precise values being model-dependant). The correlation is still to be ascertained however. Statistical tests imply a worst-case 1/3 probability of a false positive. Conclusions: Together with the observed lack of giant planets in close orbits around metal-poor stars, these results appear to imply that heavy elements play a key role in the formation of close-in giant planets. The large masses of heavy elements inferred for planets orbiting metal rich stars was not anticipated by planet formation models and shows the need for alternative theories including migration and subsequent collection of planetesimals.

  18. PHYSICAL REVIEW B 83, 115329 (2011) Diffusion and interface growth in hafnium oxide and silicate ultrathin films on Si(001)

    E-Print Network [OSTI]

    Garfunkel, Eric

    PHYSICAL REVIEW B 83, 115329 (2011) Diffusion and interface growth in hafnium oxide and silicate­oxide­semiconductor (CMOS) technology necessary.1,2 Transition metal (Hf, Zr, La) oxides, silicates, and ternary Hf to be desirable to have at least one monolayer of SiO2 at the dielectric/Si interface. The Hf oxide (silicate

  19. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    SciTech Connect (OSTI)

    Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Lupina, L.; Lupina, G.; Schubert, M. A.; Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Haeberlen, M.; Storck, P.; Thapa, S. B. [Siltronic, Hanns-Seidel-Platz 4, 81737 München (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus-Senftenberg, Konrad-Zuse-Strasse 1, 03046 Cottbus (Germany)

    2014-08-28T23:59:59.000Z

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. As revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.

  20. EPR identification of intrinsic and transition metal-related defects in ZnGeP2 and other IIIVV2 compounds

    E-Print Network [OSTI]

    Nabben, Reinhard

    EPR identification of intrinsic and transition metal-related defects in ZnGeP2 and other II­IV­V2 studies of native defects and their transition energies, EPR investigations of isolated TMs on the two be obtained in a unique way by magnetic resonance methods, especially by electron paramagnetic resonance (EPR

  1. Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation

    E-Print Network [OSTI]

    Trice, Rodney W.

    , and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K oxidation resistance while maintaining low thermal conductivity and good phase stability. Padture) is proposed. The objective of this work is to quantify the effect of YAG on thermal resistance, long

  2. E-Print Network 3.0 - alkali-transition metal borohydrides Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alkaline earth metal) ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage,...

  3. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    Absorption Metal (Zr) Metal (Mo) Carbide Nitride Oxidef /? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide Table? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide CHAPTER

  4. Ultra-stable Molecule-Surface Architectures at Metal Oxides: Structure, Bonding, and Electron-transfer Processes

    SciTech Connect (OSTI)

    Hamers, Robert John

    2013-12-07T23:59:59.000Z

    Research funded by this project focused on the development of improved strategies for functionalization of metal oxides to enhance charge?transfer processes relevant to solar energy conversion. Initial studies included Fe2O3, WO3, TiO2, SnO2, and ZnO as model oxide systems; these systems were chosen due to differences in metal oxidation state and chemical bonding types in these oxides. Later studies focused largely on SnO2 and ZnO, as these materials show particularly promising surface chemistry, have high electron mobility, and can be readily grown in both spherical nanoparticles and as elongated nanorods. New molecules were synthesized that allowed the direct chemical assembly of novel nanoparticle ?dyadic? structures in which two different oxide materials are chemically joined, leading to an interface that enhances the separation of of charge upon illumination. We demonstrated that such junctions enhance photocatalytic efficiency using model organic compounds. A separate effort focused on novel approaches to linking dye molecules to SnO2 and ZnO as a way to enhance solar conversion efficiency. A novel type of surface binding through

  5. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  6. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    capacitors (also called supercapacitors). The limitations oflow power density while supercapacitors have low energycompared to those for supercapacitors. In this chapter, the

  7. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    insertion and is also electrochromic. These studies led toelectrode and as an electrochromic window. Lithium insertionone of the best inorganic electrochromic materials. [13] The

  8. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  9. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    in Figure 3.1. Hydrothermal carbonization occurs throughassisted hydrothermal reaction promotes the carbonization ofhydrothermal process followed by thermal annealing for carbonization

  10. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

  11. The design of new ligands and transition metal compounds for the oxidation of organic compounds

    E-Print Network [OSTI]

    Grill, Joseph Michael

    2009-06-02T23:59:59.000Z

    dehydrated by heating under dynamic vacuum at 150?C for 3 hours. The anhydrous materials were stored in a dry box under nitrogen. (R)-binaphthol was obtained from ABCR Chemical and 3,5-di-tert-butyl salicylaldehyde was obtained from Advanced Asymmetrics.... All other reagents were used as received. All NMR chemical shifts are given in ppm and were recorded on a Mercury-300BB spectrometer ( 1 H, 299.91 MHz; 13 C { 1 H} 75.41 MHz) using the solvent as an internal standard (CDCl 3 (or residual CHCl 3...

  12. Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01T23:59:59.000Z

    finding a promising supercapacitor material, (2) developingbeen applied to supercapacitor materials, even though it has

  14. Accurate Band-Structure Calculations for the 3d Transition Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTestAccounting - What happened

  15. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of EnergyThermodynamic Evaluation ofand

  16. Epitaxial Growth and Properties of Doped Transition Metal and Complex Oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr onlaserFilms. |

  17. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

    2012-01-01T23:59:59.000Z

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  18. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01T23:59:59.000Z

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  19. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01T23:59:59.000Z

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  20. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01T23:59:59.000Z

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  1. Femtosecond soft x-ray spectroscopy of solvated transition metal complexes: Deciphering the interplay of electronic and structural dynamics

    SciTech Connect (OSTI)

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-03-09T23:59:59.000Z

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  2. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18T23:59:59.000Z

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  3. The effects of phosphorous donor ligand substitution on the reactivity of anionic group 6 transition metal carbonyl hydrides

    E-Print Network [OSTI]

    Lusk, Richard Jay

    1986-01-01T23:59:59.000Z

    and safe manner . The first of these procedures entails the reaction of Follows style and format of The Journal of The American Chemical Society M(CO) (amine) (amine = piper dine or trimethylamine) with PPNBH&, in 1 the solvent THF (tetnahydr ofuran... of the product HM(CO ) and the reactant M(CO) (pi per dine) to produce (u-H)M (CO) is not a significant side reaction. This byproduct, which is thermodynamically very stable, represents the major decomposition compound of the anionic group 6 transition metal...

  4. Process for making whiskers, fibers and flakes of transition metal compounds

    DOE Patents [OSTI]

    Bamberger, C.E.

    1992-06-02T23:59:59.000Z

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH[sub 3]. The products exhibit the same morphology as the starting material.

  5. Process for making whiskers, fibers and flakes of transition metal compounds

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN)

    1992-01-01T23:59:59.000Z

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH.sub.3. The products exhibit the same morphology as the starting material.

  6. Retrograde melting in transition metal-silicon systems : thermodynamic modeling, experimental verification, and potential application

    E-Print Network [OSTI]

    Fenning, David P

    2010-01-01T23:59:59.000Z

    A theoretical framework is presented in this work for retrograde melting in silicon driven by the retrograde solubility of low-concentration metallic solutes at temperatures above the binary eutectic. High enthalpy of ...

  7. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  8. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01T23:59:59.000Z

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  9. Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts

    SciTech Connect (OSTI)

    Islam, Raisul, E-mail: raisul@stanford.edu; Shine, Gautam; Saraswat, Krishna C. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-11-03T23:59:59.000Z

    We report the experimental demonstration of Fermi level depinning using nickel oxide (NiO) as the insulator material in metal-insulator-semiconductor (M-I-S) contacts. Using this contact, we show less than 0.1?eV barrier height for holes in platinum/NiO/silicon (Pt/NiO/p-Si) contact. Overall, the pinning factor was improved from 0.08 (metal/Si) to 0.26 (metal/NiO/Si). The experimental results show good agreement with that obtained from theoretical calculation. NiO offers high conduction band offset and low valence band offset with Si. By reducing Schottky barrier height, this contact can be used as a carrier selective contact allowing hole transport but blocking electron transport, which is important for high efficiency in photonic applications such as photovoltaics and optical detectors.

  10. Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes

    SciTech Connect (OSTI)

    Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li; Hwu, Jenn-Gwo, E-mail: jghwu@ntu.edu.tw [Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-03-28T23:59:59.000Z

    A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO{sub 2} thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high and steady photosensitivity can also be approached by introducing HfO{sub 2} into dielectric stacks.

  11. Electronic structure of perovskite oxide surfaces at elevated temperatures and its correlation with oxygen reduction reactivity

    E-Print Network [OSTI]

    Chen, Yan, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    The objective is to understand the origin of the local oxygen reduction reaction (ORR) activity on the basis of the local electronic structure at the surface of transition metal oxides at elevated temperatures and in oxygen ...

  12. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31T23:59:59.000Z

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  13. Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications

    E-Print Network [OSTI]

    Chen, Po-Chun

    2014-01-13T23:59:59.000Z

    applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array...

  14. Operation of mixed conducting metal oxide membrane systems under transient conditions

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA)

    2008-12-23T23:59:59.000Z

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

  15. E-Print Network 3.0 - alkali metal oxides Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , sodium carbide, turpentine, finely divided metals Calcium water, carbon dioxide, carbon tetrachloride... , and chlorinated hydrocarbons Carbon, activated calcium...

  16. LARGE SCALE SIMULATIONS OF THE MECHANCIAL PROPERTIES OF LAYERED TRANSITION METAL TERNARY COMPOUNDS FOR FOSSIL ENERGY POWER SYSTEM APPLICATIONS

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31T23:59:59.000Z

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  17. Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors

    E-Print Network [OSTI]

    Gougousi, Theodosia

    and are driven by the energy provided by a heated substrate. Both these vacuum-based techniques require in the precursor adsorption, oxidation and by-product desorption. [5] Use of solvation energy may provide a viable. Pressurized CO2 was delivered using an ISCO 260D syringe pump through a high- pressure manifold. Resistive

  18. Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane

    SciTech Connect (OSTI)

    Wu, Zili [ORNL; Schwartz, Viviane [ORNL; Li, Meijun [ORNL; Rondinone, Adam Justin [ORNL; Overbury, Steven {Steve} H [ORNL

    2012-01-01T23:59:59.000Z

    The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

  19. Gettering of transition metals by cavities in silicon formed by helium ion implantation

    SciTech Connect (OSTI)

    Petersen, G.A.; Myers, S.M.; Follstaedt, D.M.

    1996-09-01T23:59:59.000Z

    We have recently completed studies which quantitatively characterize the ability of nanometer-size cavities formed by He ion implantation to getter detrimental metal impurities in Si. Cavity microstructures formed in Si by ion implantation of He and subsequent annealing have been found to capture metal impurities by two mechanisms: (1) chemisorption on internal walls at low concentrations and (2) silicide precipitation at concentrations exceeding the solid solubility. Experiments utilizing ion-beam analysis, cross-sectional transmission electron microscopy, and secondary ion mass spectrometry were performed to quantitatively characterize the gettering effects and to determine the free energies associated with the chemisorbed metal atoms as a function of temperature. Mathematical models utilizing these results have been developed to predict gettering behavior.

  20. CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: A combined in situ PM-IRAS and reaction kinetics study

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation Polarization modulation Infrared reflection absorption spectroscopy Reaction kinetics a b s t rCO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures3 Torr) and near atmospheric (1­102 Torr) pressures in a batch reactor under steady-state conditions

  1. Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers

    E-Print Network [OSTI]

    Das, Suman

    · Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

  2. Copolymerization Studies of Vinyl Chloride and Vinyl Acetate with Ethylene Using a Transition-Metal Catalyst

    E-Print Network [OSTI]

    Goddard III, William A.

    monomers with polar functionality (such as vinyl acetate (VA), vinyl chloride (VC), and acrylates).1 OverCopolymerization Studies of Vinyl Chloride and Vinyl Acetate with Ethylene Using a Transition-Flory constants were identical (0.81) for the ethylene homopolymerizations and the ethylene/vinyl chloride

  3. Axially Engineered Metal-Insulator Phase Transition by Graded Doping VO2 Nanowires

    E-Print Network [OSTI]

    Wu, Junqiao

    transition yields an extremely high temperature coefficient of resistivity 10%/K, simultaneously with a very low resistivity down to 0.001 ·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, 900 m-1

  4. Computational Studies of the Electronic Structures and Mechanisms of Late Transition Metal Systems

    E-Print Network [OSTI]

    Pitts, Amanda

    2013-08-27T23:59:59.000Z

    that were studied. The first system focuses on the formation of a carbon-bromine bond from the reaction of Ni(Ar)(Br)(pic) (Ar = 2-phenylpyridine, pic = 2-picoloine) with Br2. Unlike the typical behavior of heavier group 10 metals that have a wider range...

  5. Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-T{sub c} superconductivity

    SciTech Connect (OSTI)

    Maksimov, E. G., E-mail: maksimov@lpi.ru; Ebert, S. V. [Lebedev Physics Institute (Russian Federation); Magnitskaya, M. V.; Karakozov, A. E. [Vereshchagin Institute for High Pressure Physics (Russian Federation)

    2007-10-15T23:59:59.000Z

    We report ab initio linear-response calculations of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to agree well with the experiment. Factors accounting for the relatively low critical temperatures T{sub c} in transition metal compounds with light elements are considered and the possible ways of increasing T{sub c} are discussed.

  6. J. Am. Chem. SOC.1993, 115, 2357-2362 2357 Metal-Metal Bonding in Engel-Brewer Intermetallics

    E-Print Network [OSTI]

    Carter, Emily A.

    . Introduction Materials that exhibit high thermal stability and resistance to oxidation and corrosion of transition metals might possibly serve as both highly stable catalysts and as thermally stable, oxidation-resistant to be extremely thermally stable in the bulk form. We find the atomization energy of the ZrPt, cluster at its bulk

  7. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA)

    2007-12-25T23:59:59.000Z

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  8. Perfect plasticity of metals under simple shear as the result of percolation transition on grain boundaries

    E-Print Network [OSTI]

    Yan Beygelzimer; Natalia Lavrinenko

    2012-06-22T23:59:59.000Z

    A mechanism of perfect plasticity under low homological temperatures has been suggested. According to this mechanism, the phenomenon under study is of critical nature. It connects with percolation transition in the net of grain boundaries and with nonlocal interaction of fragments uniquely under simple shear mode. The mechanism is justified by general reasoning, mainly of geometrical character, and also by employing computational modeling and well-known experimental results.

  9. Electronic Structure of Transition Metal Clusters and Actinide Complexes and Their Reactivity

    SciTech Connect (OSTI)

    Balasubramanian, K

    2008-10-06T23:59:59.000Z

    Our research in this area since October 2007 has resulted in seven completed publications and more papers of the completed work are in progress. Our work during this period principally focused on actinide complexes with secondary emphasis on spectroscopic properties and electronic structure of metal complexes. As the publications are available online with all of the details of the results, tables and figures, we are providing here only a brief summary of major highlights, in each of the categories.

  10. X-ray absorption spectroscopy study of the local structure of heavy metal ions incorporated into electrodeposited nickel oxide films

    SciTech Connect (OSTI)

    Balasubramanian, M.; Melendres, C.A. [Argonne National Lab., IL (United States). Chemical Technology Div.] [Argonne National Lab., IL (United States). Chemical Technology Div.; Mansour, A.N. [Naval Surface Warfare Center, Bethesda, MD (United States). Carderock Div.] [Naval Surface Warfare Center, Bethesda, MD (United States). Carderock Div.

    1999-02-01T23:59:59.000Z

    The incorporation of heavy metal ions into simulated corrosion films has been investigated using spectroscopic and electrochemical techniques. The films were formed by electrodeposition of the appropriate oxide (hydroxide) onto a graphite substrate. Synchrotron X-ray absorption spectroscopy (XAS) was used to determine the structure and composition of the host oxide film, as well as the local structure of the impurity ion. Results on the incorporation of Ce and Sr into surface films of Ni(OH){sub 2} and NiOOH are reported. Cathodically deposited Ni(OH){sub 2} was found to be mainly in the alpha form while anodically prepared NiOOH showed the presence of Ni{sup +2} and Ni{sup +4}. Cerium incorporated into Ni(OH){sub 2} exists as mixed Ce{sup +3} and Ce{sup +4} phases; a Ce{sup +4} species was found when Ce was codeposited with NiOOH. The structure of the Ce{sup +4} phase in anodic films appears similar to a Ce(OH){sub 4} standard. However, XAS, X-ray diffraction, and laser Raman measurements indicate that the latter chemical formulation is probably incorrect and that the material is really a disordered form of hydrous cerium oxide. The local structure of this material is similar to CeO{sub 2} but has much higher structural disorder. The significance of this finding on the question of the structure of Ce-based corrosion inhibitors in aluminum oxide films is pointed out. Moreover, the authors found it possible to form pure Ce oxide (hydroxide) films on graphite by both cathodic and anodic electrodeposition; their structures have also been elucidated. Strontium incorporated into nickel oxide films consists of Sr{sup +2} which is coordinated to oxygen atoms and is likely to exist as small domains of coprecipitated material.

  11. Experimental Study of Electron Transport through Nanometer-Scale Metal-Oxide Junctions

    E-Print Network [OSTI]

    -annealing. The resistive bistability effect has been observed for all these materials, with particularly high switching, crested barrier, rapid thermal annealing, endurance, resistive bistability, reproducibility. #12;v List properties of Nb/Al/Nb junctions fabricated using thermal oxidation or rf-plasma oxidation at various

  12. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    SciTech Connect (OSTI)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

    2010-02-15T23:59:59.000Z

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  13. Ferromagnetic-nonmagnetic and metal-insulator phase transitions at the interfaces of KTaO{sub 3} and PbTiO{sub 3}

    SciTech Connect (OSTI)

    Yang, Yi; Chen, Jin-Feng; Hu, Lei [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lin, Chen-Sheng; Cheng, Wen-Dan, E-mail: cwd@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-10-21T23:59:59.000Z

    We studied the electronic and magnetic properties of hole doped KTaO{sub 3}/PbTiO{sub 3} interface using density functional theory methods. Ferromagnetic-nonmagnetic phase transition and metal-insulator phase transition occur simultaneously at the interface with ferroelectric polarization reversal. Furthermore, these two transitions are coupled with each other because hole doping with large concentration of holes gives rise to ferromagnetism. The interfacial magnetization, which is proportional to hole concentration at the interface, can be tuned by ferroelectric polarization, leading to strong intrinsic magnetoelectric effect at the interface of originally nonmagnetic KTaO{sub 3} and PbTiO{sub 3}.

  14. Cu- and Ag-modified cerium oxide catalysts for methane oxidation

    SciTech Connect (OSTI)

    Kundakovic, L.; Flytzani-Stephanopoulis, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering] [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering

    1998-10-01T23:59:59.000Z

    The catalytic activity of nanocrystalline doped ceria and Cu- and Ag-modified ceria for the complete oxidation of methane was studied in this work. The catalyst structure was studied by X-ray diffraction (XRD) and related to the availability of low-temperature oxygen species. Selected samples were also analyzed by STEM/EDX, HRTEM, and XPS. Temperature-programmed reduction (TPR) by H{sub 2} and CH{sub 4}, as well as oxygen chemisorption, measurements were used to characterize the different oxygen species present on the catalyst. La and Zr were used as dopants to modify the crystal size and reduction properties of ceria. Enhanced activity for the complete oxidation of methane is discussed in terms of ceria reducibility, crystal size, and formation of oxygen defects at the surface (extrinsic oxygen vacancies). Addition of transition metal oxides (CuO) or transition metals (Ag) improves the low-temperature oxidation activity of cerium oxide. The interaction of ceria with Ag and CuO is a strong function of the crystal size of ceria. In the presence of the transition metal or metal oxide, a small crystal size of ceria favors the formation of highly reducible oxygen species and enhances the methane oxidation activity.

  15. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    SciTech Connect (OSTI)

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

    2014-03-07T23:59:59.000Z

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460?K for Zn{sub 0.97}Al{sub 0.03}O, 463?K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503?K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  16. The Self-Ignition Temperatures of Bitumen Mixtures Containing Transition Metal Nitrates

    SciTech Connect (OSTI)

    Okada, Ken; Nomura, Masao; Fujii, Yasuhiko [Tokyo Institute of Technology (Japan)

    2000-01-15T23:59:59.000Z

    Information is provided on the self-ignition temperature (SIT) of blown bitumen asphalt mixed with sodium nitrate and some chemicals that are added in the bituminization process to adjust pH and to immobilize the radioactive isotopes of Cs, Sr, and I. In each ignition temperature test, the prepared bitumen sample was heated at a constant rate of temperature increase, and the ignition point was measured. Among the tested chemicals added to the bitumen, Ni(NO{sub 3}){sub 2} shows a relatively large SIT decrease, and furthermore, the mixture of Ni(NO{sub 3}){sub 2} and AgNO{sub 3} has been shown to greatly lower the SIT of blown bitumen. It is suggested that, in general, segregation of these nitrates should be avoided in bituminization, and care should be taken in handling Ag in a Purex reprocessing plant from the viewpoint of waste treatment. Furthermore, the oxidation effects of Fe(NO{sub 3}){sub 3} were tested by measuring torque of the bitumen sample. It was confirmed that the addition of Fe(NO{sub 3}){sub 3} to bitumen rapidly oxidizes the bitumen and increases the viscosity of the bitumen mixture.

  17. Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide

    SciTech Connect (OSTI)

    Rettie, Alexander J.; Lee, Heung Chan; Marshall, Luke G.; Lin, Jung-Fu; Capen, Cigdem; Lindemuth, Jeffrey; McCloy, John S.; Zhou, Jianshi; Bard, Allen J.; Mullins, C. Buddie

    2013-07-08T23:59:59.000Z

    ABSTRACT: Bismuth vanadate (BiVO4) is a promising photoelectrode material for the oxidation of water, but fundamental studies of this material are lacking. To address this, we report electrical and photoelectrochemical (PEC) properties of BiVO4 single crystals (undoped, 0.6% Mo and 0.3% W:BiVO4) grown using the floating zone technique. We demonstrate that a small polaron hopping conduction mechanism dominates from 250-400 K, transitioning to a variable range hopping mechanism at lower temperatures. An anisotropy ratio of ~3 was observed along the c-axis, attributed to the layered structure of BiVO4. Measurements of the AC field Hall effect yielded an electron mobility of ~0.2 cm2 V-1 s-1 for Mo and W:BiVO4 at 300 K. By application of the Gärtner model, a hole diffusion length of ~140 nm was estimated. As a result of low carrier mobility, attempts to measure the DC Hall effect were unsuccessful. Analyses of the Raman spectra showed that Mo and W substituted for V and acted as donor impurities. Mott-Schottky analysis of electrodes with the (001) face exposed yielded a flat band potential of 0.03-0.08 V vs. RHE, while incident photon conversion efficiency tests showed that the dark coloration of the doped single crystals did not result in additional photocurrent. Comparison of these intrinsic properties to other metal oxides for PEC applications gives valuable insight into this material as a photoanode.

  18. Life Prediction of Coated and Uncoated Metallic Interconnect for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-04-15T23:59:59.000Z

    Oxidation reaction of the ferritic stainless interconnects in a typical SOFC working environment is unavoidable and the thickness of the oxide scale will continue to grow with operating time, even with protective coatings. The interfacial strength of the various interfaces for the uncoated and coated ferritic interconnects is crucial to long term performance of SOFCs. In this paper, we employ an integrated experimental/modeling approach to quantify the interfacial strength and to further predict the life of Crofer 22 APU as SOFC interconnect under isothermal cooling condition. The life of Crofer 22 APU was predicted by comparing the predicted interfacial strength, interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the growth kinetics of oxide scale with and without spinel coating. It was found that the interfacial strength between the oxide scale and Crofer 22 APU substrate decreases with the growth of the oxide scale. The interfacial strength of the oxide scale and spinel coating is much higher than that of the oxide scale and Crofer 22 APU substrate. With the spinel coating, the predicted life of the Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.

  19. Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC

    SciTech Connect (OSTI)

    Steven A. Attanasio; David S. Morton

    2003-06-16T23:59:59.000Z

    Alloys 600 and X-750 have been shown to exhibit a maximum in primary water stress corrosion cracking (PWSCC) susceptibility, when testing is conducted over a range of aqueous hydrogen (H{sub 2}) levels. Contact electric resistance (CER) and corrosion coupon testing using nickel specimens has shown that the maximum in SCC susceptibility occurs in proximity to the nickel-nickel oxide (Ni/NiO) phase transition. The measured location of the Ni/NiO transition has been shown to vary with temperature, from 25 scc/kg H{sub 2} at 360 C to 4 scc/kg H{sub 2} at 288 C. New CER measurements show that the Ni/NiO transition is located at 2 scc/kg H{sub 2} at 260 C. An updated correlation of the phase transition is provided. The present work also reports CER testing conducted using an Alloy 600 specimen at 316 C. A large change in resistance occurred between 5 and 10 scc/kg H{sub 2}, similar to the results obtained at 316 C using a nickel specimen. This result adds confidence in applying the Ni/NiO transition measurements to Ni-Cr-Fe alloys. The understanding of the importance of the Ni/NiO transition to PWSCC has been used previously to quantify H{sub 2} effects on SCC growth rate (SCCGR). Specifically, the difference in the electrochemical potential (EcP) of the specimen or component from the Ni/NiO transition (i.e., EcP{sub Ni/NiO}-EcP) has been used as a correlating parameter. In the present work, these SCCGR-H{sub 2} correlations, which were based on SCCGR data obtained at relatively high test temperatures (338 and 360 C), are evaluated via SCCGR tests at a reduced temperature (316 C). The 316 C data are in good agreement with the predictions, implying that the SCCGR-H{sub 2} correlations extrapolate well to reduced temperatures. The SCCGR-H{sub 2} correlations have been revised to reflect the updated Ni/NiO phase transition correlation. New data are presented for EN82H weld metal (also known as Alloy 82) at 338 C. Similar to other nickel alloys, SCC of EN82H is a function of the aqueous H{sub 2} level, with the SCCGR exhibiting a maximum near the Ni/NiO transition. For example, the SCCGR at 8 scc/kg H{sub 2} is {approx} 81 x higher than at 60 scc/kg H{sub 2}. The 8 scc/kg H{sub 2} condition is near the Ni/NiO transition (located at {approx} 14 scc/kg H{sub 2} at 338 C), while 60 scc/kg H{sub 2} is well into the nickel metal regime. A hydrogen-SCCGR correlation is provided for EN82H. The data and understanding obtained from the present work show that SCC can be mitigated by adjusting the aqueous H{sub 2} level. For example, SCCGR is typically minimized at relatively high aqueous H{sub 2} levels, that are well into the nickel metal regime (i.e., far from the Ni/NiO transition).

  20. J. Phys. C: Solid State Phys., Vol. 8, 1975.Printed in Great Britain. @ 1975 The metal-insulator transition in lanthanum strontium vanadate

    E-Print Network [OSTI]

    Chen, Reuven

    -insulator transition in lanthanum strontium vanadate M Sayer, R Chent, R Fletcher and A Mansinght Department of Physics cluster formation is of importance. 1. Introduction Lanthanum strontium vanadate La,-xSr,V03 (0 I x .4) is a perovskite whose electrical properties change from those of a semiconductor to a metal as the strontium