National Library of Energy BETA

Sample records for transit fuel types

  1. Alternative fuel transit buses

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  2. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second...

    Energy Savers [EERE]

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and ...

  3. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third...

    Energy Savers [EERE]

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and ...

  4. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results This ...

  5. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and ...

  6. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and ... Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

  7. Alternative Fuel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    35th St. Craig Ave. Alt Blvd. Colucci Pkwy. Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Transit Buses Alternative Fuel Alternative Fuel Final Results from the

  8. Alameda-Contra Costa Transit District Fuel Cell Transit Buses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

  9. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Appendices | Department of Energy 2.pdf (1.02 MB) More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report - Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

  10. Alternative Fuels Data Center: Mass Transit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mass Transit to someone by E-mail Share Alternative Fuels Data Center: Mass Transit on Facebook Tweet about Alternative Fuels Data Center: Mass Transit on Twitter Bookmark Alternative Fuels Data Center: Mass Transit on Google Bookmark Alternative Fuels Data Center: Mass Transit on Delicious Rank Alternative Fuels Data Center: Mass Transit on Digg Find More places to share Alternative Fuels Data Center: Mass Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment

  11. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Appendices | Department of Energy 1.pdf (875.56 KB) More Documents & Publications SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

  12. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Appendices | Department of Energy Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. 45670-1.pdf (836.62 KB) More Documents & Publications SunLine Transit Agency Fuel Cell Transit

  13. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transit Bus: Fifth Evaluation Report SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report and Appendices SunLine Transit Agency Fuel Cell Transit Bus: ...

  14. Fuel Cell Transit Bus Coordination and Evaluation Plan California...

    Energy Savers [EERE]

    Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit ...

  15. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Appendices | Department of Energy Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. 45670-2.pdf (1.25 MB) More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third

  16. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Results | Department of Energy Preliminary Evaluation Results Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results This report provides preliminary results from the evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment, early results and agency experience are also provided. 43847.pdf (1.59 MB) More Documents & Publications

  17. Fuel Cells Technology Transit | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Technology Transit Place: Clearwater, Florida Zip: 33767 Sector: Hydro, Hydrogen Product: Involved in the development and research of energy models on Hydrogen Energy...

  18. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-10-01

    This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.

  19. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-03-01

    This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

  20. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results

    Broader source: Energy.gov [DOE]

    This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

  1. Checklist for transition to new highway fuel(s).

    SciTech Connect (OSTI)

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  2. Alternative Fuels Data Center: State Requirements Boost the Transition to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle Fleets State Requirements Boost the Transition to Alternative Fuel Vehicle Fleets to someone by E-mail Share Alternative Fuels Data Center: State Requirements Boost the Transition to Alternative Fuel Vehicle Fleets on Facebook Tweet about Alternative Fuels Data Center: State Requirements Boost the Transition to Alternative Fuel Vehicle Fleets on Twitter Bookmark Alternative Fuels Data Center: State Requirements Boost the Transition to Alternative Fuel Vehicle Fleets

  3. Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel In 1995, over 95% of the fuel used in transit buses was diesel. In 2006, diesel fuel constituted just under 75% of the fuel used by transit buses while other fuel types such as compressed natural gas (CNG) and liquefied natural gas (LNG) have become much more prevalent. The use of CNG in buses has grown from less than 2% in 1995 to

  4. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report

    Broader source: Energy.gov [DOE]

    This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

  5. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report- Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

  6. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation...

    Energy Savers [EERE]

    Fourth Evaluation Report and Appendices SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and Appendices This report describes operations at SunLine Transit ...

  7. Methanol-fueled transit bus demonstration

    SciTech Connect (OSTI)

    Jackson, M.D.; Fong, D.W.; Powars, C.A.; Smith, K.D.

    1983-01-01

    This paper summarizes the results of a California study to investigate the technical, environmental, and economic viability of using coal-derived fuels for transportation. Since nearly all of California's major urban areas have pollution problems, emphasis is placed on those options which are capable of achieving low exhaust emissions. A broad range of fuels are considered, including solids, gases, and liquids. Methanol, used in heavy-duty engines designed for this fuel, meets California's environmental, economic, and technical requirements for clean coal fuels. The combination has lower exhaust emissions than conventional Diesels -- smoke is eliminated and NO/SUB x/ and CO emissions are reduced. Further, thermal efficiencies comparable or exceeding conventional Diesels are possible. A demonstration of this new technology is now underway. Transit buses will be purchased with the objective of demonstrating alternative methanol engine designs. Economic viability in transit operations will be established.

  8. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  9. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses to Its Fleet Delaware Transit Corporation Adds Propane Buses to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Google Bookmark Alternative Fuels Data Center: Delaware Transit

  10. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation...

    Energy Savers [EERE]

    Fifth Evaluation Report SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report This report describes operations at SunLine Transit Agency for a prototype fuel cell ...

  11. IMPROVED TYPE OF FUEL ELEMENT

    DOE Patents [OSTI]

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  12. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix ...

  13. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document ...

  14. Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transit Evaluation Team | Department of Energy Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team The purpose of this document is to describe the coordination and evaluation of the demonstration of seven full-size (40-foot) fuel cell transit buses. The descriptions in this document include the partners, fuel cell bus demonstration sites, objectives...

  15. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect (OSTI)

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  16. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 44646-2.pdf More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency Fuel Cell Transit ...

  17. Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transportation Projects » Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies In February 2000, the California Air Resources Board approved regulations to reduce emissions from transit buses in California. Because of this ruling, several transit agencies in the state began developing programs to demonstrate zero-emission buses, specifically fuel cell buses. DOE is conducting an evaluation of

  18. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  19. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices | Department of Energy 44646-2.pdf (1.51 MB) More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report -- Appendices SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report -- Appendices

  20. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency | Department of Energy Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation of the ThunderPower hydrogen fuel cell bus demonstrated at SunLine Transit Agency. sunline_report.pdf (1.27 MB) More Documents & Publications SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact

  1. Alameda-Contra Costa Transit District Fuel Cell Transit Buses: Evalluation Results Update

    Broader source: Energy.gov [DOE]

    This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District.

  2. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices | Department of Energy This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. 44646-1.pdf (641.2 KB) More Documents & Publications SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report and Appendices SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results

  3. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-07-01

    This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

  4. Tool and Calculator (Transit, Fuel) | Open Energy Information

    Open Energy Info (EERE)

    Transit & Infrastructure Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.publictransportation.orgtoolsPagesdefault.aspx This webside...

  5. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  6. Thermal Analysis of Ball Type Fuel Element for PBR. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Thermal Analysis of Ball Type Fuel Element for PBR. Citation Details In-Document Search Title: Thermal Analysis of Ball Type Fuel Element for PBR. Authors: ...

  7. Alternative Fuels in Public Transit: A Match Made on the Road

    SciTech Connect (OSTI)

    Not Available

    2002-03-01

    Brochure addressing alternative fuel modes of transportation for public transit, challenges, fuels, infrastructure, cast studies, guidance, and resources.

  8. BC Transit Fuel Cell Bus Project: Evaluation Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-02-01

    This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

  9. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2009-10-01

    This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009

    Broader source: Energy.gov [DOE]

    This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

  11. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

  12. Transitioning from Fuel Cells to Redox Flow Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning From Fuel Cells to Redox Flow Cells T. Zawodzinski and Matt Mench University of Tennessee and ORNL Managed by UT-Battelle for the Department of Energy 2 Acknowledgments $$ DOE-OE EPRI GCEP NSF EPSCOR (TN SCORE) UTK Governor's Chair Fund Partner in Crime Matt Mench Managed by UT-Battelle for the Department of Energy Peeling the Onion' Personalized History of PEM Fuel Cells We May Recapitulate This for RFBs Catalysis Test System * Small Single Cell * Large Single Cell * Stack *

  13. Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Technical Report NREL/TP-540-39446 February 2006 Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Prepared under Task Nos. HS04.2000 and HS06.1002 Technical Report NREL/TP-540-39446 February 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of

  14. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fifth Evaluation Report SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports. 46346-1.pdf (854.72 KB) More

  15. Update from the NREL Alternative Fuel Transit Bus Evaluation Program

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    1999-05-01

    The object of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty urban transit buses operating on alternative fuels and diesel fuel. Final reports from this project were produced in 1996 from data collection and evaluation of 11 transit buses from eight transit sites. With the publication of these final reports, three issues were raised that needed further investigation: (1) the natural gas engines studied were older, open-loop control engines; (2) propane was not included in the original study; and (3) liquefied natural gas (LNG) was found to be in the early stages of deployment in transit applications. In response to these three issues, the project has continued by emissions testing newer natural gas engines and adding two new data collection sites to study the newer natural gas technology and specifically to measure new technology LNG buses.

  16. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2010-01-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  17. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-09-01

    Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

  18. Speeding the transition: Designing a fuel-cell hypercar

    SciTech Connect (OSTI)

    Williams, B.D.; Moore, T.C.; Lovins, A.B.

    1997-12-31

    A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

  19. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type...

    Office of Scientific and Technical Information (OSTI)

    in Plate Type Nuclear Research Reactors Citation Details In-Document Search Title: Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors ...

  20. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2008-12-01

    This report provides results from fuel cell bus evaluations at Alameda-Contra Costa Transit District, SunLine Transit Agency, and Santa Clara Valley Transportation Authority.

  1. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

    Broader source: Energy.gov [DOE]

    This report provides results from fuel cell bus evaluations at Alameda-Contra Costa Transit District, SunLine Transit Agency, and Santa Clara Valley Transportation Authority.

  2. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5670-1 Revised September 2009 Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report Kevin Chandler, Battelle Leslie Eudy, National Renewable Energy Laboratory Link to Appendices Photo source: CTTRANSIT Photo source: CTTRANSIT National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the

  3. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report #2, Alameda-Contra Costa Transit District (AC Transit) and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2010-06-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.

  4. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-01-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

  5. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2009-08-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  6. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-05-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

  7. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report-- Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  8. Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2006-11-01

    This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

  9. Santa Clara Valley Transportation Authority and San Mateo County Transit District-- Fuel Cell Transit Buses: Evaluation Results

    Broader source: Energy.gov [DOE]

    This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

  10. Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2006-03-01

    Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

  11. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W.; Ramsour, Nicholas L.

    1991-01-01

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  12. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation...

  13. Assessment of transition fuel cycle performance with and without a modified-open fuel cycle

    SciTech Connect (OSTI)

    Feng, B.; Kim, T. K.; Taiwo, T. A.

    2012-07-01

    The impacts of a modified-open fuel cycle (MOC) option as a transition step from the current once-through cycle (OTC) to a full-recycle fuel cycle (FRC) were assessed using the nuclear systems analysis code DANESS. The MOC of interest for this study was mono-recycling of plutonium in light water reactors (LWR-MOX). Two fuel cycle scenarios were evaluated with and without the MOC option: a 2-stage scenario with a direct path from the current fleet to the final FRC, and a 3-stage scenario with the MOC option as a transition step. The FRC reactor (fast reactor) was assumed to deploy in 2050 for both scenarios, and the MOC reactor in the 3-stage scenario was assumed to deploy in 2025. The last LWRs (using either UOX or MOX fuels) come online in 2050 and are decommissioned by 2110. Thus, the FRC is achieved after 2110. The reprocessing facilities were assumed to be available 2 years prior to the deployment of the MOC and FRC reactors with maximum reprocessing capacities of 2000 tHM/yr and 500 tHM/t for LWR-UOX and LWR-MOX used nuclear fuels (UNFs), respectively. Under a 1% nuclear energy demand growth assumption, both scenarios were able to sustain a full transition to the FRC without delay. For the 3-stage scenario, the share of LWR-MOX reactors reaches a peak of 15% of installed capacity, which resulted in 10% lower cumulative uranium consumption and SWU requirements compared to the 2-stage scenario during the transition period. The peak UNF storage requirement decreases by 50% in the 3-stage scenario, largely due to the earlier deployment of the reprocessing plants to support the MOC fuel cycle. (authors)

  14. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  15. Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel

    SciTech Connect (OSTI)

    Hanson A. L.; Diamond D.

    2013-10-31

    The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposed LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.

  16. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  17. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  18. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  19. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2011-11-01

    This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

  20. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of inherent safety concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical

  1. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    BC Transit Fuel Cell Bus Project Evaluation Results: Second Report L. Eudy and M. Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-62317 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  2. AC Transit Demos Three Prototype Fuel Cell Buses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Results SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet).

  3. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Large Scale Variable Renewable Integration Now Available EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration ...

  4. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences...

    Energy Savers [EERE]

    Buses in U.S. Transit Fleets: Summary of Experiences and Current Status Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status This report reviews past ...

  5. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    SciTech Connect (OSTI)

    Eudy, L.; Gikakis, C.

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.

  6. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Department of Energy and the Federal Transit Administration | Department of Energy Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration

  7. Transition Analysis of Promising U.S. Future Fuel Cycles Using ORION

    SciTech Connect (OSTI)

    Sunny, Eva E.; Worrall, Andrew; Peterson, Joshua L.; Powers, Jeffrey J.; Gehin, Jess C.; Gregg, Robert

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E&S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E&S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups (EGs) and evaluating their performance according to a set of 22 standardized metrics. Following the E&S study, additional studies are being conducted to assess transitioning from the current US fuel cycle to future fuel cycle options identified by the E&S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle—the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs) —to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle.

  8. Alternative fuel transit buses: Interim results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.J.; Chandler, K.

    1995-05-01

    The transit bus program is designed to provide a comprehensive study of the alternative fuels currently used by the transit bus industry. The study focuses on the reliability, fuel economy, operating costs, and emissions of vehicles running on the various fuels and alternative fuel engines. The alternative fuels being tested are methanol, ethanol, biodiesel and natural gas. The alternative fuel buses in this program use the most common alternative fuel engines from the heavy-duty engine manufacturers. Data are collected in four categories: Bus and route descriptions; Bus operating data; Emissions data; and, Capital costs. The goal is to collect 18 months of data on each test bus. This report summarizes the interim results from the project to date. The report addresses performance and reliability, fuel economy, costs, and emissions of the busses in the program.

  9. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Department of Energy and the Federal Transit Administration; Appendix | Department of Energy Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's

  10. Transitioning from Fuel Cells to Redox Flow Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning from Fuel Cells to Redox Flow Cells Transitioning from Fuel Cells to Redox Flow Cells Presentation by Tom Zawodzinski, University of Tennessee and Oak Ridge National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_zawodzinski.pdf (5.16 MB) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 Energy Storage Systems 2014 Peer Review Presentations - Session 2 Energy

  11. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    2015-12-11

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.

  12. The Application of CYCLUS to Fuel Cycle Transition Analysis ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: GLOBAL 2015, 21st International Conference & Exhibition: "Nuclear Fuel Cycle for a Low-Carbon Future", Paris, France, Sep 20 - Sep 24, ...

  13. DOE Technical Targets for Fuel Cell Transit Buses | Department...

    Broader source: Energy.gov (indexed) [DOE]

    B.D. James et al. (Strategic Analysis, Inc.), "Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2014 Update," final report. ...

  14. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    SciTech Connect (OSTI)

    Eudy, Leslie; Chandler, Kevin; Gikakis, Christina

    2012-11-01

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year.

  15. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  16. Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics

    SciTech Connect (OSTI)

    Welch, C.

    2006-02-01

    Report focuses on understanding how analytical system modeling and data from AFV experiences could improve our understanding of the dynamic forces governing the transition to a hydrogen future.

  17. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  18. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect (OSTI)

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  19. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  20. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect (OSTI)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  1. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or ... Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales ...

  2. Fission rate measurements in fuel plate type assembly reactor cores

    SciTech Connect (OSTI)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs.

  3. Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2010-11-01

    This document describes the fuel cell transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA). This document provides a description of the demonstration sites, funding sources, and data collection activities for fuel cell transit bus evaluations currently planned from FY10 through FY12.

  4. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gigakis, C.

    2010-11-01

    This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

  5. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    SciTech Connect (OSTI)

    Eudy, L.; Chander, K.; Gikakis, C.

    2012-11-01

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year. There are 25 active FCEBs in demonstrations this year at eight locations.

  6. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  7. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; Feng, Bo; Greenberg, Harris R.; Hays, Ross D.; Passerini, Stefano; Todosow, Michael; Worrall, Andrew

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  8. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1996 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  9. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1997 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit Administration Technical Report NREL/TP-5600-56406 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000

  11. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015 Leslie Eudy and Matthew Post National Renewable Energy Laboratory Christina Gikakis Federal Transit Administration Technical Report NREL/TP-5400-64974 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  12. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","52016","115... AM" "Back to Contents","Data 1: Residual Fuel Oil Average" "Sourcekey","EMAEPPRPTANUS...

  13. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  14. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  15. CNG transit fueling station handbook. Final report, October 1993-June 1997

    SciTech Connect (OSTI)

    Adams, R.R.; Pennington, M.D.

    1997-02-01

    This manual has been complied for use by a Transit Authority Engineer or an Engineering Company who is involved in the design of Compressed Natural Gas (CNG) fueling facilities. It is intended to provide a convenient and comprehensive reference document, to supplement but not replace codes and other reference documents. It is also intended to be used as a basis for the design of a broad range of CNG fueling facilities. The scope is limited to straight CNG and hence Liquefied Natural Gas (LNG) or LNG vaporization to CNG has not been addressed. Similarly, this document does not deal with the facility modifications which may be required to park, service, or fuel CNG buses indoors. Additional information on actual gas fueling is available from the Gas Research Institute.

  16. Timing is everything : along the fossil fuel transition pathway.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

    2013-10-01

    People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and

  17. Transportation energy management: fuel conservation in the transit revenue fleet. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    This brief report is a practical guide for maintenance managers and planners responsible for reducing fuel consumption and addressing cost-efficiency issues. The manual discusses a wide array of steps which can be taken to produce modest to significant savings. The report discusses four areas of savings including the development of a fuel-conservation program, maintenance and equipment strategies, operations strategies, and procurement strategies. The manual offers enough suggestions that a transit system of any size should be able to implement some of the ideas and begin to benefit from its savings.

  18. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014 L. Eudy and M. Post National Renewable Energy Laboratory C. Gikakis Federal Transit Administration Technical Report NREL/TP-5400-62683 December 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  19. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    "Resellers'Retailers' Monthly Petroleum Product Sales Report." 16. U.S. No. 2 Diesel Fuel Prices by Sales Type 30 Energy Information Administration Petroleum Marketing Annual...

  20. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  1. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  2. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type...

    Office of Scientific and Technical Information (OSTI)

    fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. ...

  3. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration Now Available

    Broader source: Energy.gov [DOE]

    A new report “Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration” from the Electric Power Research Institute (EPRI) and jointly funded by the Offices of...

  4. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  5. Estimating Source Terms for Diverse Spent Nuclear Fuel Types

    SciTech Connect (OSTI)

    Brett Carlsen; Layne Pincock

    2004-11-01

    The U.S. Department of Energy (DOE) National Spent Nuclear Fuel Program is responsible for developing a defensible methodology for determining the radionuclide inventory for the DOE spent nuclear fuel (SNF) to be dispositioned at the proposed Monitored Geologic Repository at the Yucca Mountain Site. SNF owned by DOE includes diverse fuels from various experimental, research, and production reactors. These fuels currently reside at several DOE sites, universities, and foreign research reactor sites. Safe storage, transportation, and ultimate disposal of these fuels will require radiological source terms as inputs to safety analyses that support design and licensing of the necessary equipment and facilities. This paper summarizes the methodology developed for estimating radionuclide inventories associated with DOE-owned SNF. The results will support development of design and administrative controls to manage radiological risks and may later be used to demonstrate conformance with repository acceptance criteria.

  6. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end

    DOE Patents [OSTI]

    Zafred, Paolo R.; Draper, Robert

    2012-01-17

    A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).

  7. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs) the average fuel economy has noticeably increased in the last few years. These data are weighted by the number of vehicles sold. New Vehicle

  8. Fact #920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station

  9. Development of a 200kW multi-fuel type PAFC power plant

    SciTech Connect (OSTI)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  10. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.4 65.5 51.3 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  11. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    64.6 54.0 See footnotes at end of table. Energy Information Administration Petroleum Marketing Annual 1995 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  12. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    60.4 60.0 45.2 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  13. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  14. Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures

    SciTech Connect (OSTI)

    Gies, S.; Kruska, C.; Berger, C.; Hens, P.; Fuchs, C.; Rosemann, N. W.; Veletas, J.; Stolz, W.; Koch, S. W.; Heimbrodt, W.; Ruiz Perez, A.; Hader, J.; Moloney, J. V.

    2015-11-02

    The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.

  15. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  16. Fuel cell separator plate with bellows-type sealing flanges

    DOE Patents [OSTI]

    Louis, George A. (West Hartford, CT)

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  17. Recovery of Technetium and Iodine from Spent ATW TRISO Type Fuels.

    SciTech Connect (OSTI)

    Schroeder, N. C.; Attrep, Moses

    2001-01-01

    The Accelerator Transmutation of Waste (ATW) program is being developed to determine the feasibility of separating and transmutating the transactinides (Pu-Cm) and long-lived fission product (99Tc and 129I) from spent LWR fuel. Several types of ATW fuels have been suggested to transmutate the Pu-Cm fraction including TRISO type fuels. An ATW TRISO fuel would consist of a Pu-Cm oxide kernel surrounded by several layers of pyrolytic carbon, a layer of SiC, and an outer layer of pyrolytic carbon. Processing of the spent ATW fuel would involve the crush, burn, and leach approach used on normal TRISO fuels. This report describes experiments that determine the potential behavior of the two long-lived fission products, 99Tc and 129I, in this processing. Iodine can be removed and trapped during the burning of the carbon from the fuel. Some technetium may volatilize in the latter stages of the burn but the bulk of it will have to be recovered after dissolution of the oxide residue.

  18. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems-Current Performance and Cost | Department of Energy Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems-Current Performance and Cost DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems-Current Performance and Cost This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable

  19. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect (OSTI)

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  20. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Zhenhai; Wang, Lin; Wang, Luhong; Liu, Haozhe; Zhao, Jinggeng; Li, Chunyu; Sinogeikin, Stanislav; Wu, Wei; Luo, Jianlin; Wang, Nanlin; et al

    2014-11-24

    Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe2As2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less

  1. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

    SciTech Connect (OSTI)

    Yu, Zhenhai; Wang, Lin; Wang, Luhong; Liu, Haozhe; Zhao, Jinggeng; Li, Chunyu; Sinogeikin, Stanislav; Wu, Wei; Luo, Jianlin; Wang, Nanlin; Yang, Ke; Zhao, Yusheng; Mao, Ho -kwang

    2014-11-24

    Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram of the iron-based superconductor AFe2As2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.

  2. Safety of natural gas dual-fueled vehicles: Addendum to safety analysis of natural gas vehicles transiting highway tunnels

    SciTech Connect (OSTI)

    Shaaban, S.H.; Zalak, V.M. )

    1991-01-01

    A safety analysis was performed to assess the relative hazard of vehicles containing both compressed natural gas (CNG) and gasoline, referred to as dual-fueled vehicles, compared to the hazard of a dedicated CNG vehicle. This study expands upon previous work that examined the safety of CNG vehicles transiting highway tunnels. The approach was to examine operational data, test results and to perform thermal analyses to determine if there are any synergistic effects where the total consequences of fuel release might be greater than the sum of the two fuels released separately. This study concluded that a dual-fueled vehicle poses a slightly greater risk than a dedicated CNG vehicle; however, this marginal increase in risk is small and is within the bounds of risk posed by gasoline-powered vehicles. 4 refs.

  3. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The central feature of the Combustion Chemistry project at LLNL is the development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, LLNL's Chemical Sciences Division has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halons and organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur. Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  4. Critical factors in transitioning from fuel cell to cold fusion technology

    SciTech Connect (OSTI)

    Mcgraw, T.F.; Davis, R.R.

    1998-07-01

    The fuel cell industry possesses much of the required manufacturing equipment and knowledge-base (e.g., proton conduction and hydrogen safety) necessary to develop cold fusion systems. Key factors in making a transition to cold fusion technology are discussed. Loading of reaction material can be provided by electrolytic charging and high gas over-pressure. Effective pressures over 10,000 atmospheres are required in cold fusion systems, giving a loading of H/M = 1; and a combination of loading methods is highly desirable. Systems must be designed to provide continuous flow of hydrogen ions ({much{underscore}gt}10{sup 17}/sec for ten kilowatts), with an input power source of 50 watts (est.). Cold fusion experiments have shown that helium is formed during the reaction, and physical changes occur in the reaction material. These revelations impact design and operation of cold fusion systems, as the reaction material must be replaced periodically, while the systems must maintain integrity during operation. Safety and cost are also highly important considerations.

  5. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  6. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2007-09-01

    This report reviews past and present fuel cell bus technology development and implementation in the United States.

  7. Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status

    Broader source: Energy.gov [DOE]

    This report reviews past and present fuel cell bus technology development and implementation in the United States.

  8. DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)

    SciTech Connect (OSTI)

    Battelle

    2000-06-30

    This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

  9. On the Design of High Efficiency Thermoelectric Type I Clathrates through Transition Metal Doping

    SciTech Connect (OSTI)

    Shi, Xun; Yang, Jiong; Yang, Jihui; Salvador, James R.; Bai, Shengqiang; Zhang, Weiqing; Chen, Lidong; Wong-Ng, W.; Wang, Hsin

    2010-01-01

    The lack of high efficiency thermoelectric materials hinders their deployment into wide ranging applications such as power generation from waste heat and solid state heating and cooling, which could lead to significant energy savings. Type I clathrates have recently been identified as prospective thermoelectric materials for power generation purposes due to their very low lattice thermal conductivity values. The maximum thermoelectric figure of merit of almost all type I clathrates is, however, less than 1; and occurs at, or above, 1000 K making them unfavorable especially for intermediate temperature applications. In this report, we demonstrate that transition metal doping introduces charge distortion and lattice defects into these materials which increases the ionized impurity scattering of carriers and point defect scattering of lattice phonons, respectively; leading to an enhanced power factor, reduced lattice thermal conductivity, and therefore improved thermoelectric figure of merit. Most importantly, the band gap of these materials can be tuned between 0.1 eV and 0.5 eV by adjusting the transition metal content, making it possible to design type I clathrates with excellent thermoelectric properties between 500 K and 1000 K.

  10. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  11. High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

    2012-09-01

    Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

  12. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  15. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of int

  16. Dual fuel Russian urban transit buses: Economical reduced emissions. Export trade information

    SciTech Connect (OSTI)

    1998-01-01

    This study, conducted by Caterpillar, was funded by the US Trade and Development Agency. The scope of this project was to examine the financial and environmental aspects of introducing new alternative fuel engines to the buses of Russia`s public transportation system. The report consists of the following: (1) executive summary; (2) background/overview; (3) 3306 design, development, test; (4) electronic governed engines; (5) Moscow bus testing; (6) conclusions; (7) appendices. The appendices include: (1) Caterpillar emissions lab report; (2) dyno tests -- dual fuel data sheets; (3) 3360 horizontal engine lub tilt test; (4) 1000 hour endurance test -- engine operator sheets; (5) 1000 hour endurance test -- 250 hour check; (6) Caterpillar dual fuel electronic engines; (7) product description -- dual fuel electronic governed engines; (8) California Environmental Protection Agency -- certification of caterpillar electronic governed engines; (9) annual payback data.

  17. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 ...

    Broader source: Energy.gov (indexed) [DOE]

    is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and ...

  18. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    Broader source: Energy.gov [DOE]

    This 2008 report from Oak Ridge National Laboratory summarizes the results of analyses funded by the U.S. Department of Energy to evaluate alternative scenarios for deployment of hydrogen fuel cell vehicles and fueling infrastructure in response to the requirements of Section 811 of the Energy Policy Act of 2005 and the recommendations of the National Academy of Sciences Report, The Hydrogen Economy, published in 2004.

  19. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  20. Long-term, low-temperature oxidation of PWR spent fuel: Interim transition report

    SciTech Connect (OSTI)

    Einziger, R.E.; Buchanan, H.C.

    1988-05-01

    Since some of the fuel rods will be breached and eventually most of the cladding will corrode, exposing fuel, one factor influencing the ability of spent fuel to retain radionuclides is its oxidation state in the expected moist air atmosphere. Oxidation of the fuel could split the cladding, exposing additional fuel and changing the leaching characteristics. Thermodynamically, there is no reason why UO{sub 2} should not oxidize completely to UO{sub 3} at repository temperatures. The underlying uncertainty is the rate of oxidation. Extrapolation of higher temperature data indicates that insufficient oxidation to convert all of the fuel to U{sub 3}O{sub 8} will occur during the first 10,000 years. However, lower oxidation states, such as U{sub 4}O{sub 9} and U{sub 3}O{sub 7}, might form. To date, the tests have run between 3200 and 4100 hours out of a planned 16,000-hour duration. Some preliminary conclusions can be drawn: (1) Moisture content of the air has no significant effect on oxidation rate, (2) the data have an uncertainty of 15 to 20%, which must be accounted for in the interpretation of single sample tests, and (3) below 175{degree}C, the oxidation rate is dependent on the particle size in the sample. The smaller particles oxidize more rapidly. 19 refs., 23 figs., 7 tabs.

  1. Transportation and Stationary Power Integration Workshop: "An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seminar 2008 Transportation and Stationary Power Integration Workshop "An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles" Phoenix, AZ 27 October 2008 Britta Gross General Motors - Hydrogen and Electrical Infrastructure Gas-Friendly to Gas-Free Gas-Friendly to Gas-Free Project Driveway: 100 Fuel Cell Vehicles in LA, NYC, WDC Project Driveway: 100 Fuel Cell Vehicles in LA, NYC, WDC 15 High Volume Is Key! High Volume Is Key! Fuel Cell Commercialization Overview

  2. Chaos-order transition in Bianchi type I non-Abelian Born-Infeld cosmology

    SciTech Connect (OSTI)

    Dyadichev, Vladimir V.; Gal'tsov, Dmitri V.; Moniz, Paulo Vargas

    2005-10-15

    We investigate the Bianchi I cosmology with the homogeneous SU(2) Yang-Mills field governed by the non-Abelian Born-Infeld action. A similar system with the standard Einstein-Yang-Mills (EYM) action is known to exhibit chaotic behavior induced by the Yang-Mills field. When the action is replaced by the Born-Infeld-type non-Abelian action (NBI), the chaos-order transition is observed in the high-energy region. This is interpreted as a smothering effect due to (nonperturbative in {alpha}{sup '}) string corrections to the classical EYM action. We give numerical evidence for the chaos-order transition and present an analytical proof of regularity of color oscillations in the limit of strong Born-Infeld nonlinearity. We also perform a general analysis of the Bianchi I NBI cosmology and derive an exact solution in the case of only the U(1) component excited. Our new exact solution generalizes the Rosen solution of the Bianchi I Einstein-Maxwell cosmology to the U(1) Einstein-Born-Infeld theory.

  3. Near-infrared line identification in type Ia supernovae during the transitional phase

    SciTech Connect (OSTI)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R.; Parrent, Jerod T.; Thomas, R. C.; Marion, G. H.

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 μm, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  4. ATR LEU Monolithic Foil-Type Fuel with Integral Cladding Burnable Absorber Neutronics Performance Evaluation

    SciTech Connect (OSTI)

    Gray Chang

    2012-03-01

    The Advanced Test Reactor (ATR), currently operating in the United States, is used for material testing at very high neutron fluxes. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting HEU driven reactor cores to low-enriched uranium (LEU) cores. The burnable absorber - 10B, was added in the inner and outer plates to reduce the initial excess reactivity, and to improve the peak ratio of the inner/outer heat flux. The present work investigates the LEU Monolithic foil-type fuel with 10B Integral Cladding Burnable Absorber (ICBA) design and evaluates the subsequent neutronics operating effects of this proposed fuel designs. The proposed LEU fuel specification in this work is directly related to both the RERTR LEU Development Program and the Advanced Test Reactor (ATR) LEU Conversion Project at Idaho National Laboratory (INL).

  5. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect (OSTI)

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A.

    2009-02-15

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  6. Effects of spent fuel types on offsite consequences of hypothetical accidents

    SciTech Connect (OSTI)

    Courtney, J. C.; Dwight, C. C.; Lehto, M. A.

    2000-02-18

    Argonne National Laboratory (ANL) conducts experimental work on the development of waste forms suitable for several types of spent fuel at its facility on the Idaho National Engineering and Environmental Laboratory (INEEL) located 48 km West of Idaho Falls, ID. The objective of this paper is to compare the offsite radiological consequences of hypothetical accidents involving the various types of spent nuclear fuel handled in nonreactor nuclear facilities. The highest offsite total effective dose equivalents (TEDEs) are estimated at a receptor located about 5 km SSE of ANL facilities. Criticality safety considerations limit the amount of enriched uranium and plutonium that could be at risk in any given scenario. Heat generated by decay of fission products and actinides does not limit the masses of spent fuel within any given operation because the minimum time elapsed since fissions occurred in any form is at least five years. At cooling times of this magnitude, fewer than ten radionuclides account for 99% of the projected TEDE at offsite receptors for any credible accident. Elimination of all but the most important nuclides allows rapid assessments of offsite doses with little loss of accuracy. Since the ARF (airborne release fraction), RF (respirable fraction), LPF (leak path fraction) and atmospheric dilution factor ({chi}/Q) can vary by orders of magnitude, it is not productive to consider nuclides that contribute less than a few percent of the total dose. Therefore, only {sup 134}Cs, {sup 137}Cs-{sup 137m}Ba, and the actinides significantly influence the offsite radiological consequences of severe accidents. Even using highly conservative assumptions in estimating radiological consequences, they remain well below current Department of Energy guidelines for highly unlikely accidents.

  7. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOE Patents [OSTI]

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  8. Technical Breakthrough Points and Opportunities in Transition Scenarios for Hydrogen as Vehicular Fuel

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; James, B.; Perez, J.; Spisak, A.

    2011-12-01

    This technical reports is about investigating a generic case of hydrogen production/delivery/dispensing pathway evolution in a large population city, assuming that hydrogen fuel cell electric vehicles (FCEV) will capture a major share of the vehicle market by the year 2050. The range of questions that are considered includes (i) what is the typical succession of hydrogen pathways that minimizes consumer cost? (ii) what are the major factors that will likely influence this sequence?

  9. Final Scientific Report : Development of Transition Metal/ Chalcogen Based Cathode Catalysts for PEM Fuel Cells

    SciTech Connect (OSTI)

    Campbell, Stephen, A.

    2008-02-29

    The aim of this project was to investigate the potential for using base metal sulfides and selenides as low cost replacements for precious metal catalysts, such as platinum, currently being used in PEM fuel cells. The approach was to deposit thin films of the materials to be evaluated onto inert electrodes and evaluate their activity for the cathode reaction (oxygen reduction) as well as ex-situ structural and compositional characterization. The most active materials identified are CoS2 and the 50:50 solid solution (Co,Ni)S2. However, the OCP of these materials is still considered too low, at 0.83V and 0.89V vs. RHE respectively, for testing in fuel cells. The methods employed here were necessary to compare with the activity of platinum as, when nano-dispersed on carbon supports, the active surface area of these materials is difficult to measure, making comparisons inaccurate. This research adds to the knowledge of potential candidates for platinum replacement in order to reduce the cost of PEM fuel cell technology and promote commercialization. Although the fabrication methods employed here are strictly experimental, methods were also developed to produce nano-dispersed catalysts with similar compositions, structure and activity. Cycling of these catalysts to highly oxidizing potentials resulted in an increase of the open circuit voltage to approach that of platinum, however, it proved difficult to determine why using these dispersed materials. The potential for non-precious, non-metallic, low cost, compound catalysts for PEM fuel cells has been investigated and demonstrated.

  10. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  11. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, James C.; Billings, Amanda Y.; Crum, Jarrod V.; Ryan, Joseph V.; Vienna, John D.

    2010-02-26

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  12. Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression?

    SciTech Connect (OSTI)

    Bissell, Mina J; Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C.; Bissell, Mina J.

    2008-02-13

    Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, which is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bi-directional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

  13. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect (OSTI)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  14. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive

  15. Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors

    SciTech Connect (OSTI)

    Riecke, G.T.; Stotts, R.E.

    1992-02-25

    This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

  16. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect (OSTI)

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  17. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  18. In-pile post-DNB behavior of a nine-rod PWR-type fuel bundle

    SciTech Connect (OSTI)

    Gunnerson, F.S.; MacDonald, P.E.

    1980-01-01

    The results of an in-pile power-cooling-mismatch (PCM) test designed to investigate the behavior of a nine-rod, PWR-type fuel bundle under intermittent and sustained periods of high temperature film boiling operation are presented. Primary emphasis is placed on the DNB and post-DNB events including rod-to-rod interactions, return to nucleate boiling (RNB), and fuel rod failure. A comparison of the DNB behavior of the individual bundle rods with single-rod data obtained from previous PCM tests is also made.

  19. Impact Analysis of a Dipper-Type and Multi Spring-Type Fuel Rod Support Grid Assemblies in PWR

    SciTech Connect (OSTI)

    Song, K.N.; Yoon, K.H.; Park, K.J.; Park, G.J.; Kang, B.S.

    2002-07-01

    A spacer grid is one of the main structural components in a fuel assembly of a Pressurized light Water Reactor (PWR). It supports fuel rods, guides cooling water, and maintains geometry from external impact loads. A simulation is performed for the strength of a spacer grid under impact load. The critical impact load that leads to plastic deformation is identified by a free-fall test. A finite element model is established for the nonlinear simulation of the test. The simulation model is tuned based on the free-fall test. The model considers the aspects of welding and the contacts between components. Nonlinear finite element analysis is carried out by a software system called LS/DYNA3D. The results are discussed from a design viewpoint. (authors)

  20. Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; et al

    2016-01-22

    In this paper, we present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z ≳ 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. Finally, the high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less

  1. Design criteria for an independent spent fuel storage installation (water pool type)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This standard is intended to be used by those involved in the ownership and operation of an Independent Spent Fuel Storage Installation (ISFSI) in specifying the design requirements and by the designer in meeting the minimum design requirements of such installations. This standard continues the set of American National Standards on spent fuel storage design. Similar standards are: Design Objectives for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Stations, N210-1976 (ANS-57.2); Design Objectives for Highly Radioactive Solid Material Handling and Storage Facilities in a Reprocessing Plant, ANSI N305-1975; and Guidelines for Evaluating Site-Related Parameters for an Independent Spent Fuel Storage Installation, ANSI/ANS-2.19-1981.

  2. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    DOE Patents [OSTI]

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  3. Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion

    DOE Patents [OSTI]

    Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.

    2016-04-12

    A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.

  4. HATS-3b: AN INFLATED HOT JUPITER TRANSITING AN F-TYPE STAR

    SciTech Connect (OSTI)

    Bayliss, D.; Zhou, G.; Schmidt, B.; Penev, K.; Bakos, G. .; Hartman, J. D.; Csubry, Z.; Jordn, A.; Suc, V.; Rabus, M.; Brahm, R.; Espinoza, N.; Mancini, L.; Mohler-Fischer, M.; Henning, T.; Nikolov, N.; Csk, B.; Bky, B.; Noyes, R. W.; Buchhave, L.; and others

    2013-11-01

    We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V = 12.4 F dwarf star. HATS-3b has a period of P = 3.5479 days, mass of M{sub p} = 1.07 M {sub J}, and radius of R{sub p} = 1.38 R {sub J}. Given the radius of the planet, the brightness of the host star, and the stellar rotational velocity (vsin i = 9.0 km s{sup 1}), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low-/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces log g and T {sub eff} parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km s{sup 1}.

  5. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    end-user sales not included in the other end-user categories shown, e.g., sales to agricultural customers or utilities. Notes: The 4th quarter of 1993 was a transitional period...

  6. American National Standard: design criteria for an independent spent-fuel-storage installation (water pool type)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This standard provides design criteria for systems and equipment of a facility for the receipt and storage of spent fuel from light water reactors. It contains requirements for the design of major buildings and structures including the shipping cask unloading and spent fuel storage pools, cask decontamination, unloading and loading areas, and the surrounding buildings which contain radwaste treatment, heating, ventilation and air conditioning, and other auxiliary systems. It contains requirements and recommendations for spent fuel storage racks, special equipment and area layout configurations, the pool structure and its integrity, pool water cleanup, ventilation, residual heat removal, radiation monitoring, fuel handling equipment, cask handling equipment, prevention of criticality, radwaste control and monitoring systems, quality assurance requirements, materials accountability, and physical security. Such an installation may be independent of both a nuclear power station and a reprocessing facility or located adjacent to any of these facilities in order to share selected support systems. Support systems shall not include a direct means of transferring fuel assemblies from the nuclear facility to the installation.

  7. Pu-Zr alloy for high-temperature foil-type fuel

    DOE Patents [OSTI]

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  8. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  9. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  10. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  11. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  12. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  13. EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration

    Broader source: Energy.gov [DOE]

    The Energy Department released a report on fossil fleet transition with renewable integration, describing operational and engineering challenges to the fossil generation fleet.

  14. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnash, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-14

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself.

  15. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  16. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  17. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and

  18. California Fuel Cell Partnership: Alternative Fuels Research | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcp_initiatives_call.pdf (133.97 KB) More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program Plan Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator Fuel Cell Buses in U.S. Transit

  19. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    SciTech Connect (OSTI)

    Butlitsky, M. A.; Zelener, B. V.

    2014-07-14

    A two-component plasma model, which we called a shelf Coulomb model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The shelf Coulomb model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ? parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ? and ? = ?e{sup 2}n{sup 1/3} (where ? = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ? and ? parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ?{sub crit}?13(T{sub crit}{sup *}?0.076),?{sub crit}?1.8(v{sub crit}{sup *}?0.17),P{sub crit}{sup *}?0.39, where specific volume v* = 1/?{sup 3} and reduced temperature T{sup *} = ?{sup ?1}.

  20. An engine concept for a viable transition into the future

    SciTech Connect (OSTI)

    Eng, K.D.

    1982-11-01

    Syncrudes and synfuels will be introduced in the future to supplement or replace petroleum based transportation fuels. Initial synfuels may have qualities considerably different from present fuels and may cause operational problems in engines. Instead of further treating the synfuels to meet current fuel specifications, thus increasing the production costs, it is entirely viable to introduce an engine which has the capability of operating on a broad range of fuels. This type of engine, with its ability to run on petroleum based fuels and synfuels, could provide a smooth transition into the future. The Texaco Controlled-Combustion System (TCCS) is a direct-injection, stratified-charge, engine concept. It has demonstrated the ability to run on a broad range of fuels including gasoline, diesel, broadcut fuels, low octane shale derived gasoline and alcohols. Performance of an engine modified to employ the TCCS concept, operating on different fuels, is discussed in this paper.

  1. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    SciTech Connect (OSTI)

    Saragi, Elfrida; Setiadji, Moch

    2013-09-09

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 C at one end and about 40 C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier.

  2. Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions

    SciTech Connect (OSTI)

    Tim Lieuwen

    2007-09-30

    The objective of this project was to improve understanding and modeling of flashback, a significant issue in low emissions combustors containing high levels of hydrogen. Experimental studies were performed over a range of fuel compositions, flow velocities, reactant temperatures, and combustor pressures to study the factors leading to flashback. In addition, high speed imaging of the flashback phenomenon was obtained. One of the key conclusions of this study was that there existed multiple mechanisms which lead to flashback, each with different underlying parametric dependencies. Specifically, two mechanisms of 'flashback' were noted: rapid flashback into the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the centerbody. The former and latter mechanisms were observed at high and low hydrogen concentrations. In the latter mechanism, flame temperature ratio, not flame speed, appeared to be the key parameter describing flashback tendencies. We suggested that this was due to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1]. As such, a key conclusion here was that classical flashback scalings derived from, e.g., Bunsen flames, were not relevant for some parameter regimes found in swirling flames. In addition, it was found that in certain situations, pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition. This result could have significant implications on the development of future high hydrogen turbine systems.

  3. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Environmental Management (EM)

    the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas ...

  4. Farms to Fuels

    Broader source: Energy.gov [DOE]

    Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011.

  5. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and

  6. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect (OSTI)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  7. Three new extended Preyssler-type polyoxometalates modified by transition metal-2,2 Prime -biimidazole complexes

    SciTech Connect (OSTI)

    Yang, Chun-Yue [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Zhang, Lan-Cui, E-mail: zhanglancui@lnnu.edu.cn [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Wang, Zan-Jiao; Wang, Lin; Li, Xiao-Hui [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Zhu, Zai-Ming, E-mail: chemzhu@sina.com [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)] [School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)

    2012-10-15

    Three extended Preyssler-type ({l_brace}P{sub 5}W{sub 30}{r_brace}) polyoxometalates modified by transition metal (TM)-2,2 Prime -biimidazole (abbreviated as H{sub 2}biim) complexes, namely [Mn(H{sub 2}biim){sub 3}]{sub 5}H{sub 2}[{l_brace}Mn(H{sub 2}biim){sub 2}(H{sub 2}O){r_brace} (NaP{sub 5}W{sub 30}O{sub 110})]{center_dot}39H{sub 2}O (1), [{l_brace}(H{sub 2}biim){sub 2}Zn({mu}-OH)Zn(H{sub 2}biim)({mu}-H{sub 2}biim)Zn(H{sub 2}biim)(H{sub 2}O){r_brace}{sub 2}H{sub 4}(NaP{sub 5}W{sub 30}O{sub 110})]{center_dot}22 H{sub 2}O (2), and {l_brace}(H{sub 4}biim){sub 18}NaH{sub 5}[({mu}-Fe(H{sub 3}biim)(H{sub 2}O){sub 3})({mu}-Fe(H{sub 2}O){sub 4})(NaP{sub 5}W{sub 30}O{sub 110}){sub 2}]{sub 2}{center_dot}78H{sub 2}O{r_brace}{sub n} (3) have been hydrothermally synthesized, and characterized by physicochemical and spectroscopic methods. Their catalytic activities have been investigated. 1 contains mono-supporting {l_brace}P{sub 5}W{sub 30}{r_brace} anions. In compound 2, a {l_brace}P{sub 5}W{sub 30}{r_brace} anion is bi-supported by two symmetrical chains constructed by trinuclear zinc complexes. Compound 3 is composed of infinite 1-D zigzag chains built up of {l_brace}P{sub 5}W{sub 30}{r_brace} polyoxoanions linked via [Fe(H{sub 2}O){sub 4}]{sup 3+} and [Fe(H{sub 3}biim)(H{sub 2}O){sub 3}]{sup 4+} fragments. H{sub 2}biim ligands adopt three coordination modes in the structure. All these compounds have 3-D supramolecular frameworks via extensive hydrogen-bonding interactions. - Graphical abstract: Three new extended Preyssler-type polyoxometalates modified by TM-2,2 Prime -biimidazole complexes are obtained, they display high thermal stabilities. Highlights: Black-Right-Pointing-Pointer Three new extended Preyssler-type polyoxometalates were hydrothermally synthesized. Black-Right-Pointing-Pointer An interesting trinuclear zinc-2,2 Prime -biimidazole-polyanion complex was obtained. Black-Right-Pointing-Pointer The huge {l_brace}P{sub 5}W{sub 30}{r_brace} clusters were

  8. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  10. Fuel Cells in Telecommunications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Telecommunications Fuel Cells in Telecommunications Presentation by Joe Blanchard, ReliOn, at the Technology Transition Corporation and U.S. Department of Energy Webinar: Fuel ...

  11. p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio

    SciTech Connect (OSTI)

    Langer, Fabian Perl, Svenja; Kamp, Martin; Höfling, Sven

    2015-02-09

    In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2 eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related to the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.

  12. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOE Patents [OSTI]

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  13. No Fossil Fuel - Kingston | Open Energy Information

    Open Energy Info (EERE)

    Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Federal Transit Administration-National Transit Database (NTD...

    Open Energy Info (EERE)

    Type: Dataset User Interface: Website Website: www.ntdprogram.govntdprogram Cost: Free Language: English Federal Transit Administration-National Transit Database (NTD)...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  16. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based

  17. Uniaxial strain-induced magnetic order transition from E-type to A-type in orthorhombic YMnO{sub 3} from first-principles

    SciTech Connect (OSTI)

    Lin, S. X.; Fang, X. G.; Zhang, A. H.; Lu, X. B.; Gao, J. W.; Gao, X. S.; Zeng, M.; Liu, J.-M.

    2014-10-28

    The spin ordering magnetic structures of orthorhombic YMnO{sub 3} subjected to uniaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive uniaxial strain of −0.8% along the b orientation, the spin ordering magnetic structure is predicted to change from E-type to A-type antiferromagnetic orderings. The structure analysis also reveals that the uniaxial strain has a dramatic influence on the Mn-O bond lengths and Mn-O-Mn bond angles, allowing the gradual suppression of the alternation of the long and short Mn-O-Mn bonds in the ab plane. These changes present very interesting possibilities for engineering the spin ordering along with ferroelectric property in orthorhombic YMnO{sub 3}.

  18. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  19. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  20. Hydrogen Transition Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition Study Paul N. Leiby, David L. Greene, Zhenhong Lin, David Bowman, Sujit Das Oak Ridge National Laboratory July 26, 2010 Presented at "Overview of Light-duty Vehicle Studies" Washington, DC Workshop 2 Overview * Some lessons learned from analyzing fuel transitions - Find barriers to transitions significant, but progress being made - Review work by DOE-sponsored team, highlighting key factors * Note some similar findings by NRC * Find important role for policy - in advancing

  1. Transitioning from fossil-fueled ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Chemical Reactions That lithium-ion batteries lose their ... Simulation and Experiment Sandia's BATLab is a leading facility for investigating and understanding battery ...

  2. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Information More information on the Fuel Cell Technologies Offce is available at http:www.hydrogenandfuelcells.energy.gov. Fuel Cell Type Common Electrolyte Operating ...

  3. Soliton microdynamics of structural phase transitions in crystalline materials and phonons of a new type on phase interfaces

    SciTech Connect (OSTI)

    Orlov, A. V.; Dubovsky, O. A.

    2011-12-15

    It is shown that the generation of nonlinear soliton, breather, and shock waves at high dynamic excitations leads to martensitic phase transformations in crystalline materials of the {alpha}-uranium type. Investigations have been performed by modeling the atomic microdynamics with the use of the modified interaction potential. It is shown that collisions of compression shock waves and rarefaction solitons lead to the generation of nuclei of new phases, which evolve according to the domino principle. The phonon spectra of systems with phase interfaces are investigated. A new effect of the total internal phonon reflection has been discovered. It is shown that surface phonons of radically a new type (different from the Rayleigh surface waves) are excited on interfaces. The results are adapted to materials of the {alpha}-uranium type, where solitons have been found at slow-neutron scattering.

  4. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  5. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  6. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  7. Ohio Fuel Cell Initiative

    Broader source: Energy.gov [DOE]

    Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: The Top 5 Fuel Cell States: Why Local Policies Mean Green Growth, June 21, 2011.

  8. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) 42407.pdf (930.3 KB) More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

  9. Hopping conduction in p-type MoS{sub 2} near the critical regime of the metal-insulator transition

    SciTech Connect (OSTI)

    Park, Tae-Eon; Jang, Chaun E-mail: presto@kist.re.kr; Suh, Joonki; Wu, Junqiao; Seo, Dongjea; Park, Joonsuk; Lin, Der-Yuh; Huang, Ying-Sheng; Choi, Heon-Jin; Chang, Joonyeon E-mail: presto@kist.re.kr

    2015-11-30

    We report on temperature-dependent charge and magneto transport of chemically doped MoS{sub 2}, p-type molybdenum disulfide degenerately doped with niobium (MoS{sub 2}:Nb). The temperature dependence of the electrical resistivity is characterized by a power law, ρ(T) ∼ T{sup −0.25}, which indicates that the system resides within the critical regime of the metal-insulator (M-I) transition. By applying high magnetic field (∼7 T), we observed a 20% increase in the resistivity at 2 K. The positive magnetoresistance shows that charge transport in this system is governed by the Mott-like three-dimensional variable range hopping (VRH) at low temperatures. According to relationship between magnetic-field and temperature dependencies of VRH resistivity, we extracted a characteristic localization length of 19.8 nm for MoS{sub 2}:Nb on the insulating side of the M-I transition.

  10. Overview of Fuel Cell Electric Bus Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility &

  11. Vehicle Technologies Office: Transitioning the Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based on a workshop that was held on ...

  12. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect (OSTI)

    Chai, Feng [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen, YiPing, E-mail: ypchen007@sina.com [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)?]?[CoW??O??]9H?O 1 (phen=1,10-phenanthroline) and [Fe(phen)?]?[FeW??O??]H?OH?O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UVDRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)?]? cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 050 mT in the range of 6001000 cm?, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  13. SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update | Department of Energy Hydrogen-Powered Transit Buses: Evaluation Results Update SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California. 42080.pdf (1.02 MB) More Documents & Publications SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results SunLine Transit Agency Hydrogen-Powered

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Signage The Ohio Turnpike Commission allows businesses to place their logos on directional signs within the right-of-way of state turnpikes. An alternative fuel retailer may include a marking or symbol within their logo indicating that it sells one or more types of alternative fuel. Alternative fuels are defined as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be

  15. COMPOSITE FUEL ELEMENT

    DOE Patents [OSTI]

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  16. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  17. Cape Cod Regional Transit Authority | Open Energy Information

    Open Energy Info (EERE)

    Cod Regional Transit Authority Jump to: navigation, search Name Cape Cod Regional Transit Authority Facility Cape Cod Regional Transit Authority Sector Wind energy Facility Type...

  18. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  19. SunLine Transit Agency Hydrogen-Powered Transit Buses: Third...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed...

  20. Sunline Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2007-10-01

    This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California.

  1. SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunLine Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update This report provides an update on the evaluation results for hydrogen and CNG-fueled buses ...

  2. Technology Transitions Facilities Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transitions Facilities Database Technology Transitions Facilities Database Type* Laboratory Name Facilities DataBase The DOE National Laboratories maintain cutting-edge ...

  3. Energy Transition Initiative: Islands Playbook

    Broader source: Energy.gov [DOE]

    The Island Energy Playbook provides an action-oriented guide to successfully initiating, planning, and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels. It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.

  4. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  5. Fuel Systems Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    company with divisions focusing on bringing cleaner-burning gaseous fuel (such as propane and natural gas) technology to various types of vehicles. References: Fuel Systems...

  6. Progress and Challenges for PEM Transit Fleet Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Challenges for PEM Transit Fleet Applications Progress and Challenges for PEM Transit Fleet Applications Presentation at DOE and DOT Joint Fuel Cell Bus Workshop, June 7, 2010 buswksp10_madden.pdf (550.68 KB) More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Begins Extended Testing

  7. ARB's Study of Emissions from Diesel and CNG Heavy-duty Transit...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CNG and Diesel Transite Bus Emissions in Review Diesel Health Impacts & Recent Comparisons to Other Fuels Investigation of the Effects of Fuels and ...

  8. Gender Transition Guidelines, Workplace

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gender Transition Guidelines, Workplace

  9. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  10. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.