Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PLAYER REGISTRATION City State Zip  

E-Print Network [OSTI]

a $100 tax deductible/tax credit donation to Michigan State University. Staff, student and spouse fees are reduced and will not include a tax credit. The balance of the fee covers green fees, cart, lunch ________________________________________________ Name Daytime phone Golfers are registered on a first-come, first-served basis. CREDIT CARD USERS

2

Verification Checklist Home Address: City: State: Zip:  

Broader source: Energy.gov (indexed) [DOE]

Indoor airPLUS Version 1 (Rev. 01) Verification Checklist Home Address: City: State: Zip: Section Requirements (Refer to full Indoor airPLUS Construction Specifications for details) Must Correct Builder Verified Rater Verified N/A Note: The Rev. 01 checklist has been modified to reflect only the additional Indoor airPLUS requirements and their corresponding section numbers that must be met after completing the ENERGY STAR checklists. ENERGY STAR remains a prerequisite for Indoor airPLUS certification. ENERGY STAR V3 Checklists Thermal Enclosure System Rater Checklist completed. o o Water Management System Builder Checklist completed. o o HVAC System Quality Installation Contractor Checklist completed. o o HVAC System Quality Installation Rater Checklist completed. o o

3

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network [OSTI]

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

4

Early Restoration Plan Repositories STATE LIBRARY ADDRESS CITY ZIP  

E-Print Network [OSTI]

Calcasieu Parish Public Library Central Branch 301 W. Claude St. Lake Charles 70605 #12;STATE LIBRARYEarly Restoration Plan Repositories STATE LIBRARY ADDRESS CITY ZIP AL Dauphin Island Sea Laboratory. Walton 32548 FL Panama City Beach Public Library 125000 Hutchison Blvd Panama City Beach 32407 FL

5

State Oil and Gas Board State Oil and Gas Board Address Place Zip Website  

Open Energy Info (EERE)

State Oil and Gas Board Address Place Zip Website State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Tuscaloosa Alabama http www gsa state al us ogb ogb html Alaska Division of Oil and Gas Alaska Division of Oil and Gas W th Ave Suite Anchorage Alaska http dog dnr alaska gov Alaska Oil and Gas Conservation Commission Alaska Oil and Gas Conservation Commission W th Ave Ste Anchorage Alaska http doa alaska gov ogc Arizona Oil and Gas Commission Arizona Oil and Gas Commission W Congress Street Suite Tucson Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Little Rock Arkansas http www aogc state ar us JDesignerPro JDPArkansas AR Welcome html California Division of Oil Gas and Geothermal Resources California

6

Early Restoration Plan (Phase III FERP)Repositories STATE LIBRARY ADDRESS CITY ZIP  

E-Print Network [OSTI]

Public Library Central Branch 301 W. Claude St. Lake Charles 70605 29. LA Iberia Parish Library 445 EEarly Restoration Plan (Phase III FERP)Repositories STATE LIBRARY ADDRESS CITY ZIP 1. AL Dauphin. Mobile 36606 6. AL City of Bayou La Batre Public Library 12747 Padgett Switch Road Irvington 36544 7. FL

7

ANNOUNCEMENT: ZIP Code Information.  

Science Journals Connector (OSTI)

THE U. S. Post Office Department has announced that the use of ZIP Codes will be mandatory on all domestic addresses for subscriptions and other mailings by 1 January 1967. Accordingly, the American Institute of Physics has established a procedure for obtaining the necessary information. You are requested to follow this procedure exactly.First, do not submit a change of address request consisting merely of the addition of your ZIP Code. Second, if your address changes in any other way, do include the ZIP Code of the new address. Third, and most important, be sure to furnish your ZIP Code in accordance with instructions included with all renewal invoices and renewal orders which have been sent out by the AIP.Failure to conform to this procedure may result in delays.

1965-09-27T23:59:59.000Z

8

State Transfer and Spin Measurement  

E-Print Network [OSTI]

We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the measurement of a macroscopic observable to determine the state of a single spin. We prove a general mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical Cellular Automata, thereby unifying previous approaches to this amplification task. Finally, we show how to use the new Hamiltonian for perfect state transfer in the, to date, unique scenario where total spin is not conserved during the evolution, and demonstrate that this yields a significantly different response in the presence of decoherence.

A. Kay

2006-04-21T23:59:59.000Z

9

Technology Transfer at Penn State University  

E-Print Network [OSTI]

Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

Lee, Dongwon

10

Robust quantum state transfer using tunable couplers  

E-Print Network [OSTI]

We analyze the transfer of a quantum state between two resonators connected by a superconducting transmission line. Nearly perfect state-transfer efficiency can be achieved by using adjustable couplers and destructive interference to cancel the back-reflection into the transmission line at the receiving coupler. We show that the transfer protocol is robust to parameter variations affecting the transmission amplitudes of the couplers. We also show that the effects of Gaussian filtering, pulse-shape noise, and multiple reflections on the transfer efficiency are insignificant. However, the transfer protocol is very sensitive to frequency mismatch between the two resonators. Moreover, the tunable coupler we considered produces time-varying frequency detuning caused by the changing coupling. This detuning requires an active frequency compensation with an accuracy better than 90% to yield the transfer efficiency above 99%.

Eyob A. Sete; Eric Mlinar; Alexander N. Korotkov

2014-11-26T23:59:59.000Z

11

Perfect State Transfer without State Initialization and Remote Collaboration  

E-Print Network [OSTI]

We present a perfect state transfer protocol via a qubit chain with the evolution governed by the $xx$ Hamiltonian. In contrast to the recent protocol announced in [Phys. Rev. Lett. {\\bf 101}, 230502 (2008)], our method does not demand any remote-cooperated initialization and sending classical information about measurement outcomes. We achieve the perfect state transfer only with the assumption of access to two spins at each end of the chain, while the initial state of the whole chain is irrelevant.

Marcin Markiewicz; Marcin Wiesniak

2009-02-06T23:59:59.000Z

12

State-to-state dynamics of molecular energy transfer  

SciTech Connect (OSTI)

The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

1993-12-01T23:59:59.000Z

13

Cal State Fullerton Alumni Association Candidate Information Sheet  

E-Print Network [OSTI]

________________________________________________________________________ City____________________________________________State_________ ZIP__________________ Home phone__________________________Cell phone_______________________________________ Company name________________________________________________________________________ City____________________________________________State_________ ZIP____________________ Business Phone

de Lijser, Peter

14

ccsd00000983 Quantum state transfer between elds and atoms  

E-Print Network [OSTI]

ccsd­00000983 (version 1) : 23 Dec 2003 Quantum state transfer between #12;elds and atoms show that a quasi-perfect quantum state transfer between an atomic ensemble and #12;elds in an optical can be mapped onto the long-lived atomic spin associated to the ground state sublevels of the #3;-type

15

Heat transfer from nanoparticles: a corresponding state analysis  

E-Print Network [OSTI]

Heat transfer from nanoparticles: a corresponding state analysis Samy Merabia , Sergei Shenogin that inhibits the formation of an insulating vapor film. heat transfer | nanoparticles | liquids | phase transitions Introduction Sub-micron scale heat transfer is attracting a growing inter- est, motivated by both

Paris-Sud XI, Université de

16

STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON  

E-Print Network [OSTI]

Chapter V STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON SURFACES Composite Heat Transfer Surface Liquid Crystal Image Processing Technique V . 4 Experimental Results and Discussion Test Conditions and Data Analysis Application to Endwall Heat Transfer Problem Further Application

Camci, Cengiz

17

West Valley College Portland State University Transfer Worksheet  

E-Print Network [OSTI]

West Valley College Portland State University Transfer Worksheet If you are taking classes that are part of the Intersegmental General Education Transfer Curriculum (IGETC) at West Valley College (WVC) #12;West Valley College Portland State University 2. DEGREE REQUIREMENTS The majority of majors at PSU

Caughman, John

18

Integrating proton coupled electron transfer (PCET) and excited states  

SciTech Connect (OSTI)

In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO{sub 2} to methanol or hydrocarbons. The principles behind PCET and concerted electronproton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P{sub 680} and electron transfer quenching to give P{sub 680}{sup +}. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosinehistidine pair, Y{sub Z}. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e{sup ?}/4H{sup +} from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.

Gagliardi, Christopher J.; Westlake, Brittany C.; Kent, Caleb A.; Paul, Jared J.; Papanikolas, John M.; Meyer, Thomas J.

2010-01-01T23:59:59.000Z

19

Do we get actual vendor name while we searched with zip code...  

Open Energy Info (EERE)

Co has utility id 14006 located in Ohio". But I had also check the zip code in google earth, It falling in other state "Rincorn, PR". Please let me know? Submitted by SUTHARI on...

20

Washington State Department of Ecology - Changing or Transferring...  

Open Energy Info (EERE)

LibraryAdd to library Legal Document- OtherOther: Washington State Department of Ecology - Changing or Transferring an Existing Water RightLegal Published NA Year Signed or...

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proton inventory investigations of acyl transfer reactions: transition state structures  

E-Print Network [OSTI]

PROTON INVENTORY INVESTIGATIONS OF ACYL TRANSFER REACTIONS: TRANSITION STATE STRUCTURES A Thesis by JACOB FLOYD PATTERSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1978 Major Subject: Chemistry PROTON INVENTORY INVESTIGATIONS OF ACYL TRANSFER REACTIONS: TRANSITION STATE STRUCTURES A Thesis by JACOB FLOYD PATTERSON Approved as to style and content by: airman o omm ttee Ya~~+ ea o...

Patterson, Jacob Floyd

2012-06-07T23:59:59.000Z

22

Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments  

SciTech Connect (OSTI)

Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local heat transfer was found to be greatest at locations immediately downstream of the grid, and as the flow moved further downstream from the grid it became more developed, thus causing the heat transfer to diminish. The amount of heat transfer enhancement was found to depend not only on the spacer grid design, but also on the local Reynolds number. It was seen that decreasing Reynolds number leads to greater heat transfer enhancement. (authors)

Spring, J.P.; McLaughlin, D.M. [The Pennsylvania State University, 201 Shields Building University Park, PA 16802 (United States)

2006-07-01T23:59:59.000Z

23

Enantioselectivities in Electron-Transfer and Excited State Quenching  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enantioselectivities in Electron-Transfer and Excited State Quenching Enantioselectivities in Electron-Transfer and Excited State Quenching Reactions of a Chiral Ruthenium Complex Posessing a Helical Structure Taisuke Hamada, Bruce S. Brunschwig, Kenji Eifuku, Etsuko Fujita, Manuela Körner, Shigeyoshi Sakaki, Rudi van Eldik, and James F. Wishart J. Phys. Chem. A 103, 5645-5654 (1999) [Find paper at ACS Publications] Abstract: The outer sphere electron-transfer reactions between diastereomers of Ru(menbpy)3+° (menbpy = 4,4'-di{(1R,2S,5R)-(-)-menthoxycarbonyl}-2,2'-bipyridine) and enantiomers of Co(acac)3 and Co(edta)- have been studied by pulse radiolysis. D-Ru(menbpy)3+° rapidly reduces Co(acac)3 in 85% EtOH/H2O (1 mM NaH2PO4) with second-order rate constants of (2.1 ± 0.1) x 107 and (7.8 ± 0.2) x 106 M-1 s-1 for the D- and L-Co(acac)3 enantiomers, respectively, and an

24

Arabidopsis thalianafrom Polarization Transfer Solid-State NMR  

SciTech Connect (OSTI)

Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that waterpectin polarization transfer is much faster than watercellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the waterpolysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Waterpectin spin diffusion precedes watercellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

White, Paul B [Ames Laboratory; Wang, Tuo [Ames Laboratory; Park, Yong Bum [Pennsylvania State University; Cosgrove, Daniel J [Pennsylvania State University; Hong, Mei [Ames Laboratory

2014-07-23T23:59:59.000Z

25

Property:Zip | Open Energy Information  

Open Energy Info (EERE)

This is a property of type String. This is a property of type String. Pages using the property "Zip" Showing 25 pages using this property. (previous 25) (next 25) 1 10Charge Inc + 75001 + 12 Voltz Limited + LA8 9NH + 1366 Technologies + 02421 + 1Soltech Inc + 75081 + 1st Light Energy, Inc. + 953650 + 1st Mile + 2800 + 2 21 Century Solar Inc + 75042 + 21-Century Silicon, Inc. + 75081-1881 + 21st century Green Solutions LLC + 48439 + 25 x 25 America s Energy Future + 21093 + 2OC + BA1 7AB + 2degrees + OX2 7HT + 2e Carbon Access + 10280 + 3 3 Phases Energy Services LLC + CA 94129 + 3C Holding AG + 61118 + 3Degrees + 94111 + 3G Energi + TD5 7BH + 3GSolar + 97774 + 3M + 55144-1000 + 3P Energy GmbH + 19061 + 3S Industries AG Formerly 3S Swiss Solar Systems AG + CH-3006 + 3TIER + 98121 +

26

Address:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________  

E-Print Network [OSTI]

Representing the College of Education on the ASI Board of Directors Cell Phone: ( )_______-_________ Email:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________ Student ID

de Lijser, Peter

27

Address:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________  

E-Print Network [OSTI]

of Engineering and Computer Science on ASI Board of Directors FY 13-14 Cell Phone: ( )_______-_________ Email:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________ Student ID

de Lijser, Peter

28

Address:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________  

E-Print Network [OSTI]

Representing the College of the Arts on the ASI Board of Directors Cell Phone: ( )_______-_________ Email:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________ Student ID

de Lijser, Peter

29

Address:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________  

E-Print Network [OSTI]

Representing the College of Communications on the ASI Board of Directors Cell Phone: ( )_______-_________ Email:_________________________________________________City:______________________Zip:__________ Home Phone: ( )_______-_________ Work Phone: ( )_______-_________ Student ID

de Lijser, Peter

30

Convergent Iterative Constrained Variation Algorithm for Calculation of Electron-Transfer Transition States  

E-Print Network [OSTI]

Convergent Iterative Constrained Variation Algorithm for Calculation of Electron the potential-dependent transition states of electron transfer reactions by quantum calculations. This approach makes it more feasible to study heterogeneous electron transfer processes with the theory of local

Pitsch, Heinz

31

Boise State University Human Resource Services Employee Information Form  

E-Print Network [OSTI]

: ____________________ State: ___ Zip: ______ Home Phone: _________________Work Phone: _________________ Cell Phone: ____________________________________ Relationship__________________________ Home Phone: _________________Work Phone: _________________ Cell Phone

Barrash, Warren

32

REGULATORY MECHANISMS OF SLC39A4 (ZIP4) AND SLC39A5 (ZIP5) IN THE ADAPTIVE RESPONSE TO ZINC AVAILABILITY  

E-Print Network [OSTI]

The aims of this research were to determine how Zip4 and Zip5 are regulated in response to zinc availability and how Zip4 impacts development. Loss of Zip4 resulted in embryonic lethality. Heterozygosity negatively affected eye, heart, and brain...

Weaver, Benjamin Patrick

2009-04-06T23:59:59.000Z

33

Quantum Transition State Theory for proton transfer reactions in enzymes  

E-Print Network [OSTI]

We consider the role of quantum effects in the transfer of hyrogen-like species in enzyme-catalysed reactions. This study is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects imply that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We use a path integral approach which provides a general framework to understand tunneling in a quantum system which interacts with an environment at non-zero temperature. Here the quantum system is the active site of the enzyme and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature $T_0$ which is determined by the curvature of potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. For physically reasonable parameters quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of kinetic isotope effects for two classes of enzymes which have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction due to the environment is weak and only slightly modifies the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental degrees of freedom with frequencies much less than 1000 cm$^{-1}$ do not have a significant effect on quantum corrections to the reaction rate.

Jacques P. Bothma; Joel Gilmore; Ross H. McKenzie

2009-10-07T23:59:59.000Z

34

Network for transfer of an arbitrary $n$-qubit atomic state via cavity QED  

E-Print Network [OSTI]

I show a scheme which allows a perfect transfer of an unknown single-qubit atomic state from one atom to another by letting two atoms interact simultaneously with a cavity QED. During the interaction between atom and cavity, the cavity is only virtually excited and accordingly the scheme is insensitive to the cavity field states and cavity decay. Based on this scheme, a network for transfer of an arbitrary single-qubit atomic state between atoms is engineered. Then the scheme is generalized to perfectly transfer an arbitrary 2-qubit atomic state and accordingly a network for transfer of an arbitrary 2-qubit atomic state is designed. At last, it is proven that the schemes can be generalized to an arbitrary $n(n\\ge 3)$-qubit atomic state transfer case and a corresponding network is also proposed.

Zhan-jun Zhang

2005-04-29T23:59:59.000Z

35

Property:Incentive/Cont2Zip | Open Energy Information  

Open Energy Info (EERE)

Zip Zip Jump to: navigation, search Property Name Incentive/Cont2Zip Property Type String Pages using the property "Incentive/Cont2Zip" Showing 25 pages using this property. (previous 25) (next 25) A AEP (Central and North) - CitySmart Program (Texas) + 75494 + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + 75494 + AEP SWEPCO - CitySmart Program (Texas) + 77002-4567 + AEP SWEPCO - Commercial Solutions Program (Texas) + 75494 + AEP SWEPCO - SCORE Program (Texas) + 75494 + AEP Texas - Commercial and Industrial Energy Efficiency Rebate Program (Texas) + 79602 + AEP Texas Central Company - CitySmart Program (Texas) + 77002-4567 + AEP Texas Central Company - Commercial Solutions Program (Texas) + 77002-4567 + AEP Texas Central Company - SCORE Program (Texas) + 77210-4567 +

36

Electrostatic zipping actuators and their applications to MEMS  

E-Print Network [OSTI]

Electrostatic actuation is the most common and well-developed method of generating motion on the micro scale. To overcome the challenge of providing both high force and large displacement, electrostatic zipping actuators ...

Li, Jian, Ph. D. Massachusetts Institute of Technology

2004-01-01T23:59:59.000Z

37

Property:Incentive/Cont4Zip | Open Energy Information  

Open Energy Info (EERE)

Zip Zip Jump to: navigation, search Property Name Incentive/Cont4Zip Property Type String Pages using the property "Incentive/Cont4Zip" Showing 18 pages using this property. A AEP (Central and North) - CitySmart Program (Texas) + 79602 + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + 78401 + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + 79602 + B Blue Ridge Electric Cooperative - Heat Pump Loan Program (South Carolina) + 29671 + C ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate Program (Illinois) + 60642 + E Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs (Connecticut) + 06037 + Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs (Arkansas) + 72205 +

38

Property:Incentive/ContZip | Open Energy Information  

Open Energy Info (EERE)

ContZip ContZip Jump to: navigation, search Property Name Incentive/ContZip Property Type String Pages using the property "Incentive/ContZip" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + 05633 + A AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + 78746 + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + 75604-5926 + AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program (Ohio) + 43213 + AEP Ohio (Gas) - Residential Energy Efficiency Rebate Program (Ohio) + 43213 + AEP Ohio - Commercial Custom Project Rebate Program (Ohio) + 43213 + AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) + 43213 + AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) + 43219 +

39

Bullet trains and steam engines: Exogenous attention zips but endogenous attention chugs along  

E-Print Network [OSTI]

Bullet trains and steam engines: Exogenous attention zips but endogenous attention chugs along: Chakravarthi, R., & VanRullen, R. (2011). Bullet trains and steam engines: Exogenous attention zips

VanRullen, Rufin

40

Name Address Place Zip Sector Product Stock Symbol Year founded Number  

Open Energy Info (EERE)

Address Place Zip Sector Product Stock Symbol Year founded Number Address Place Zip Sector Product Stock Symbol Year founded Number of employees Number of employees Telephone number Website Coordinates Region ABS Alaskan Inc Van Horn Rd Fairbanks Alaska Gateway Solar Wind energy Marine and Hydrokinetic Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com United States AER NY Kinetics LLC PO Box Entrance Avenue Ogdensburg Marine and Hydrokinetic United States AW Energy Lars Sonckin kaari Espoo FI Marine and Hydrokinetic http www aw energy com Finland AWS Ocean Energy formerly Oceanergia Redshank House Alness Point Business Park Alness Ross shire IV17 UP Marine and Hydrokinetic http www awsocean com United Kingdom Able Technologies Audubon Road Englewood Marine and Hydrokinetic http

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Robustness of spin-coupling distributions for perfect quantum state transfer  

SciTech Connect (OSTI)

The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role for robust quantum state transfer.

Zwick, Analia [Fakultaet Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Facultad de Matematica, Astronomia y Fisica and Instituto de Fisica Enrique Gaviola, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Alvarez, Gonzalo A.; Stolze, Joachim [Fakultaet Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Osenda, Omar [Facultad de Matematica, Astronomia y Fisica and Instituto de Fisica Enrique Gaviola, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

2011-08-15T23:59:59.000Z

42

United States-Mexico electricity transfers: Of alien electrons and the migration of undocumented environmental burdens  

SciTech Connect (OSTI)

This article intends to set forth the necessity for reform in the United States policy and procedures regarding approval of power transfers between the United States and Mexico. In order to do this, the article will review the history of electrical power transfers between the United States and Mexico (Part II), analyze recent regulatory changes in the United States and Mexico which may result in increased power exports to Mexico (Part III), evaluate the extent to which the present permit and authorization system in the United States considers the increased environmental burden of such power transfers (Part IV), and, where appropriate, propose some procedural and policy reforms that could take into account the environmental burdens generated by the production of power destined for transfer across the United States-Mexico border (Part V).

Gandara, A. [Univ. of California, Davis, CA (United States)

1995-08-01T23:59:59.000Z

43

Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Experiment  

SciTech Connect (OSTI)

We demonstrate a method of adiabatic population transfer from a single quantum state into a coherent superposition of states. The transfer is executed with femtosecond pulses, spectrally shaped in a simple and intuitive manner, which does not require iterative feedback-controlled loops. In contrast to nonadiabatic methods of excitation, our approach is not sensitive to the exact value of laser intensity. We show that the population transfer is complete, and analyze the possibility of controlling the relative phases and amplitudes of the excited eigenstates. We discuss the limitations of the proposed control methods due to the dynamic level shifts and suggest ways of reducing their influence.

Zhdanovich, S. [Departments of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), University of British Columbia, Vancouver (Canada); Shapiro, E. A. [Department of Chemistry, University of British Columbia, Vancouver (Canada); Hepburn, J. W.; Shapiro, M.; Milner, V. [Departments of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Department of Chemistry, University of British Columbia, Vancouver (Canada); Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), University of British Columbia, Vancouver (Canada)

2009-12-15T23:59:59.000Z

44

Population Transfer between Two Quantum States by Piecewise Chirping of Femtosecond Pulses: Theory and Experiment  

SciTech Connect (OSTI)

We propose and experimentally demonstrate the method of population transfer by piecewise adiabatic passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation pulse train, we achieve complete and robust population transfer to the target state. The piecewise nature of the process suggests a possibility for the selective population transfer in complex quantum systems.

Zhdanovich, S. [Departments of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), University of British Columbia, Vancouver (Canada); Shapiro, E. A. [Chemistry, University of British Columbia, Vancouver (Canada); Shapiro, M.; Hepburn, J. W.; Milner, V. [Departments of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Chemistry, University of British Columbia, Vancouver (Canada); Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), University of British Columbia, Vancouver (Canada)

2008-03-14T23:59:59.000Z

45

Protein folding by zipping and assembly S. Banu Ozkan*  

E-Print Network [OSTI]

Protein folding by zipping and assembly S. Banu Ozkan* , G. Albert Wu* , John D. Chodera, CA, May 2, 2007 (received for review April 13, 2006) How do proteins fold so quickly? Some denatured proteins fold to their native structures in only microseconds, on average, implying that there is a folding

Southern California, University of

46

A solid?state solar?powered heat transfer device  

Science Journals Connector (OSTI)

A solar?powered solid?state heat transferdevice capable of operating in either a refrigeration or a heat?pump mode is proposed. The devices operation is based on the combined utilization of the photovoltaic and Peltier effects.

Milivoj Beli?; Joel I. Gersten

1979-01-01T23:59:59.000Z

47

Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer  

E-Print Network [OSTI]

A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit, and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80/s successful state transfer events out of 18,000/s repetitions.

Christoph Kurz; Michael Schug; Pascal Eich; Jan Huwer; Philipp Mller; Jrgen Eschner

2014-10-10T23:59:59.000Z

48

Photo of the Week: Power Up! Twenty Steps to Zip a Zipper | Department...  

Office of Environmental Management (EM)

Power Up Twenty Steps to Zip a Zipper Photo of the Week: Power Up Twenty Steps to Zip a Zipper April 4, 2014 - 10:30am Addthis On Feb. 18, 2014, Argonne hosted its 19th annual...

49

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Organization Organization Address Place Zip Notes Website Region Organization Organization Address Place Zip Notes Website Region Adirondack North Country Association Adirondack North Country Association Main Street Suite Saranac Lake New York http www adirondack org Northeast NY NJ CT PA Area African Renewable Energy Alliance AREA African Renewable Energy Alliance AREA Online http area network ning com xg source msg mes network Alliance for Sustainable Colorado Alliance for Sustainable Colorado Wynkoop Street Denver Colorado Mission of is to catalyze the shift to a truly sustainable world by fostering collaboration among nonprofits businesses governments and academia http www sustainablecolorado org Rockies Area American Clean Skies Foundation American Clean Skies Foundation st Street NE Suite Washington District of Columbia http www cleanskies

50

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Institution Name Institution Name Address Place Zip Notes Website Region Institution Name Institution Name Address Place Zip Notes Website Region ARCH Venture Partners Texas ARCH Venture Partners Texas Bridgepoint Parkway Bldg Suite Austin Texas http www archventure com Texas Area ARCH Venture Partners Washington ARCH Venture Partners Washington Second Avenue Suite Seattle Washington http www archventure com Pacific Northwest Area African Wind Energy Association South Africa African Wind Energy Association South Africa South Africa http www afriwea org en south africa htm Alternative Energy Institute Alternative Energy Institute russell long blvd Canyon Texas http www windenergy org Texas Area Applied Process Engineering Laboratory Applied Process Engineering Laboratory Hills Street Suite Richland Washington http www apel org

51

On the transfer of atmospheric energy from the Gulf of Mexico to the continental United States  

E-Print Network [OSTI]

ON THE TRANSFER OF ATMOSPHERIC ENERGY FROM THE GULP OF MEXICO TO THE CONTINENTAL UNITED STATES A Thesis RICHARD WILLIAM KNIGHT Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE Deoember 1972 Ma)or Sub)ect: Meteorology ON THE TRANSFER OF ATMOSPHERIC ENERGY FROM THE GULF OF MEXICO TO THE CONTINENTAL UNITED STATES A Thesis RICHARD WILLIAM KNIGHT Approved as to style and content by: Chairman of ommittee...

Knight, Richard William

2012-06-07T23:59:59.000Z

52

Heisenberg Spin Bus as a Robust Transmission Line for Perfect State Transfer  

E-Print Network [OSTI]

We study the protocol known as quantum state transfer for a strongly coupled antiferromagnetic spin chain or ring (acting as a spin bus), with weakly coupled external qubits. By treating the weak coupling as a perturbation, we find that perfect state transfer (PST) is possible when second order terms are included in the expansion. We also show that PST is robust against variations in the couplings along the spin bus and between the bus and the qubits. As evidence of the quantum interference which mediates PST, we show that the optimal time for PST can be smaller with larger qubit separations, for an even-size chain or ring.

Sangchul Oh; Lian-Ao Wu; Yun-Pil Shim; Mark Friesen; Xuedong Hu

2011-02-03T23:59:59.000Z

53

Nonlinear State Space Model of a Hydraulic Wind Power Transfer Masoud Vaezi1  

E-Print Network [OSTI]

Nonlinear State Space Model of a Hydraulic Wind Power Transfer Masoud Vaezi1 , Majid Deldar1 1, IUPUI. Gearless hydraulic wind power systems are considered as nonlinear models because of some discrete nonlinear governing equations for the elements in the proposed hydraulic wind power configuration. Nonlinear

Zhou, Yaoqi

54

Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems  

SciTech Connect (OSTI)

The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

Banchi, L. [Dipartimento di Fisica e Astronomia, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Apollaro, T. J. G. [Dipartimento di Fisica e Astronomia, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Istituto dei Sistemi Complessi, C.N.R., via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Cuccoli, A. [Dipartimento di Fisica e Astronomia, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Vaia, R. [Istituto dei Sistemi Complessi, C.N.R., via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Verrucchi, P. [Istituto dei Sistemi Complessi, C.N.R., via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisica e Astronomia, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy)

2010-11-15T23:59:59.000Z

55

High fidelity quantum state transfer in electromechanical systems with intermediate coupling  

E-Print Network [OSTI]

Hybrid quantum systems usually consist of two or more subsystems, which may take the advantages of the different systems. Recently, the hybrid system consisting of circuit electromechanical subsystems have attracted great attention due to its advanced fabrication and scalable integrated photonic circuit techniques. Here, we propose a scheme for high fidelity quantum state transfer between a superconducting qubit and a nitrogen-vacancy center in diamond, which are coupled to a superconducting transmission-line resonator with coupling strength $g_1$ and a nanomechanical resonator with coupling strength $g_2$, respectively. Meanwhile, the two resonators are parametrically coupled with coupling strength $J$. The system dynamics, including the decoherence effects, is numerical investigated. It is found that both the small ($J \\ll \\{g_1, g_2\\}$) and large ($J \\gg \\{g_1, g_2\\}$) coupling regimes of this hybrid system can not support high fidelity quantum state transfer before significant technique advances. However, in the intermediate coupling regime ($J \\sim g_1 \\sim g_2$), in contrast to a conventional wisdom, high fidelity quantum information transfer can be implemented, providing a promising route towards high fidelity quantum state transfer in similar coupled resonators systems.

Jian Zhou; Yong Hu; Zhang-qi Yin; Z. D. Wang; Shi-Liang Zhu; Zheng-Yuan Xue

2014-08-29T23:59:59.000Z

56

Adiabatic many-body state preparation and information transfer in quantum dot arrays  

E-Print Network [OSTI]

Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatically preparation of ground state in such systems. We show that the adiabatic ground state preparation is highly robust against those disorder effects making it good analog simulator. Moreover, we also study the adiabatic classical information transfer, using singlet-triplet states, across a spin chain. In contrast to ground state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.

Umer Farooq; Abolfazl Bayat; Stefano Mancini; Sougato Bose

2014-11-05T23:59:59.000Z

57

Electric Utility Company Assigned to a Zip Code? | OpenEI Community  

Open Energy Info (EERE)

Electric Utility Company Assigned to a Zip Code? Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers part of the zip code in question or not. How do I report an error like this for correction? Thanks. Submitted by Conroyt on 23 May, 2013 - 09:01 1 answer Points: 0 Thanks for submitting this. The Utilities Gateway (http://en.openei.org/wiki/Gateway:Utilities) uses the developer.nrel.gov service for zip-code lookups (http://developer.nrel.gov/doc/api/utility_rates/v3). This in turn uses Google for geocoding, and finds the centroid of the geographic region in question. This means that the result is based on the center of a zip code region, which may have no data. This question is timed well as we are

58

Revisiting surface-integral formulations for one-nucleon transfers to bound and resonance states  

E-Print Network [OSTI]

One-nucleon transfer reactions, in particular (d,p) reactions, have played a central role in nuclear structure studies for many decades. Present theoretical descriptions of the underlying reaction mechanisms are insufficient for addressing the challenges and opportunities that are opening up with new radioactive beam facilities. We investigate a theoretical approach that was proposed recently to address shortcomings in the description of transfers to resonance states. The method builds on ideas from the very successful R-matrix theory; in particular it uses a similar separation of the parameter space into interior and exterior regions, and introduces a parameterization that can be related to physical observables, which, in principle, makes it possible to extract meaningful spectroscopic information from experiments. We carry out calculations, for a selection of isotopes and energies, to test the usefulness of the new approach.

J. E. Escher; I. J. Thompson; G. Arbanas; Ch. Elster; V. Eremenko; L. Hlophe; F. M. Nunes

2014-03-10T23:59:59.000Z

59

Revisiting surface-integral formulations for one-nucleon transfers to bound and resonance states  

E-Print Network [OSTI]

One-nucleon transfer reactions, in particular (d,p) reactions, have played a central role in nuclear structure studies for many decades. Present theoretical descriptions of the underlying reaction mechanisms are insufficient for addressing the challenges and opportunities that are opening up with new radioactive beam facilities. We investigate a theoretical approach that was proposed recently to address shortcomings in the description of transfers to resonance states. The method builds on ideas from the very successful R-matrix theory; in particular it uses a similar separation of the parameter space into interior and exterior regions, and introduces a parameterization that can be related to physical observables, which, in principle, makes it possible to extract meaningful spectroscopic information from experiments. We carry out calculations, for a selection of isotopes and energies, to test the usefulness of the new approach.

Escher, J E; Arbanas, G; Elster, Ch; Eremenko, V; Hlophe, L; Nunes, F M

2014-01-01T23:59:59.000Z

60

Photochemistry of "Super" Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Kyril M. Solntsev,*,, Dan Huppert, Noam Agmon, and Laren M. Tolbert  

E-Print Network [OSTI]

Photochemistry of "Super" Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Mixtures of ultrafast excited-state proton transfer reactions of exceptionally strong photoacids in methanol/waterVed: December 23, 1999; In Final Form: March 6, 2000 Excited-state proton transfer to solvent (PTTS) of 5-cyano

Agmon, Noam

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear memory  

E-Print Network [OSTI]

Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear-pseudosubstrate inhibitory peptide (ZIP) remains in the brain after infusion. Here, we demon- strate that foreground context the brain by 24 h after infusion. These data contribute to a growing body of lit- erature that demonstrates

Helmstetter, Fred J.

62

Observation of excited state charge transfer with fs/ps-CARS  

SciTech Connect (OSTI)

Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4{prime}-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

Blom, Alex Jason

2009-08-01T23:59:59.000Z

63

FALL 2014 TRANSFER STUDENT SCHOLARSHIP APPLICATION PERSONAL INFORMATION  

E-Print Network [OSTI]

: State: Zip: Telephone: ( ) Birthdate: / / Ethnic Background:Black, Non-Hispanic Hispanic Native American White, Non-Hispanic Asian HIGH SCHOOL EDUCATION High School: Graduation Date: ACT Scores: SAT Scores Widowed Parents' Full Names: Household Address: Street / Route / Apartment # City: State: Zip: Father

Hayes, Jane E.

64

Final State Interaction in Neutron Deuteron Charge Exchange Reaction at Small Transfer Momentum  

E-Print Network [OSTI]

Analysis of the $nd\\to p(nn)$ reaction in a Gev-energy region is performed in the framework based on the multiple-scattering theory for the few nucleon system. The special kinematic condition, when momentum transfer from neutron beam to final proton closes to zero, is considered. The possibility to extract the spin-flip term of the elementary $np\\to pn $ amplitude from nd-breakup process is investigated. The energy dependence of the ratio $R=\\frac{d\\sigma_{nd}} {d\\Omega} / \\frac{d\\sigma_{np}}{d\\Omega}$ is obtained taking account of the final state interaction two outgoing neutrons in $^1 S_0$-state.

N. B. Ladygina

2006-10-26T23:59:59.000Z

65

California State University CSU | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: California State University (CSU) Place: Los Angeles, California Zip: 90802-4210 Sector: Solar Product: One of the largest higher education...

66

BLM Colorado State Office | Open Energy Information  

Open Energy Info (EERE)

Colorado State Office Abbreviation: Colorado Address: 2850 Youngfield Street Place: Lakewood, CO Zip: 80215 Phone Number: 303-239-3600 ParentHolding Organization: Bureau of Land...

67

State Historical Resources Commission | Open Energy Information  

Open Energy Info (EERE)

Historical Resources Commission Jump to: navigation, search Name: State Historical Resources Commission Address: 1725 23rd Street, Suite 100 Place: Sacramento, CA Zip: 95816...

68

THE DEPLOYMENT OF ZIP NON-EQUILIBRIUM PHONON DETECTORS IN CDMS II  

E-Print Network [OSTI]

operating these Si and Ge Z-sensitive Ionization and Phonon (ZIP) detectors at the Stanford Underground Facility are reported. 1 Surface electron events The Cryogenic Dark Matter Search (CDMS) 1 utilizes

California at Berkeley, University of

69

WEC-Sim Wave Energy Converter Simulator - WEC-Sim-v1-0.zip -...  

Open Energy Info (EERE)

Sim-v1-0.zip Download WEC-Sim-v1-0.zip URL: http:en.openei.orgdatasetsdataset76407f83-43ed-4bac-a0aa-e2b6cacb70b9resource42b3c07c-2f71-47ed-b95b-c2f479d9aa99download...

70

Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays  

E-Print Network [OSTI]

Basic-region leucine-zipper transcription factors (bZIPs) contain a segment rich in basic amino acids that can bind DNA, followed by a leucine zipper that can interact with other leucine zippers to form coiled-coil homo- ...

Reinke, Aaron Wade

71

Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA  

SciTech Connect (OSTI)

Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ?35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5 increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-driveignition implosions by increasing the ablation pressure (1.6), which will allow for more stable implosions at ignition-relevant velocities.

Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2013-08-15T23:59:59.000Z

72

A Single Transition State Serves Two Mechanisms: An ab Initio Classical Trajectory Study of the Electron Transfer and Substitution  

E-Print Network [OSTI]

with the alkyl carbon. Substitution by oxygen, SUB(O), occurs by way of a separate SN2 transition Wayne State of the Electron Transfer and Substitution Mechanisms in Reactions of Ketyl Radical Anions with Alkyl Halides: Molecular dynamics has been used to investigate the reaction of a series of ketyl anion radicals and alkyl

Schlegel, H. Bernhard

73

Looking for a way to find utilites per zip code (a list?) | OpenEI  

Open Energy Info (EERE)

Looking for a way to find utilites per zip code (a list?) Looking for a way to find utilites per zip code (a list?) Home I am trying to map out utilities in the USA by ZIP codes. The EPA sent me to OpenEI (this is a nice validation of our group), or Energy Star. Does anyone know of a data set linking zip codes to utilities? I am trying to map something similar to what DSRIE.gov does with utilities and incentives. Thank you head of time. Submitted by Caniemeyer on 1 July, 2013 - 13:55 1 answer Points: 0 Hello- Yes, there is indeed a dataset that lists utilities by zip-code. It can be found on OpenEI here: http://en.openei.org/datasets/node/899. Be sure to view both the investor owned and non-investor owned lists. Since it was sourced from licensed Ventyx data, this is the most recent publicly available data we can provide. Please let me know if you have any questions

74

Name * First Last Address Street Address Address Line 2 City State ...  

E-Print Network [OSTI]

Name * First Last; Address. Street Address Address Line 2. City State / Province / Region Postal / Zip Code. United States, United Kingdom, Australia, Canada...

75

Name Name Address Place Zip Category Sector Telephone number Website  

Open Energy Info (EERE)

Category Sector Telephone number Website Category Sector Telephone number Website Coordinates Testing Facilities Overseen References Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street Shrewsbury Street Holden Massachusetts Category Testing Facility Operators Hydro Hydro http www aldenlab com http www aldenlab com Alden Tow Tank Alden Wave Basin Alden Small Flume Alden Large Flume Bucknell University Bucknell University Civil Mechanical Engineering Departments Hydraulic Flume Moore Avenue Dana Engineering Building Lewisburg Pennsylvania Category Testing Facility Operators Hydro http www bucknell edu x16287 xml Bucknell Hydraulic Flume Colorado State University Hydrodynamics Colorado State University Hydrodynamics Daryl B Simons Building Engineering Research Center Campus Delivery

76

Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution Annuals Data (Zip) Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

77

Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Gas Distribution Annuals Data (Zip) 7 Gas Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

78

Utah State Parks and Recreation | Open Energy Information  

Open Energy Info (EERE)

Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

79

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

AFS Trinity Power Corp AFS Trinity Power Corp Medina Washington State AFS Trinity Power Corp AFS Trinity Power Corp Medina Washington State Vehicles AGNI Motors AGNI Motors India Vehicles UK based manufacturer of DC Motors and Battery Management Systems for Electric Vehicles ATG GmbH ATG GmbH Gl tt Germany Vehicles Provider of products and solutions for using diesel or biodiesel at low temperatures and converting Diesel Operating Vehicles to Straight Vegetable Oil AVL Powertrain Engineering AVL Powertrain Engineering Halyard Drive Plymouth Michigan Vehicles https www avl com Able Energy Co Able Energy Co Mound View Rd River Falls Wisconsin Renewable Energy Services Gateway Solar Vehicles Solar EPC Contractor http www weknowsolar com Acciona Renault Nissan Alliance JV Acciona Renault Nissan Alliance JV Spain Vehicles Spain based joint venture to promote electric vehicles

80

Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence  

E-Print Network [OSTI]

intramolecular charge transfer reaction of 4- 1-azetidinyl benzonitrile P4C in ethyl acetate EA , acetonitrile ACN , and ethanol at several concentrations of lithium perchlorate LiClO4 has been investigated

Biswas, Ranjit

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Massachusetts Ballardvale Street Suite Massachusetts Ballardvale Street Suite A260 Wilmington Massachusetts Venture capital firm investing in early stage clean technology enterprises http www ventures com Greater Boston Area Advent International Advent International State Street Boston Massachusetts Global private equity firm http www adventinternational com Greater Boston Area Battery Ventures Battery Ventures Winter Street Suite Waltham Massachusetts Venture Capital http www battery com Greater Boston Area Black Coral Capital Black Coral Capital Union Street rd Floor Boston Massachusetts Cleantech private equity http www blackcoralcapital com Greater Boston Area Commons Capital Commons Capital Washington Street th floor Brookline Massachusetts Early stage venture capital fund http www commonscapital

82

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Brad Thompson Company st Ct NE Kirkland Washington Brad Thompson Company st Ct NE Kirkland Washington Energy developer http www bradtco com Pacific Northwest Area Clean Tech Trade Alliance Clean Tech Trade Alliance Wheaton Way Bremerton Washington Internationally focused hybrid trade alliance that will create a successful Clean Technology business cluster http www cleantechtradealliance org Pacific Northwest Area Northwest Biodiesel Network Northwest Biodiesel Network Phinney Ave N Seattle Washington To promote the use and benefits of biodiesel through awareness campaigns educational programs and specific initiatives http www nwbiodiesel org Pacific Northwest Area Puget Sound Clean Air Agency Puget Sound Clean Air Agency Third Avenue Seattle Washington Special purpose regional agency chartered by state

83

A quasi-steady state model to predict attic heat transfer and energy savings in residences using radiant barriers  

E-Print Network [OSTI]

[10-14] for Oak Ridge National Laboratories (ORNL) has focused on comparing energy reduction on three experimental houses operated by ORNL. Their research has consisted of both summer and winter tests of radiant barriers. Radiant Barrier...A QUASI-STEADY STATE MODEL TO PREDICT ATTIC HEAT TRANSFER AND ENERGY SAVINGS IN RESIDENCES USING RADIANT BARRIERS A Thesis by DAVID WALTER WINIARSKI Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment...

Winiarski, David Walter

2012-06-07T23:59:59.000Z

84

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Alliance for Clean Energy New York Alliance for Clean Energy New York Washington Ave Albany New York Coalition dedicated to promoting clean energy energy efficiency a healthy environment and a strong economy for the Empire State http www aceny org Northeast NY NJ CT PA Area Center for Clean Air Policy CCAP Center for Clean Air Policy CCAP First Street NE Suite Washington District of Columbia http www ccap org Northeast NY NJ CT PA Area Coalition for Rainforest Nations CfRN Coalition for Rainforest Nations CfRN Lexington Avenue th Floor New York New York http www rainforestcoalition org eng Northeast NY NJ CT PA Area Conservation International Conservation International Crystal Drive Suite Arlington Virginia http www conservation org Pages default aspx Northeast NY NJ CT PA Area Energy Sector Management Assistance Program of the World Bank ESMAP

85

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

A1 Sun Inc A1 Sun Inc th St Berkeley California Gateway Solar Solar A1 Sun Inc A1 Sun Inc th St Berkeley California Gateway Solar Solar PV Design and Installation http www a1suninc com Bay Area A10 Power A10 Power E Blithedale Ave Mill Valley California Gateway Solar Solar Financing and Integration http www a10power com Bay Area AEE Solar AEE Solar Redway Drive PO Box Redway California Gateway Solar http www aeesolar com Bay Area Acro Energy Acro Energy S Sierra Ave Oakdale California Gateway Solar solar energy systems http acroenergy com Bay Area Advance Power Inc Advance Power Inc N State St Calpella California Solar wind hydro http www advancepower net Bay Area Alten Alten J Old Middlefield Way Mountain View California Services Solar hot water and solar pool heating Bay Area Alten Solar Alten Solar Old Middlefield Way Suite J Mountain View California

86

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Ventures Massachusetts Ballardvale Street Suite Ventures Massachusetts Ballardvale Street Suite A260 Wilmington Massachusetts Venture capital firm investing in early stage clean technology enterprises http www ventures com Greater Boston Area Access Venture Partners Access Venture Partners Turnpike Drive Suite Westminster Colorado Venture Capital http www accessvp com Rockies Area Advanced Materials Partners Inc Advanced Materials Partners Inc Pine Street New Canaan Connecticut Venture investor http www amplink com Northeast NY NJ CT PA Area Advent International Advent International State Street Boston Massachusetts Global private equity firm http www adventinternational com Greater Boston Area African Development Bank African Development Bank Rue Joseph Anoma BP Abidjan Abidjan C te d Ivoire Ivory Coast http www afdb org en

87

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Entrepreneurs Network Austin Solar Energy Entrepreneurs Entrepreneurs Network Austin Solar Energy Entrepreneurs Network Austin Texas Provide networking opportunities for professionals to generate and attract Solar Energy businesses to Central Texas http www austinseen googlepages com Texas Area Austin Technology Incubator Austin Technology Incubator West Braker Lane Austin Texas http www ati utexas edu Texas Area Biodiesel Coalition of Texas Biodiesel Coalition of Texas Congress Avenue Austin Texas Non profit corporation created by biodiesel pioneers and industry leaders to ensure that biodiesel receives favorable treatment by state regulatory agencies and the Texas Legislature http www biodieselcoalitionoftexas org Texas Area Texas Renewable Energy Industries Association Texas Renewable Energy Industries Association P O Box Austin Texas Represents over member

88

ZIP CODE NUMBERS: SUFFOLK AND NASSAU COUNTY POST OFFICES SUFFOLK COUNTY  

E-Print Network [OSTI]

86 #12;87 ZIP CODE NUMBERS: SUFFOLK AND NASSAU COUNTY POST OFFICES SUFFOLK COUNTY Amagansett 11930 11784 Brightwaters 11718 Kings Park 11754 Setauket 11733 Brookhaven 11719 Lake Grove 11755 Shelter River 11739 Port Jefferson Station 11776 NASSAU COUNTY Albertson 11507 Greenvale 11548 Old Westbury

Ohta, Shigemi

89

2013 -2014 TRANSFER STUDENT SCHOLARSHIP APPLICATION PERSONAL INFORMATION  

E-Print Network [OSTI]

: State: Zip: Telephone: ( ) Birthdate: / / Ethnic Background: Black, Non-Hispanic Hispanic Native American White, Non-Hispanic Asian HIGH SCHOOL EDUCATION High School: Graduation Date: ACT Scores: SAT: ________________________________________________________________________ Household Address: ______________________________________________________________________________ Street

Hayes, Jane E.

90

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas 67260-0007 tele: (316) 978-3285 fax: (316) 978-3750  

E-Print Network [OSTI]

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas for each of its virtual development tools. www.vimo-tech.com ### CONTACT: Becky Hundley Technology Transfer for the commercialization of Olivares' technology is one that John Tomblin, vice president of research and technology

91

Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses  

E-Print Network [OSTI]

A technique for complete population transfer between the two end states $\\ket{1}$ and $\\ket{3}$ of a three-state quantum system with a train of $N$ pairs of resonant and coincident pump and Stokes pulses is introduced. A simple analytic formula is derived for the ratios of the pulse amplitudes in each pair for which the maximum transient population $P_2(t)$ of the middle state $\\ket{2}$ is minimized, $P_2^{\\max}=\\sin^2(\\pi/4N)$. It is remarkable that, even though the pulses are on exact resonance, $P_2(t)$ is damped to negligibly small values even for a small number of pulse pairs. The population dynamics resembles generalized $\\pi$-pulses for small $N$ and stimulated Raman adiabatic passage for large $N$ and therefore this technique can be viewed as a bridge between these well-known techniques.

Andon A. Rangelov; Nikolay V. Vitanov

2012-01-04T23:59:59.000Z

92

Transfer of radionuclides to animals: An historical perspective of work done in the United States  

SciTech Connect (OSTI)

This document describes historical aspects of the use of radionuclides in animals, particularly in the United States. (TEM)

Richmond, C.R.

1988-01-01T23:59:59.000Z

93

Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film  

E-Print Network [OSTI]

- cessing advantages as it is easily scalable and almost solvent-free. Solid-state, thin-film batteries, 2002. The ideal electrolyte material for a solid-state battery would have the ionic conductivity in solid-state lithium batteries, the purpose of this study was to inves- tigate the feasibility

Sadoway, Donald Robert

94

Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter  

E-Print Network [OSTI]

We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results ...

Yang, C. P.; Chu, Shih-I; Han, Siyuan

2004-03-01T23:59:59.000Z

95

The Effect of Structural Conformational Changes on Charge Transfer States in a Light-Harvesting Carotenoid-diaryl-Porphyrin-C60 Molecular Triad  

E-Print Network [OSTI]

We present a detailed study of charge transfer (CT) excited states for a large number of structural conformations in a light-harvesting Carotenoid-diaryl-Porphyrin-C60 (CPC60) molecular triad. The molecular triad undergoes a photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the conformational flexibility of the CPC 60 triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ~110 Debye (D) and ~160 Debye strongly indicate a range in conformational variability for the triad in the excited state, studying the effect of conformational changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the lowest CT excited state energies for a series of 14 triad conformers, where the structural conformations were generated by incrementally scanning a 360 degree torsional ...

Olguin, Marco; Baruah, Tunna

2013-01-01T23:59:59.000Z

96

Oil and Gas Company Oil and Gas Company Address Place Zip Website  

Open Energy Info (EERE)

Company Oil and Gas Company Address Place Zip Website Company Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat Petroleum Company Damascus Syria http www afpc sy com new history htm Dolphin Energy Dolphin Energy Abu Dhabi Trade Center Building Abu Dhabi United Arab Emirates http www dolphinenergy com Public default index htm ExxonMobil ExxonMobil Las Colinas Boulevard Irving Texas http www exxonmobil com Corporate Gazprom Gazprom Nametkina St Moscow Russia http www gazprom com Gulfsands Petroleum Gulfsands Petroleum Cork Street London United Kingdom W1S LG http www gulfsands com s Home asp Kuwait Petroleum Corporation Kuwait Petroleum Corporation Safat Kuwait http www kpc com kw default aspx

97

Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank  

E-Print Network [OSTI]

Quantum teleportation enables deterministic and faithful transmission of quantum states, provided a maximally entangled state is pre-shared between sender and receiver, and a one-way classical channel is available. Here, we prove that these resources are not only sufficient, but also necessary, for deterministically and faithfully sending quantum states through any fixed noisy channel of maximal rank, when a single use of the cannel is admitted. In other words, for this family of channels, there are no other protocols, based on different (and possibly cheaper) sets of resources, capable of replacing quantum teleportation.

Raffaele Romano; Peter van Loock

2010-04-01T23:59:59.000Z

98

Excited states and electron transfer in solution : models based on density functional theory  

E-Print Network [OSTI]

Our understanding of organic materials for solar energy conversion stands to benefit greatly from accurate, computationally tractable electronic structure methods for excited states. Here we apply two approaches based on ...

Kowalczyk, Timothy Daniel

2012-01-01T23:59:59.000Z

99

Business Name Year Address City State Zip Phone Email Address Contact  

E-Print Network [OSTI]

Last Name URL Products/Services NAICS Code NAICS Description &yet 2008 140 Gage Blvd Suite 100 Richland and user experience professionals. Build products, consult, and educate internationally and locally. 5415 Engineering, construction--air conditioning 5413 Architectural, engineering, and related services Advanced

100

Name (last, first, middle initial) Date of birth City, State, ZIP/Postal code  

E-Print Network [OSTI]

, as well as the social and professional consequences for those who cannot afford or choose not to use them that Art is not truth. Art is a lie that makes us realize truth, at least the truth that is given us to understand." Do you believe art is a lie? What kinds of truth may art (or if you prefer, fiction, music

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

State Oil and Gas Board State Oil and Gas Board Address Place...  

Open Energy Info (EERE)

Board State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Alabama http www gsa state al us ogb ogb html Alaska...

102

Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes  

SciTech Connect (OSTI)

A comparative study is presented of competitive fluorescences of three flavonols, 3-hydroxyflavone, 3,3[prime],4[prime],7-tetrahydroxyflavone (fisetin), and 4[prime]-diethylamino-3-hydroxyflavone (DHF). The normal fluorescence S[sub 1] [yields] S[sub 0] (400-nm region) is largely replaced by the proton-transfer tautomer fluorescence S[prime][sub 1] [yields] S[prime][sub 0] in the 550-nm region for all three of the flavonols in aprotic solvents at room temperature. For DHF in polar solvents the normal fluorescence becomes a charge-transfer fluorescence (460-500 nm) which competes strongly with the still dominant proton-transfer fluorescence (at 570 nm). In protic solvents, and at 77 K, the interference with intramolecular hydrogen bonding gives rise to greatly enhanced normal fluorescence, lowering the quantum yield of proton-transfer fluorescence. The utility of DHF as a discriminating fluorescence probe for protein binding sites is suggested by the strong dependence of the charge-transfer fluorescence on polarity of the environment and by various static and dynamic parameters of the charge-transfer and proton-transfer fluorescence which can be determined. 49 refs., 6 figs., 1 tab.

Sytnik, A.; Gormin, D.; Kasha, M. (Florida State Univ., Tallahassee, FL (United States))

1994-12-06T23:59:59.000Z

103

Cognitive transfer of spatial awareness states from immersive virtual environments to reality  

Science Journals Connector (OSTI)

An individual's prior experience will influence how new visual information in a scene is perceived and remembered. Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance ... Keywords: Perceptual graphics, human-computer interaction

Katerina Mania; Shahrul Badariah; Matthew Coxon; Phil Watten

2010-02-01T23:59:59.000Z

104

Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field  

SciTech Connect (OSTI)

We have studied the current-induced displacement of a 180 Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

Wang, Xi-guang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn; Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China)] [School of Physics and Electronics, Central South University, Changsha 410083 (China); Wang, D. [Department of Physics, National University of Defense Technology, Changsha 410073 (China)] [Department of Physics, National University of Defense Technology, Changsha 410073 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)] [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

2013-12-23T23:59:59.000Z

105

Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence  

Science Journals Connector (OSTI)

Temperature dependence of the excited state intramolecular charge transferreaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA) acetonitrile (ACN) and ethanol at several concentrations of lithium perchlorate ( LiClO 4 ) has been investigated by using the steady state and time resolved fluorescencespectroscopic techniques. The temperature range considered is 267343 K. The temperature dependent spectral peak shifts and reaction driving force ( ? ? G r ) in electrolytesolutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential regardless of solvents LiClO 4 concentrations and temperatures considered. Except at higher electrolyte concentrations in EA reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force ( ? ? G r ) the former in ethanol and ACN increases only linearly with the increase in driving force ( ? ? G r ) . The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

Tuhin Pradhan; Harun Al Rasid Gazi; Ranjit Biswas

2009-01-01T23:59:59.000Z

106

Production of autoionizing Rydberg states by transfer excitation in high energy ion atom collisions  

SciTech Connect (OSTI)

The method of zero-degree Auger spectroscopy was used to study the production of autoionizing Rydberg states in collisions of carbon and oxygen projectiles incident at several MeV on He gas and carbon foils. The autoionization electrons were measured with high resolution so that the quantum defect corresponding to the angular momenta of the Rydberg electrons could be observed. The main purpose of the present experiment is to gain information about the n and l distribution of the Rydberg electron captured in the collision. The well-known n/sup -3/ law is confirmed. For the He gas target it is found that the angular momenta p and d are predominantly produced. For the foil target the higher angular momenta are clearly enhanced. 15 refs., 6 figs.

Stolterfoht, N.; Miller, P.D.; Krause, H.F.; Yamazaki, Y.; Dittner, P.F.; Pepmiller, P.L.; Sellin, I.A.; Datz, S.

1986-01-01T23:59:59.000Z

107

A steady-state heat-transfer model for solids deposition from waxy mixtures in a pipeline  

Science Journals Connector (OSTI)

Abstract A steady-state heat-transfer model is presented for the formation of a deposit-layer from waxsolvent waxy mixtures in a pipeline under turbulent flow. The waxy mixture is taken to enter the pipeline under the single-phase hot flow regime (where the average mixture temperature is higher than its wax appearance temperature, WAT) and, upon gradual cooling, the mixture transitions into the cold flow regime (where its average temperature is lower than its WAT). The cold flow regime is characterized by two-phase flow, in which solid particles are suspended in the liquid phase. The effect of deposit aging is incorporated via a shear-induced deformation approach proposed in the literature. The model predictions are reported for the deposit thickness, waxy mixture temperature, pressure drop and the rate of heat loss in the hot flow and cold flow regimes for a range of inlet mixture temperature, surrounding temperature, and the Reynolds number. The predicted deposit thickness is shown to increase axially in the hot flow regime, to reach a maximum as the liquid temperature approaches the WAT of the waxsolvent mixture, and to decrease gradually to zero in the cold flow regime. The trends in the model predictions compare satisfactorily with those reported from bench-scale experimental studies as well as the predictions from an unsteady state moving boundary problem formulation.

Samira Haj-Shafiei; Dalia Serafini; Anil K. Mehrotra

2014-01-01T23:59:59.000Z

108

Pressure-tuning spectroscopy of charge-transfer salts. X-ray crystallography and comparative studies in solution and in the solid state  

SciTech Connect (OSTI)

The highly colored pyridinium (P{sup +}) and cobaltocenium (C{sup +}) iodides are charge-transfer salts by virtue of the new electronic absorption bands that follow Mulliken theory. X-ray crystallography establishes the relevant interionic separation and steric orientation of the cation/anion pairs P{sup +}I{sup {minus}} and C{sup +}I{sup {minus}} constrained for optimum charge-transfer interaction in the crystal lattice. Spectral comparisons of the charge-transfer (CT) transitions by absorption (solution) and by diffuse reflectance (solid-state) measurements reveals the commonality of contact ion pairs (CIP) in aprotic nonpolar solvents (dichloromethane) with those extant in crystalline charge-transfer salts. As such, the compression of the charge-transfer salts P{sup +}I{sup {minus}} in the solid state by the application of pressures up to 140 kbar leads to unusual red shifts of the CT bands indicative of the dominance of destabilizing charge-transfer interactions.

Bockman, T.M.; Kochi, J.K. (Univ. of Houston, TX (USA)); Chang, H.R.; Drickamer, H.G. (Univ. of Illinois, Urbana (USA))

1990-11-01T23:59:59.000Z

109

Enhanced Photoresponse in Solid-State Excitonic Solar Cells via Resonant Energy Transfer and Cascaded Charge Transfer from a Secondary Absorber  

Science Journals Connector (OSTI)

Frster resonant energy transfer from spiro-TBT to the near-infrared sensitizing dye TT1 was verified through a survey of the photoluminescence properties of the FRET pair including emission and excitation profiles and decay dynamics. ... with the dark current. ...

Kristina Driscoll; Junfeng Fang; Nicola Humphry-Baker; Toma?s Torres; Wilhelm T. S. Huck; Henry J. Snaith; Richard H. Friend

2010-11-09T23:59:59.000Z

110

UNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION  

E-Print Network [OSTI]

program in order to reduce Federal employee's contribution to traffic congestion and air pollutionUNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION PUBLIC TRANSPORTATION BENEFIT PROGRAM): ____________ City (Residence): __________________________State: _______________ Zip Code: ________________ Air Force

111

Physical Nature of Intermolecular Interactions within cAMP-Dependent Protein Kinase Active Site: Differential Transition State Stabilization in Phosphoryl Transfer Reaction  

Science Journals Connector (OSTI)

Physical Nature of Intermolecular Interactions within cAMP-Dependent Protein Kinase Active Site: Differential Transition State Stabilization in Phosphoryl Transfer Reaction ... The remarkable enhancement of reaction rates resulting from enzymes action has been a matter of the utmost interest for over a century. ...

Pawel Szarek; Edyta Dyguda-Kazimierowicz; Akitomo Tachibana; W. Andrzej Sokalski

2008-08-23T23:59:59.000Z

112

2009 Carb Sequestration Workshop Presentations for Download (zipped) 1. Click on Title to go to presentations and download.  

E-Print Network [OSTI]

Laboratory Geochemical Tools for Monitoring Geologic Carbon Sequestration, (David Cole, ORNL) Andre Duguid-surface carbon sequestration T.S. Ramakrishnan (Jim Johnson, speaker) Schlumberger Capacity and Injectivity2009 Carb Sequestration Workshop Presentations for Download (zipped) 1. Click on Title to go

Daniels, Jeffrey J.

113

ENHANCING THE TRANSFER STUDENT  

E-Print Network [OSTI]

Efforts #12;Who Are Ohio State Transfer Students? #12;TRANSFER PROFILE DatafromSU12,AU12,SP13 3 as NFYS: 576 Average Transfer Hours of Enrolled Student: 52.2 Living on Campus: 470 Total # Sending Expectations (time management skills, balancing a more rigorous course load, study skills) 13.24% Majors (how

114

TECHNOLOGY TRANSFER  

Broader source: Energy.gov (indexed) [DOE]

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

115

Testing the technical state of gas-transferring unit compressor cases and their repair under the conditions of compressor stations  

Science Journals Connector (OSTI)

Problems related to the use of nondestructive testing methods during engineering diagnostics of the cast cases of compressors that are used in gas-transfer units that operate in gas-main pipelines are considered....

I. I. Kryukov; N. A. Kalinin; S. A. Leontev

2011-02-01T23:59:59.000Z

116

Heat Transfer and Convection Currents  

Science Journals Connector (OSTI)

...October 1965 research-article Heat Transfer and Convection Currents D. C...convection in a medium with internal heat generation is discussed semi-quantitatively...States English United Kingdom 1966 Heat transfer and convection currents Tozer D...

1965-01-01T23:59:59.000Z

117

Energy Transfer-MDE | Open Energy Information  

Open Energy Info (EERE)

Transfer-MDE Transfer-MDE Jump to: navigation, search Name Energy Transfer-MDE Address 1100 Steubenville Rd Place Carrollton, Ohio Zip 4415 Sector Biofuels, Geothermal energy, Solar, Wind energy Product Manufacturing Phone number 330-627-4122 Website http://www.energytransferinc.c Coordinates 40.5560917°, -81.0535637° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5560917,"lon":-81.0535637,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Determination of vaporization efficiencies and overall mass transfer coefficients from a packed absorber at steady state operation  

E-Print Network [OSTI]

typical tower used in gas absorption is shown in Figure l. A gas mixture, referred to as the rich gas is introduced at the bottom of the tower and is contacted counter-currently with the lean oil introduced at the top of the tower. The gas leaving... the towe" is called the lean gas and the liquid leaving the tower is called rich oil. The heavier components in the rich gas are absorbed in part by the lean oil. The driving force for the mass transfer of a component from the vapor phase to the liquid...

McDaniel, Ronald

2012-06-07T23:59:59.000Z

119

Distance Dependence of Intrahelix RuII* to OsII Polypyridyl Excited-State Energy Transfer in Oligoproline Assemblies  

Science Journals Connector (OSTI)

M. Kyle Brennaman , Cavan N. Fleming , Cheryl A. Slate , Scafford A. Serron , Stephanie E. Bettis , Bruce W. Erickson , John M. Papanikolas , and Thomas J. Meyer * ... Wilger, D. J.; Bettis, S. E.; Materese, C. K.; Minakova, M.; Papoian, G. A.; Papanikolas, J. M.; Waters, M. L.Tunable Energy Transfer Rates via Control of Primary, Secondary, and Tertiary Structure of a Coiled Coil Peptide Scaffold Inorg. ... Wilger, Dale J.; Bettis, Stephanie E.; Materese, Christopher K.; Minakova, Maria; Papoian, Garegin A.; Papanikolas, John M.; Waters, Marcey L. ...

M. Kyle Brennaman; Cavan N. Fleming; Cheryl A. Slate; Scafford A. Serron; Stephanie E. Bettis; Bruce W. Erickson; John M. Papanikolas; Thomas J. Meyer

2013-05-01T23:59:59.000Z

120

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

B(E2) strength ratio of one-phonon 2+ states of 94Zr from electron scattering at low momentum transfer  

E-Print Network [OSTI]

Background: The B(E2) transition strength to the 2+_2 state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 2+_1 state from lifetime measurements with the Doppler-shift attenuation method (DSAM) using the (n,n'gamma) reaction [E. Elhami et al., Phys. Rev. C 75, 011301(R) (2007)]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: The goal is an independent determination of the ratio of B(E2) strengths for the transitions to the 2+_(1,2) states of 94Zr with inelastic electron scattering. Method: The relative population of the 2+_(1,2) states in (e,e') reactions was measured at the SDALINAC in a momentum transfer range q = 0.17 - 0.51 fm^(-1) and analyzed in plane-wave Born approximation with the method described in A. Scheikh Obeid et al., Phys. Rev. C 87, 014337 (2013). Results: The extracted B(E2) strength ratio of 0.789(43) between the excitation of the 2+_1 and 2+_2 states of 94Zr is consistent with but more precise than the latest (n,n'gamma) experiment. Using the B(E2) transition strength to the fi?rst excited state from the literature a value of 3.9(9) W.u. is deduced for the B(E2; 2+_2 -> 0+_1) transition. Conclusions: The electron scattering result independently confirms the latest interpretation of the different (n,n'gamma) results for the transition to the 2+_2 state in 94Zr.

A. Scheikh Obeid; S. Aslanidou; J. Birkhan; A. Krugmann; P. von Neumann-Cosel; N. Pietralla; I. Poltoratska; V. Yu. Ponomarev

2014-01-20T23:59:59.000Z

122

Enantioselectivities in electron-transfer and excited state quenching reactions of a chiral ruthenium complex possessing a helical structure  

SciTech Connect (OSTI)

The outer-sphere electron-transfer reactions between diastereomers of Ru(menbyp){sub 3}{sup {sm_bullet}+} (menbpy = 4,4{prime}-di{l_brace}(1R,2S,5R)-({minus})-menthoxycarbonyl{r_brace}-2,2{prime}-bipyridine) and enantiomers of Co(acac){sub 3} and Co(edta){sup {minus}} have been studied by pulse radiolysis. {Delta}-Ru(menbpy){sub 3}{sup {sm_bullet}+} rapidly reduces Co(acac){sub 3} in 85% EtOH/H{sub 2}O (1 mM NaH{sub 2}PO{sub 4}) with second-order rate constants of (2.1 {+-} 0.1) {times} 10{sup 7} and (7.8 {+-} 0.2) {times} 10{sup 6}/M s for the {Delta}- and {Gamma}-Co(acac){sub 3} enantiomers, respectively, and an enantioselectivity factor (EF) of 2.7. {Gamma}-Ru(menbyp){sub 3}{sup {sm_bullet}+} preferentially reduces {Gamma}-Co(acac){sub 3} with an enantioselectivity factor (EF) of 0.8. Activation volume data ({Delta}V{sup {double_dagger}}) suggest that the association between the {Delta}{single_bond}{Delta} isomers in the encounter complex allows closer interaction of the metal centers than between the other isomer combinations. The value of (EF) for the reaction of {Delta}- and {Gamma}-co(edta){sup {minus}} with {Delta}-Ru(menbpy){sub 3}{sup {sm_bullet}+} is 1.2. Electron-transfer reactions of seven racemic Ru(L){sub 3}{sup {sm_bullet}+} (L = substituted phenanthroline) complexes with Co(acac){sub 3} were also studied and gave rate constants of {approx}1.5 {times} 10{sup 9}/M s. The quenching of photoexcited {sup *}Ru(menbpy){sub 3}{sup 2+} by Co(acac){sub 3} and Co(edta){sup {minus}} exhibits small stereoselectivity: For Co(acac){sub 3} in 95 and 85% EtOH/H{sub 2}O the enantioselectivity factor is 1.2 and 1.1, respectively, barely outside the experimental error. For all other cases the selectivity was unity within the experimental error of the measurement. The quenching rate constants were {approx}1 {times} 10{sup 8} and 1.1 {times} 10{sup 9}/M s for Co(acac){sub 3} and Co(edta){sup {minus}}, respectively. Quenching reactions of seven racemic ruthenium(II) phenanthroline complexes with Co(acac){sub 3} were also studied and found to be faster than those of Ru(menbpy){sub 3}{sup 2+} by only a factor of {approx}3 despite an increase in the driving force of {approx}0.5 eV for electron-transfer quenching. The quenching of {sup *}Ru(menbpy){sub 3}{sup 2+} by Co(acac){sub 3} is dominated by an energy-transfer mechanism. This conclusion is supported by the magnitude of the quenching rate constants compared with the rate constants for reduction by Ru(menbpy){sub 3}{sup {sm_bullet}+}, the effect of driving-force changes on the quenching rate constant, the low quantum yield of Co(II) products observed in the CW photolysis, and the lack of long-lived products observed in the flash photolysis experiments. The factors responsible for the selectivity exhibited in the CW photolysis studies of Ru(menbpy){sub 3}{sup 2+} with Co(acac){sub 3} are discussed.

Hamada, Taisuke; Eifuku, Kenji; Sakaki, Shigeyoshi [Kumamoto Univ., Kurokami (Japan). Dept. of Applied Chemistry and Biochemistry] [Kumamoto Univ., Kurokami (Japan). Dept. of Applied Chemistry and Biochemistry; Brunschwig, B.S.; Fujita, E.; Wishart, J.F. [Brookhaven National Lab., Upton, NY (United States). Chemistry Dept.] [Brookhaven National Lab., Upton, NY (United States). Chemistry Dept.; Koerner, M.; Eldik, R. van [Univ. of Erlangen-Nuernberg (Germany). Inst. for Inorganic Chemistry] [Univ. of Erlangen-Nuernberg (Germany). Inst. for Inorganic Chemistry

1999-07-22T23:59:59.000Z

123

B(E2) strength ratio of one-phonon 2+ states of 94Zr from electron scattering at low momentum transfer  

E-Print Network [OSTI]

Background: The B(E2) transition strength to the 2+_2 state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 2+_1 state from lifetime measurements with the Doppler-shift attenuation method (DSAM) using the (n,n'gamma) reaction [E. Elhami et al., Phys. Rev. C 75, 011301(R) (2007)]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: Independent determination of the ratio of B(E2) strengths for the transitions to the 2+_(1,2) states of 94Zr with inelastic electron scattering. Method: The relative population of the 2+_(1,2) states in (e,e') reactions was measured at the SDALINAC in a momentum transfer range q = 0.17 - 0.51 fm^(-1) and analyzed in plane-wave Born approximation with the method described in A. Scheikh Obeid et al., Phys. Rev. C 87, 014337 (2013). Results: The extracted B(E2) strength ratio of 0.789(43) between the excita...

Obeid, A Scheikh; Birkhan, J; Krugmann, A; von Neumann-Cosel, P; Pietralla, N; Poltoratska, I; Ponomarev, V Yu

2014-01-01T23:59:59.000Z

124

Laser assisted charge transfer reactions in slow ionatom collisions: Coupled dressed quasimolecular?states approach  

E-Print Network [OSTI]

d i a b a t i c equations which offer computational advantage. The method is illustrated by a case study of the laser assisted charge exchange process He+ ++H(1s)+???He+(n=2)+H+, in a two?state approximation, for the velocity range from 1.5105 to 2...

Chu, Shih-I; Ho, TakSan; Laughlin, Cecil

1984-03-01T23:59:59.000Z

125

Transferring Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

126

Transfer Guide: Philosophy: General Philosophy Concentration Revised: 1 December 2009 TRANSFER GUIDE AND PLANNING WORKSHEET  

E-Print Network [OSTI]

Transfer Guide: Philosophy: General Philosophy Concentration Revised: 1 December 2009 TRANSFER Degree ­ Philosophy general philosophy concentration This planning worksheet represents a guide for community college students transferring to Colorado State University and majoring in Philosophy: general

127

State  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Producers and Production Capacity by State, September 2013 Biodiesel Producers and Production Capacity by State, September 2013 State Number of Producers Annual Production Capacity (million gallons per year) Alabama 3 47 Alaska - - Arizona 1 2 Arkansas 3 85 California

128

bZIP67 Regulates the Omega-3 Fatty Acid Content of Arabidopsis Seed Oil by Activating FATTY ACID DESATURASE3  

Science Journals Connector (OSTI)

...for a broad variety of industrial applications (Lu et...used to assist in the assessment of overall differences...place bZIP67 near the center of gene regulatory networks...analysis and quantitative assessment of changes in neutral...feed, biofuel, and industrial applications. Curr...

Ana Mendes; Amélie A. Kelly; Harrie van Erp; Eve Shaw; Stephen J. Powers; Smita Kurup; Peter J. Eastmond

2013-08-30T23:59:59.000Z

129

UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter  

Science Journals Connector (OSTI)

...Instructions for Authors ( www.plantcell.org ) is: Roman Ulm ( roman.ulm@unige.ch ). [W] Online version contains Web-only data. [OPEN] Articles can be viewed online without a subscription. The bZIP transcription factor HY5 plays an important...

Melanie Binkert; László Kozma-Bognár; Kata Terecskei; Lieven De Veylder; Ferenc Nagy; Roman Ulm

2014-10-28T23:59:59.000Z

130

Vibrational mode and collision energy effects on reaction of H{sub 2}CO{sup +} with C{sub 2}H{sub 2}: Charge state competition and the role of Franck-Condon factors in endoergic charge transfer  

SciTech Connect (OSTI)

The effects of collision energy (E{sub col}) and six different H{sub 2}CO{sup +} vibrational states on the title reaction have been studied over the center-of-mass E{sub col} range from 0.1 to 2.6 eV, including measurements of product ion recoil velocity distributions. Ab initio and Rice-Ramsperger-Kassel-Marcus calculations were used to examine the properties of complexes and transition states that might be important in mediating the reaction. Reaction is largely direct, despite the presence of multiple deep wells on the potential surface. Five product channels are observed, with a total reaction cross section at the collision limit. The competition among the major H{sub 2}{sup +} transfer, hydrogen transfer, and proton transfer channels is strongly affected by E{sub col} and H{sub 2}CO{sup +} vibrational excitation, providing insight into the factors that control competition and charge state 'unmixing' during product separation. One of the more interesting results is that endoergic charge transfer appears to be controlled by Franck-Condon factors, implying that it occurs at large inter-reactant separations, contrary to the expectation that endoergic reactions should require intimate collisions to drive the necessary energy conversion.

Liu Jianbo; Van Devener, Brian; Anderson, Scott L. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

2005-11-22T23:59:59.000Z

131

Labor/Tuition Cost Transfers Involving Sponsored Funds Labor Cost Transfer (Attach Labor Redistribution Worksheet)  

E-Print Network [OSTI]

Labor/Tuition Cost Transfers Involving Sponsored Funds Labor Cost Transfer (Attach Labor Redistribution Worksheet) Tuition Cost Transfer Greater Than 90 days or Cross Semesters (Attach BRIO Query) Date state that all cost transfers should be requested within 90 days of the original expenditure

Salama, Khaled

132

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

133

ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3. 07. 9 - steady-state film boiling in upflow  

SciTech Connect (OSTI)

Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

1982-05-01T23:59:59.000Z

134

Electron Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

135

Automated Operating Procedures for Transfer Limits  

E-Print Network [OSTI]

Automated Operating Procedures for Transfer Limits Final Project Report Power Systems Engineering · Illinois · Iowa State · Texas A&M · Washington State · Wisconsin Automated Operating Procedures

136

NETL: Tech Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensing & Technology Transfer Available Technologies Partnerships and Licensing Success Stories Contact Us Technology transfer is the process of transferring new technologies...

137

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015...

138

United States Department of State | Open Energy Information  

Open Energy Info (EERE)

State State Jump to: navigation, search Logo: United States Department of State Name United States Department of State Address 2201 C Street NW Place Washington, DC Zip 20520 Region Northeast - NY NJ CT PA Area Phone number 202-647-4000 Website http://www.state.gov/ Coordinates 38.8948374°, -77.0468443° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8948374,"lon":-77.0468443,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Observation of high-j quasiparticle states in {sup 249}Cm by in-beam {gamma}-ray spectroscopy using heavy-ion transfer reactions  

SciTech Connect (OSTI)

We have measured de-excitation {gamma} rays in {sup 249}Cm populated by one-neutron stripping reactions with a {sup 248}Cm target and 162-MeV {sup 16}O, 162-MeV {sup 18}O, and 120-MeV {sup 13}C beams. {gamma} rays in {sup 249}Cm were identified by measuring kinetic energies of outgoing particles using Si {delta}E-E detectors. It was demonstrated that high-j orbitals were selectively populated in the ({sup 16}O, {sup 15}O) reaction having a large negative Q value. We have observed eight quasiparticle states above the deformed shell gap of N=152. The 1/2{sup +}[620], 1/2{sup -}[750], and 7/2{sup +}[613] bands were extended up to 19/2{sup +}, 19/2{sup -}, and 13/2{sup +} states, respectively. We have established the 9/2 9/2{sup +}[615] state at 526 keV, the 9/2 9/2{sup +}[604] state with a short life of T{sub 1/2}<<2 ps at 1030 keV, and the 11/2 11/2{sup -}[725] state with T{sub 1/2}=19(1) ns at 375 keV. Furthermore, the 17/2 1/2{sup +}[880] state, having a large component of the k{sub 17/2} spherical single-particle state, has been identified at 1505 keV. We discuss the properties of those quasiparticle states in the framework of a deformed shell model.

Ishii, T. [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Makii, H. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1195 (Japan); Asai, M.; Tsukada, K.; Toyoshima, A. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Matsuda, M. [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Makishima, A. [Department of Liberal Arts and Sciences, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan); Shigematsu, S.; Kohno, T. [Department of Energy Sciences, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Kaneko, J.; Ogawa, M. [Department of Radiological Sciences, Komazawa University, Setagaya, Tokyo 154-8525 (Japan); Shizuma, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Toume, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Hossain, I. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

2008-11-15T23:59:59.000Z

140

Ultrafast Pump-Probe Studies of Excited-State Charge-Transfer Dynamics in Blue Copper Lewis D. Book, David C. Arnett, Hanbo Hu, and Norbert F. Scherer*,  

E-Print Network [OSTI]

and the James Franck Institute, UniVersity of Chicago, Chicago, Illinois 60637, EnVironmental Molecular Sciences, the coupling between the redox states, and the reorganization energy of nuclear degrees of freedom.4 Although It is especially difficult to study the effect of specific protein modes on dynamics in thermally activated

Scherer, Norbert F.

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Single Transition State Serves Two Mechanisms. Ab Initio Classical Trajectory Calculations of the Substitution-Electron Transfer Branching Ratio in CH2O-+ CH3Cl  

E-Print Network [OSTI]

are the SN2-SN1 spectrum and the -elimination E2-E1 spectrum,3-5 with their borderline regions, which possess of Computational Chemistry, Hebrew UniVersity, Jerusalem 91904, Israel ReceiVed: July 16, 2004 The reaction of a formaldehyde radical anion with methyl chloride is an example of a reaction in which a single transition state

Schlegel, H. Bernhard

142

arXiv:0705.3777v1[quant-ph]25May2007 Role of interference in quantum state transfer through spin chains  

E-Print Network [OSTI]

. In particular, spin chains can be used as transmission lines for quantum states without the need to have´eorique, IRSAMC, UMR 5152 du CNRS, Universit´e Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, FRANCE We parallel quantum channels [6, 7]. In [8] it was shown that the transmission even through very long chains

Bruder, Christoph

143

Physician Name Phone Fax Street Suite City State Zip Specialty ABACI,ASLI 585-271-0444 585-271-1464 980 WESTFALL RD ROCHESTER NY 14619  

E-Print Network [OSTI]

-000-0000 955 E 11400 S SANDY UT 84094 ABBISI,SAIFY A 814-642-7205 814-642-9189 45 PINE STREET PORT ALLEGANY PA

Goldman, Steven A.

144

Sitewide Categorical Exclusion for Property Transfers,  

Broader source: Energy.gov (indexed) [DOE]

Sitewide Categorical Exclusion for Property Transfers, Sitewide Categorical Exclusion for Property Transfers, Pacific Northwest National Laboratory, Richland, Washington Proposed Action The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to transfer, lease, disposition, or acquire interests in personal property or real property. Location of Action The proposed action would occur on the Pacific Northwest National Laboratory (PNNL) site and the Marine Sciences Laboratory and in the vicinity of PNNL facilities in the State of Washington.

145

Proton-Coupled Electron Transfer  

SciTech Connect (OSTI)

Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid?base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron?proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ ?. Multiple-Site Electron?Proton Transfer (MS-EPT) is an elementary step in which an electron?proton donor transfers electrons and protons to different acceptors, or an electron?proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e{sup -}/2H{sup +} MS-EPT. PCET achieves redox potential leveling between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving force for long-range proton transfer in Photosysem II and through other biological membranes. In EPT, simultaneous transfer of electrons and protons occurs on time scales short compared to the periods of coupled vibrations and solvent modes. A theory for EPT has been developed which rationalizes rate constants and activation barriers, includes temperature- and driving force (?G)-dependences implicitly, and explains kinetic isotope effects. The distance-dependence of EPT is dominated by the short-range nature of proton transfer, with electron transfer being far less demanding.Changes in external pH do not affect an EPT elementary step. Solvent molecules or buffer components can act as proton donor acceptors, but individual H2O molecules are neither good bases (pK{sub a}(H{sub 3}O{sup +}) = ?1.74) nor good acids (pK{sub a}(H{sub 2}O) = 15.7). There are many examples of mechanisms in chemistry, in biology, on surfaces, and in the gas phase which utilize EPT. PCET and EPT play critical roles in the oxygen evolving complex (OEC) of Photosystem II and other biological reactions by decreasing driving force and avoiding high-energy intermediates.

Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J

2012-01-01T23:59:59.000Z

146

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME  

E-Print Network [OSTI]

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION and what it might cost. Edinburgh Technology Transfer Centre Limited ("the company") has adopted the Model Unless otherwise stated, Edinburgh Technology Transfer Centre Limited reserves copyright in all

Edinburgh, University of

147

LORAIN COUNTY COMMUNITY COLLEGE TRANSFER GUIDE  

E-Print Network [OSTI]

LORAIN COUNTY COMMUNITY COLLEGE TRANSFER GUIDE KEY Unless stated, web-based courses 268 NURS 201 BIOG 273 BIOL 326 #12;CASE WESTERN RESERVE UNIVERSITY 2 LORAIN COUNTY COMMUNITY COLLEGE UNIVERSITY 3 LORAIN COUNTY COMMUNITY COLLEGE TRANSFER GUIDE DEPARTMENT LCCC CASE History (continued) HSTR 262

Rollins, Andrew M.

148

Transferring Data at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

149

Energetics of protein charge transfer and photosynthesis  

E-Print Network [OSTI]

Energetics of protein charge transfer and photosynthesis Dmitry Matyushov Arizona State scheme is to snap a proton from solution! #12; Bacterial photosynthesis e 0.25 eV lost in two

Matyushov, Dmitry

150

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

151

Variable-temperature emission studies of solvation dynamics: Evidence for coupling of solvation to chromophore structural dynamics in the evolution of charge-transfer excited states  

SciTech Connect (OSTI)

Variable-temperature emission data over the range 90--298 K have been collected for a series of bipyridyl complexes of Ru{sup II}. Spectra obtained for [Ru(dmb){sub 3}]{sup 2+} (dmb = 4,4{prime}-dimethyl-2,2{prime}-bipyridine), [Ru(dpb){sub 3}]{sup 2+} (dpb = 4,4{prime}-diphenyl-2,2{prime}-bipyridine), [Ru(dotb){sub 3}]{sup 2+} (dotb = 4,4{prime}-di-o-tolyl-2,2{prime}-bipyridine), and [Ru(dmesb){sub 3}]{sup 2+} (dmesb = 4,4{prime}-dimesityl-2,2{prime}-bipyridine) in 4:1 EtOH/MeOH show similar trends in terms of both the red shift of the emission spectrum and the thermal breadth of the solvent response as the temperature is increased through the glass-to-fluid transition. In contrast, data collected in 2-MeTHF show a strong dependence on the identity of the chromophore, the details of the spectral evolution qualitatively correlating with changes in the steric demands of the system. The most dramatic effect is observed for [Ru(dmesb){sub 3}]{sup 2+}, in which there is an apparent change in the nature of the emitting species with increasing temperature. These observations suggest a strong coupling of solvation dynamics and solute structure in the low-temperature regime as well as at intermediate temperatures where the structure of the chromophore is evolving in the course of excited-state relaxation. The results underscore the potential importance of specific solvent-solute interactions in the dynamics of solvation for cases in which large-amplitude molecular motion of the chromophore accompanies thermalization of the excited state.

Damrauer, N.H.; McCusker, J.K.

1999-09-20T23:59:59.000Z

152

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

153

Radiative heat transfer in a flow of rheologically complex fluid  

Science Journals Connector (OSTI)

The problem of complex radiative and convective heat transfer in steady-state generalized Couette flow of a nonlinear viscoplastic fluid is examined.

V. F. Volchenok; Z. P. Shul'man

1980-09-01T23:59:59.000Z

154

Laser excited, state detected calcium?rare gas collisional energy transfer: Ca(4s5p? 1 P 1) spin changing and Ca(4s5p? 3 P 1) fine structure changing cross sections  

Science Journals Connector (OSTI)

Pulsed dye laser excitation along with time and wavelength?resolved fluorescence detection techniques are used to measure cross sections for state changing collisions of Ca(4s5p? 1 P 1) and Ca(4s5p? 3 P 1) with the rare gases He Ne Ar Kr and Xe. The Ca(4s5p? 1 P 1)+M deactivation involves a near?resonant spin changing process which populates predominantly the Ca(4s5p? 3 P 2 1 0) states. The total deactivation cross sections for 1 P 1 are 22 25 5 3 13 and 31 2 (20%) for 3He 4He Ne Ar Kr and Xe respectively. The cross sections for Ca(4s5p? 3 P 1)+M fine?structure changes are 38 25 46 56 and 135 2 (35%) for He Ne Ar Kr and Xe respectively. Branching ratios for the electronic energy transfer Ca(4s5p? 1 P 1)+He?Ca(4s5p? 3 P j 3d4p? 3 F j and 3d4p? 1 D 2)+He are determined to be 903:64:32 respectively compared to statistical values of 26:60:14. The predominant product states 4s5p 3 P 2 1 0 are produced by a near?resonant spin changing process; the fine structure components of the 3 P state are populated essentially statistically (55:33:11). Fine?structure branching Ca(4s5p? 3 P 1)+M?Ca(4s5p? 3 P 2 0)+M is also measured and gives a statistical distribution of Ca(4s5p? 3 P 2 0) states. The radiative lifetimes of the 4s5p? 1 P 1 and 4s5p? 3 P 1 levels are measured to be 652 and 718 ns respectively. The results are discussed in terms of the competing effects of velocity and interaction strengths on the curve crossing probabilities.

Michael O. Hale; Stephen R. Leone

1983-01-01T23:59:59.000Z

155

BLM Nevada State Office | Open Energy Information  

Open Energy Info (EERE)

BLM Nevada State Office BLM Nevada State Office Jump to: navigation, search Logo: BLM Nevada State Office Name BLM Nevada State Office Short Name Nevada Parent Organization Bureau of Land Management Address 1340 Financial Blvd Place Reno, NV Zip 89502 Phone number 775-861-6400 Website http://www.blm.gov/nv/st/en/in References BLM Nevada State Office[1] Divisions Place BLM Battle Mountain District Office Battle Mountain, Nevada Battle Mountain, Nevada BLM Carson City District Office Carson City, Nevada Carson City, Nevada BLM Winnemucca District Office Winnemucca, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Nevada State Office is an organization based in Reno, Nevada. References ↑ "BLM Nevada State Office" Retrieved from "http://en.openei.org/w/index.php?title=BLM_Nevada_State_Office&oldid=606459"

156

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network [OSTI]

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

157

Analysis of heat transfer in unlooped and looped pulsating  

E-Print Network [OSTI]

Analysis of heat transfer in unlooped and looped pulsating heat pipes M.B. Sha®i and A. Faghri of Mechnical Engineering, New Mexico State University, Las Cruces, USA Keywords Heat transfer, Condensation, Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

Zhang, Yuwen

158

Wireless Power Transfer  

ScienceCinema (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-11-19T23:59:59.000Z

159

NERSC's Data Transfer Nodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

160

Inverse Energy Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which is unstable. It saturates by transfer to a separate, damped eigenmode (i.e., a subcritical spectrum of damped waves). Inverse energy transfer is carried by three-wave...

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

162

Phase-Transfer Catalysts  

Science Journals Connector (OSTI)

In previous chapters we learned that a phase-transfer catalyst must have two particular chemical functions to be successful, that is, it must rapidly transfer one of the reactant species into the normal phase ...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

163

STATEWIDE TRANSFER ARTICULATION AGREEMENT for a Bachelor's Degree in  

E-Print Network [OSTI]

Denver University of Northern Colorado Western State Colorado University 1 Adams State University alsoSTATEWIDE TRANSFER ARTICULATION AGREEMENT for a Bachelor's Degree in ECONOMICS Between COLORADO PUBLIC COMMUNITY/JUNIOR COLLEGES Aims Community College Arapahoe Community College Colorado Mountain

164

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

165

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

166

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

167

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

168

State of the States: Fuel Cells in America 2013  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Technology Transfer SCRA South Carolina Research Authority SECA Solid State Energy Conversion Alliance SGIP California's Self Generation Incentive Program SOFC Solid...

169

Dynamics of heat transfer between nano systems  

E-Print Network [OSTI]

We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

Svend-Age Biehs; Girish S. Agarwal

2012-10-18T23:59:59.000Z

170

Nuclear reorganization barriers to electron transfer  

SciTech Connect (OSTI)

The nuclear barrier to electron transfer arises from the need for reorganization of intramolecular and solvent internuclear distances prior to electron transfer. For reactions with relatively small driving force (''normal'' free-energy region) the nuclear factors and rates increase as intrinsic inner-shell and outer-shell barriers decrease; this is illustrated by data for transition metal complexes in their ground electronic states. By contrast, in the inverted free-energy region, rates and nuclear factors decrease with decreasing ''intrinsic'' barriers; this is illustrated by data for the decay of charge-transfer excited states. Several approaches to the evaluation of the outer-shell barrier are explored in an investigation of the distance dependence of the nuclear factor in intramolecular electron-transfer processes. 39 refs., 14 figs., 3 tabs.

Sutin, N.; Brunschwig, B.S.; Creutz, C.; Winkler, J.R.

1988-01-01T23:59:59.000Z

171

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

172

Orange County Zip Codes Jurisdiction Zip Note By Zip Jurisdiction Note  

E-Print Network [OSTI]

Irvine Anaheim Hills 92807 92603 Irvine Anaheim Hills 92808 92604 Irvine Anaheim Hills 92809 92605 Huntington Beach PO Box Only Anaheim Hills 92817 92606 Irvine Atwood 92870 92607 Laguna Beach Duplicate; PO 92609 Lake Forest PO Box Only Brea 92821 92610 El Toro Brea 92822 PO Box Only 92610 Foothill Ranch Brea

de Lijser, Peter

173

Orange County Zip Codes By Jurisdiction Zip Note By Zip Jurisdiction Note  

E-Print Network [OSTI]

only 92607 Laguna Niguel Duplicate; PO Box only Brea 92823 92609 Lake Forest PO Box only Buena Park Valley 92728 Duplicate; PO Box only 92629 Dana Point Fullerton 92831 92630 Lake Forest Fullerton 92832 92637 Laguna Hills duplicate Fullerton 92833 92637 Laguna Woods duplicate Fullerton 92834 PO Box only

de Lijser, Peter

174

NREL: Technology Transfer - Research Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

175

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

176

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

177

Tutorial on Technology Transfer and Survey Design and Data Collection for Measuring Internet and Intranet Existence, Usage, and Impact (Survey-2000) in Acute Care Hospitals in the United States  

Science Journals Connector (OSTI)

This paper provides a tutorial of technology transfer for management information systems in health ... was to measure the levels of Internet and Intranet existence and usage in acute care hospitals. ... provide b...

Myron Hatcher

2001-02-01T23:59:59.000Z

178

Technology Transfer: About the Technology Transfer Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

179

NREL: Technology Transfer - About Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

180

United States | OpenEI Community  

Open Energy Info (EERE)

United States United States Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 16 August, 2013 - 12:21 New report from White House outlines largest problems facing United States energy grid energy grid OpenEI President Smart Grid United States White House Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:03 Commercial and Residential Hourly Load Data Now Available on OpenEI! building load building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: application/zip icon System Advisor Model Tool for Downloading Load Data Graham7781's picture Submitted by Graham7781(1992) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

182

Technology Transfer Ombudsman Program  

Broader source: Energy.gov [DOE]

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

183

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

184

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

185

Tunable transfer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to microbes by studying that transfer in a nature-inspired, protein and iron-based nanoparticle system. Iron plays a crucial role in environmental biogeochemistry. It readily...

186

Heat transfer dynamics  

SciTech Connect (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

187

Washington State Department of Ecology | Open Energy Information  

Open Energy Info (EERE)

Washington State Department of Ecology Washington State Department of Ecology Jump to: navigation, search Name Washington State Department of Ecology Place Lacey, Washington State Zip 98503 References Washington State Department of Ecology[1] This article is a stub. You can help OpenEI by expanding it. Washington State Department of Ecology is an organization located in Lacey, Washington State . References ↑ "Washington State Department of Ecology" Retrieved from "http://en.openei.org/w/index.php?title=Washington_State_Department_of_Ecology&oldid=696505" Categories: Government Agencies Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

188

NREL: Technology Transfer - Commercialization Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

189

new freshmen new transfers  

E-Print Network [OSTI]

for AP courses. Transfer GPA is based on a 4-point scale. #12;ETHNICITY African American/Black Am Indian% Number 48 81 GENDER Male Female ETHNICITY African American Am Indian/AK Native Asian Hispanic Pacificth %-ile 690 740 710 31 Transfers 3.67 Freshman GPA is calculated taking into account a 5-point scale

Koehler, Carla

190

Transfers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transfers Transfers Transfers Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. Below are a few tips to better assist you when you transer agencies: If you have any dependents you must complete a standard Form 2809 during new employee orientation as this information does not transfer over automatically. You will not be able to change your coverage until open season or a life changing event occurs. At the time of new employee orientation you must provide your most recent leave and earning statement (LES) so that your leave may be updated accordingly. If you do not provide us with this document it will take approximately 6 weeks before your annual and sick leave is updated.

191

Data Transfer Examples  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Data Transfer Examples » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data to Projectb. A basic transfer script is here: kmfagnan@genepool12 ~ $ cat data_to_projb.sh #!/bin/bash -l #$ -N data2projb /projectb/scratch// kmfagnan@genepool12 ~ $ qsub data_to_projb.sh

192

Pennsylvania State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

State University Hydrodynamics State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield Thomas Water Tunnel, PO Box 30 Place State College, Pennsylvania Zip 16804 Sector Hydro Phone number (814) 865-1741 Website http://www.arl.psu.edu/facilit Coordinates 40.7919761°, -77.8608811° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7919761,"lon":-77.8608811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

194

Clean Energy States Alliance | Open Energy Information  

Open Energy Info (EERE)

States Alliance States Alliance Jump to: navigation, search Name Clean Energy States Alliance Address 50 State St Suite 1 Place Montpelier, Vermont Zip 05602 Number of employees 1-10 Year founded 2002 Website http://www.cleanenergystates.o Coordinates 44.260279°, -72.576766° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.260279,"lon":-72.576766,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Resonance Energy Transfer in DNA Duplexes Labeled with Localized Dyes  

Science Journals Connector (OSTI)

Resonance Energy Transfer in DNA Duplexes Labeled with Localized Dyes ... Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donoracceptor separation was incrementally changed from 0 to 16 base pairs. ... Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pumpprobe methods were utilized to examine the energy transfer processes. ...

Paul D. Cunningham; Ani Khachatrian; Susan Buckhout-White; Jeffrey R. Deschamps; Ellen R. Goldman; Igor L. Medintz; Joseph S. Melinger

2014-11-14T23:59:59.000Z

196

Transfer-induced fission of superheavy nuclei  

SciTech Connect (OSTI)

Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

Adamian, G. G. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Institute of Nuclear Physics, Tashkent, UZ-702132 Uzbekistan (Uzbekistan); Antonenko, N. V.; Zubov, A. S. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Sargsyan, V. V. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Yerevan State University, Yerevan (Armenia); Scheid, W. [Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, D-35392 Giessen (Germany)

2010-07-15T23:59:59.000Z

197

2011-2012 ELECTED OFFICERS SIGNATURE PROFILE FORM Note: All student organizations are REQUIRED to have a president, vice-president, treasurer, and secretary.  

E-Print Network [OSTI]

#_________________________________ Phone #___________________________________ Cell Phone #_____________________________ Cell Phone #___________________________________ Cell Phone #_____________________________ Cell Phone #_______________________________ Hunter E______________________________ City, State, Zip___________________________ City, State, Zip_____________________________ Phone

Qiu, Weigang

198

2012-2013 ELECTED OFFICERS SIGNATURE PROFILE FORM Note: All student organizations are REQUIRED to have a president, vice-president, treasurer, and secretary.  

E-Print Network [OSTI]

#_________________________________ Phone #___________________________________ Cell Phone #_____________________________ Cell Phone #___________________________________ Cell Phone #_____________________________ Cell Phone #_______________________________ Hunter E______________________________ City, State, Zip___________________________ City, State, Zip_____________________________ Phone

Qiu, Weigang

199

Technology Transfer Reporting Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transfer Reporting Form Technology Transfer Reporting Form Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

200

The feasibility of coherent energy transfer in microtubules  

Science Journals Connector (OSTI)

...Fleming. 2009 Pathways of energy flow in LHCII from two-dimensional...reveals a carotenoid dark state in purple bacteria...Scholes. 2011 Resonance energy transfer: beyond the...Beyond Forster resonance energy transfer in biological...from serendipitous discovery to supramolecular engineering...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

VOLUNTARY LEAVE TRANSFER PROGRAM  

Broader source: Energy.gov (indexed) [DOE]

VOLUNTARY LEAVE TRANSFER PROGRAM VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM) Form 630, Application to Become A Leave Recipient Under the Voluntary Leave Transfer Program, through your supervisor to be considered for the program. The application must include an explanation of the reason the donation is needed (including a brief description of the

202

Technology Transfer Summit  

Broader source: Energy.gov (indexed) [DOE]

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

204

VOLUNTARY LEAVE TRANSFER PROGRAM  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM LIST Name Organization Fairbanks, Mary H. AU Garnett-Harris, Deborah A. AU James, Debra A. AU Johnston, Robyne AU May, Melanie P. AU Pickens,...

205

Smoothness- transferred random field  

E-Print Network [OSTI]

We propose a new random field (RF) model, smoothness-transfer random field (ST-RF) model, for image modeling. In the objective function of RF models, smoothness energy is defined with compatibility function to capture the ...

Wei, Donglai

2013-01-01T23:59:59.000Z

206

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

207

Sandia National Laboratories: technology transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in Capabilities, Carbon...

208

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

209

Ombuds Services for Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

210

Shielded cells transfer automation  

SciTech Connect (OSTI)

Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

Fisher, J J

1984-01-01T23:59:59.000Z

211

Transfer Function Combinations Liang Zhou, Mathias Schott, Charles Hansen  

E-Print Network [OSTI]

and Imaging Institute, University of Utah, 72 S Central Campus Drive, Salt Lake City, UT 84112, United StatesTransfer Function Combinations Liang Zhou, Mathias Schott, Charles Hansen Scientific Computing

Utah, University of

212

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

213

Western States Geothermal Company | Open Energy Information  

Open Energy Info (EERE)

States Geothermal Company States Geothermal Company Jump to: navigation, search Name Western States Geothermal Company Place Sparks, Nevada Zip 89432-2627 Sector Geothermal energy Product Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates 35.61145°, -96.821309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.61145,"lon":-96.821309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Oregon State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Oregon State University Hydrodynamics Oregon State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331 Sector Hydro Phone number (541) 737-3631 Website http://wave.oregonstate.edu Coordinates 44.5642722°, -123.2785942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5642722,"lon":-123.2785942,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

POSITION DESCRIPTION 2012 TRANSFER MENTOR  

E-Print Network [OSTI]

interest in the Transfer Mentor position with Orientation and Transition Programs' (OTP) Transfer Mentoring Program. The Transfer Mentor (TM) is a member of the Orientation and Transition Programs' staff to CSU including (but not limited to) helping transfer students explore study skills, time management

216

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

217

Steady and Transient Heat Transfer for Jet Impingement on Patterned Surfaces.  

E-Print Network [OSTI]

??Free liquid-jet impingement is well researched due to its high heat transfer ability and ease of implementation. This study considers both the steady state and (more)

Dobbertean, Mark Michael

2011-01-01T23:59:59.000Z

218

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network [OSTI]

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

219

E-Print Network 3.0 - accurate heat transfer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pennsylvania State University Collection: Engineering 11 Boiling heat transfer in a hydrofoil-based micro pin fin heat sink Summary: in large scatter and were not able to...

220

WSDE Change or Transfer a Water Right Forms | Open Energy Information  

Open Energy Info (EERE)

or Transfer a Water Right FormsLegal Abstract The Washington State Department of Ecology provides various forms and publications related to the processes for changing or...

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL: Technology Transfer - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

222

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

223

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

224

Bihar State Electronics Development Corporation Ltd Beltron | Open Energy  

Open Energy Info (EERE)

Bihar State Electronics Development Corporation Ltd Beltron Bihar State Electronics Development Corporation Ltd Beltron Jump to: navigation, search Name Bihar State Electronics Development Corporation Ltd (Beltron) Place Patna, Bihar, India Zip 800023 Sector Services, Solar Product Manufactures solar lanterns and other PV systems, as part of a business involving other electronic and computer goods and services. References Bihar State Electronics Development Corporation Ltd (Beltron)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bihar State Electronics Development Corporation Ltd (Beltron) is a company located in Patna, Bihar, India . References ↑ "Bihar State Electronics Development Corporation Ltd (Beltron)"

225

United States Energy Association USEA | Open Energy Information  

Open Energy Info (EERE)

Association USEA Association USEA Jump to: navigation, search Name United States Energy Association (USEA) Place Washington, DC Zip 20004 Product The United States Energy Association (USEA) is the U.S. Member Committee of the World Energy Council (WEC). References United States Energy Association (USEA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. United States Energy Association (USEA) is a company located in Washington, DC . References ↑ ""1230" United States Energy Association (USEA)" Retrieved from "http://en.openei.org/w/index.php?title=United_States_Energy_Association_USEA&oldid=352527" Categories: Clean Energy Organizations Companies

226

BLM New Mexico State Office | Open Energy Information  

Open Energy Info (EERE)

New Mexico State Office New Mexico State Office Jump to: navigation, search Logo: BLM New Mexico State Office Name BLM New Mexico State Office Short Name New Mexico Parent Organization Bureau of Land Management Address 301 Dinosaur Trail Place Santa Fe, NM Zip 87508 Phone number 877-276-9404 Website http://www.blm.gov/nm/st/en.ht References BLM New Mexico State Office[1] Cite error: tags exist, but no tag was found Retrieved from "http://en.openei.org/w/index.php?title=BLM_New_Mexico_State_Office&oldid=606461" Category: Government Agencies What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 186350138

227

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

228

Ehrenfest dynamics with a time-dependent density-functional-theory calculation of lifetimes and resonant widths of charge-transfer states of Li+ near an aluminum cluster surface  

Science Journals Connector (OSTI)

We present a time-dependent density-functional-theory (TDDFT) Ehrenfest dynamics approach to study the lifetime and the charge neutralization rate of a lithium ion near an aluminum cluster surface. The lifetime of the excited state as a function of the surface-atom distance can be determined, including the effects of level crossings, without prior quantitative information about the coupling between atomic levels and surface states. This method can be used to compute lifetimes of excited atomic states near a surface in both the weak- and the strong-coupling regions and in the avoided crossing region. Because TDDFT Ehrenfest dynamics is a mean-field theory, the wave function consists of contributions from several different excited states during the time propagation. The shortest lifetime is predicted near the region of the avoided crossing between the Li+-Al and the Li-Al+ states.

Christopher L. Moss; Christine M. Isborn; Xiaosong Li

2009-08-19T23:59:59.000Z

229

SRNL - Technology Transfer - Ombudsman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

230

Technology Transfer Overview  

Broader source: Energy.gov [DOE]

DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

231

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

232

California State Assembly | Open Energy Information  

Open Energy Info (EERE)

Assembly Assembly Jump to: navigation, search Name California State Assembly Place Sacramento, California Zip 94249-0000 Product The body of the state of California that reviews bills, laws and acts. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

United States Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Survey Jump to: navigation, search Logo: United States Geological Survey Name United States Geological Survey Address USGS National Center 12201 Sunrise Valley Drive Place Reston, VA Zip 20192 Region Northeast - NY NJ CT PA Area Year founded 1879 Phone number 703-648-5953 Website http://www.usgs.gov/ Coordinates 38.947077°, -77.370315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.947077,"lon":-77.370315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Idaho State Historical Society | Open Energy Information  

Open Energy Info (EERE)

Name Idaho State Historical Society Name Idaho State Historical Society Address 2205 Old Penitentiary Road Place Boise, Idaho Zip 83712 Phone number 208-334-2774 Website http://history.idaho.gov/ Coordinates 43.6012441°, -116.1660202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6012441,"lon":-116.1660202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Nevada State Clearinghouse | Open Energy Information  

Open Energy Info (EERE)

Clearinghouse Clearinghouse Jump to: navigation, search Logo: Nevada State Clearinghouse Name Nevada State Clearinghouse Address 901 S. Steward St., Ste 5003 Place Carson City, Nevada Zip 89701-5246 Phone number 775-684-2723 Website http://clearinghouse.nv.gov/ Coordinates 39.1580849°, -119.7644949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1580849,"lon":-119.7644949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

United States Forest Service | Open Energy Information  

Open Energy Info (EERE)

Logo: United States Forest Service Name United States Forest Service Short Name USFS Address 1400 Independence Ave., SW Place Washington, D.C. Zip 20250-1111 Year founded 1905 Website http://www.fs.fed.us/ Coordinates 38.887546°, -77.032038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.887546,"lon":-77.032038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

United States Forest Service | Open Energy Information  

Open Energy Info (EERE)

Service Service (Redirected from USFS) Jump to: navigation, search Logo: United States Forest Service Name United States Forest Service Short Name USFS Address 1400 Independence Ave., SW Place Washington, D.C. Zip 20250-1111 Year founded 1905 Website http://www.fs.fed.us/ Coordinates 38.887546°, -77.032038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.887546,"lon":-77.032038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

United States Coast Guard | Open Energy Information  

Open Energy Info (EERE)

Coast Guard Coast Guard Jump to: navigation, search Logo: United States Coast Guard Name United States Coast Guard Address 2100 2nd ST SW Place Washington, District of Columbia Zip 20598 Phone number 202-372-4411 Website http://www.uscg.mil/default.as Coordinates 38.8645267°, -77.013525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8645267,"lon":-77.013525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Nevada State Environmental Commission | Open Energy Information  

Open Energy Info (EERE)

Environmental Commission Environmental Commission Jump to: navigation, search Logo: Nevada State Environmental Commission Name Nevada State Environmental Commission Address 901 South Stewart Street, Suite 4001 Place Carson City, Nevada Zip 89701 Website http://www.sec.nv.gov/ Coordinates 39.1580849°, -119.7644949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1580849,"lon":-119.7644949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Oregon State University | Open Energy Information  

Open Energy Info (EERE)

University University Name Oregon State University Address Oregon State University Corvallis, OR Zip 97331-4501 Year founded 1868 Phone number 541-737-1000 Website http://oregonstate.edu/ Coordinates 44.5628538°, -123.2789766° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5628538,"lon":-123.2789766,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview  

Broader source: Energy.gov (indexed) [DOE]

SURVEY & TRANSFER SURVEY & TRANSFER Facility Survey & Transfer Overview Transfer Activities Checklist Pre-Survey Information Request Survey Report Content Detailed Walkdown Checklist Walkdown Checklist Clipboard Aids S & M Checklist Survey Report Example - Hot Storage Garden Survey Report Example - Tritium System Test Assembly Survey Report Example - Calutron Overview As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. Requirements and guidance for such transfers are contained in:  DOE Order 430.1B Chg. 2, REAL PROPERTY & ASSET MANAGEMENT  DOE Guide 430.1-5, TRANSITION IMPLEMENTATION GUIDE The transfer process is illustrated in the Transfer Process figure. The purpose here is to provide examples of methods and

242

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network [OSTI]

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

243

Faculty Positions Heat Transfer and  

E-Print Network [OSTI]

Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

244

Phase-Transfer-Catalyzed Reductions  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) procedures that have been developed for use with sodium borohydride, lithium aluminum hydride, and several other reducing agents involving anion transfer to organic media are des...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

245

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

246

NREL: Technology Transfer - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

247

Efficient Data Transfer Protocols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Efficient Data Transfer Protocols for Big Data Brian Tierney ∗ , Ezra Kissel † , Martin Swany † , Eric Pouyoul ∗ ∗ Lawrence Berkeley National Laboratory, Berkeley, CA 94270 † School of Informatics and Computing, Indiana University, Bloomington, IN 47405 Abstract-Data set sizes are growing exponentially, so it is important to use data movement protocols that are the most efficient available. Most data movement tools today rely on TCP over sockets, which limits flows to around 20Gbps on today's hardware. RDMA over Converged Ethernet (RoCE) is a promising new technology for high-performance network data movement with minimal CPU impact over circuit-based infrastructures. We compare the performance of TCP, UDP, UDT, and RoCE over high latency 10Gbps and 40Gbps network paths, and show that RoCE-based data transfers can fill a 40Gbps path using much less CPU than other protocols.

248

Technology Transfer: Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

249

E-Print Network 3.0 - adiabatic population transfer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transfer consists of preparing the atomic population in the trapped state m + j (f1 0... state. At the end of the process, we get an ... Source: Ecole Polytechnique,...

250

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

251

Measuring Information Transfer  

Science Journals Connector (OSTI)

An information theoretic measure is derived that quantifies the statistical coherence between systems evolving in time. The standard time delayed mutual information fails to distinguish information that is actually exchanged from shared information due to common history and input signals. In our new approach, these influences are excluded by appropriate conditioning of transition probabilities. The resulting transfer entropy is able to distinguish effectively driving and responding elements and to detect asymmetry in the interaction of subsystems.

Thomas Schreiber

2000-07-10T23:59:59.000Z

252

Transferring PACE Assessments Upon Home Sale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring PACE Assessments Upon Home Sale Transferring PACE Assessments Upon Home Sale Title Transferring PACE Assessments Upon Home Sale Publication Type Policy Brief Authors Coughlin, Jason, Merrian C. Fuller, and Mark Zimring Tertiary Authors Borgeson, Merrian Secondary Title Clean Energy Financing Policy Brief Publisher LBNL Place Published Berkeley Year of Publication 2010 Pagination 4 Date Published 04/2010 Abstract A significant barrier to investing in renewable energy and comprehensive energy efficiency improvements to homes across the country is the initial capital cost. Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing this upfront cost issue. Recently, the White House cited PACE programs as an important element of its "Recovery through Retrofit" plan. The residential PACE model2 involves the creation of a special clean energy financing district that homeowners elect to opt into. Once opted in, the local government (usually at the city or county level) finances the upfront investment of the renewable energy installation and/or energy efficiency improvements. A special lien is attached to the property and the assessment is paid back as a line item on the property tax bill. As of April 2010, 17 states have passed legislation to allow their local governments to create PACE programs, two already have the authority to set up PACE programs, and over 10 additional states are actively developing enabling legislation. This policy brief analyzes one of the advantages of PACE, which is the transferability of the special assessment from one homeowner to the next when the home is sold. This analysis focuses on the potential for the outstanding lien to impact the sales negotiation process, rather than the legal nature of the lien transfer itself.

253

5. Heat transfer Ron Zevenhoven  

E-Print Network [OSTI]

1/120 5. Heat transfer Ron Zevenhoven ?bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B?88 ?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer ?bo Akademi

Zevenhoven, Ron

254

Heat and moisture transfer through clothing  

E-Print Network [OSTI]

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forsimulation of heat and moisture transfer in a human-

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

255

NEWTON: Greenhouse Gas and Heat Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas and Heat Transfer Greenhouse Gas and Heat Transfer Name: Robert Status: teacher Grade: 9-12 Location: AK Country: USA Date: Summer 2013 Question: It would appear from a superficial reading that heat flows out of a greenhouse gas more slowly than heat flows into the same gas. This has to be an incorrect interpretation. It seems more likely that molecules with high heat capacities resist heat transfer-both into and out of such a molecular system. At a molecular level how does heat move out of a hot greenhouse gas? I have seen plots of Cv vs Tempt which indicates that heat moves from translational modes of motion-into rotational modes and finally into modes of vibration. The energy spacing of vibrations is generally grater that rotation which are greater than translation. Could it be that it is this quantization of the energy levels and the difference in energy between such quantum states that is the source of the resistance to heat flow or transfer?

256

Nevada Division of State Lands | Open Energy Information  

Open Energy Info (EERE)

Division of State Lands Division of State Lands Jump to: navigation, search Logo: Nevada Division of State Lands Name Nevada Division of State Lands Address 901 S. Stewart St., Suite 5003 Place Carson City, Nevada Zip 89701-5246 Phone number 775.684.2720 Website http://lands.nv.gov/ Coordinates 39.1580849°, -119.7644949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1580849,"lon":-119.7644949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Mississippi State Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Mississippi Name Mississippi State Oil and Gas Board Address 500 Greymont Ave., Suite E City, State Jackson, MS Zip 39202-3446 Website http://www.ogb.state.ms.us/ Coordinates 32.304339°, -90.169735° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.304339,"lon":-90.169735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Utah Division of State History | Open Energy Information  

Open Energy Info (EERE)

State History State History Jump to: navigation, search Logo: Utah Division of State History Name Utah Division of State History Address 300 S. Rio Grande St. Place Salt Lake City, Utah Zip 84101 Phone number 801.533.3500 Website http://history.utah.gov/index. Coordinates 40.7623958°, -111.9047846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7623958,"lon":-111.9047846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Nevada State Office of Energy | Open Energy Information  

Open Energy Info (EERE)

Nevada State Office of Energy Nevada State Office of Energy Jump to: navigation, search Logo: Nevada State Office of Energy Name Nevada State Office of Energy Address 755 North Roop St., Suite 202 Place Carson City, Nevada Zip 89701 Phone number 775-687-1850 Website http://energy.nv.gov/ Coordinates 39.1680275°, -119.7609391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1680275,"lon":-119.7609391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Washington State Department of Archaeology and Historic Preservation | Open  

Open Energy Info (EERE)

Washington State Department of Archaeology and Historic Preservation Washington State Department of Archaeology and Historic Preservation Jump to: navigation, search Name Washington State Department of Archaeology and Historic Preservation Short Name DAHP Address 1063 South Capitol Way, Suite 106 Place Olympia, Washington Zip 98504 Phone number 360-586-3065 Website http://www.dahp.wa.gov/ References DAHP Website[1] This article is a stub. You can help OpenEI by expanding it. The Department of Archaeology and Historic Preservation is Washington's primary agency for historic preservation. This agency oversees the procedures for cultural resource discovery. References ↑ "DAHP Website" Retrieved from "http://en.openei.org/w/index.php?title=Washington_State_Department_of_Archaeology_and_Historic_Preservation&oldid=694965"

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Clean Energy States Alliance CESA | Open Energy Information  

Open Energy Info (EERE)

States Alliance CESA States Alliance CESA Jump to: navigation, search Name Clean Energy States Alliance (CESA) Place Montpelier, Vermont Zip VT 05602 Product CESA is an association of States concerned about sustainable energy use which takes leadership in joint green energy projects. Coordinates 37.818657°, -77.683392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.818657,"lon":-77.683392,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Oregon Division of State Lands | Open Energy Information  

Open Energy Info (EERE)

Division of State Lands Division of State Lands Jump to: navigation, search Logo: Oregon Division of State Lands Name Oregon Division of State Lands Address 775 Summer St Place Salem, Oregon Zip 97301-1279 Year founded 1878 Phone number 503-986-5200 Website http://www.oregon.gov/dsl/Page Coordinates 44.945485°, -123.027441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.945485,"lon":-123.027441,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Washington State Energy Facility Site Evaluation Council | Open Energy  

Open Energy Info (EERE)

Energy Facility Site Evaluation Council Energy Facility Site Evaluation Council Jump to: navigation, search Name Washington State Energy Facility Site Evaluation Council Short Name EFSEC Place Olympia, Washington Zip 98504 Website http://www.efsec.wa.gov/defaul References EFSEC: Energy Facility Siting Evaluation Council[1] This article is a stub. You can help OpenEI by expanding it. The Washington State Energy Facility Siting Council (EFSEC) oversees the siting process for major energy facilities in the State of Washington. EFSEC coordinates all evaluation and licensing steps for siting certain energy facilities. References ↑ "EFSEC: Energy Facility Siting Evaluation Council" Retrieved from "http://en.openei.org/w/index.php?title=Washington_State_Energy_Facility_Site_Evaluation_Council&oldid=694902

264

Montana State Historic Preservation Office | Open Energy Information  

Open Energy Info (EERE)

Montana State Historic Preservation Office Montana State Historic Preservation Office Jump to: navigation, search Logo: Montana State Historic Preservation Office Name Montana State Historic Preservation Office Address 1410 Eighth Avenue Place Helena, Montana Zip 59620 Phone number 406-444-7715 Website http://mhs.mt.gov/shpo/ Coordinates 46.588015°, -112.015825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.588015,"lon":-112.015825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Manipulator mounted transfer platform  

DOE Patents [OSTI]

A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

Dobbins, James C. (Idaho Falls, ID); Hoover, Mark A. (Idaho Falls, ID); May, Kay W. (Idaho Falls, ID); Ross, Maurice J. (Pocatello, ID)

1990-01-01T23:59:59.000Z

266

NREL: Technology Transfer - NREL, Collaborators Complete Gearbox...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical innovation within the global wind energy industry. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing...

267

Polarization transfer NMR imaging  

DOE Patents [OSTI]

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

268

Colorado State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus Delivery Place Fort Collins, Colorado Zip 80523 Phone number (970) 491-8394 Website http://www.hydraulicslab.engr. Coordinates 40.575727216126°, -105.0833302192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.575727216126,"lon":-105.0833302192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Arizona State University | Open Energy Information  

Open Energy Info (EERE)

University University Jump to: navigation, search Name Arizona State University Place Tempe, Arizona Zip 85287 Coordinates 33.4183159°, -111.9311939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4183159,"lon":-111.9311939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

California State Lands Commission | Open Energy Information  

Open Energy Info (EERE)

Lands Commission Lands Commission Jump to: navigation, search Name California State Lands Commission Address 100 Howe Ave., Suite 100 South Place Sacramento, California Zip 95825-8282 Phone number 916-574-1900 Website http://www.slc.ca.gov/ Coordinates 38.5653989°, -121.4075812° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5653989,"lon":-121.4075812,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Northern States Metals Company | Open Energy Information  

Open Energy Info (EERE)

Metals Company Metals Company Jump to: navigation, search Name Northern States Metals Company Address 3207 Innovation Place Place Youngstown, Ohio Zip 44509 Sector Solar Product Manufacturing Phone number 330-799-1855 Website http://extrusions.com Coordinates 41.123592°, -80.704685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.123592,"lon":-80.704685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities  

Broader source: Energy.gov (indexed) [DOE]

Secretarial Policy Statement on Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of Energy's National Laboratories, single- purpose research facilities, and other facilities ("Facilities") are transferred to any other entity, including private industry, academia, state and local governments, or other government entities to meet public and private needs. The Policy Statement follows upon

273

Technology Transfer Reporting Form  

Broader source: Energy.gov (indexed) [DOE]

form is to be completed by the TTO for individual inquiry/case activity during the quarter as required form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact: ____________________ Type: Inquiry Case Ombuds Name: __________________________ Time Spent: (Hours) ______________ Final Ombuds Involvement: _________________ Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL

274

NREL: Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

275

Transfer and Archive Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Management Please remove ALL data from /house! Do you still have data in /house/homedirs? Do you know if you have data in /house/homedirs? Please check now and make a plan for moving that data to the archiver or one of the NERSC file systems (for more information on these filesystems go to File storage and I/O). Moving data from house to DnA The DnA file system is primarily for finished projects, data that is ready to be archived, or data that is shared between groups. It is mounted read-only on the cluster, but you can write to directories on this file system in a few ways: Data Transfer Nodes until December 1, 2013 (examples here) xfer queue on the Genepool cluster until December 1, 2013 (examples here) Moving data from house to Projectb Projectb is where compute jobs run and output both intermediate files as

276

Frame Heat Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

277

Working with SRNL - Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2014 SRNL Research and Technology Recognition Reception Click to view the 2014...

278

Education and Research Transfer Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring and donating education-related Federal equipment to the education and non-profit science and research sectors. Skip Navigation Links Home Newsroom About INL Careers...

279

Phase-Transfer-Catalyzed Oxidations  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) offers many excellent opportunities for conducting oxidation reactions using inexpensive primary oxidants such as oxygen, sodium hypochlorite, hydrogen peroxide, electrooxidation...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

280

Washington State Department of Natural Resources | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Natural Resources Jump to: navigation, search Name Washington State Department of Natural Resources Address 1111 Washington Street SE Place Olympia, WA Zip 9850 Phone number (360) 902-1000 Website http://www.dnr.wa.gov/Pages/de References DNR Website[1] This article is a stub. You can help OpenEI by expanding it. Washington State Department of Natural Resources is an organization based in Olympia, Washington. References ↑ "DNR Website" Retrieved from "http://en.openei.org/w/index.php?title=Washington_State_Department_of_Natural_Resources&oldid=690551" Categories: Government Agencies Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Boise State University, CAES Energy Efficiency Research Institute | Open  

Open Energy Info (EERE)

Boise State University, CAES Energy Efficiency Research Institute Boise State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name Boise State University, CAES Energy Efficiency Research Institute Address 1910 University Drive Place Boise, Idaho Zip 83725 Coordinates 43.6056603°, -116.2059975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6056603,"lon":-116.2059975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

California State Water Resources Control Board | Open Energy Information  

Open Energy Info (EERE)

California State Water Resources Control Board California State Water Resources Control Board Name California State Water Resources Control Board Address 1001 I Street Place Sacramento, California Zip 95814 Phone number 916-341-5455 Website http://www.swrcb.ca.gov/ Coordinates 38.58181°, -121.492159° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.58181,"lon":-121.492159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

United States Department of Energy | Open Energy Information  

Open Energy Info (EERE)

DOE) DOE) Jump to: navigation, search Logo: United States Department of Energy Name United States Department of Energy Short Name DOE Address U.S. Department of Energy 1000 Independence Ave., SW Place Washington, D.C. Zip 20582-1111 Year founded 1977 Website http://www.energy.gov/ References http://www.energy.gov/ Contents 1 Mission 2 Research Institutions 3 Facilities 4 Energy Innovation Portal 5 Startup America Initiative 6 Links 7 References Mission The Department of Energy's overarching mission is to advance the national, economic, and energy security of the United States; to promote scientific and technological innovation in support of that mission; and to ensure the environmental cleanup of the national nuclear weapons complex. The Department's strategic goals to achieve the mission are designed to deliver

284

United States Department of Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy (Redirected from Department of Energy) Jump to: navigation, search Logo: United States Department of Energy Name United States Department of Energy Short Name DOE Address U.S. Department of Energy 1000 Independence Ave., SW Place Washington, D.C. Zip 20582-1111 Year founded 1977 Website http://www.energy.gov/ References http://www.energy.gov/ Contents 1 Mission 2 Research Institutions 3 Facilities 4 Energy Innovation Portal 5 Startup America Initiative 6 Links 7 References Mission The Department of Energy's overarching mission is to advance the national, economic, and energy security of the United States; to promote scientific and technological innovation in support of that mission; and to ensure the environmental cleanup of the national nuclear weapons complex. The

285

One- and two-nucleon transfer reactions to Au196  

Science Journals Connector (OSTI)

To provide information for comparison with predictions from a dynamical supersymmetry, the odd-odd nucleus Au196 was studied via transfer reactions. With a polarized deuteron beam we measured (d?,t) and (d?,?), and with unpolarized beams we measured (p,d), (He3,d), and (?,d) transfer reactions. From the high-resolution Au197(p,d)Au196 spectrum, a rather complete set of excitation energies was obtained. Quantum numbers and spectroscopic factors were obtained from angular distributions of single-neutron transfer in Au197(d?,t)Au196, single-proton transfer in Pt195(He3,d)Au196, and two-nucleon transfer Hg198(d?,?)Au196. We obtain firm J? assignments for 21 out of the 27 states with negative parity observed up to 490keV excitation energy, by combining our data with that taken using ?? and conversion electron spectroscopy. The number of states and the firm or restricted assignments are in agreement with the predictions from the dynamical U?(6?12)?U?(6?4) supersymmetric scheme. Including our (?,d) data, we can deduce spectroscopic factors for four different transfer channels. When model predictions of spectroscopic factors become available, these data will provide a further critical test as to what extent this symmetry is realized in nature.

H.-F. Wirth; G. Graw; S. Christen; Y. Eisermann; A. Gollwitzer; R. Hertenberger; J. Jolie; A. Metz; O. Mller; D. Tonev; B. D. Valnion

2004-07-29T23:59:59.000Z

286

Imperial Valley College Portland State University Imperial Valley College  

E-Print Network [OSTI]

Imperial Valley College Portland State University Imperial Valley College Transfer Worksheet If you) at Imperial Valley College (IVC), you can rest assured that those credits will also transfer to Portland State. Degree Requirements (BA, BS) #12;Imperial Valley College Portland State University 2. DEGREE REQUIREMENTS

Caughman, John

287

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated rail transportation rates for coal, state to state, STB data 6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

288

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated barge transportation rates for coal, state to state, EIA data 5. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $4.31 $4.36 $5.01 7.9 15.0 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $11.08 $12.65 $13.27 9.4 4.9 Colorado Indiana $6.29 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $13.15 $14.28 W 8.6

289

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated truck transportation rates for coal, state to state, EIA data 8. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $7.51 $4.74 $3.37 -33.0 -28.8 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $21.73 $20.23 $13.30 -21.8 -34.3 Indiana Alabama - W - - -

290

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated rail transportation rates for coal, state to state, STB data 5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

291

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, state to state, STB data 4. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

292

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated barge transportation rates for coal, state to state, EIA data 6. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $3.97 $3.97 $4.52 6.7 13.7 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $10.21 $11.53 $11.95 8.2 3.7 Colorado Indiana $5.79 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $11.99 $12.87 W 7.3

293

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

7. Estimated truck transportation rates for coal, state to state, EIA data 7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $8.16 $5.20 $3.75 -32.2 -27.9 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $23.60 $22.20 $14.77 -20.9 -33.5 Indiana Alabama - W - - -

294

Coherence Transfer in Magnetic Fields  

Science Journals Connector (OSTI)

Some results recently discussed by Chiu for interatomic coherence transfer are shown to have a simple physical interpretation, to be independent of collision model assumed, and to be applicable also to intra -atomic coherence transfer. A derivation using density matrices is presented which takes both depolarizing collisions and backtransfer of coherence into account.

W. E. Baylis

1973-03-01T23:59:59.000Z

295

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Broader source: Energy.gov (indexed) [DOE]

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

296

Argonne TDC: Material Transfer Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

297

ZipZone Technologies | Open Energy Information  

Open Energy Info (EERE)

a complete line of renewable energy products from its online store.1 Products include solar photovoltaic (PV) panels, wind generators, inverters, batteries and energy related...

298

THE UNLV FOUNDATION MONETARY TRANSFER FORM  

E-Print Network [OSTI]

THE UNLV FOUNDATION MONETARY TRANSFER FORM (Use one form for each account) Date Department Amount Transfer from Foundation Account Name UNLV Foundation Foundation Account Number Transfer to University contributions to this fund were accepted. Multiple Transfer A monetary transfer from the UNLV Foundation

Hemmers, Oliver

299

Calculations of population transfer during intense laser pulses  

SciTech Connect (OSTI)

Recent experiments by several groups have examined the question of population transfer to resonantly excited states during intense short laser pulses, in particular the amount of population that remains ``trapped`` in excited states at the end of a laser pulse. In this chapter we present calculations of population transfer and resonant ionization in xenon at both 660 and 620 nm. At the longer wavelength, the seven photon channel closes at 2.5{times}10{sup 13} W/cm{sup 2}. Pulses with peak intensities higher than this result in ``Rydberg trapping``, the resonant transfer of population to a broad range of high-lying states. The amount of population transferred depends on both the peak intensity and pulse duration. At 620 mm there are numerous possible six photon resonances to states with p or f angular momentum. We have done a large number of calculations for 40 fs pulses at different peak intensities and have examined the population transferred to these low-lying resonant states as a function of the peak laser intensity. We do not have room to comment upon the resonantly enhanced ionized electron energy spectra that we also determine in the same calculations. Our calculations involve the direct numerical integration of the time-dependent Schroedinger equation for an atom interacting with a strong laser field. The time-dependent wave function of a given valence electron is calculated on a spatial grid using a one-electron pseudo potential. This single active electron approximation (SAE) has been shown to be a good approximation for the rare gases at the intensities and wavelengths that we will consider. The SAE potential we use has an explicit angular momentum dependence which allows us to reproduce all of the excited state energies for xenon quite well.

Schafer, K.J.; Kulander, K.C.

1993-08-01T23:59:59.000Z

300

SWAMI II technology transfer plan  

SciTech Connect (OSTI)

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

302

Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems  

E-Print Network [OSTI]

A robust energy transfer mechanism is found in nonlinear wave systems, which favours transfers towards modes interacting via triads with nonzero frequency mismatch, applicable in meteorology, nonlinear optics and plasma wave turbulence. We introduce the concepts of truly dynamical degrees of freedom and triad precession. Transfer efficiency is maximal when the triads' precession frequencies resonate with the system's nonlinear frequencies, leading to a collective state of synchronised triads with strong turbulent cascades at intermediate nonlinearity. Numerical simulations confirm analytical predictions.

Miguel D. Bustamante; Brenda Quinn; Dan Lucas

2014-04-30T23:59:59.000Z

303

Energy transfer up-conversion in Tm3+ -doped silica fibre  

E-Print Network [OSTI]

1 Energy transfer up-conversion in Tm3+ - doped silica fibre D. A. Simpson, G. W. Baxter and S. F responsible for the up-conversion: excited state absorption and energy transfer up-conversion. The decay equations, the energy transfer up- conversion process (3 F4,3 F43 H4,3 H6) is established at Tm2O3

Paris-Sud XI, Université de

304

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network [OSTI]

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

305

PARKS, RECREATION AND TOURISM MANAGEMENT ON-CAMPUS TRANSFER APPLICATION  

E-Print Network [OSTI]

NC STATE PARKS, RECREATION AND TOURISM MANAGEMENT ON-CAMPUS TRANSFER APPLICATION Box 8004, Raleigh PGM Office: 4023 Biltmore Hall 9/05 ____ BS Parks, Recreation and Tourism Management _____ Double Recreation ____ Program Management _____ BS Professional Golf Management _____ BS Sport Management #12;

Parker, Matthew D. Brown

306

NREL: Technology Transfer Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

307

Heat Transfer Operators Associated with Quantum Operations  

E-Print Network [OSTI]

Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

. Aksak; S. Turgut

2011-04-14T23:59:59.000Z

308

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer Agency Approaches; FY 2001 Activity Metrics and Outcomes 2002 Report to the President and the Congress under the Technology Transfer: FEDERAL LAB TECHNOLOGY TRANSFER TABLE OF CONTENTS LIST OF FIGURES AND TABLES

Perkins, Richard A.

309

HEAT AND MOISTURE TRANSFER THROUGH CLOTHING  

E-Print Network [OSTI]

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forCheng, X. -Y. 2005. Heat and moisture transfer with sorption

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

310

Heat Transfer from a Rotating Disk  

Science Journals Connector (OSTI)

...August 1956 research-article Heat Transfer from a Rotating Disk E. C. Cobb...little has been published on the heat transfer. For laminar conditions theoretical...experimental investigation of the heat transfer for a range of conditions from...

1956-01-01T23:59:59.000Z

311

Coordination of Transmission Line Transfer Capabilities  

E-Print Network [OSTI]

Coordination of Transmission Line Transfer Capabilities Final Project Report Power Systems since 1996 PSERC #12;Power Systems Engineering Research Center Coordination of Transmission Line Summary The maximum power that can be transferred over any transmission line, called the transfer capacity

312

Heat and moisture transfer through clothing  

E-Print Network [OSTI]

Mathematical simulation of heat and moisture transfer in aand R. C. Eberhart (ed), Heat transfer in medicine andFan, J. 2008. Study of heat and moisture transfer within

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

313

Proton transfer in adsorbed water dimers Xiao Liang Hu, Jir i Klimes and Angelos Michaelides*  

E-Print Network [OSTI]

of intact and dissociated states of water are similar. Proton transfer between water moleculesProton transfer in adsorbed water dimers Xiao Liang Hu, Jir i´ Klimes and Angelos Michaelides 25th February 2010 DOI: 10.1039/b924422k Density functional theory simulations of water on MgO(001

Alavi, Ali

314

FLORIDA ATLANTIC UNIVERSITY 2012-2013 TRANSFER STUDENT MANUAL COLLEGE OF ENGINEERING & COMPUTER SCIENCE  

E-Print Network [OSTI]

in Modern Life 3 EGN x095 Engineering Chemistry 3 EGN x095L Engineering Chemistry Lab 1 ESC x070 The BlueFLORIDA ATLANTIC UNIVERSITY 2012-2013 TRANSFER STUDENT MANUAL COLLEGE OF ENGINEERING & COMPUTER SCIENCE TRANSFER PROGRAM OF STUDY AT A FLORIDA COMMUNITY/STATE COLLEGE FOR THE MAJOR IN CIVIL ENGINEERING

Fernandez, Eduardo

315

Generalized Theory of Forster-Type Nonradiative Energy Transfer in Nanostructures with Mixed Dimensionality  

E-Print Network [OSTI]

Generalized Theory of Forster-Type Nonradiative Energy Transfer in Nanostructures with Mixed, Athens, Ohio 45701, United States ABSTRACT: Forster-type nonradiative energy transfer (NRET) is widely that models Forster-type NRET for the cases of mixed dimensionality including all combinations

Demir, Hilmi Volkan

316

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated rail transportation rates for coal, state to state, EIA data 8. Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $13.29 $12.39 $13.93 2.4 12.5 Alabama Georgia $17.62 $17.84 $20.09 6.8 12.6 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $31.79 $27.66 $24.93 -11.5 -9.9 Colorado Arizona $25.97 W - - - Colorado Arkansas W - - - - Colorado California - $34.20 $46.22 - 35.1 Colorado Colorado $13.04 $7.72 $8.13 -21.1 5.3

317

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, state to state, EIA data Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $14.43 $13.59 $15.46 3.5 13.8 Alabama Georgia $19.13 $19.58 $22.30 8.0 13.9 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $34.52 $30.35 $27.67 -10.5 -8.8 Colorado Arizona $28.20 W - - - Colorado Arkansas W - - - - Colorado California - $37.53 $51.30 - 36.7 Colorado Colorado $14.16 $8.47 $9.02 -20.2 6.6

318

Utah State Historic Preservation Office | Open Energy Information  

Open Energy Info (EERE)

Office Office Jump to: navigation, search Name Utah State Historic Preservation Offic Address 300 S. Rio Grande Street Place Salt Lake City, Utah Zip 84101 Website http://history.utah.gov/state_ Coordinates 40.7623958°, -111.9047846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7623958,"lon":-111.9047846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

United States Environmental Protection Agency | Open Energy Information  

Open Energy Info (EERE)

Name United States Environmental Protection Agency Name United States Environmental Protection Agency Address Ariel Rios Building 1200 Pennsylvania Avenue, N.W. Place Washington, DC Zip 20460 Year founded 1970 Phone number (202) 272-0167 Website http://www.epa.gov/ Coordinates 38.894765°, -77.028888° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.894765,"lon":-77.028888,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

North Carolina State Energy Office | Open Energy Information  

Open Energy Info (EERE)

Name North Carolina State Energy Office Name North Carolina State Energy Office Place Raleigh, North Carolina Zip 27604 1376 Sector Efficiency, Renewable Energy Product Lead agency for energy programs in North Carolina with key focus on energy efficiency and renewable energy. Coordinates 37.760748°, -81.161183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.760748,"lon":-81.161183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

United States Department of Defense | Open Energy Information  

Open Energy Info (EERE)

Defense Defense Jump to: navigation, search Logo: United States Department of Defense Name United States Department of Defense Address 1000 Defense Pentagon Place Washington, District of Columbia Zip 20301-1000 Website http://www.defense.gov/ Coordinates 38.8706007°, -77.0557268° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8706007,"lon":-77.0557268,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

United States Department of Agriculture | Open Energy Information  

Open Energy Info (EERE)

Agriculture Agriculture Jump to: navigation, search Logo: United States Department of Agriculture Name United States Department of Agriculture Address U.S. Department of Agriculture 1400 Independence Ave., S.W. Place Washington, DC Zip 20250 Year founded 1862 Website http://www.usda.gov/wps/portal Coordinates 38.887546°, -77.032038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.887546,"lon":-77.032038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Washington State University Extension Energy Program | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Washington State University Extension Energy Program Jump to: navigation, search Name Washington State University Extension Energy Program Address 905 Plum Street SE Bldg No 3 Place Olympia, Washington Zip 98504 Region Pacific Northwest Area Coordinates 47.0410259°, -122.892209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.0410259,"lon":-122.892209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

United States Environmental Protection Agency | Open Energy Information  

Open Energy Info (EERE)

EPA) EPA) Jump to: navigation, search Logo: United States Environmental Protection Agency Name United States Environmental Protection Agency Address Ariel Rios Building 1200 Pennsylvania Avenue, N.W. Place Washington, DC Zip 20460 Year founded 1970 Phone number (202) 272-0167 Website http://www.epa.gov/ Coordinates 38.894765°, -77.028888° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.894765,"lon":-77.028888,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Empire State Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name Empire State Wind Energy LLC Place Oneida, New York Zip 13421 Sector Wind energy Product Private wind project developer based and operating in New York state. Coordinates 44.501683°, -88.197385° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501683,"lon":-88.197385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Data Transfer Nodes Yield Results!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DTN DTN Data Transfer Nodes Yield Results August 1, 2011 | Tags: Accelerator Science, Data Transfer, ESnet Linda Vu, +1 510 495 2402, lvu@lbl.gov The ability to reliably move and share data around the globe is essential to scientific collaboration, that's why three Department of Energy (DOE) Scientific Computing Centers-Argonne and Oak Ridge Leadership Computing Facilities, and the National Energy Research Scientific Computing Center (NERSC)-have teamed up to focus on optimizing wide area network (WAN) transfers. This ongoing effort began several years ago when each site deployed dedicated transfer nodes (DTNs), optimized for carrying data between the DOE facilities. Today, engineers from each site continue to meet regularly with DOE's Energy Sciences Network staff (ESnet) to develop strategies

327

Heat transfer in microsphere insulation  

Science Journals Connector (OSTI)

The results of an investigation of heat transfer in a new type of insulation (microsphere insulation) are presented. The effects of the ... gas pressure on the thermal conductivity of the insulation were investig...

R. Wawryk; J. Rafa?owicz

328

Preparing for Transfer Biological Engineering  

E-Print Network [OSTI]

Environmental Engineering Game Design Industrial Systems & Information Technology Information Science MaterialsPreparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering

Walter, M.Todd

329

Electrohydrodynamically enhanced condensation heat transfer  

E-Print Network [OSTI]

In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

Wawzyniak, Markus

2012-06-07T23:59:59.000Z

330

Insoluble Phase-Transfer Catalysts  

Science Journals Connector (OSTI)

An important problem facing the designer of industrial phase-transfer catalysis (PTC) processes using soluble PTC catalysts concerns the removal of the catalyst from the reaction mixture, and its economic recy...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

331

Technology_Transfer_Memo.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf More Documents & Publications PolicyStatementonTechnologyTransfer.pdf...

332

Method Of Transferring Strained Semiconductor Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Transferring Strained Semiconductor Structures Of Transferring Strained Semiconductor Structures Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. June 25, 2013 Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. Available for thumbnail of Feynman Center (505) 665-9090 Email Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having

333

Transferring Data from Batch Jobs at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

334

Sandia National Laboratories: Small Business Technology Transfer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Business Technology Transfer Research program JBEI Research Receives Strong Industry Interest in DOE Technology Transfer Call On September 18, 2013, in Biofuels, Biomass, Energy,...

335

Secretary Bodman Announces DOE Technology Transfer Coordinator...  

Broader source: Energy.gov (indexed) [DOE]

DOE Technology Transfer Coordinator Secretary Bodman Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts...

336

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

337

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network [OSTI]

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

338

Heat Transfer Fluids Containing Nanoparticles | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a...

339

Biological assessment for the transfer of the DP land tract  

SciTech Connect (OSTI)

The Department of Energy (DOE) is proposing to transfer to the County of Los Alamos up to 10-ha (25-ac) of federal land located in Technical Area-21 to be developed for commercial uses. Previous studies for the proposed land transfer area indicate that potential habitat for four threatened, endangered, and sensitive species occurs in or adjacent to the proposed land transfer area. These include the northern goshawk (federal species of concern), Mexican spotted owl (federal threatened), the spotted bat (federal species of concern, state threatened), die peregrine falcon (federal endangered, state endangered), and the. In order to determine the possible influences of the land transfer on these organisms, information from species-specific surveys was collected. These surveys were used to confirm the presence of these species or to infer their absence in or near the project area. It was concluded that none of die above mentioned species occur in the project area. Stretches of the stream channel within Los Alamos Canyon have been identified as palustrine and riverine, temporarily flooded wetlands. The proposed land transfer should not affect these wetlands.

Keller, D.C.

1996-10-01T23:59:59.000Z

340

Contact NETL Technology Transfer Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Significance * Applicable to subcritical and supercritical air-fired boiler designs * Eliminates the need to mimic air-fired heat transfer characteristics in order to meet existing dry steam load demands * Reduces retrofit complexity, time, and cost Applications * Retrofitting of conventional air-fired boilers Opportunity Research is active on the patent-pending technology, titled "Temperature

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Spring 2014 Heat Transfer -2  

E-Print Network [OSTI]

Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

Virginia Tech

342

Energy Cost of Information Transfer  

Science Journals Connector (OSTI)

From thermodynamic and causality considerations a general upper bound on the rate at which information can be transferred in terms of the message energy is inferred. This bound is consistent with Shannon's bounds for a band-limited channel. It prescribes the minimum energy cost for information transferred over a given time interval. As an application, a fundamental upper bound of 1015 operations/sec on the speed of an ideal digital computer is established.

Jacob D. Bekenstein

1981-03-09T23:59:59.000Z

343

Distance-dependent photoinduced electron transfer in synthetic single-strand and hairpin DNA  

Science Journals Connector (OSTI)

?The singlet state of stilbene-4,4?-dicarboxamide can serve as a fluorescent probe of both DNA conformation and electron transfer. Covalent incorporation of the stilbene-dicarboxamide into DNA structures with ...

F. D. Lewis; Robert L. Letsinger

1998-04-01T23:59:59.000Z

344

Heat Transfer of Heat-Releasing Fluid in the Top Portion of a Closed Volume  

Science Journals Connector (OSTI)

The method of analytic estimates is used to determine the characteristics of steady-state free-convection heat transfer of a fluid with internal heat sources in the top part of a closed volume with different cond...

D. G. Grigoruk; P. S. Kondratenko

2004-03-01T23:59:59.000Z

345

Photoluminescent energy transfer from poly(phenyleneethylene)s to a series of dyes  

E-Print Network [OSTI]

Photoluminescent energy transfer in conjugated polymer-dye blend films was studied by means of steady-state fluorescence spectroscopy in order to identify efficient energy acceptors with red-shifted emissions relative to ...

Song, Inja, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

346

Energy transfer between incident laser and elastically backscattered waves in nonlinear absorption media  

Science Journals Connector (OSTI)

A model of energy transfer by nearly degenerate two-beam coupling in media exhibiting two-photon and excited state absorption is presented and discussed. The two beams include an...

Sutherland, Richard

2005-01-01T23:59:59.000Z

347

A 3D radiative transfer framework: II. line transfer problems  

E-Print Network [OSTI]

Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer. We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors {\\em exactly}. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that with relatively simple parallelization that the code scales to very large number of processors which is mandatory for practical applications. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.

E. Baron; Peter H. Hauschildt

2007-03-16T23:59:59.000Z

348

Spin transfer and coherence in coupled quantum wells  

Science Journals Connector (OSTI)

Spin dynamics of optically excited electrons confined in asymmetric coupled quantum wells are investigated through time-resolved Faraday rotation experiments. The interwell coupling is shown to depend on applied electric field and barrier thickness. We observe three coupling regimes: independent spin precession in isolated quantum wells, incoherent spin transfer between single-well states, and coherent spin transfer in a highly coupled system. Relative values of the interwell tunneling time, the electron-spin lifetime, and the Larmor precession period appear to govern this behavior.

M. Poggio, G. M. Steeves, R. C. Myers, N. P. Stern, A. C. Gossard, and D. D. Awschalom

2004-09-16T23:59:59.000Z

349

Quantum State Protection and Transfer Using Superconducting Qubits  

E-Print Network [OSTI]

di?erence across the Josephson junction, ? is the external ?di?erence across the Josephson junction U (?) of the ?ux-current of the Josephson junction (I ? I 0 ) the lowest two

Keane, Kyle Michael

2012-01-01T23:59:59.000Z

350

Canister Transfer System Description Document  

SciTech Connect (OSTI)

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

NONE

2000-10-12T23:59:59.000Z

351

CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

B. Gorpani

2000-06-23T23:59:59.000Z

352

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

353

Technology Transfer office 2008 Annual Report  

E-Print Network [OSTI]

Technology Transfer office 2008 Annual Report #12;The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university's technology transfer program. It meets periodically to assess UC San Diego's technology transfer practices and guides the overall

Fainman, Yeshaiahu

354

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services B I E N N I A L R E P O R T 03­04 #12;University of California, San Diego Technology Transfer Advisory Committee The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology Transfer Program

Fainman, Yeshaiahu

355

THERM: Two-Dimensional Building Heat-Transfer Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 THERM: Two-Dimensional Building Heat-Transfer Modeling For more information and to download THERM, please visit our website: http://windows.lbl.gov/software/therm The Windows and Daylighting Group's two-year-old computer program THERM 1.0 is a state-of-the-art tool for modeling two-dimensional heat-transfer effects in building components. The thermal property information THERM provides is important for the design and application of building components such as windows, walls, foundations, roofs and doors. This Microsoft Windows-based program has great potential to users such as building component manufacturers, educators, students, architects, engineers and others who are interested in assessing the heat-transfer properties of single products, product interactions, or integrated systems. THERM

356

Fernald vacuum transfer system for uranium materials repackaging  

SciTech Connect (OSTI)

The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds from their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process.

Kaushiva, Shirley; Weekley, Clint; Molecke, Martin; Polansky, Gary

2002-02-24T23:59:59.000Z

357

National Lab Technology Transfer Making a Difference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now been licensed commercially. Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United

358

Technology transfer | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

359

RADIATIVE TRANSFER IN ULTRARELATIVISTIC OUTFLOWS  

SciTech Connect (OSTI)

Analytical and numerical solutions are obtained for the equation of radiative transfer in ultrarelativistic opaque jets. The solution describes the initial trapping of radiation, its adiabatic cooling, and the transition to transparency. Two opposite regimes are examined. (1) Matter-dominated outflow. Surprisingly, radiation develops enormous anisotropy in the fluid frame before decoupling from the fluid. The radiation is strongly polarized. (2) Radiation-dominated outflow. The transfer occurs as if radiation propagated in vacuum, preserving the angular distribution and the blackbody shape of the spectrum. The escaping radiation has a blackbody spectrum if (and only if) the outflow energy is dominated by radiation up to the photospheric radius.

Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street New York, NY 10027 (United States)

2011-08-20T23:59:59.000Z

360

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network [OSTI]

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering  

E-Print Network [OSTI]

Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

Kihm, IconKenneth David

362

Posters The Effects of Radiative Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters The Effects of Radiative Transfer on Low-Level Cyclogenesis M. J. Leach and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, North Carolina Introduction Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems (e.g., Slingo et al. 1988), small-scale systems such as thunderstorms (Chen and Cotton 1988), and squall lines (Chin, submitted). The generation of circulation on large scales results from the creation of divergence in the upper troposphere and the maintenance of low-level potentially unstable air, and the maintenance of baroclinicity throughout

363

Charge transfer effects in surface?enhanced Raman scatteringa)  

Science Journals Connector (OSTI)

Surface?enhanced Raman scattering(SERS) due to charge?transferinteractions between the adsorbed molecule and the metal surface is analyzed using the semiempirical WolfsbergHelmholz method to relate the moleculesurface interactions and the resulting charge?transfer states to the overlap integrals between the metal conduction?band orbitals and an acceptor or donor molecular orbital of the molecule. Calculations for the model system of ethylene adsorbed on silver with charge?transfer excitation of an electron from the metal to the antibonding etylene ? orbital show that charge?transfer Raman enhancements of the order of 10 to 1000 are possible if the charge?transfer band is partially resonant with the exciting radiation. Symmetric vibrations usually will be enhanced substantially more than nonsymmetric ones by this mechanism because the vibrational coupling is primarily FranckCondon rather than HerzbergTeller. The presence of overtone and combination bands in charge?transfer?enhanced Raman spectra is also possible.

Frank J. Adrian

1982-01-01T23:59:59.000Z

364

Integration of Heat Transfer, Stress, and Particle Trajectory Simulation  

SciTech Connect (OSTI)

Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

Thuc Bui; Michael Read; Lawrence ives

2012-05-17T23:59:59.000Z

365

Submersible canned motor transfer pump  

DOE Patents [OSTI]

A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

1997-01-01T23:59:59.000Z

366

Spring 2014 Heat Transfer -1  

E-Print Network [OSTI]

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

367

Data Transfer | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Transfer Data Transfer The Blue Gene/P connects to other research institutions using a total of 20 GBs of public network connectivity. This allows scientists to transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESNet) and the Metropolitan Research and Education Network (MREN). Data Transfer Node Overview Two data transfer nodes are available to all Intrepid users, that provide the ability to perform wide and local area data transfers. dtn01.intrepid.alcf.anl.gov (alias for gs1.intrepid.alcf.anl.gov) dtn02.intrepid.alcf.anl.gov (alias for gs2.intrepid.alcf.anl.gov) Data Transfer Utilities HSI/HTAR HSI and HTAR allow users to transfer data to and from HPSS Using HPSS on Intrepid GridFTP GridFTP provides the ability to transfer data between trusted sites such

368

Oak Ridge via State Route  

E-Print Network [OSTI]

Knoxville Nashville Oak Ridge via State Route 162 North OAK RIDGE INN & SUITES THE RIDGE INN. TRANSFER SNS PROJECT OFFICE COMMERCE PARK OAK RIDGE/KNOXVILLE ROUTE MAP A B C D E F G H I J K L M N O P Q R CIVIC COLISEUM UT MAIN CAMPUS UT AGRICULTURAL CAMPUS KNOXVILLE LEGEND OAK RIDGE LEGEND To Chattanooga (I

Pennycook, Steve

369

Golden State Renewable Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name Golden State Renewable Energy Corporation Place Beijing, Beijing Municipality, China Zip 100101 Sector Biomass, Wind energy Product A biomass, waste to energy and wind project developer in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

United States Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Name United States Department of Transportation Address 1200 New Jersey Ave, SE Place Washington, District of Columbia Zip 20590 Year founded 1966 Phone number 202-366-4000 Website http://www.dot.gov/ Coordinates 38.9054376°, -77.0148205° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9054376,"lon":-77.0148205,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

United States Geological Survey, LSC | Open Energy Information  

Open Energy Info (EERE)

LSC LSC Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, LSC Address Leetown Science Center, Conte Anadromous Fish Laboratory, 1 Migratory Way Place Turners Falls, Massachusetts Zip 01376 Sector Hydro Phone number (413) 863-9475 Website http://www.lsc.usgs.gov/CAFLin Coordinates 42.5998509°, -72.5679159° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5998509,"lon":-72.5679159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

United States Geological Survey, HIF | Open Energy Information  

Open Energy Info (EERE)

HIF HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip 39529 Sector Hydro Phone number (228) 688-1508 Website http://wwwhif.er.usgs.gov/publ Coordinates 30.3695°, -89.6147° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3695,"lon":-89.6147,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Tri State Generation and Transmission Association Inc | Open Energy  

Open Energy Info (EERE)

Generation and Transmission Association Inc Generation and Transmission Association Inc Jump to: navigation, search Name Tri-State Generation and Transmission Association Inc Place Westminster, Colorado Zip 80234 Product A wholesale electric power asset operator and transmission grid. Coordinates 43.07212°, -72.465748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07212,"lon":-72.465748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Colorado State Bank and Trust | Open Energy Information  

Open Energy Info (EERE)

Trust Trust Jump to: navigation, search Name Colorado State Bank and Trust Place Denver, Colorado Zip 80202 Sector Renewable Energy Product Leasing and lending for renewable projects Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Mid States Tool and Machine Inc | Open Energy Information  

Open Energy Info (EERE)

and Machine Inc and Machine Inc Jump to: navigation, search Name Mid States Tool and Machine Inc Place decatur, Indiana Zip 46733 Sector Services Product Provides engineering and manufacturing, testing, delivery, and post-installation on-site services. Coordinates 33.23476°, -97.585979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.23476,"lon":-97.585979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Solid state rapid thermocycling  

DOE Patents [OSTI]

The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

Beer, Neil Reginald; Spadaccini, Christopher

2014-05-13T23:59:59.000Z

377

ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

B. Gorpani

2000-06-26T23:59:59.000Z

378

Nonperturbative method of electron transfer via a midway molecule  

Science Journals Connector (OSTI)

In the theory of Sumi and Kakitani on electron transfer (ET) via a midway molecule, the overall ET was formulated using the second-order perturbation method and phenomenologically incorporating the renormalization factor in the intermediate state to escape from the divergence of the rate. In this Letter, we developed a nonperturbative theory of the ET via a midway molecule and we have succeeded in naturally deriving the above renormalization factor under certain approximations.

A. Kimura; T. Kakitani

1998-01-01T23:59:59.000Z

379

The Therapeutic Relationship: Transference, Countertransference, and the Making of Meaning  

E-Print Network [OSTI]

grateful to Carolyn Grant Fay for what she has done. The holder of the McMillan Professorship in Analytical Psychology at Texas A&M functions as the general editor of the Fay Book Series. The Therapeutic Relationship Transference, Countertransference..., and the Making of Meaning jan wiener Foreword by David H. Rosen Texas A&M University Press ? College Station The Therapeutic Relationship Copyright ? 2009 by Jan Wiener Manufactured in the United States of America All rights reserved First edition This paper...

Wiener, Jan

2009-09-11T23:59:59.000Z

380

TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer  

E-Print Network [OSTI]

Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements

Pennycook, Steve

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

382

Revitalizing the Knowledge Capture & Transfer Program (KCTP)...  

Broader source: Energy.gov (indexed) [DOE]

Revitalizing the Knowledge Capture & Transfer Program (KCTP) Revitalizing the Knowledge Capture & Transfer Program (KCTP) March 4, 2014 - 12:15pm Addthis HC-20 is in the process of...

383

Heat Transfer through Strongly Magnetized Ferrofluids  

Science Journals Connector (OSTI)

8 April 1991 research-article Heat Transfer through Strongly Magnetized Ferrofluids P. J. Blennerhassett...under microgravity conditions, the ratio of the steady heat transfer by convection to that by conduction can be up to 10...

1991-01-01T23:59:59.000Z

384

HEAT AND MOISTURE TRANSFER THROUGH CLOTHING  

E-Print Network [OSTI]

J. & Cheng, X. -Y. 2005. Heat and moisture transfer withof the combined diffusion of heat and water vapor throughMathematical simulation of heat and moisture transfer in a

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

385

Phase-Transfer Catalysis: Fundamentals I  

Science Journals Connector (OSTI)

Critical to the success of phase-transfer catalytic (PTC) processes are (1) the maximization of the rate of transfer of reactant anions from the aqueous or solid phase to the organic phase, (2) the maximizatio...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

386

Information transfer at multiple scales  

Science Journals Connector (OSTI)

In the study of complex systems a fundamental issue is the mapping of the networks of interaction between constituent subsystems of a complex system or between multiple complex systems. Such networks define the web of dependencies and patterns of continuous and dynamic coupling between the systems elements characterized by directed flow of information spanning multiple spatial and temporal scales. Here, we propose a wavelet-based extension of transfer entropy to measure directional transfer of information between coupled systems at multiple time scales and demonstrate its effectiveness by studying (a) three artificial maps, (b) physiological recordings, and (c) the time series recorded from a chaos-controlled simulated robot. Limitations and potential extensions of the proposed method are discussed.

Max Lungarella; Alex Pitti; Yasuo Kuniyoshi

2007-11-27T23:59:59.000Z

387

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number  

E-Print Network [OSTI]

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh number TLi+ value of 0.9 at room temperature 21­23°C . The solid-state flexible, translucent polymer of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

Rubloff, Gary W.

388

Awards recognize outstanding innovation in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recognize outstanding innovation Awards recognize outstanding innovation in Technology Transfer The award honors inventors whose patented invention exhibits significant...

389

Waste Feed Delivery Transfer System Analysis  

SciTech Connect (OSTI)

This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

JULYK, L.J.

2000-05-05T23:59:59.000Z

390

Idaho Administrator's Memorandum on Transfer Processing Policies...  

Open Energy Info (EERE)

Administrator's Memorandum on Transfer Processing Policies and Procedures Author Idaho Water Management Division Administrator Recipient Water Management Division Published...

391

Spin-out Company Portfolio Technology Transfer  

E-Print Network [OSTI]

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

392

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services 2005 A n n u a l R e p o r t #12;The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology chancellor of Research. It meets periodically to assess UCSD technology transfer policy and guide

Fainman, Yeshaiahu

393

Frequently Asked Questions 1. Technology Transfer  

E-Print Network [OSTI]

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

394

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

395

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network [OSTI]

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

396

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act Office Chapter 2. Trends in Federal Lab Technology Transfer 2.1 Cooperative Research and Development

Perkins, Richard A.

397

An Inventor's Guide to Technology Transfer  

E-Print Network [OSTI]

An Inventor's Guide to Technology Transfer at the Massachusetts Institute of Technology on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptations for MIT and the MIT of Technology Transfer for their kind permission to use their excellent material and to the University

Reuter, Martin

398

Technology Transfer from the University of Oxford  

E-Print Network [OSTI]

Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

Paxton, Anthony T.

399

Research and Technology Transfer Faculty Conference  

E-Print Network [OSTI]

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

400

Trinity Technology Transfer News December 2012  

E-Print Network [OSTI]

Trinity Technology Transfer News December 2012 SRS was set up by Dr Paul Sutton and Prof Linda licensing fees. Dr. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie;Trinity Technology Transfer News December 2012 Trinity Campus Company Funding Round EmpowerTheUser (www

O'Mahony, Donal E.

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

402

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

403

Heat Transfer at Small Grashof Numbers  

Science Journals Connector (OSTI)

...January 1957 research-article Heat Transfer at Small Grashof Numbers J. J...physical arguments suggest that the heat transfer from a body, immersed in a fluid...the problem is small. However, heat-transfer rates predicted in this fashion...

1957-01-01T23:59:59.000Z

404

ME 519: THEORY OF HEAT TRANSFER Instructor  

E-Print Network [OSTI]

ME 519: THEORY OF HEAT TRANSFER Fall 2014 Instructor: Class time: Classroom: Office Hours: Prof Tuesday 4­5pm or by appointment Class description This course will cover the fundamentals of heat transfer. An introductory course in heat transfer (ME 419 or equivalent) is pre-requisite. Grading 20% Homework 25% Exam 1

Lin, Xi

405

THE UNLV FOUNDATION MONETARY TRANSFER FORM  

E-Print Network [OSTI]

THE UNLV FOUNDATION MONETARY TRANSFER FORM (Use one form for each account) Date Department Amount Transfer from Foundation Account Name UNLV Foundation Foundation Account Number Transfer to University contributions to this fund were accepted. If Foundation account number does not equal BOR account number

Walker, Lawrence R.

406

Cost Transfers Involving Sponsored Projects Directives and Procedures  

E-Print Network [OSTI]

Cost Transfers Involving Sponsored Projects Directives and Procedures Responsible Office: Office....................................................................................................................2 1.3 Cost Transfer..................................................................................................................................................2 4. Documentation of Cost Transfers

Jawitz, James W.

407

Policy_Statement_on_Technology_Transfer.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

408

Climate Change: A Challenge to the Means of Technology Transfer  

E-Print Network [OSTI]

TO THE MEANS OF TECHNOLOGY TRANSFER Gordon J. MacDonaldthe importance of technology transfer in dealing withthe discussion of technology transfer has centered on

MacDonald, Gordon J. F.

1992-01-01T23:59:59.000Z

409

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Broader source: Energy.gov (indexed) [DOE]

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY...

410

Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals  

E-Print Network [OSTI]

International Technology Transfer? Empirical Evidence FromProtection and Technology Transfer: Evidence from USProperty Protection and Technology Transfer Evidence from US

Kanwar, Sunil

2007-01-01T23:59:59.000Z

411

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

Kaviany and B.P. Singh, Radiative heat transfer in porousmedia, Advances in Heat Transfer, vol. 23, no. 23, pp. 133Thermal radiation heat transfer, Hemisphere Publishing Co. ,

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

412

GRR/Section 19-WA-d - Water Conservancy Board Transfer or Change of Water  

Open Energy Info (EERE)

19-WA-d - Water Conservancy Board Transfer or Change of Water 19-WA-d - Water Conservancy Board Transfer or Change of Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-d - Water Conservancy Board Transfer or Change of Water Right 19-WA-d - Water Conservancy Board Transfer or Change of Water Right.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.80 RCW 90.03.380 90.03.390 RCW 90.44.100 Triggers None specified In 1997, the Washington Legislature authorized the creation of water conservancy boards through the enactment of Revised Code of Washington Chapter 90.80 to expedite the administrative process for voluntary water right transfers within individual counties. In counties where a water

413

H:\\Transfer\\My Documents\\Cleary Fire Report\\Annual Fire Safety Report 2013.doc Annual Fire Safety Report  

E-Print Network [OSTI]

and Fire Protection (Cal Fire) responds to the State Response Area of campus, including the outlyingH:\\Transfer\\My Documents\\Cleary Fire Report\\Annual Fire Safety Report 2013.doc Annual Fire Safety #12;H:\\Transfer\\My Documents\\Cleary Fire Report\\Annual Fire Safety Report 2013.doc Fire and Life

Sze, Lawrence

414

H:\\Transfer\\My Documents\\Cleary Fire Report\\Annual Fire Safety Report 2012.doc Annual Fire Safety Report  

E-Print Network [OSTI]

and Fire Protection (Cal Fire) responds to the State Response Area of campus, including the outlyingH:\\Transfer\\My Documents\\Cleary Fire Report\\Annual Fire Safety Report 2012.doc Annual Fire Safety #12;H:\\Transfer\\My Documents\\Cleary Fire Report\\Annual Fire Safety Report 2012.doc Fire and Life

Sze, Lawrence

415

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act  

E-Print Network [OSTI]

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

416

M. Bahrami ENSC 388 (F09) Forced Convection Heat Transfer 1 Forced Convection Heat Transfer  

E-Print Network [OSTI]

1 Forced Convection Heat Transfer Convection is the mechanism of heat transfer through a fluid / The convective heat transfer coefficient h strongly depends on the fluid properties and roughness of the solid. As a result, the heat transfer from the solid surface to the fluid layer adjacent to the surface

Bahrami, Majid

417

Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies  

E-Print Network [OSTI]

AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

Camci, Cengiz

418

Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3-D Endwall Contouring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring Principal Investigator Principal Investigator Sumanta Acharya, Professor Sumanta Acharya, Professor Louisiana State University, Baton Rouge, Louisiana Louisiana State University, Baton Rouge, Louisiana Collaborators Collaborators Gazi Mahmood, Ph.D., Research Asqociate Gazi Mahmood, Ph.D., Research Asqociate Arun Saha, Ph.D., Research Associate Arun Saha, Ph.D., Research Associate Ross Gustafson, M.S. student Ross Gustafson, M.S. student SCIES Project 02 SCIES Project 02 - - 01 01 - - SR098 SR098 DOE COOPERATIVE AGREEMENT DE DOE COOPERATIVE AGREEMENT DE - - FC26 FC26 - - 02NT41431 02NT41431 Tom J. George, Program Manager, DOE/NETL

419

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer issues such as infringement, intellectual property rights, royalties and licensing, etc. The Director, Office of Conflict Prevention and Resolution, coordinates this program and compiles data for quarterly reports. See the Department of Energy Technology Transfer Ombuds (PDF).

420

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology Transfer Overview | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

422

Definition: Available Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

Transfer Capability Transfer Capability Jump to: navigation, search Dictionary.png Available Transfer Capability A measure of the transfer capability remaining in the physical transmission network for further commercial activity over and above already committed uses. It is defined as Total Transfer Capability less existing transmission commitments (including retail customer service), less a Capacity Benefit Margin, less a Transmission Reliability Margin.[1] Related Terms transfer capability, transmission lines, transmission line, capacity benefit margin, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Available_Transfer_Capability&oldid=502496

423

Definition: Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

Transfer Capability Transfer Capability The measure of the ability of interconnected electric systems to move or transfer power in a reliable manner from one area to another over all transmission lines (or paths) between those areas under specified system conditions. The units of transfer capability are in terms of electric power, generally expressed in megawatts (MW). The transfer capability from 'Area A' to 'Area B' is not generally equal to the transfer capability from 'Area B' to 'Area A.'[1] Related Terms transmission lines, power, electricity generation, transmission line References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transfer_Capability&oldid=480565"

424

Effect of heat transfer on the plane-channel poiseuille flow of a thermo-viscous fluid  

Science Journals Connector (OSTI)

A steady-state plane channel flow of viscous incompressible fluid with no-slip and heat transfer boundary conditions is considered. The flow is ... induced by a fixed pressure difference and the fluid viscosity d...

S. N. Aristov; V. G. Zelenina

425

Application of the Fundamentals of Heat and Mass Transfer to the Investigation of Wax Deposition in Subsea Pipelines.  

E-Print Network [OSTI]

??The doctoral study focuses on the development of a rigorous understanding of wax deposition using the fundamentals of heat and mass transfer. First, a state-of-the-art (more)

Huang, Zhenyu

2011-01-01T23:59:59.000Z

426

Transfer equation in accelerated media  

Science Journals Connector (OSTI)

The transfer equation for photons is obtained from the Lindquist formalism in curvilinear coordinates (no symmetry assumed), in an arbitrary frame and in any basis (natural or physical), to first order in O(v/c). Acceleration terms in the fluid are introduced via a modification of the metric tensor. The local tetrad attached to the accelerated fluid element follows a Fermi-Walker transport. Lorentz transformations are used to transform locally the equation from Lagrangian to Eulerian space-time coordinates. The resulting equation agrees in the case of a local Minkowskian space with the equation obtained directly using special-relativistic considerations.

Alain Munier

1986-04-15T23:59:59.000Z

427

A simple model for exploring the role of quantum coherence and the environment in excitonic energy transfer  

E-Print Network [OSTI]

We investigate the role of quantum coherence in modulating the energy transfer rate between two energy donors and a single acceptor participating in an excitonic energy transfer process. The energy transfer rate depends explicitly on the nature of the initial coherent superposition state of the two donors and we connect it to the observed absorption profile of the acceptor and the stimulated emission profile of the energy donors. We consider simple models with mesoscopic environments interacting with the donors and the acceptor and compare the expression we obtained for the energy transfer rate with the results of numerical integration.

Sreenath K Manikandan; Anil Shaji

2014-11-17T23:59:59.000Z

428

A simple model for exploring the role of quantum coherence and the environment in excitonic energy transfer  

E-Print Network [OSTI]

We investigate the role of quantum coherence in modulating the energy transfer rate between two energy donors and a single acceptor participating in an excitonic energy transfer process. The energy transfer rate depends explicitly on the nature of the initial coherent superposition state of the two donors and we connect it to the observed absorption profile of the acceptor and the stimulated emission profile of the energy donors. We consider simple models with mesoscopic environments interacting with the donors and the acceptor and compare the expression we obtained for the energy transfer rate with the results of numerical integration.

Manikandan, Sreenath K

2014-01-01T23:59:59.000Z

429

Efficiency of energy transfer in a light-harvesting system under quantum coherence  

E-Print Network [OSTI]

We investigate the role of quantum coherence in the efficiency of excitation transfer in a ring-hub arrangement of interacting two-level systems, mimicking a light-harvesting antenna connected to a reaction center as it is found in natural photosynthetic systems. By using a quantum jump approach, we demonstrate that in the presence of quantum coherent energy transfer and energetic disorder, the efficiency of excitation transfer from the antenna to the reaction center depends intimately on the quantum superposition properties of the initial state. In particular, we find that efficiency is sensitive to symmetric and asymmetric superposition of states in the basis of localized excitations, indicating that initial state properties can be used as a efficiency control parameter at low temperatures.

Alexandra Olaya-Castro; Chiu Fan Lee; Francesca Fassioli Olsen; Neil F. Johnson

2007-08-08T23:59:59.000Z

430

United States Environmental Protection Agency | Open Energy Information  

Open Energy Info (EERE)

United States Environmental Protection Agency United States Environmental Protection Agency (Redirected from U.S. Environmental Protection Agency) Jump to: navigation, search Logo: United States Environmental Protection Agency Name United States Environmental Protection Agency Address Ariel Rios Building 1200 Pennsylvania Avenue, N.W. Place Washington, DC Zip 20460 Year founded 1970 Phone number (202) 272-0167 Website http://www.epa.gov/ Coordinates 38.894765°, -77.028888° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.894765,"lon":-77.028888,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Organization of American States (OAS) | Open Energy Information  

Open Energy Info (EERE)

American States (OAS) American States (OAS) Jump to: navigation, search Logo: Organization of American States (OAS), Department of Sustainable Development Name Organization of American States (OAS), Department of Sustainable Development Address 1889 F Street NW Place Washington, District of Columbia Zip 20006 Number of employees 1001-5000 Year founded 1948 Phone number +1-202-458-3000 Website http://www.oas.org/en/ Coordinates 38.897349°, -77.043155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.897349,"lon":-77.043155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Idaho State Board of Land Commissioners | Open Energy Information  

Open Energy Info (EERE)

State Board of Land Commissioners State Board of Land Commissioners Jump to: navigation, search Logo: Idaho State Board of Land Commissioners Name Idaho State Board of Land Commissioners Address 300 N. 6th St, Suite 103 Place Boise, Idaho Zip 83702 Number of employees 1-10 Phone number 208-334-0200 Website http://www.idl.idaho.gov/LandB Coordinates 43.615992°, -116.199217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.615992,"lon":-116.199217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Oregon State Department of Geology and Mineral Industries | Open Energy  

Open Energy Info (EERE)

State Department of Geology and Mineral Industries State Department of Geology and Mineral Industries Jump to: navigation, search Logo: Oregon State Department of Geology and Mineral Industries Name Oregon State Department of Geology and Mineral Industries Address Ste. 965 Northeast Oregon Street Place Portland, OR Zip 97232 Website http://www.oregongeology.org/s Coordinates 45.5286301°, -122.656652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5286301,"lon":-122.656652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

California State Historic Preservation Officer | Open Energy Information  

Open Energy Info (EERE)

California State Historic Preservation Officer California State Historic Preservation Officer Jump to: navigation, search Logo: California State Historic Preservation Officer Name California State Historic Preservation Officer Address Dept. of Parks and Recreation, 1416 9th Street Place Sacramento, California Zip 95814 Phone number 800-777-0369 Website http://ohp.parks.ca.gov/?page_ Coordinates 38.575523°, -121.497588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.575523,"lon":-121.497588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Numerical study of fluid flow and heat transfer characteristics inanintermittent turbulent impinging round jet  

Science Journals Connector (OSTI)

Abstract The flow structure and heat transfer of the air pulsed turbulent impinging jet are studied numerically. The gas turbulence is modelled with the Reynolds stress model. The effects of pulse frequency, ratio of on time to total cycle time, distance between pipe outlet and impinging flat plate and Reynolds number on heat transfer are numerically studied. The impingement heat transfer increases with distance from the pipe edge and target surface. The heat transfer decreases at high distance from the pipe edge and target surface. An increase in the Reynolds number causes reduction of heat transfer enhancement. Reduced heat transfer in comparison with the steady-state impinging jet is typical in the range of low frequencies of the pulse impinging jet.

M.A. Pakhomov; V.I. Terekhov

2015-01-01T23:59:59.000Z

436

Offshore decommissioning issues: Deductibility and transferability  

Science Journals Connector (OSTI)

Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international best practices standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions.

Virginia Parente; Doneivan Ferreira; Edmilson Moutinho dos Santos; Estanislau Luczynski

2006-01-01T23:59:59.000Z

437

Displacement Transfer Zone | Open Energy Information  

Open Energy Info (EERE)

Displacement Transfer Zone Displacement Transfer Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Displacement Transfer Zone Dictionary.png Displacement Transfer Zone: Displacement transfer zones facilitate the transfer of strain between normal and strike-slip faults. Intersections between strike-slip faults in the Walker Lane and N- to NNE-striking normal faults commonly host geothermal systems, focused along the normal faults proximal to their dilational intersections with nearby strike-slip faults. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault

438

NERSC HPSS Bandwidth and Transfer Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activity Activity Bandwidth and Transfer Activity Data Rate vs. File Size The graph below shows the bandwidth for individual file transfers for one day. The graph also gives a quick overview of the traffic and maximum bandwidth and file size for a given day. Historical yearly peak days. Daily Rate vs. Size Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within each one minute interval. The green line is the average over ten minute intervals. Graphs for the last 8 days. Historical yearly peak days. Daily Aggregate Bandwidth Concurrent Transfers The third graph shows the number of concurrent transfers to the storage systems. The peak within each minute is shown, as well as a ten minute

439

Transfer of Credit Request -Student This transfer of request can be performed before or after the class is taken. It is suggested to apply for a  

E-Print Network [OSTI]

. In the College Name Contains, City Name Contains or State fields, enter search data. If you cannot find) that will receive the transfer of credit request. 12. Enter the Tufts Term when Course taken. 13. Enter any Comments request the addition of your college to the master list. 6. Click Search. Search results return below

Dennett, Daniel

440

Transfer Entropy Analysis of the Stock Market  

E-Print Network [OSTI]

In terms of transfer entropy, we investigated the strength and the direction of information transfer in the US stock market. Through the directionality of the information transfer, the more influential company between the correlated ones can be found and also the market leading companies are selected. Our entropy analysis shows that the companies related with energy industries such as oil, gas, and electricity influence the whole market.

Baek, S K; Kwon, O; Moon, H T; Baek, Seung Ki; Jung, Woo-Sung; Kwon, Okyu; Moon, Hie-Tae

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evidence for correlated pair transfer of valence nucleons in multiparticle stripping channels in the 18O+174Yb reaction  

Science Journals Connector (OSTI)

The single and multinucleon transfer cross sections in 16O, 18O+174Yb reactions were measured at Elab=83?MeV bombarding energy. The data were analyzed to obtain the variation of transfer cross sections with the number of nucleons transferred from the projectile to the target nucleus, and with respect to the ground state Q value (Qgg) of the transfer reaction. In 18O+174Yb reaction, the two-neutron stripping and the two-neutron correlated cluster transfer cross sections are strongly enhanced as compared to the 16O +174Yb reaction. The results have been discussed on the basis of the possible influence of the valence neutrons in the 18O nucleus on multiparticle transfer cross sections. The transfer probabilities of multinucleon transfers have been analyzed as a function of distance of closest approach and the results for two-neutron transfer is consistent with the supposition of correlated pair transfer of valence nucleons in the 18O+174Yb reaction.

P. K. Sahu; R. K. Choudhury; D. C. Biswas; B. K. Nayak

2001-06-14T23:59:59.000Z

442

Piecewise Adiabatic Population Transfer in a Molecule via a Wave Packet  

SciTech Connect (OSTI)

We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses, thus forming a generalized adiabatic passage via a wave packet. We study piecewise stimulated Raman adiabatic passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possible.

Shapiro, Evgeny A. [Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z2 (Canada); Peer, Avi; Ye Jun [JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440 (United States); Shapiro, Moshe [Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z2 (Canada); Department of Physics, University of British Columbia, Vancouver, V6T 1Z2 (Canada); Department of Chemical Physics, Weizmann Institute, Rehovot, 76100 (Israel)

2008-07-11T23:59:59.000Z

443

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

444

Working with SRNL - Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Contacts Dale Haas, Manager (Acting) Strategic Development and Technical...

445

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

446

Heat Transfer Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how...

447

Electrostatic transfer of epitaxial graphene to glass.  

SciTech Connect (OSTI)

We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.

Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne; Biedermann, Laura Butler; Beechem Iii, Thomas Edwin; Ross, Anthony Joseph, III

2010-12-01T23:59:59.000Z

448

Posters Comparison of Stochastic Radiation Transfer Predictions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Posters Comparison of Stochastic Radiation Transfer Predictions with Multi-Filter Rotating Shadowband Radiometer Data N. Byrne and G. Ramanathan Science Applications...

449

International technology transfer, firm productivity and employment.  

E-Print Network [OSTI]

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

450

Orbital Transfer Trajectory Optimization James K Whiting  

E-Print Network [OSTI]

, multiple attracting bodies, eclipses, and solar cell degradation. The current work adds indicate that small amounts of coasting can significantly reduce the fuel needed for a transfer. Thesis

451

Industrial Steam System Heat-Transfer Solutions  

Broader source: Energy.gov [DOE]

This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

452

Academic Knowledge Transfer in Social Networks  

E-Print Network [OSTI]

179 7.1.4 Gamification of academic knowledgean experiment in gamification of knowledge transfer withina process commonly known as Gamification. Introduction There

Slater, Mark David

2013-01-01T23:59:59.000Z

453

Heat transfer and heat exchangers reference handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

454

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

455

Iodine Charge-Transfer Salts of Benzene-Bridged Bis(1,2,3,5-diselenadiazolyl) Diradicals. Electrocrystallization and Solid-State Characterization of 1,3- and 1,4-[(Se2N2C)C6H4(CN2Se2)][I  

Science Journals Connector (OSTI)

Electroreduction of 1,3- and 1,4-benzene-bridged bis(diselenadiazolium) salts [1,4-Se][SbF6]2 and [1,4-Se][SbF6]2 in acetonitrile, at a Pt wire and in the presence of iodine affords the 1:1 charge-transfer salts [1,4-Se][I] and [1,3-Se][I]. Crystals of [1,...

C. D. Bryan; A. W. Cordes; N. A. George; R. C. Haddon; C. D. MacKinnon; R. T. Oakley; T. T. M. Palstra; A. S. Perel

1996-03-14T23:59:59.000Z

456

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer  

E-Print Network [OSTI]

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

Martin, Timothy

457

Systemic problems in technology transfer in emerging markets  

Science Journals Connector (OSTI)

This study analyses a case of a Korean company that imported the manufacturing technology of diesel engines from West Germany back in the 1970s when Korea was in a state of an emerging market. The first objective of this study is to identify the systemic nature of the problems that arose in the course of the transfer of technology from an advanced country to an emerging market. The second objective of this study is to explore the technology policies that the Korean government adopted to help Korean business firms solve the systemic problems.

Suck-Chul Yoon

2009-01-01T23:59:59.000Z

458

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

Paris-Sud XI, Université de

459

Sponsored Project Account Cost Transfer Explanation  

E-Print Network [OSTI]

Sponsored Project Account Cost Transfer Explanation Check-Off List December 2011 The explanations checked below best describe the reasons for why the cost transfers are being made. Costs as to how to allocate the cost, temporarily assigned the cost to an existing account that acted

He, Chuan

460

Data Communication Principles Reliable Data Transfer  

E-Print Network [OSTI]

Principles Switching Reliable Data Transfer Data Rate of a Communication Channel Transmission Media Data Principles Switching Reliable Data Transfer Data Rate of a Communication Channel Transmission Media Data Transmission Fiber vs Copper Wire Weight vs bandwidth Cost Security 11 / 52 #12;Data Communication Principles

Ramkumar, Mahalingam

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Time-optimal transfer of coherence  

Science Journals Connector (OSTI)

We provide exact analytical solutions for the problem of time-optimal transfer of coherence from one spin-polarization to a threefold coherence in a trilinear Ising chain with a fixed energy available and subject to local controls with a non-negligible time cost. The time of transfer is optimal and consistent with a previous numerical result obtained assuming instantaneous local controls.

Alberto Carlini and Tatsuhiko Koike

2012-11-26T23:59:59.000Z

462

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Broader source: Energy.gov (indexed) [DOE]

Non-Integrated Facilities Disposition Non-Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Complex-Wide Multi-State Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM Challenge In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Transfers of facilities, materials, and waste to EM will generate liabilities that are currently unfunded. For purposes of overall planning, it is important to understand the impacts of proposed transfers with regard to technical

463

GRR/Section 19-WA-c - Transfer or Change of Water Right | Open Energy  

Open Energy Info (EERE)

9-WA-c - Transfer or Change of Water Right 9-WA-c - Transfer or Change of Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-c - Transfer or Change of Water Right 19-WA-c - Transfer or Change of Water Right.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 90.03.380 Revised Code of Washington 90.44.100 Revised Code of Washington Chapter 90.80 Triggers None specified Much of Washington's public waters have been accounted for through water right claims, permits, or certificates. As a result, many individuals seeking water rights try to acquire existing water rights already in use or change the use of a current water right they already hold. Certain elements

464

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Broader source: Energy.gov (indexed) [DOE]

National Technology Transfer and Advancement Act of 1995 [Public National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] On March 7, 1996, President Clinton signed into law "The National Technology Transfer and Advancement Act of 1995." The new law, referred to as PL 104-113, serves to continue the policy changes initiated in the 1980s under Office of Management and Budget (OMB) Circular A-119 (OMB A-119), Federal Participation in the Development and Use of Voluntary Standards, that are transitioning the Executive branch of the Federal Government from a developer of internal standards to a customer of external standards. Section 12, "Standards Conformity," of the act states that "...all Federal

465

New York State Energy Research and Development Authority | Open Energy  

Open Energy Info (EERE)

Authority Authority Jump to: navigation, search Logo: New York State Energy Research and Development Authority Name New York State Energy Research and Development Authority Address 17 Columbia Circle Place Albany, New York Zip 12203 Region Northeast - NY NJ CT PA Area Website http://www.nyserda.org/default Notes Public benefit corporation focused solely on research and development with the goal of reducing the State's petroleum consumption Coordinates 42.702424°, -73.857693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.702424,"lon":-73.857693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

New York State Energy Research and Development Authority NYSERDA | Open  

Open Energy Info (EERE)

State Energy Research and Development Authority NYSERDA State Energy Research and Development Authority NYSERDA Jump to: navigation, search Name New York State Energy Research and Development Authority (NYSERDA) Place Albany, New York Zip NY 12203-6 Sector Efficiency, Services Product Public research body administering the New York Energy Smart program,that provides energy efficiency services,including those directed at the low-income sector, research and development, and environmental protection activities. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

United States Agency for International Development (USAID) | Open Energy  

Open Energy Info (EERE)

United States Agency for International Development (USAID) United States Agency for International Development (USAID) (Redirected from United States Agency for International Development) Jump to: navigation, search Logo: U.S. Agency for International Development Name U.S. Agency for International Development Address Ronald Reagan Building Place Washington, DC Zip 20523-1000 Year founded 1961 Phone number 202-712-0000 Coordinates 38.8940007°, -77.0302545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8940007,"lon":-77.0302545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

NETL Technologies Recognized for Technology Development, Transfer |  

Broader source: Energy.gov (indexed) [DOE]

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

469

Please transfer ALL data off /house  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please transfer ALL data off /house before Please transfer ALL data off /house before 12/1/2013 Please transfer ALL data off house September 3, 2013 by Kjiersten Fagnan (0 Comments) We are happy to announce that all the file systems: /global/projectb, /global/dna and /webfs are available for use. We now strongly encourage users to begin the data transfer process from /house to the other file systems. House will retire on December 20, 2013! For more information on the best ways to transfer data and what each file system should be used for, check this page . Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet. RSS feed for comments on this page | RSS feed for all comments User Announcements Email announcement archive Subscribe via RSS

470

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

471

Direct memory access transfer completion notification  

DOE Patents [OSTI]

Methods, systems, and products are disclosed for DMA transfer completion notification that include: inserting, by an origin DMA on an origin node in an origin injection FIFO, a data descriptor for an application message; inserting, by the origin DMA, a reflection descriptor in the origin injection FIFO, the reflection descriptor specifying a remote get operation for injecting a completion notification descriptor in a reflection injection FIFO on a reflection node; transferring, by the origin DMA to a target node, the message in dependence upon the data descriptor; in response to completing the message transfer, transferring, by the origin DMA to the reflection node, the completion notification descriptor in dependence upon the reflection descriptor; receiving, by the origin DMA from the reflection node, a completion packet; and notifying, by the origin DMA in response to receiving the completion packet, the origin node's processing core that the message transfer is complete.

Archer, Charles J. (Rochester, MN), Blocksome; Michael A. (Rochester, MN), Parker; Jeffrey J. (Rochester, MN)

2011-02-15T23:59:59.000Z

472

Heat transfer analysis in Stirling engine heat input system  

SciTech Connect (OSTI)

One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

Chung, W.; Kim, S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1995-12-31T23:59:59.000Z

473

United States Government Department of Ener  

Broader source: Energy.gov (indexed) [DOE]

ZZ/Ub IUE UU:-3 FAAL 423 241 3897 UIG ** HQU 10oo1 ZZ/Ub IUE UU:-3 FAAL 423 241 3897 UIG ** HQU 10oo1 S OEF 1325.8 to-o)Dp m Ene United States Government Department of Ener memorandum DATE: November 21, 2005 Audit Report Number: OAS-L-06-02 REPLY TO ATTN OF: IG-36 (A0SOR016) SUBJECT: Audit of "Property Transfers at the East Tennessee Technology Park" TO: Gerald Boyd, Manager, Oak Ridge Ollice INTRODUCTION AND OBJECTIVE In 1999, the Oak Ridge Office (Oak Ridge) implemented a personal, property title transfer strategy at the East Tennessee Technology Park (E'TTP) aimed at increasing the effectiveness of property management and disposal methods. Oak Ridge planned to transfer the title of Government personal property to subcontractors in exchange for reduced subcontract costs. It was expected that the transfers would

474

Technology Transfer at VTIP VTIP in 20 Minutes  

E-Print Network [OSTI]

Technology Transfer at VTIP VTIP in 20 Minutes What You Need to Know Virginia Tech Intellectual Properties, Inc. #12;Technology Transfer at VTIP VTIP Overview Virginia Tech Intellectual Properties, Inc;Technology Transfer at VTIP Tech Transfer · The tech transfer process typically includes: · Identifying new

Liskiewicz, Maciej

475

Laser-induced quadrupole-quadrupole collisional energy transfer in Xe-Kr systems  

Science Journals Connector (OSTI)

Experimental investigation of laser-induced quadrupole-quadrupole collisional energy transfer between Xe and Kr is reported in this paper. The excitation spectrum of laser-induced collisional energy transfer (LICET) is characterized by a slowly decreasing tail on the blue side of the peak and a width of ?30 cm?1. The experimental evidence shows that in the quasistatic wing the quadrupole-quadrupole LICET spectrum follows a power law that is different from the dipole-dipole LICET line shape and the profile of the quadrupole-quadrupole LICET decreases more slowly than the dipole-dipole LICET profile. The results indicate that the laser-induced quadrupole-quadrupole collision can be considered as a practical process to transfer energy selectively from a storage state making a parity-nonallowed transition to a target state making a parity-allowed transition.

Zhenzhong Lu (???); Deying Chen (???); Rongwei Fan (???); Yuanqin Xia (???)

2012-06-01T23:59:59.000Z

476

Single-collision studies of energy transfer and chemical reaction  

SciTech Connect (OSTI)

The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

Valentini, J.J. [Columbia Univ., New York, NY (United States)

1993-12-01T23:59:59.000Z

477

Wireless Transfer of Electricity in Outer Space  

E-Print Network [OSTI]

Author offers conclusions from his research of a revolutionary new idea - transferring electric energy in the hard vacuum of outer space wirelessly, using a plasma power cord as an electric cable (wire). He shows that a certain minimal electric currency creates a compressed force that supports the plasma cable in the compacted form. A large energy can be transferred hundreds of millions of kilometers by this method. The required mass of the plasma cable is only hundreds of grams. He computed the macroprojects: transference of hundreds kilowatts of energy to Earth's Space Station, transferring energy to the Moon or back, transferring energy to a spaceship at distance 100 million of kilometers, the transfer energy to Mars when one is located at opposed side of the distant Sun, transfer colossal energy from one of Earth's continents to another continent (for example, between Europe-USA) wirelessly-using Earth's ionosphere as cable, using Earth as gigantic storage of electric energy, using the plasma ring as huge...

Bolonkin, A

2007-01-01T23:59:59.000Z

478

Wireless Transfer of Electricity in Outer Space  

E-Print Network [OSTI]

Author offers conclusions from his research of a revolutionary new idea - transferring electric energy in the hard vacuum of outer space wirelessly, using a plasma power cord as an electric cable (wire). He shows that a certain minimal electric currency creates a compressed force that supports the plasma cable in the compacted form. A large energy can be transferred hundreds of millions of kilometers by this method. The required mass of the plasma cable is only hundreds of grams. He computed the macroprojects: transference of hundreds kilowatts of energy to Earth Space Station, transferring energy to the Moon or back, transferring energy to a spaceship at distance 100 million of kilometers, the transfer energy to Mars when one is located at opposed side of the distant Sun, transfer colossal energy from one of Earth's continents to another continent (for example, between Europe-USA) wirelessly-using Earth ionosphere as cable, using Earth as gigantic storage of electric energy, using the plasma ring as huge MagSail for moving of spaceships. He also demonstrates that electric currency in a plasma cord can accelerate or brake spacecraft and space apparatus.

Alexander Bolonkin

2007-01-04T23:59:59.000Z

479

Information transfer and orthogonality speed via pulsed-driven qubit  

E-Print Network [OSTI]

We investigate the transfer and exchange information between a single qubit system excited by a rectangular pulse. The dynamics of the system is treated within and outside rotating wave approximation (RWA). The initial state of the qubit plays an important role for sending information with high fidelity. Within RWA, and as the fidelity of the transformed information increases the exchange information with the environment increases. For increasing values of atomic detuning, the fidelity decreases faster and the exchange information has an upper limit. Outside RWA,the fidelity of the transformed information increases as one increases the perturbation parameter. However the exchange information is very high compared with that within RWA. The orthogonality speed of the travelling qubit is investigated for different classes of initial atomic state settings and field parameters.

N. Metwally; S. S. Hassan

2012-10-27T23:59:59.000Z

480

Numerical simulation of the heat transfer in amorphous silicon nitride membrane-based microcalorimeters  

E-Print Network [OSTI]

Numerical simulation of the heat transfer in amorphous silicon nitride membrane July 2003 Numerical simulations of the two-dimensional 2D heat flow in a membrane-based microcalorimeter have been performed. The steady-state isotherms and time-dependent heat flow have been calculated

Hellman, Frances

Note: This page contains sample records for the topic "transfer state zip" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reducing the Transfer Time for Large Files in High Performance Networks  

E-Print Network [OSTI]

to the network traffic history data with certain algorithm. This database will record all the information and record into database for network traffic and congestion state modeling. Here, the general mathematical trends, which is necessary to adjust parameter during large file transfer. A database is needed

Kansas, University of

482

An expression for the bridge-mediated electron transfer rate in dye-sensitized solar cells  

Science Journals Connector (OSTI)

...denote with m the final electronic state where there is no excess electron in the semiconductor's conduction band and a neutral...51 Bai, Y , J Zhang, Y Wang, M Zhang, and P Wang. 2011 Lithium-modulated conduction band edge shifts and charge-transfer...

2014-01-01T23:59:59.000Z

483

Hanford Waste Transfer Planning and Control - 13465  

SciTech Connect (OSTI)

Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

2013-07-01T23:59:59.000Z

484

Radiative heat transfer between dielectric bodies  

E-Print Network [OSTI]

The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

Svend-Age Biehs

2011-03-16T23:59:59.000Z

485

Definition: Dynamic Transfer | Open Energy Information  

Open Energy Info (EERE)

Transfer Transfer Jump to: navigation, search Dictionary.png Dynamic Transfer The provision of the real-time monitoring, telemetering, computer software, hardware, communications, engineering, energy accounting (including inadvertent interchange), and administration required to electronically move all or a portion of the real energy services associated with a generator or load out of one Balancing Authority Area into another. Economic Dispatch The allocation of demand to individual generating units on line to effect the most economical production of electricity.[1] Related Terms energy, electricity generation, sustainability, smart grid, Balancing Authority, Balancing Authority Area References ↑ Glossary of Terms Used in Reliability Standards An inlin LikeLike UnlikeLike

486

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

487

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

permission. QC-06-053 Heat Transfer Pathways in Underfloorchange the dynamics of heat transfer within a room as wellchange the dynamics of heat transfer within a room as well

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

488

Fluorescence resonance energy transfer scanning near-field optical microscopy  

Science Journals Connector (OSTI)

...and applications. New York: Wiley Interscience...Fluorescence resonance energy transfer SNOM 919...fluorescence resonance energy transfer source...Electromagnetic theory. New York: McGraw-Hill...hierarchy and directed energy transfer in conjugated...

2004-01-01T23:59:59.000Z

489

Multilevel bioluminescence tomography based on radiative transfer equation  

E-Print Network [OSTI]

, "A fast forward solver of radiative transfer equation," Transport Theory and Statistical Physics 38Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 approach for bioluminescence tomography based on radiative transfer equation with the emphasis on improving

Soatto, Stefano

490

Spin coherence transfer in chemical transformations monitored NMR  

E-Print Network [OSTI]

the transfer of spin coherence in non-equilibrium chemicalK. L. Pierce, A. Pines ? Spin coherence transfer in chemical10.1002/anie.200123456 Spin Coherence Transfer in Chemical

Anwar, Sabieh M.; Hilty, Christian; Chu, Chester; Bouchard, Louis-S.; Pierce, Kimberly L.; Pines, Alexander

2006-01-01T23:59:59.000Z

491

Entrepreneurial Programs | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic Economic Development | Entrepreneurial Development Programs SHARE Entrepreneurial Development Programs Partnerships staff believes that one of the very best ways to foster economic development in the region and state is to support the creation of new start-ups businesses that can will license ORNL technology and focus on developing commercial applications. We devote significant time on entrepreneurial activities each year, including: Technology Innovation Program - Bridging the Gap - ORNL hosts a major annual celebration of technology commercialization and entrepreneurship called Bridging the Gap. This event is open to the public for registration. The audience has opportunities to hear about promising technology commercialization opportunities, meet with lab leadership and entrepreneurially-minded staff,

492

Attn Technology Transfer Questions.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attn Technology Transfer Questions.txt Attn Technology Transfer Questions.txt From: eschaput [esandc@prodigy.net] Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have reviewed the DOE "Questions Concerning Technology Transfer Practices at DOE Laboratories" (Federal Register notice of November 26, 2008), with the following comments and suggestions for your consideration. DOE asked five questions and the following thoughts be provided for your consideration: Question #1 - Are existing arrangements adequate? Answer #1 - The existing types of arrangement are generally adequate, but their application should be broadened and their implementation streamlined. a.. The application of "User Agreements" should be broadened to soften the effect

493

Data Transfer | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Globus Online Using GridFTP Debugging & Profiling Performance Tools & APIs Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Data Transfer The Blue Gene/Q will connect to other research institutions using a total of 100 Gbit/s of public network connectivity (10 Gbit/s during early access). This allows scientists to transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESNet) and the Metropolitan Research and Education Network (MREN). Data Transfer Node Overview A total of 12 data transfer nodes (DTNs) will be available to all Mira

494

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...shift in research emphasis away from fundamental research, conflict of interest, and...cooperation suggests that one of the fundamental flaws of the Japanese technology transfer...Cancer institute (NCI). Investigators Handbook. A Manual for Participants in Clinical...

Robert Kneller

2001-04-01T23:59:59.000Z

495

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

496

NETL Technology Transfer Case Studies and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a 2012 R&D 100 Award and a 2010 Federal Laboratory Consortium Excellence in Technology Transfer Award. This technology is available for licensing PLATINUM-CHROMIUM ALLOY FOR...

497

Financial Implications of Intergenerational Farm Transfers  

E-Print Network [OSTI]

This study seeks to address the challenge of family farm succession. A recursive, stochastic, simulation model is employed to estimate the financial impacts and accompanying risk incurred through the intergenerational transfer of farm assets...

Peterson, Devin Richard

2013-11-25T23:59:59.000Z

498

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect (OSTI)

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

499

Evaluating Water Transfers in Irrigation Districts  

E-Print Network [OSTI]

The participation of irrigation districts (IDs) in surface water transfers from agriculture-to-municipal uses is studied by examining IDs economic and political behavior, comparing their performance with non-districts (non-IDs), and analyzing...

Ghimire, Narishwar

2013-04-11T23:59:59.000Z

500

Horizontal gene transfer in Bacteroides fragilis  

E-Print Network [OSTI]

Horizontal gene transfer (HGT) is one of the man driving forces of evolution in prokaryotes, and can also promote within-strain variation of bacterial species. The genomes of three previously sequenced Bacteroides fragilis ...

Jobling, Kelly Louise

2014-11-27T23:59:59.000Z