National Library of Energy BETA

Sample records for transfer state zip

  1. State-to-state dynamics of molecular energy transfer

    SciTech Connect (OSTI)

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  2. NRS 321 - Administration, Control and Transfer of State Lands...

    Open Energy Info (EERE)

    1 - Administration, Control and Transfer of State Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 321 - Administration,...

  3. Controlled quantum-state transfer in a spin chain

    SciTech Connect (OSTI)

    Gong, Jiangbin [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117542 (Singapore); Brumer, Paul [Chemical Physics Theory Group and Center for Quantum Information and Quantum Control, University of Toronto, Toronto M5S 3H6 (Canada)

    2007-03-15

    Control of the transfer of quantum information encoded in quantum wave packets moving along a spin chain is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown that wave packets with slow dispersion can automatically emerge from a class of initial superposition states involving only a few spins, and that arbitrary unspecified traveling wave packets can be nondestructively stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos studies in quantum information science.

  4. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    SciTech Connect (OSTI)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarization transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  5. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    Open Energy Info (EERE)

    Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers...

  6. Link to the Utilities by Zip Code File | OpenEI Community

    Open Energy Info (EERE)

    Link to the Utilities by Zip Code File Home > Groups > Utility Rate I am trying to access the link to the utility by zip code csv file from the following side bar on the utility...

  7. Electronic Funds Transfer Authorization Form 4/2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vendor Information Company Name or DBA: Address: City/State/Zip: Internal Use Only Electronic Funds Transfer Authorization Form I, an authorized signer on the below account, hereby authorize Los Alamos National Laboratory, hereinafter called the Laboratory, to originate Automated Clearinghouse (ACH) credits for invoice payments (vendors), travel reimbursements, small purchase reimbursements and royalty payments (employees). I further authorize the Laboratory to originate ACH debits to this

  8. Transfers

    Broader source: Energy.gov [DOE]

    Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. 

  9. Oregon State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Logo: Oregon State University Name: Oregon State University Address: Oregon State University Corvallis, OR Zip: 97331-4501 Year Founded: 1868...

  10. BLM Idaho State Office | Open Energy Information

    Open Energy Info (EERE)

    Idaho State Office Jump to: navigation, search Logo: BLM Idaho State Office Name: BLM Idaho State Office Abbreviation: Idaho Address: 1387 S. Vinnell Way Place: Boise, Idaho Zip:...

  11. Badger State Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    State Ethanol LLC Jump to: navigation, search Name: Badger State Ethanol LLC Place: Monroe, Wisconsin Zip: 53566 Product: Dry-mill bioethanol producer References: Badger State...

  12. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect (OSTI)

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  13. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    SciTech Connect (OSTI)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  14. Photo of the Week: Power Up! Twenty Steps to Zip a Zipper | Department of

    Energy Savers [EERE]

    Energy Power Up! Twenty Steps to Zip a Zipper Photo of the Week: Power Up! Twenty Steps to Zip a Zipper April 4, 2014 - 10:30am Addthis On Feb. 18, 2014, Argonne hosted its 19th annual regional Rube Goldberg Machine Contest at the Chicago Children's Museum. This year, the competition called on teams to build a complex machine that took at least 20 steps to zip a zipper. Pictured here are students from Reavis High School of Burbank, Illinois, who defeated nine other teams in the contest with

  15. Chuckawalla Valley State Prison | Open Energy Information

    Open Energy Info (EERE)

    Chuckawalla Valley State Prison Jump to: navigation, search Name: Chuckawalla Valley State Prison Place: Blythe, California Zip: 92226 Sector: Solar Product: Prison located in...

  16. California State Assembly | Open Energy Information

    Open Energy Info (EERE)

    Assembly Jump to: navigation, search Name: California State Assembly Place: Sacramento, California Zip: 94249-0000 Product: The body of the state of California that reviews bills,...

  17. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  18. Oregon State University OSU | Open Energy Information

    Open Energy Info (EERE)

    OSU Jump to: navigation, search Name: Oregon State University OSU Address: 1148 Kelley Engineering Center Place: Corvallis Zip: 97331 Region: United States Sector: Marine and...

  19. Pennsylvania State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Logo: Pennsylvania State University Name: Pennsylvania State University Address: 201 Shields Building University Park, PA 16802 Zip: 16802...

  20. BLM Nevada State Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Logo: BLM Nevada State Office Name: BLM Nevada State Office Abbreviation: Nevada Address: 1340 Financial Blvd Place: Reno, NV Zip: 89502 Phone...

  1. BLM Wyoming State Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Logo: BLM Wyoming State Office Name: BLM Wyoming State Office Abbreviation: Wyoming Address: 5353 Yellowstone Place: Cheyenne, WY Zip: 82009...

  2. Do we get actual vendor name while we searched with zip code...

    Open Energy Info (EERE)

    let me know? Submitted by SUTHARI on 29 September, 2014 - 08:02 1 answer Points: 0 Hi SUTHARI, we had a bug in the U.S. Utility Rate Database affecting zip codes with leading...

  3. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat...

  4. Zip is not in file but shows on EUR | OpenEI Community

    Open Energy Info (EERE)

    Zip is not in file but shows on EUR Home > Groups > Utility Rate Hello, I was looking up electricity providers for the zipcode 90050. While it shows a result using the tool at...

  5. Looking for a way to find utilites per zip code (a list?) | OpenEI...

    Open Energy Info (EERE)

    you head of time. Submitted by Caniemeyer on 1 July, 2013 - 13:55 1 answer Points: 0 Hello- Yes, there is indeed a dataset that lists utilities by zip-code. It can be found on...

  6. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    domestic heating systems combining solar passive wood burning geothermal heat pumps and fossil fuel Elemental Energy Elemental Energy SW nd Ave Portland Oregon United States...

  7. Observation of excited state charge transfer with fs/ps-CARS

    SciTech Connect (OSTI)

    Blom, Alex Jason

    2009-08-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4{prime}-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  8. Washington State Department of Ecology | Open Energy Information

    Open Energy Info (EERE)

    Ecology Jump to: navigation, search Logo: Washington State Department of Ecology Name: Washington State Department of Ecology Place: Lacey, Washington Zip: 98503 References:...

  9. Empire State Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    State Wind Energy LLC Jump to: navigation, search Name: Empire State Wind Energy LLC Place: Oneida, New York Zip: 13421 Sector: Wind energy Product: Private wind project developer...

  10. Himachal Pradesh State Electricity Board HPSEB | Open Energy...

    Open Energy Info (EERE)

    Himachal Pradesh State Electricity Board HPSEB Jump to: navigation, search Name: Himachal Pradesh State Electricity Board (HPSEB) Place: Shimla, Himachal Pradesh, India Zip: 171004...

  11. Meghalaya State Electricity Board MSEB | Open Energy Information

    Open Energy Info (EERE)

    MSEB Jump to: navigation, search Name: Meghalaya State Electricity Board(MSEB) Place: Shillong, Meghalaya, India Zip: 793001 Product: State owned utility. Coordinates: 25.5835,...

  12. Clean Energy States Alliance CESA | Open Energy Information

    Open Energy Info (EERE)

    Alliance CESA Jump to: navigation, search Name: Clean Energy States Alliance (CESA) Place: Montpelier, Vermont Zip: VT 05602 Product: CESA is an association of States concerned...

  13. United States Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    United States Department of Transportation Name: United States Department of Transportation Address: 1200 New Jersey Ave, SE Place: Washington, District of Columbia Zip: 20590 Year...

  14. Northern States Metals Company | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Northern States Metals Company Address: 3207 Innovation Place Place: Youngstown, Ohio Zip: 44509 Sector: Solar Product: Manufacturing Phone...

  15. Maharashtra State Power Generation Company Limited MAHAGENCO...

    Open Energy Info (EERE)

    search Name: Maharashtra State Power Generation Company Limited (MAHAGENCO) Place: Mumbai, Maharashtra, India Zip: 400051 Product: Power generating firm planning to set up a...

  16. North Carolina State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: North Carolina State University Place: Raleigh, North Carolina Zip: 27695 Sector: Biofuels, Biomass, Solar Product: Public university...

  17. California State University CSU | Open Energy Information

    Open Energy Info (EERE)

    University CSU Jump to: navigation, search Name: California State University (CSU) Place: Los Angeles, California Zip: 90802-4210 Sector: Solar Product: One of the largest higher...

  18. Hawaii State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    Hawaii State Energy Office Jump to: navigation, search Name: Dept. of Business, Economic Development & Tourism Address: 235 S. Beretania, 5th Floor Place: Honolulu, Hawaii Zip:...

  19. State Historical Resources Commission | Open Energy Information

    Open Energy Info (EERE)

    Resources Commission Jump to: navigation, search Name: State Historical Resources Commission Address: 1725 23rd Street, Suite 100 Place: Sacramento, CA Zip: 95816 ParentHolding...

  20. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...

  1. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...

  2. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  3. Energetics and dynamics of solvent reorganization in charge-transfer excited states

    SciTech Connect (OSTI)

    Kozik, M.; Sutin, N.; Winkler, J.R.

    1989-01-01

    The dynamics of solvation of the Ru(bpy){sub 2}(CN){sub 2} metal-to-ligand charge-transfer excited state have been examined in a series of aliphatic alcohols. Steady-state emission spectra recorded at low temperature ({approx} 10 K) and at room temperature were used to resolve internal-mode and solvent contributions to the emission bandshape. Time-resolved emission spectra were fit to a model that takes into account internal-mode distortions as well as time-dependent broadening and shifts in emission maxima. A single- exponential solvent relaxation function does not adequately describe the temporal development of the emission profile of Ru(bpy){sub 2}(CN){sub 2} in alcohols. The evolution of the emission spectrum is clearly biphasic, and can be reasonably fit with a biexponential function. The slower of the two relaxation times is comparable to the longest longitudinal relaxation time reported for the bulk solvent. These slower components, however, represent less than half of the overall approach to equilibrium. Local heating due to above-threshold excitation, and local solvent relaxation are two likely sources of the faster dynamics. 25 refs., 3 figs., 2 tabs.

  4. Discovery of the Shape Coexisting 0{sup +} State in {sup 32}Mg by a Two Neutron Transfer Reaction

    SciTech Connect (OSTI)

    Wimmer, K.; Kroell, T.; Kruecken, R.; Bildstein, V.; Gernhaeuser, R.; Bastin, B.; Bree, N.; Diriken, J.; Van Duppen, P.; Huyse, M.; Patronis, N.; Vermaelen, P.; Voulot, D.; Van de Walle, J.; Wenander, F.; Fraile, L. M.; Chapman, R.; Hadinia, B.; Orlandi, R.; Smith, J. F.

    2010-12-17

    The ''island of inversion'' nucleus {sup 32}Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0{sup +} state in {sup 32}Mg has been identified by the characteristic angular distribution of the protons of the {Delta}L=0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model. The low {gamma}-ray intensity observed for the decay of this 0{sup +} state indicates a lifetime of more than 10 ns. Deduced spectroscopic amplitudes are compared with occupation numbers from shell-model calculations.

  5. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

  6. Golden State Renewable Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Corporation Jump to: navigation, search Name: Golden State Renewable Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100101 Sector: Biomass,...

  7. Colorado State Bank and Trust | Open Energy Information

    Open Energy Info (EERE)

    Bank and Trust Jump to: navigation, search Name: Colorado State Bank and Trust Place: Denver, Colorado Zip: 80202 Sector: Renewable Energy Product: Leasing and lending for...

  8. New York State Energy Research and Development Authority NYSERDA...

    Open Energy Info (EERE)

    Research and Development Authority NYSERDA Jump to: navigation, search Name: New York State Energy Research and Development Authority (NYSERDA) Place: Albany, New York Zip: NY...

  9. North Carolina State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    Energy Office Jump to: navigation, search Name: North Carolina State Energy Office Place: Raleigh, North Carolina Zip: 27604 1376 Sector: Efficiency, Renewable Energy Product: Lead...

  10. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Info (EERE)

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  11. Mississippi State Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Name: Mississippi State Oil and Gas Board Address: 500 Greymont Ave., Suite E Place: Mississippi Zip: 39202-3446 Website:...

  12. Gujarat State Electricity Corporation Ltd GSECL | Open Energy...

    Open Energy Info (EERE)

    Corporation Ltd GSECL Jump to: navigation, search Name: Gujarat State Electricity Corporation Ltd. (GSECL) Place: Vadodara, Gujarat, India Zip: 390 007 Product: Vadodara-based,...

  13. Madhya Pradesh State Electricity Board MPSEB | Open Energy Information

    Open Energy Info (EERE)

    MPSEB Jump to: navigation, search Name: Madhya Pradesh State Electricity Board (MPSEB) Place: Jabalpur, Madhya Pradesh, India Zip: 482008 Product: Jabalpur-based government owned...

  14. Kerala State Electricity Board KSEB | Open Energy Information

    Open Energy Info (EERE)

    KSEB Jump to: navigation, search Name: Kerala State Electricity Board (KSEB) Place: Thiruvananthapuram, Kerala, India Zip: 695004 Product: Government body focused on generation,...

  15. Mid States Tool and Machine Inc | Open Energy Information

    Open Energy Info (EERE)

    Tool and Machine Inc Jump to: navigation, search Name: Mid States Tool and Machine Inc Place: decatur, Indiana Zip: 46733 Sector: Services Product: Provides engineering and...

  16. Wyoming Office of State Lands and Investments | Open Energy Informatio...

    Open Energy Info (EERE)

    Investments Jump to: navigation, search Name: Wyoming Office of State Lands and Investments Abbreviation: OSLI Address: 122 West 25th Street 3W Place: Cheyenne, Wyoming Zip: 82001...

  17. United States Geological Survey, HIF | Open Energy Information

    Open Energy Info (EERE)

    HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip...

  18. United States Department of Commerce | Open Energy Information

    Open Energy Info (EERE)

    Commerce Jump to: navigation, search Name: United States Department of Commerce Address: 1401 Constitution Avenue, NW Place: Washington, DC Zip: 20230 Website: www.commerce.gov...

  19. Ground-state proton-transfer tautomer of the salicylate anion

    SciTech Connect (OSTI)

    Friedrich, D.M.; Wang, Z.; Joly, A.G.; Peterson, K.A.; Callis, P.R.

    1999-12-02

    Solutions of sodium salicylate in anhydrous polar solvents exhibit a weak, temperature-dependent absorption band ({lambda}{sub max} {approx} 325 nm) lying in the Stokes gap between the main absorption (296 nm) and the fluorescence band (396 nm, acetonitrile). This weak, longer wavelength absorption band is hardly observable in aqueous solution, but its intensity increases with temperature and increases with polarity in anhydrous organic solvents in the order of ethanol < acetonitrile < dimethyl sulfoxide at room temperature. After correction for solvent thermal contraction, the temperature-dependent absorption spectrum of salicylate in acetonitrile solutions reveals a clear isosbestic point ({epsilon}{sub 310}= 2,000 M{sup {minus}1} cm{sup {minus}1}) characteristic of an equilibrium between two salicylate species with band-maximum extinction coefficients of {epsilon}{sub 325} = 3,400 M{sup {minus}1} cm{sup {minus}1} and {epsilon}{sub 296} = 3,586 M{sup {minus}1} cm{sup {minus}1}. In acetonitrile at room temperature (298 K) the concentration equilibrium constant (minor/major) for the interconversion reaction between the two species is K{sub 298} = 0.11, with {Delta}H = 1.6 kcal mol{sup {minus}1} and {Delta}S = 0.97 cal{center{underscore}dot}mol{sup {minus}1} K{sup {minus}1}. The fluorescence lifetime (4.8 ns in acetonitrile) and the shape of the fluorescence spectrum are independent of excitation wavelength. The fluorescence quantum yield for excitation in the long-wavelength shoulder (340 nm) is approximately 60% larger than the yield for excitation in the main band at 296 nm ({phi}{sub 340} = 0.29, {phi}{sub 296} = 0.18) in acetonitrile at room temperature. These results are consistent with assignment of the shoulder band to the proton-transfer tautomer of the salicylate anion. Electronic structure calculations support assignment of the 325 nm absorption band to the ground-state tautomer (phenoxide anion form) of the salicylate anion. Absorption transition moments for both the normal and tautomer forms are parallel to the emission transition moment, are electronically allowed, and are consistent with {sup 1}L{sub b} assignment for both absorbing and emitting transitions. The static dipole moments are in the order of {mu}(N*) {ge} {mu}(N) > {mu}(T*) > {mu}(T) for the normal (N) and tautomer (T) ground and electronic excited states.

  20. Clean Energy States Alliance | Open Energy Information

    Open Energy Info (EERE)

    States Alliance Jump to: navigation, search Name: Clean Energy States Alliance Address: 50 State St Suite 1 Place: Montpelier, Vermont Zip: 05602 Number of Employees: 1-10 Year...

  1. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect (OSTI)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  2. Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei; Wang, D.; Zeng, Zhong-ming

    2013-12-23

    We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

  3. Tri State Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Tri-State Biodiesel LLC Place: New York, New York Zip: 10009 Product: A New York-based producer and retailer of biodiesel....

  4. Nevada State Office of Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Logo: Nevada State Office of Energy Name: Nevada State Office of Energy Address: 755 North Roop St., Suite 202 Place: Carson City, Nevada Zip:...

  5. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  6. BLM New Mexico State Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Logo: BLM New Mexico State Office Name: BLM New Mexico State Office Abbreviation: New Mexico Address: 301 Dinosaur Trail Place: Santa Fe, NM Zip:...

  7. Oregon Department of State Lands | Open Energy Information

    Open Energy Info (EERE)

    of State Lands Name: Oregon Department of State Lands Address: 775 Summer Street, Suite 100 Place: Salem, Oregon Zip: 97301-1279 Phone Number: 503-986-5200 Website:...

  8. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C{sub 60} molecular triad

    SciTech Connect (OSTI)

    Olguin, Marco [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Basurto, Luis; Zope, Rajendra R. [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Baruah, Tunna, E-mail: tbaruah@utep.edu [Computational Science Program, University of Texas at El Paso, El Paso, Texas 79968 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2014-05-28

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C{sub 60} (CPC{sub 60}) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC{sub 60} triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ?110 D and ?160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C{sub 60}-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC{sub 60} conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ?0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D–188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  9. Utah Division of Forestry, Fire and State Lands | Open Energy...

    Open Energy Info (EERE)

    of Forestry, Fire and State Lands Address: 1594 W. North Temple, Ste 3520 Place: Salt Lake City, Utah Zip: 84114-5703 Phone Number: 801.538.5555 Website: forestry.utah.gov...

  10. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Utah State Historic Preservation Offic Address: 300 S. Rio Grande Street Place: Salt Lake City, Utah Zip: 84101 Website: history.utah.gov...

  11. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR

    SciTech Connect (OSTI)

    Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.

    1982-03-01

    Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.

  12. Observation of breakup transfer process for the bound states of {sup 16}O populated from {sup 12}C({sup 6}Li,d) reaction at 20 MeV

    SciTech Connect (OSTI)

    Adhikari, S.; Basu, C.; Thompson, I. J.; Sugathan, P.; Jhinghan, A.; Golda, K. S.; Babu, A.; Singh, D.; Ray, S.; Mitra, A. K.

    2012-10-20

    The deuteron angular distribution for the {sup 12}C({sup 6}Li,d){sup 16}O* has been measured at 20 MeV populating bound and unbound states of {sup 16}O. Analysis shows a dominance of breakup induced alpha transfer in comparison to a direct alpha transfer process for the bound states. The effect increases as the excitation energy of {sup 16}O decreases, maximizing at the ground state.

  13. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  14. Phosphorus-31 NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo

    SciTech Connect (OSTI)

    Brindle, K.M.; Blackledge, M.J.; Challiss, R.A.J.; Radda, G.K. )

    1989-05-30

    Phosphorus-31 NMR magnetization-transfer measurement have been used to measure the flux between ATP and inorganic phosphate during steady-state isometric muscle contraction in the rat hind limb in vivo. Steady-state contraction was obtained by supramaximal sciatic nerve stimulation. Increasing the stimulation pulse width from 10 to 90 ms, at a pulse frequency of 1 Hz, or increasing the frequency of a 10-ms pulse from 0.5 to 2 Hz resulted in an increase in the flux which was an approximately linear function of the increase in the tension-time integral. The flux showed an approximately linear dependence on the calculated free cytosolic ADP concentration up to an ADP concentration of about 90 {mu}M. The data are consistent with control of mitochondrial ATP synthesis by the cytosolic ADP concentration and indicate that the apparent K{sub m} of the mitochondria for ADP is at least 30 {mu}M.

  15. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  16. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

  17. Photoreactivity of ZnO nanoparticles in visible light: Effect of surface states on electron transfer reaction

    SciTech Connect (OSTI)

    Baruah, Sunandan; Dutta, Joydeep; Sinha, Sudarson Sekhar; Ghosh, Barnali; Pal, Samir Kumar; Raychaudhuri, A. K.

    2009-04-01

    Wide band gap metal oxide semiconductors such as zinc oxide (ZnO) show visible band photolysis that has been employed, among others, to degrade harmful organic contaminants into harmless mineral acids. Metal oxides show enhanced photocatalytic activity with the increase in electronic defects in the crystallites. By introducing defects into the crystal lattice of ZnO nanoparticles, we observe a redshift in the optical absorption shifting from the ultraviolet region to the visible region (400-700 nm), which is due to the creation of intermediate defect states that inhibit the electron hole recombination process. The defects were introduced by fast nucleation and growth of the nanoparticles by rapid heating using microwave irradiation and subsequent quenching during the precipitation reaction. To elucidate the nature of the photodegradation process, picosecond resolved time correlated single photon count (TCSPC) spectroscopy was carried out to record the electronic transitions resulting from the de-excitation of the electrons to their stable states. Photodegradation and TCSPC studies showed that defect engineered ZnO nanoparticles obtained through fast crystallization during growth lead to a faster initial degradation rate of methylene blue as compared to the conventionally synthesized nanoparticles.

  18. Data Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Data Transfer DQ2 is an ATLAS tool for defining and handling datasets and transferring the datasets on the grid. It was developed as part of the ATLAS Distributed Data Management (DDM) project. Instructions for using DQ2 on PDSF are provided by the LBNL ATLAS group and can be found here. Last edited: 2016-02-01 08:07:00

  19. Electron Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example,

  20. Energy Transfer-MDE | Open Energy Information

    Open Energy Info (EERE)

    Ohio Zip: 4415 Sector: Biofuels, Geothermal energy, Solar, Wind energy Product: Manufacturing Phone Number: 330-627-4122 Website: www.energytransferinc.com Coordinates:...

  1. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016...

  2. FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview

    Office of Environmental Management (EM)

    will become candidate for transfer to DOE-EM for deactivation and decommissioning. ... used for transferring facilities from a transition status to a deactivation status. ...

  3. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Commercialization & Technology Transfer State Energy Advisory Board June 8, 2010 Bill Farris, V.P. Commercialization and Technology Transfer NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory Innovation for Our Energy Future NREL Mission It is NREL's mission to ... commercialization activities that enable widespread adoption of renewable

  4. Attempt to extract the preformation probability of. cap alpha. cluster at the surface of heavy nuclei by means of. cap alpha. -transfer reactions leading to the continuum states

    SciTech Connect (OSTI)

    Xu Shu-wei; Wu Guo-hua; Miao Rong-zhi; Han Fei

    1983-07-01

    The method of parametrization of an EFR-DWBA overlap integral developed by T. Udagawa and T. Tamura et al./sup 1/ is improved. Using the improved method we have fitted the experimental double differential energy spectrum of the /sup 8/Be cluster coming from the reaction /sup 208/Pb(/sup 12/C, /sup 8/Be) /sup 212/Po leading to the continuum states and extracted the preformation probability of the ..cap alpha.. cluster at the surface of the /sup 212/Po nucleus. Within the range of calculation error, the result is in agreement with that extracted from fitting the experimental data of ..cap alpha.. decay.

  5. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer » Data Transfer Nodes Data Transfer Nodes A redirector page has been set up without anywhere to redirect to. Last edited: 2016-02-24 13:40:09

  6. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average. Graphs for the last 8 days. Historical yearly peak days. Daily Storage Concurrency Transfer Activity This graph shows the number of transfers to the storage systems...

  7. Check Heat Transfer Surfaces

    Broader source: Energy.gov [DOE]

    This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems.

  8. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Nodes Data Transfer Nodes PDSF has dedicated nodes for grid services and data transfers named pdsfdtn1.nersc.gov and pdsfdtn2.nersc.gov. Both nodes have 10 Gb/s network connections to the NERSC network. Please avoid using the interactive nodes for bulk data transfer. Not only can it be disruptive to other users but the network connection is only 1 Gb/s so it will take longer. For transfers using /project and/or HPSS use the NERSC data transfer nodes - see the NERSC data transfer

  9. TECHNOLOGY TRANSFER COORDINATORS

    Broader source: Energy.gov [DOE]

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  10. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  11. NETL: Tech Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing & Technology Transfer Technology transfer is the process of transferring new technologies from the laboratory to the marketplace, transforming research into new products and companies so inventions benefit the greatest number of people as quickly and efficiently as possible. At NETL, researchers work every day to develop technology solutions to difficult problems. NETL Technology Transfer works with entrepreneurs, companies, universities and the public sector to move federally

  12. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  13. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  14. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  15. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  16. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  17. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  18. Technology Transfer - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  19. Technology Transfer at DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer at DOE Karina Edmonds Technology Transfer Coordinator US Department of Energy March 13, 2012 Goals (As presented 11/2010)  Improve contractual vehicles  Update and streamline WFO and CRADA agreements  Create new opportunities to partner with industry  Inreach  Educate tech transfer offices to improve consistency, streamline processes  Improve relationships with inventors to increase IP captured, manage expectations  Outreach  Develop interagency

  20. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  1. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  2. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Bandwidth and Transfer Activity Data Rate vs. File Size The graph below shows the bandwidth for individual file transfers for one day. The graph also gives a quick overview of the traffic and maximum bandwidth and file size for a given day. Historical yearly peak days. Daily Rate vs. Size Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within each one minute

  3. Inverse Energy Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inertial waves induced by rotation. Rotating stratified turbulence has similar prop- erties 8. The mechanism responsible for the inverse transfer is not understood,...

  4. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  5. Transfer Activity Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Last 8 Days Transfer Activity Last 8 Days These graphs show the transfer activity statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems)

  6. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  7. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    SciTech Connect (OSTI)

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-07

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

  8. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  9. NREL: Technology Transfer - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  10. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to data transfer of some form or fashion. Examples of intended usage would be running python scripts to download data from a remote source, running client software to load data...

  11. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  12. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds

  13. Voltage-controlled entanglement and quantum-information transfer between

    Office of Scientific and Technical Information (OSTI)

    spatially separated quantum-dot molecules (Journal Article) | SciTech Connect Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules Citation Details In-Document Search Title: Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules We propose two schemes for generating entanglement and quantum-state transfer (QST) between two spatially separated semiconductor quantum dot

  14. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

  15. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  16. Ombuds Services for Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Program Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing...

  17. Property:Zip | Open Energy Information

    Open Energy Info (EERE)

    + 21-Century Silicon, Inc. + 75081-1881 + 21st century Green Solutions LLC + 48439 + 25 x 25 America s Energy Future + 21093 + 2OC + BA1 7AB + 2degrees + OX2 7HT + 2e Carbon...

  18. ZipZone Technologies | Open Energy Information

    Open Energy Info (EERE)

    online store.1 Products include solar photovoltaic (PV) panels, wind generators, inverters, batteries and energy related products your grid inter-tie, off-grid, remote, or...

  19. VOLUNTARY LEAVE TRANSFER PROGRAM

    Office of Environmental Management (EM)

    VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM)

  20. VOLUNTARY LEAVE TRANSFER PROGRAM

    Broader source: Energy.gov (indexed) [DOE]

    VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM)

  1. VOLUNTARY LEAVE TRANSFER PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM)

  2. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  3. Technology Transfer Overview

    Broader source: Energy.gov [DOE]

    DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

  4. Decal transfer microfabrication

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  5. Recent California water transfers: Emerging options in water management. Final report

    SciTech Connect (OSTI)

    Lund, J.R.; Israel, M.

    1992-12-01

    Report examines the recent use of water transfers in California. Emphasis is on the use of water transfers during the current drought and how planners and operators of federal, state, and local systems can integrate water transfers into the planning and operations of their systems. Through the California experience, the study identifies motivations for incorporating water transfers into water supply systems, reviews a variety of water transfer types, and discusses the integration of water transfers with traditional supply argumentation and water conservation measures. Limitations, constraints, and difficulties for employing water transfers within existing systems are also discussed. The study focuses primarily on the technical, planning, and operational aspects of water transfers, rather than the legal, economic, and social implications. Water transfers, Water management, Water bank, Water supply, Water use, Water institutions, Infrastructure, California state water project, Water rights, Drought, Surface water, Groundwater.

  6. Western States Geothermal Company | Open Energy Information

    Open Energy Info (EERE)

    Company Place: Sparks, Nevada Zip: 89432-2627 Sector: Geothermal energy Product: Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates:...

  7. BLM Eastern States Office | Open Energy Information

    Open Energy Info (EERE)

    Springfield, VA Zip: 22153 Phone Number: 703-440-1600 ParentHolding Organization: Bureau of Land Management Website: www.blm.govessten.html Retrieved from "http:...

  8. BLM Arizona State Office | Open Energy Information

    Open Energy Info (EERE)

    Arizona Address: One North Central Avenue, Suite 800 Place: Phoenix, AZ Zip: 85004 Phone Number: 602-417-9200 ParentHolding Organization: Bureau of Land Management...

  9. State Facility Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    HB 198 of 2008 established a revolving loan program to fund efficiency improvements in state facilities. The fund was capitalized with a transfer of $3,650,000 from the Stripper Well-Petroleum...

  10. WSDE Change or Transfer a Water Right Forms | Open Energy Information

    Open Energy Info (EERE)

    or Transfer a Water Right FormsLegal Abstract The Washington State Department of Ecology provides various forms and publications related to the processes for changing or...

  11. Restricted Photochemistry in the Molecular Solid State: Structural Changes on Photoexcitation of Cu(I) Phenanthroline Metal-to-Ligand Charge Transfer (MLCT) Complexes by Time-Resolved Diffraction

    SciTech Connect (OSTI)

    Makal, Anna; Benedict, Jason; Trzop, Elzbieta; Sokolow, Jesse; Fournier, Bertrand; Chen, Yang; Kalinowski, Jaros; #322; aw A.; Graber, Tim; Henning, Robert; Coppens, Philip

    2015-10-15

    The excited-state structure of Cu{sup I}[(1,10-phenanthroline-N,N') bis(triphenylphosphine)] cations in their crystalline [BF{sub 4}] salt has been determined at both 180 and 90 K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation that differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is biexponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9-dimethylphenanthroline substituted complex (J. Am. Chem. Soc. 2009, 131, 6566), but the magnitudes of the shifts on excitation are similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all, the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid-state devices, which are increasingly used in current technology.

  12. Swipe transfer assembly

    DOE Patents [OSTI]

    Christiansen, Robert M. (Blackfoot, ID); Mills, William C. (McKeesport, PA)

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  13. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  14. 2006 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Awards Carrying on the tradition of world-changing innovation Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

  15. 2007 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  16. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. A photo of three men looking at a colorful, floor-to-ceiling, 3-D visualization of a biomass analysis model. View a summary of

  17. QER- Comment of Energy Transfer

    Broader source: Energy.gov [DOE]

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  18. Proton transfer in nucleobases is mediated by water

    SciTech Connect (OSTI)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-04-29

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  19. Technology Transfer Reporting Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact:

  20. Manipulator mounted transfer platform

    DOE Patents [OSTI]

    Dobbins, James C. (Idaho Falls, ID); Hoover, Mark A. (Idaho Falls, ID); May, Kay W. (Idaho Falls, ID); Ross, Maurice J. (Pocatello, ID)

    1990-01-01

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  1. Polarization transfer NMR imaging

    DOE Patents [OSTI]

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  2. A Venture Capital Perspective on Technology Transfer and Alternative Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venture Capital Perspective on Technology Transfer and Alternative Energy Presentation to the State Energy Advisory Board (STEAB) April 9, 2008 2 Private and Confidential Page 2 Discussion Agenda z Venture Capital 101 z Investing in Alternative Energy z Technology Transfer and Venture Capital 3 Private and Confidential Page 3 z Goal: successful sale to public or private investors in 5 to 7 years What Is Venture Capital? z Money provided by investors to high potential private companies - Can be

  3. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  4. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  5. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  6. Lunar Wireless Power Transfer Feasibility Study

    SciTech Connect (OSTI)

    Sheldon Freid, et al.

    2008-06-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  7. Concurrent Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Concurrent Transfers Last 8 Days These plots show the concurrent transfers statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Concurrency (Both Systems) Last

  8. Technology Transfer and Commercialization Annual Report 2008

    SciTech Connect (OSTI)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

  9. Working with SRNL - Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2015 SRNL Research and Technology Recognition Reception Click to view the 2015...

  10. Version No.:2010.01 PART 2. SUBMISSION/RESUBMISSION INFORMATION

    Gasoline and Diesel Fuel Update (EIA)

    Email: Floor, Suite): Fax: (202) 586-1076 City: State: Zip: - Secure File Transfer: Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Email address: Questions? Call: 202-586-3307 FORM EIA-804 This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see

  11. EIA-800

    Gasoline and Diesel Fuel Update (EIA)

    Email: Floor, Suite): Fax: (202) 586-1076 City: State: Zip: - Secure File Transfer: Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Questions? Call: 202-586-3307 Email address: PADD 2 PADD 3 PADD 4 PADD 5 Mailing Address of Contact (e.g., PO Box, RR): If the physical and mailing addresses are the same, only complete the physical address. Comments: Identify any unusual aspects of your reporting week's operations. (To separate one comment from another, press

  12. EIA-802

    Gasoline and Diesel Fuel Update (EIA)

    Email: Floor, Suite): Fax: (202) 586-1076 City: State: Zip: - Secure File Transfer: Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Email address: Questions? Call: 202-586-3307 Mailing Address of Contact (e.g., PO Box, RR): If the physical and mailing addresses are the same, only complete the physical address. WEEKLY PRODUCT PIPELINE REPORT FORM EIA-802 This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure

  13. EIA-817

    Gasoline and Diesel Fuel Update (EIA)

    Email: Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076 Secure File Transfer: City: State: Zip: - Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Email address: Questions? Call: 202-586-6254 FORM EIA-817 MONTHLY TANKER AND BARGE MOVEMENTS REPORT This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other

  14. EIA-819

    Gasoline and Diesel Fuel Update (EIA)

    Site Name: Terminal Control Number (TCN): Email: Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076 Secure File Transfer: City: State: Zip: - Electronic Transmission: City: State: Zip: - Contact Name: Phone No.: Ext: Fax No.: Email address: Questions? Call: 202-586-9612 Product Code 190 Comments: Identify products reported as "Other Oxygenates" (code 445) in Part 4 and any unusual aspects of your reporting month's operations. (To separate one

  15. 1 and 2-Dimensional Line Transfer Package

    Energy Science and Technology Software Center (OSTI)

    1990-07-01

    LXF1D is a one dimensional steady-state line transfer package designed to handle: overlapping and or interacting lines, planar, cylindrical, spherical (and special) geometries, doppler shifts, complete redistribution (CRD), partial redistribution (PRD). PRD requires the use of REDIST or some other package to produce emission profiles. LXF2D is a two dimensional version of LXF1D for xy and rz geometries. Both LXF1D and LXF2D are designed to be added to existing non-local thermodynamic equilibrium (NLTE) codes withmore » a minimum of effort.« less

  16. Single and pair neutron transfers at sub-barrier energies

    SciTech Connect (OSTI)

    Corradi, L.; Fioretto, E.; Michelagnoli, C.; Stefanini, A. M.; Valiente-Dobon, J. J.; Szilner, S.; Pollarolo, G.; Colo, G.; Mason, P.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C. A.; Gadea, A.; Haas, F.; Jelavic-Malenica, D.; Soic, N.; Marginean, N.

    2011-09-15

    Multinucleon transfer cross sections in the {sup 96}Zr+{sup 40}Ca system have been measured, in inverse kinematics, at bombarding energies ranging from the Coulomb barrier to {approx}25% below. Targetlike recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental data for one- and two-neutron transfer channels have been compared with semiclassical microscopic calculations. For the two-neutron transfer channels the relevance of the transitions to the ground state and to the 0{sup +} excited states of {sup 42}Ca are discussed by employing, for the reaction mechanism, the successive approximation. It is found that the transition to the 0{sup +} state at {approx}6 MeV, whose wave function is dominated by the two neutrons in the 2p{sub 3/2} shell, is much larger than the ground state one. The comparison with the inclusive data reveals that transitions to states with high multipolarity and non-natural parity are important. This suggests that more complex two-particle correlations have to be incorporated in the treatment of the transfer process.

  17. Network analysis of proton transfer in liquid water

    SciTech Connect (OSTI)

    Shevchuk, Roman; Rao, Francesco; Agmon, Noam

    2014-06-28

    Proton transfer in macromolecular systems is a fascinating yet elusive process. In the last ten years, molecular simulations have shown to be a useful tool to unveil the atomistic mechanism. Notwithstanding, the large number of degrees of freedom involved make the accurate description of the process very hard even for the case of proton diffusion in bulk water. Here, multi-state empirical valence bond molecular dynamics simulations in conjunction with complex network analysis are applied to study proton transfer in liquid water. Making use of a transition network formalism, this approach takes into account the time evolution of several coordinates simultaneously. Our results provide evidence for a strong dependence of proton transfer on the length of the hydrogen bond solvating the Zundel complex, with proton transfer enhancement as shorter bonds are formed at the acceptor site. We identify six major states (nodes) on the network leading from the “special pair” to a more symmetric Zundel complex required for transferring the proton. Moreover, the second solvation shell specifically rearranges to promote the transfer, reiterating the idea that solvation beyond the first shell of the Zundel complex plays a crucial role in the process.

  18. SWAMI II technology transfer plan

    SciTech Connect (OSTI)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  19. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR...

    Office of Scientific and Technical Information (OSTI)

    walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ...

  20. Property Transfer Review

    Energy Savers [EERE]

    Practices Related to Public Input Lesley Cusick Restoration Services, Inc. EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 2 You have been asked to help DOE decisions...  It takes individuals such as yourselves to stay engaged and help the Department make complex and important decisions  Your clean up decision-making support can involve a number of different decision processes. They often rely on seeing "the big picture" and

  1. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  2. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

  3. Technology Transfer Annual Report Fiscal Year 2015

    SciTech Connect (OSTI)

    Skinner, Wendy Lee

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Technology Deployment and Contracts Management Offices. Accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  4. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  5. Tri State Generation and Transmission Association Inc | Open...

    Open Energy Info (EERE)

    and Transmission Association Inc Place: Westminster, Colorado Zip: 80234 Product: A wholesale electric power asset operator and transmission grid. Coordinates: 43.07212,...

  6. Nonlinear Heat Transfer 2d Structure

    Energy Science and Technology Software Center (OSTI)

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  7. Wireless power transfer test system

    DOE Patents [OSTI]

    Gilchrist, Aaron; Wu, Hunter; Sealy, Kylee D.; Israelsen, Paul D.

    2015-09-22

    A testing system for wireless power transfer systems, including a stationary plate, a rotating plate, and a driver to rotate the rotating plate with respect to the stationary plate.

  8. Transfer Service (contracts/rd)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    issues regarding Transfer Service. Questions on this program can be sent to Garry Thompson at grthompson@bpa.gov or Connie Howard at cmhoward@bpa.gov. Comments can be e-mailed...

  9. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  10. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Aggregate Transfers Last 8 Days These plots show the aggregate bandwidth statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) Last edited: 2011-04-04 10:44:03

  11. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Concurrent Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage

  12. Automatic computation of transfer functions

    DOE Patents [OSTI]

    Atcitty, Stanley; Watson, Luke Dale

    2015-04-14

    Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

  13. Technology Transfer Reporting Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Reporting Form Technology Transfer Reporting Form PDF icon Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities OHA 2013 ANNUAL REPORT

  14. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  15. Steinbeis Technology Transfer Centre for Emissions Trading |...

    Open Energy Info (EERE)

    Steinbeis Technology Transfer Centre for Emissions Trading Jump to: navigation, search Name: Steinbeis Technology Transfer Centre for Emissions Trading Place: Augsburg, Bavaria,...

  16. Technology_Transfer_Memo.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf PDF icon TechnologyTransferMemo.pdf More Documents & Publications PolicyStatementonTechnologyTransfer.pdf...

  17. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  18. National Lab Technology Transfer Making a Difference | Department of Energy

    Office of Environmental Management (EM)

    Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now

  19. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  20. Apparatus and method for transferring slurries

    DOE Patents [OSTI]

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  1. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch scripts. You can add the following lines at the end of your batch script. HSI will accept one-line commands on the HSI command line, e.g., hsi put filename HSI, ftp and pftp read from the standard input (stdin) and a list of commands can be placed in a text file (script) and redirected into the given utility, e.g., htp

  2. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  3. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how materials behave when subjected to anticipated thermal conditions is critical to increasing their performance range and longevity. Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat transfer fluids Characterize heat transfer fluids Test convection-related heat transfer Test boiling heat

  4. Material Transfer Agreements (MTA) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Research Material Transfer Agreements (MTA) Materials Transfer Agreements (MTAs) are used to transfer materials, biological or non-biological, between institutions from all sectors of the scientific community. Before you sign a materials transfer agreement, receive materials transferred from another organization, or send materials to another organization, contact Deb Covey so that she may review the terms and conditions of the agreement (covey@ameslab.gov, 294-1048, Room 311 TASF).

  5. 3-D Finite Element Heat Transfer

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  6. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  7. Regulation control and energy management scheme for wireless power transfer

    DOE Patents [OSTI]

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  8. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  9. Evaluation of Hose in Hose Transfer Line Service Life for Hanford's Interim Stabilization Program

    SciTech Connect (OSTI)

    TORRES, T.D.

    2000-08-24

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program, defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program, has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will be exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning. Prudent engineering dictates that the equipment placed in service have a working life in excess of this forecasted time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer and published literature. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are process fluid characteristics, ambient environmental conditions, and the manufacturer's stated shelf life. This evaluation examines the manufacturer's certification of shelf life, the manufacturer's certifications of chemical compatibility with waste, and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials to evaluate transfer line service life.

  10. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    SciTech Connect (OSTI)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  11. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  12. City Code Non-Transferable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Code Non-Transferable If the sales tax permit at this location becomes invalid then all associated permits will become invalid. If the business changes location or ownership or is discontinued for any reason, this permit must be returned to the Oklahoma Tax Commission for cancellation WITH AN EXPLANATION ON THE REVERSE SIDE. PLEASE POST IN CONSPICUOUS PLACE GENERAL ELECTRIC COMPANY 4211 METRO PKWY FORT MYERS FL 33916-9406 443111 8010 March 6, 2014 2102181888 Effective Expires Business

  13. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  14. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  15. Data Transfer Study HPSS Archiving

    SciTech Connect (OSTI)

    Wynne, James; Parete-Koon, Suzanne T; Mitchell, Quinn; White, Stanley R

    2015-01-01

    The movement of the large amounts of data produced by codes run in a High Performance Computing (HPC) environment can be a bottleneck for project workflows. To balance filesystem capacity and performance requirements, HPC centers enforce data management policies to purge old files to make room for new computation and analysis results. Users at Oak Ridge Leadership Computing Facility (OLCF) and many other HPC user facilities must archive data to avoid data loss during purges, therefore the time associated with data movement for archiving is something that all users must consider. This study observed the difference in transfer speed from the originating location on the Lustre filesystem to the more permanent High Performance Storage System (HPSS). The tests were done with a number of different transfer methods for files that spanned a variety of sizes and compositions that reflect OLCF user data. This data will be used to help users of Titan and other Cray supercomputers plan their workflow and data transfers so that they are most efficient for their project. We will also discuss best practice for maintaining data at shared user facilities.

  16. Facility Survey & Transfer | Department of Energy

    Energy Savers [EERE]

    Survey & Transfer Facility Survey & Transfer As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. PDF icon Facility Survey & Transfer More Documents & Publications Decommissioning Handbook Post-Deactivation Surveillance and Maintenance Planning Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility

  17. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Environmental Management (EM)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  18. Technology Transfer Ombudsman Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer

  19. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  20. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  1. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PDF icon PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

  2. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    SciTech Connect (OSTI)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)] [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China)] [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China)] [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)] [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  3. PROJECT PROFILE: Oregon State University

    Broader source: Energy.gov [DOE]

    Oregon State University will continue the development of a microchannel solar receiver, using supercritical carbon dioxide (sCO2) as the heat transfer fluid. The research will resolve key issues associated with the commercial viability of the technology, which allows for a radical reduction in the size of a solar central receiver. The project will culminate in a field test of a commercial scale receiver module with a surface area of approximately one square meter.

  4. Photoexcited energy transfer in a weakly coupled dimer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  5. Photoexcited energy transfer in a weakly coupled dimer

    SciTech Connect (OSTI)

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  6. Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM

    Office of Environmental Management (EM)

    Non-Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Complex-Wide Multi-State Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM Challenge In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for

  7. LC Recommendations for Data Transfer Nodes (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect LC Recommendations for Data Transfer Nodes Citation Details In-Document Search Title: LC Recommendations for Data Transfer Nodes Abstract not provided. Authors: Harr, C. M. [1] ; Long, J. W. [1] ; Heer, T. M. [1] + Show Author Affiliations Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) Publication Date: 2014-11-12 OSTI Identifier: 1178387 Report Number(s): LLNL-TR--664301 DOE Contract Number: AC52-07NA27344 Resource Type: Technical Report Research Org:

  8. Center for Biological Electron Transfer and Catalysis (BETCy) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Center for Biological Electron Transfer and Catalysis (BETCy) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Biological Electron Transfer and Catalysis (BETCy) Print Text Size: A A A FeedbackShare Page BETCy Header Director John Peters Lead Institution Montana State University Year Established 2014 Mission To investigate the

  9. Miniature mechanical transfer optical coupler

    DOE Patents [OSTI]

    Abel, Philip (Overland Park, KS); Watterson, Carl (Kansas City, MO)

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  10. NREL: Technology Transfer - Small Business Vouchers Pilot at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address: Submit Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  11. State Overview

    Office of Environmental Management (EM)

    Natural Gas: 1,710 Bcf (7% total U.S.) Crude Oil: 49,300 Mbarrels (2% total U.S.) Ethanol: 2,900 Mbarrels (1% total U.S.) COLORADO STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  12. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 220 Bcf (1% total U.S.) Crude Oil: 9,500 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) ALABAMA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  13. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 350 Bcf (1% total U.S.) Crude Oil: 192,400 Mbarrels (8% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) ALASKA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  14. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 3,000 Mbarrels (<1% total U.S.) Ethanol: 43,400 Mbarrels (14% total U.S.) NEBRASKA STATE FACTS NATURAL HAZARDS OVERVIEW...

  15. State Overview

    Office of Environmental Management (EM)

    Natural Gas: 2,960 Bcf (12% total U.S.) Crude Oil: 70,700 Mbarrels (3% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) LOUISIANA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  16. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 1,700 Mbarrels (1% total U.S.) GEORGIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  17. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MAINE STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  18. State Overview

    Office of Environmental Management (EM)

    Natural Gas: 180 Bcf (1% total U.S.) Crude Oil: 242,500 Mbarrels (10% total U.S.) Ethanol: 8,700 Mbarrels (3% total U.S.) NORTH DAKOTA STATE FACTS NATURAL HAZARDS OVERVIEW...

  19. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 130 Bcf (1% total U.S.) Crude Oil: 7,400 Mbarrels (<1% total U.S.) Ethanol: 6,200 Mbarrels (2% total U.S.) MICHIGAN STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  20. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 70 Bcf (<1% total U.S.) Crude Oil: 26,500 Mbarrels (1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MONTANA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  1. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 110 Bcf (<1% total U.S.) Crude Oil: 3,200 Mbarrels (<1% total U.S.) Ethanol: 800 Mbarrels (<1% total U.S.) KENTUCKY STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  2. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NORTH CAROLINA STATE FACTS NATURAL HAZARDS OVERVIEW...

  3. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) RHODE ISLAND STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  4. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 20 Bcf (<1% total U.S.) Crude Oil: 2,100 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) FLORIDA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  5. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) HAWAII STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  6. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 250 Bcf (1% total U.S.) Crude Oil: 197,200 Mbarrels (8% total U.S.) Ethanol: 4,200 Mbarrels (1% total U.S.) CALIFORNIA STATE FACTS NATURAL HAZARDS OVERVIEW...

  7. State Overview

    Office of Environmental Management (EM)

    U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 200 Mbarrels (<1% total U.S.) Ethanol: 5,900 Mbarrels (2% total U.S.) MISSOURI STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  8. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 1,200 Mbarrels (<1% total U.S.) IDAHO STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  9. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEW JERSEY STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  10. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 82,600 Mbarrels (26% total U.S.) IOWA STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  11. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) DELAWARE STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  12. State Overview

    Office of Environmental Management (EM)

    total U.S.) Natural Gas: 0 Bcf (0% total U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MARYLAND STATE FACTS NATURAL HAZARDS OVERVIEW Annual...

  13. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 85,200 Mbarrels (4% total U.S.) Ethanol: 600 Mbarrels (<1% total U.S.) NEW MEXICO STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards...

  14. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 2,400 Mbarrels (<1% total U.S.) Ethanol: 22,400 Mbarrels (7% total U.S.) INDIANA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  15. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 0 Mbarrels (0% total U.S.) Ethanol: 11,700 Mbarrels (4% total U.S.) WISCONSIN STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  16. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 400 Mbarrels (<1% total U.S.) Ethanol: 5,200 Mbarrels (2% total U.S.) TENNESSEE STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  17. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 400 Mbarrels (<1% total U.S.) Ethanol: 3,800 Mbarrels (1% total U.S.) NEW YORK STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  18. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 100 Mbarrels (<1% total U.S.) Ethanol: 1,000 Mbarrels (<1% total U.S.) ARIZONA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  19. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) SOUTH CAROLINA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  20. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 89,300 Mbarrels (4% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) OKLAHOMA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  1. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 4,900 Mbarrels (<1% total U.S.) Ethanol: 10,400 Mbarrels (3% total U.S.) OHIO STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  2. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 30,300 Mbarrels (1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) UTAH STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  3. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) VIRGINIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  4. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) MASSACHUSETTS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  5. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) WASHINGTON STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  6. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24,200 Mbarrels (1% total U.S.) Ethanol: 1,000 Mbarrels (<1% total U.S.) MISSISSIPPI STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  7. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 8,900 Mbarrels (<1% total U.S.) Ethanol: 30,300 Mbarrels (10% total U.S.) ILLINOIS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  8. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) CONNECTICUT STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  9. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEW HAMPSHIRE STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  10. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 2,600 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) WEST VIRGINIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  11. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 6,500 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) ARKANSAS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  12. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 0 Mbarrels (0% total U.S.) Ethanol: 25,200 Mbarrels (8% total U.S.) MINNESOTA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  13. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 725,800 Mbarrels (31% total U.S.) Ethanol: 8,100 Mbarrels (3% total U.S.) TEXAS STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  14. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 400 Mbarrels (<1% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEVADA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  15. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4,300 Mbarrels (<1% total U.S.) Ethanol: 2,500 Mbarrels (1% total U.S.) PENNSYLVANIA STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  16. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 900 Mbarrels (<1% total U.S.) OREGON STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  17. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil: 57,800 Mbarrels (2% total U.S.) Ethanol: 300 Mbarrels (<1% total U.S.) WYOMING STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural Hazards in...

  18. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    operates a number of power stations including the largest coal fired power station in the world as well as the Koeberg nuclear power station Esmeralda Energy Company Esmeralda...

  19. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Industries GmbH SunCoal Industries GmbH K nigs Wusterhausen Germany Producer of bio coal SunConnex International BV SunConnex International BV Amsterdam Netherlands Solar Dutch...

  20. Organization Organization Address Place Zip Notes Website Region

    Open Energy Info (EERE)

    Boston Massachusetts http cleantechboston com Greater Boston Area Consortium for Energy Efficiency Consortium for Energy Efficiency North Washington St Boston Massachusetts http...

  1. Property:Incentive/Cont4Zip | Open Energy Information

    Open Energy Info (EERE)

    Arkansas - Commercial and Industrial Energy Efficiency Programs (Arkansas) + 72205 + O OTEC - Agricultural Energy Efficiency Rebate Programs (Oregon) + 97850 + OTEC - Commercial...

  2. Property:Incentive/Cont2Zip | Open Energy Information

    Open Energy Info (EERE)

    (Georgia) + 30345-3202 + Alternative Fuel Vehicle and Refueling Station Corporate Tax Credit (Kansas) + 66612 + (previous 25) (next 25) Retrieved from "http:...

  3. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    manufacturing and marketing of display products typically OLED Organic Light Emitting Diode Display Vista International Inc Vista International Inc Englewood Colorado...

  4. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    com Genifuel Genifuel Carrigan Cir Salt Lake City Utah Biofuels Renewable Natural Gas http www genifuel com Rockies Area Gevo Inc Gevo Inc Inverness Drive South Englewood...

  5. Property:Incentive/ContZip | Open Energy Information

    Open Energy Info (EERE)

    Company - Commercial Solutions Program (Texas) + 78746 + AEP Texas Central Company - ENERGY STAR New Home Program (Texas) + 78746 + AEP Texas Central Company - SCORE Program...

  6. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Avenida De La Playa La Jolla California Efficiency Created high power yellow amber red LED light technology http www quanlight com Southern CA Area QuantaSol Limited...

  7. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    com Texas Area HelioVolt Inc HelioVolt Inc E Riverside Dr Austin Texas Solar Thin film solar panel producer http www heliovolt net Texas Area Horizon Wind Energy Horizon Wind...

  8. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    environmental costs Gaiam Real Goods Gaiam Real Goods W So Boulder Rd Boulder Colorado Solar PV panel efficient lighting distributor http www gaiam com realgoods Rockies Area...

  9. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    CREATIVE ELECTRO POWER CREATIVE ELECTRO POWER kazipara mirpur Dhaka Solar IPS CONTROLLER Solar panel http www smmbd com Southern CA Area Caprock Roofing Caprock Roofing Lewisville...

  10. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Research Center Brookpark Rd Cleveland Ohio Biofuels Carbon Efficiency Renewable Energy Solar Wind energy Research and development http www nasa gov centers glenn home index html...

  11. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    integrates services including the research development production sales of polysilicon solar panel CEEG Shanghai Solar Science Technology CEEG Shanghai Solar Science Technology...

  12. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  13. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    EV Drive Train and Services http www aevehicles com Rockies Area American Wind Power Hydrogen LLC American Wind Power Hydrogen LLC New York New York Hydro Hydrogen Vehicles AWP H...

  14. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    ANV Partners ANV Partners Denver Colorado Hydro Hydrogen Services Solar Wind energy AQWON Motors AQWON Motors Speinshart Germany Hydro Hydrogen AQWON Motors has developed the first...

  15. Name Name Address Place Zip Category Sector Telephone number...

    Open Energy Info (EERE)

    Hydro Marine and Hydrokinetic http acep uaf edu facilities tanana river hydrokinetic test site aspx Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street...

  16. Institution Name Institution Name Address Place Zip Notes Website...

    Open Energy Info (EERE)

    Avenue Cambridge Massachusetts http web mit edu eel Greater Boston Area MIT Energy Science and Engineering Laboratory MIT Energy Science and Engineering Laboratory...

  17. Name Address Place Zip Sector Product Stock Symbol Year founded...

    Open Energy Info (EERE)

    Energy Inc Suite Inco Innovation Centre Memorial University of Newfoundland PO Box St John s A1C S7 Marine and Hydrokinetic http http www greyislandenergy com Canada Gulfstream...

  18. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  19. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  20. Idaho Administrator's Memorandum on Transfer Processing Policies...

    Open Energy Info (EERE)

    Administrator's Memorandum on Transfer Processing Policies and Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Idaho Administrator's...

  1. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  2. Please transfer ALL data off house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please transfer ALL data off /house before 12/1/2013 Please transfer ALL data off house September 3, 2013 by Kjiersten Fagnan We are happy to announce that all the file systems: /global/projectb, /global/dna and /webfs are available for use. We now strongly encourage users to begin the data transfer process from /house to the other file systems. House will retire on December 20, 2013! For more information on the best ways to transfer data and what each file system should be used for, check this

  3. Small Business Technology Transfer (STTR) Programs Participating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... transfer system and vessel integration, 4) indicate ... based upon measured pressure drops across a given ... in the open-source code MFIX (http:mfix.netl.doe.gov). ...

  4. Working with SRNL - Technology Transfer - Ombudsman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Ombudsman SRS Entry Sign The Department of Energy and its management and operating...

  5. Working with SRNL - Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and universities. 803.725.4185 dale.haas@srnl.doe.gov Dale Haas Commercialization Program Manager Haas provides program management for SRNL and SRNS technology transfer...

  6. heat transfer | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  7. WEBA transfer chutes improve coal distribution

    SciTech Connect (OSTI)

    2008-08-15

    American Electric Power has improved material flow and reduced dust generation by installing WEBA transfer chutes at some of their power plants. 4 photos.

  8. "Covalent functionalization and electron-transfer properties...

    Office of Scientific and Technical Information (OSTI)

    "Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: The importance of edge-plane sites" Citation Details In-Document Search Title: ...

  9. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by...

  10. International Center for Environmental Technology Transfer |...

    Open Energy Info (EERE)

    Name: International Center for Environmental Technology Transfer Place: Yokkaichi, Japan Year Founded: 1990 Website: www.icett.or.jp Coordinates: 34.9651567, 136.6244847...

  11. United States

    Office of Legacy Management (LM)

    ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr.

  12. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  13. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  14. United States

    Office of Legacy Management (LM)

    WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr.

  15. Direct memory access transfer completion notification

    DOE Patents [OSTI]

    Archer, Charles J. , Blocksome; Michael A. , Parker; Jeffrey J.

    2011-02-15

    Methods, systems, and products are disclosed for DMA transfer completion notification that include: inserting, by an origin DMA on an origin node in an origin injection FIFO, a data descriptor for an application message; inserting, by the origin DMA, a reflection descriptor in the origin injection FIFO, the reflection descriptor specifying a remote get operation for injecting a completion notification descriptor in a reflection injection FIFO on a reflection node; transferring, by the origin DMA to a target node, the message in dependence upon the data descriptor; in response to completing the message transfer, transferring, by the origin DMA to the reflection node, the completion notification descriptor in dependence upon the reflection descriptor; receiving, by the origin DMA from the reflection node, a completion packet; and notifying, by the origin DMA in response to receiving the completion packet, the origin node's processing core that the message transfer is complete.

  16. Direct memory access transfer completion notification

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Parker, Jeffrey J.

    2011-02-15

    DMA transfer completion notification includes: inserting, by an origin DMA engine on an origin node in an injection first-in-first-out (`FIFO`) buffer, a data descriptor for an application message to be transferred to a target node on behalf of an application on the origin node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying a packet header for a completion notification packet; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; sending, by the origin DMA engine, the completion notification packet to a local reception FIFO buffer using a local memory FIFO transfer operation; and notifying, by the origin DMA engine, the application that transfer of the message is complete in response to receiving the completion notification packet in the local reception FIFO buffer.

  17. Heat and mass transfer in open-cycle OTEC systems

    SciTech Connect (OSTI)

    Bharathan, D.; Kreith, F.; Owens, W.L.; Schlepp, D.

    1984-01-01

    The temperature difference between surface and deep water in the oceans represents a vast resource of thermal energy. A promising method of harnessing this resource is the open-cycle ocean thermal energy conversion (OC-OTEC) system, which utilizes steam evaporated from the surface water to power the turbine. In this paper the state of the art of heat and mass transfer related to evaporation and condensation of steam at low pressures in OC-OTEC is summarized and relevant research issues are discussed.

  18. Notices State

    National Nuclear Security Administration (NNSA)

    30908 Federal Register / Vol. 73, No. 104 / Thursday, May 29, 2008 / Notices State Parents of dependents and inde- pendents with dependents other than a spouse Dependents and independ- ents without de- pendents other than a spouse Under $15,000 (%) $15,000 & up (%) All (%) Michigan ................................................................................................................................. 5 4 3 Minnesota

  19. NREL: Technology Deployment - State and Local Governments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State and Local Governments Technology Deployment NREL provides analysis, outreach, training, and technical assistance to state and local government leaders as part of its mission to transfer knowledge and innovation to solve the nation's energy challenges. The goal of this work is to support informed decision making with credible, technology-neutral, accessible, and timely resources. NREL technical experts provide: Disaster resiliency and recovery support Financial policy analysis Program,

  20. Condensation Heat Transfer on Superhydrophobic Surfaces (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, ...

  1. Heat transfer analysis in Stirling engine heat input system

    SciTech Connect (OSTI)

    Chung, W.; Kim, S.

    1995-12-31

    One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

  2. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  3. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  4. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-68 Bats of the Savannah River Site and Vicinity Michael A. Menzel, Jennifer M. Menzel, John C. Kilgo, W. Mark Ford, Timothy C. Carter, and John W. Edwards Authors: Michael A. Menzel, 1 Jennifer M. Menzel, 2 John C. Kilgo, 3 W. Mark Ford, 2 Timothy C. Carter, 4 and John W. Edwards 5 1 Graduate Research Assistant, Division of Forestry, Wildlife and Fisheries, West Virginia University, Morgantown,

  5. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CBR-1-H Availability: This rate schedule shall be available to Big Rivers Electric Corporation and includes the City of Henderson, Kentucky (hereinafter called the Customer). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all

  6. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the

  7. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and

  8. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect (OSTI)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  9. Heat Transfer Fluids Containing Nanoparticles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal increase in pumping power required relative to the base heat transfer fluid. A stable, non-reactive nanofluid that exhibits enhanced heat transfer properties Enables more productive and efficient cooling systems PDF icon nanoparticle_heat_transfer_fluids

  10. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  11. {gamma} spectroscopy around doubly magic {sup 48}Ca by heavy-ion transfer reactions

    SciTech Connect (OSTI)

    Leoni, Silvia

    2012-10-20

    {gamma} spectroscopy of neutron-rich nuclei around {sup 48}Ca is performed by the heavy-ion transfer reaction {sup 48}Ca on {sup 64}Ni at 282 MeV, with the PRISMA-CLARA setup at Legnaro Laboratory. Angular distributions, polarizations and lifetimes analysis probe spin and parities of several excited states, shading lights on their configuration. In the one neutron transfer channels, {sup 49}Ca and {sup 47}Ca, states arising by coupling a single particle to the 3{sup -} phonon of {sup 48}Ca are observed, showing the robustness of nuclear collectivity in rather light systems. The work demonstrates the feasibility of complete in-beam {gamma}-spectroscopy with heavy-ion transfer reactions and provides a method that can be further exploited in the future with heavy targets and radioactive beams.

  12. EIA-820

    Gasoline and Diesel Fuel Update (EIA)

    EIA ID NUMBER: If this is a resubmission, enter an "X" in the box: If any Respondent Identification Data has changed since the last report, enter an "X" in the box: Company Name: Forms may be submitted using one of the following methods: Doing Business As: Site Name: Email: Terminal Control Number (TCN): Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076 City: State: Zip: - Secure File Transfer: City: State: Zip: - Questions? Call:

  13. State Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Overview Population: 0.84 million (<1% total U.S.) Housing Units: 0.37 million (<1% total U.S.) Business Establishments: 0.03 million (<1% total U.S.) Annual Energy Consumption Electric Power: 11.7 TWh (<1% total U.S.) Coal: 2,000 MSTN (<1% total U.S.) Natural Gas: 63 Bcf (<1% total U.S.) Motor Gasoline: 9,800 Mbarrels (<1% total U.S.) Distillate Fuel: 8,300 Mbarrels (1% total U.S.) Annual Energy Production Electric Power Generation: 12 TWh (<1% total U.S.) Coal:

  14. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  15. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  16. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  17. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  18. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  19. States Government

    Office of Legacy Management (LM)

    ,.' &I ,J?5.8 = , sr; i&L:E%, 7-e;, iB 1 L Unitbd ' States Government ma.morandum DATE: $I$! 24 ml1 Department of Energy y;;;z EM-421 .- Elimination of the Landis Machine Company site SVWECT: The File TO: I have reviewed the attached site summary and elimination recommendation for the Landis Machine Company site in Waynesboro, Pennsylvania. I have determined that there is little likelihood of radioactive contamination at this site. Based' on the above, the Landis Machine Company site is

  20. Saturn facility oil transfer automation system

    SciTech Connect (OSTI)

    Joseph, Nathan R.; Thomas, Rayburn Dean; Lewis, Barbara Ann; Malagon, Hector M.

    2014-02-01

    The Saturn accelerator, owned by Sandia National Laboratories, has been in operation since the early 1980s and still has many of the original systems. A critical legacy system is the oil transfer system which transfers 250,000 gallons of transformer oil from outside storage tanks to the Saturn facility. The oil transfer system was iden- ti ed for upgrade to current technology standards. Using the existing valves, pumps, and relay controls, the system was automated using the National Instruments cRIO FGPA platform. Engineered safety practices, including a failure mode e ects analysis, were used to develop error handling requirements. The uniqueness of the Saturn Oil Automated Transfer System (SOATS) is in the graphical user interface. The SOATS uses an HTML interface to communicate to the cRIO, creating a platform independent control system. The SOATS was commissioned in April 2013.

  1. Direct memory access transfer completion notification

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Parker, Jeffrey J.

    2010-08-17

    Methods, apparatus, and products are disclosed for DMA transfer completion notification that include: inserting, by an origin DMA engine on an origin compute node in an injection FIFO buffer, a data descriptor for an application message to be transferred to a target compute node on behalf of an application on the origin compute node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying an address of a completion notification field in application storage for the application; transferring, by the origin DMA engine to the target compute node, the message in dependence upon the data descriptor; and notifying, by the origin DMA engine, the application that the transfer of the message is complete, including performing a local direct put operation to store predesignated notification data at the address of the completion notification field.

  2. NWTC Researchers Recognized for Technology Transfer Excellence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    received NREL Technology Transfer Awards: one for the development of the Simulator fOr Wind Farm Applications (SOWFA) and a second for their work with Siemens on blade...

  3. Clean Boiler Waterside Heat Transfer Surfaces

    Broader source: Energy.gov [DOE]

    This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. Technology Transfer Ombudsman Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was ... Act of 2005, Title X, (Public Law 109-58), pages 334 through 345 of the PDF version. ...

  5. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect (OSTI)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  6. Posters Comparison of Stochastic Radiation Transfer Predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models for estimating the effects of broken cloud on radiative transfer in the context of a general circulation model (GCM). These schemes are required to be very fast and...

  7. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  8. Data Transfer | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Globus Using GridFTP Debugging & Profiling Performance Tools & APIs Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Data Transfer The Blue Gene/Q will connect to other research institutions using a total of 100 Gbit/s of public network connectivity. This allows scientists to transfer datasets to and from other institutions

  9. Awards recognize outstanding LANL Tech Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outstanding Tech Transfer awards Awards recognize outstanding LANL Tech Transfer Awards were given for distinguished accomplishments in patenting, copyright, licensing, programmatic impact, and regional impact during fiscal year 2009. August 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  10. United States Government Department of Ener

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZZ/Ub IUE UU:-3 FAAL 423 241 3897 UIG ** HQU 10oo1 S OEF 1325.8 to-o)Dp m Ene United States Government Department of Ener memorandum DATE: November 21, 2005 Audit Report Number: OAS-L-06-02 REPLY TO ATTN OF: IG-36 (A0SOR016) SUBJECT: Audit of "Property Transfers at the East Tennessee Technology Park" TO: Gerald Boyd, Manager, Oak Ridge Ollice INTRODUCTION AND OBJECTIVE In 1999, the Oak Ridge Office (Oak Ridge) implemented a personal, property title transfer strategy at the East

  11. NERSC training events: Data Transfer and Archiving; Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences...

  12. Tag: technology transfer | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Tag: technology transfer Displaying 1 - 10 of 12... Category: News CNS, UT chemical sensing technology wins R&D 100 Award An inexpensive, small and portable...

  13. Technology Transfer Webinar on November 12: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

  14. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to ...

  15. DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for CSD Applications DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for CSD Applications This presentation was ...

  16. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  17. File Transfer Protocol (FTP) Site Instructions | Open Energy...

    Open Energy Info (EERE)

    Transfer Protocol (FTP) Site Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: File Transfer Protocol...

  18. Project Profile: Dual-Purpose Heat Transfer Fluids for CSP

    Broader source: Energy.gov [DOE]

    Argonne National Laboratory, under an ARRA CSP Award, is developing advanced heat transfer fluids (HTFs) by incorporating multifunctional engineered nanoparticles in heat transfer applications and thermal energy storage.

  19. Transfer Printed Microcells with Micro-Optic Concentrators for...

    Office of Scientific and Technical Information (OSTI)

    Transfer Printed Microcells with Micro-Optic Concentrators for Low Cost, High Performance Photovoltaic Modules Citation Details In-Document Search Title: Transfer Printed...

  20. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  1. Mass transfer effects in a gasification riser

    SciTech Connect (OSTI)

    Breault, Ronald W; Li, Tingwen; Nicoletti, Phillip

    2013-01-01

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.

  2. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  3. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  4. Product transfer service chosen over LPG flaring

    SciTech Connect (OSTI)

    Horn, J.; Powers, M.

    1994-07-01

    Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

  5. Photo-induced electron transfer method

    DOE Patents [OSTI]

    Wohlgemuth, Roland (2823 Hillegass Ave., Berkeley, CA 94705); Calvin, Melvin (2683 Buena Vista Way, Berkeley, CA 94708)

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  6. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  7. Photo-induced electron transfer method

    DOE Patents [OSTI]

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  8. Indirect evaporative coolers with enhanced heat transfer

    DOE Patents [OSTI]

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  9. Epitaxial growth of silicon for layer transfer

    DOE Patents [OSTI]

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  10. Method of transferring strained semiconductor structure

    DOE Patents [OSTI]

    Nastasi, Michael A. (Santa Fe, NM); Shao, Lin (College Station, TX)

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  11. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect (OSTI)

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Alán E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies’ thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts – the reorganization shift – to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to understand the physical origin of the Stokes shifts in molecular aggregates.

  12. Single Neutron Transfer Experiments Close to the r-Process Path

    SciTech Connect (OSTI)

    Grzywacz-Jones, Kate L; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, Kyung Yuk; Chipps, K.; Cizewski, Jolie; Dean, David Jarvis; Erikson, Luke; Fitzgerald, R. P.; Gaddis, A. L.; Greife, U.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Johnson, Micah; Kozub, R. L.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian; O'Malley, Patrick; Nesaraja, Caroline D; Pain, S. D.; Patterson, N. P.; Paulauskas, Stanley V; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.

    2007-01-01

    The first measurements using the (d, p) transfer reaction to study single- particle states in nuclei on the expected r-process path have been made at the Holifield Radioactive Ion Beam Facility. The shell closure at N = 50 has been crossed using the 82Ge(d, p) and 84Se(d, p) reactions. The prop- erties of the lowest-lying states have been determined. Furthermore, the 132Sn(d, p) reaction has been used for the first time to populate single- particle states in 133Sn.

  13. Improving the bulk data transfer experience

    SciTech Connect (OSTI)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  14. Custody transfer measurements for LNG/LPG

    SciTech Connect (OSTI)

    Williams, R.A.

    1984-04-01

    The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

  15. Secretarial Determination for the Sale or Transfer of Uranium | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium, May 15, 2012 PDF icon Secretarial Determination for the Sale or Transfer of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Before the House Committee on Oversight and Government Reform

  16. Savannah River Site Achieves Waste Transfer First | Department of Energy

    Office of Environmental Management (EM)

    Achieves Waste Transfer First Savannah River Site Achieves Waste Transfer First November 26, 2014 - 12:00pm Addthis Workers made a historic transfer from one tank farm to another through the new Consolidated Control Room. Workers made a historic transfer from one tank farm to another through the new Consolidated Control Room. AIKEN, S.C. - The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F

  17. Electrostatic transfer of epitaxial graphene to glass. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Electrostatic transfer of epitaxial graphene to glass. Citation Details In-Document Search Title: Electrostatic transfer of epitaxial graphene to glass. We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer

  18. Technology Transfer Working Group (TTWG) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Working Group (TTWG) Technology Transfer Working Group (TTWG) With the passage of the Energy Policy Act of 2005, Title X, Sec. 1001, the Secretary of Energy was directed to establish a Technology Transfer Working Group (TTWG), to include representatives from DOE National Laboratories and single purpose research facilities. The same section of the Act also directs the Secretary to appoint a Technology Transfer Coordinator. The duties of the Technology Transfer Coordinator

  19. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (OSTI)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  20. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  1. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (OSTI)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more »By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  2. Dual manifold system and method for fluid transfer

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Knoxville, TN); Bryan, William Louis (Knoxville, TN); Kress, Reid (Oak Ridge, TN)

    2003-05-27

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  3. Dual manifold system and method for fluid transfer

    DOE Patents [OSTI]

    Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid

    2003-09-30

    A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.

  4. Magnetic field transfer device and method

    DOE Patents [OSTI]

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  5. Magnetic field transfer device and method

    DOE Patents [OSTI]

    Wipf, Stefan L. (Hamburg, DE)

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  6. Resonant vibrational energy transfer in ice Ih

    SciTech Connect (OSTI)

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  7. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect (OSTI)

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  8. Electroweak nuclear response at moderate momentum transfer

    SciTech Connect (OSTI)

    Ankowski, Artur M.; Benhar, Omar

    2011-05-15

    We discuss the convergence of the expansion of the nuclear electroweak current in powers of |k|/M, where M is the nucleon mass and k denotes either the momentum transfer or the momentum of the struck nucleon. We have computed the electron and neutrino scattering cross sections off uniform nuclear matter at equilibrium density using correlated wave functions and the cluster expansion formalism. The results of our work suggest that the proposed approach provides accurate estimates of the measured electron scattering cross sections. On the other hand, the description of the current based on the widely used leading-order approximation does not appear to be adequate, even at momentum transfer as low as 300 MeV.

  9. Reaction coordinates for electron transfer reactions

    SciTech Connect (OSTI)

    Rasaiah, Jayendran C.; Zhu Jianjun

    2008-12-07

    The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in Marcus' theory of electron transfer. The quadratic dependence of the free energies of the reactant and product intermediates on m and m+1, respectively, leads to similar dependence of the free energies on the reaction coordinates and to the same dependence of the activation energy on the reorganization energy and the standard reaction free energy. Within the approximations of a continuum model of the solvent and linear response of the longitudinal polarization to the electric field in Marcus' theory, both formulations of the reaction coordinate are expected to lead to the same results.

  10. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect (OSTI)

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  11. Custody transfer enhanced by electronic billing system

    SciTech Connect (OSTI)

    Knox, R.M.

    1986-10-20

    Transcontinental Gas Pipe Line (TGPL) Corp. engineers have developed an electronic billing system for custody transfer that can reduce the cost of doing business and improve the accuracy of transfer measurements. The system accurately measures gas flow and quality, transmits gas data to a central facility, provides a capability to review the collected data, prepares bills based upon these data, and reduces staffing associated with the data collection and billing process. On-line flow computers are keys to this electronic billing system. These computers, referred to as remote terminal units (RTU's), are currently in service at TGPL at more than 30 locations with 30 more locations due to be on-line within 6 months and an additional 40 locations due within 15 months. These RTU's will be obtaining gas data from metering stations located in New York, New Jersey, Pennsylvania, Maryland, Virginia, North Carolina, Georgia, Louisiana, and Texas.

  12. State Energy Program awards $5 million to states for State Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Program awards 5 million to states for State Energy Planning and Innovative Energy Practices State Energy Program awards 5 million to states for State Energy...

  13. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  14. recuperative heat transfer within the Brayton cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recuperative heat transfer within the Brayton cycle - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  15. tech transfer | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tech transfer | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  16. Working with SRNL - Technology Transfer - Tech Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/2016 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Remote Electrical Throw Device Magnetic Release Coupling InviziMark: Concealed Identification System Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Boron-Structured Nano-Proportional Counters Acoustic Door Latch Detector (Smart

  17. Source storage and transfer cask: Users Guide

    SciTech Connect (OSTI)

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of /sup 252/Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs.

  18. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  19. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer A. Meintz, T. Markel, E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Work sponsored by United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicles Technologies Office, Vehicle Systems Program The information contained in this poster is subject to a government license. 2015 IEEE PELS Workshop on

  20. Microsoft PowerPoint - 7-Transfer of DOE Real Property 5-7-14-Steinau

    Office of Legacy Management (LM)

    TRANSFER OF DOE REAL PROPERTY David Steinau Senior Realty Officer U.S. Department of Energy Authorities, Options, and Processes Mound Reindustrialization Workshop Miamisburg, Ohio May 20, 2014 DOE Real Property - Overview * 4 th largest landholding federal agency * 2.2 M acres * 68% withdrawn public domain land (1.5 M ac) * 24 states * National labs * Plants and facilities * Power marketing administrations * Strategic Petroleum Reserve DOE Real Property - Overview D O E O ffi c e s Bonneville

  1. Idaho Transferring a Water Right Webpage | Open Energy Information

    Open Energy Info (EERE)

    Transferring a Water Right Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Transferring a Water Right Webpage Abstract This webpage...

  2. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Wednesday, 25 July 2012 00:00 Hydrogen bonds are...

  3. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  4. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  5. Data Transfer Considerations for ALS Scientists and Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and system administrators to consider: Using the right file transfer tools Instead of FTP or scp, use tools that have been designed specifically for high-speed data transfer. We...

  6. Secretarial Determination of No Adverse Material Impact for Uranium Transfers

    Broader source: Energy.gov [DOE]

    The determination covers the Department’s sales or transfers of no more than 2,705 metric tons (MTU) of natural uranium (NU) or NU equivalent in a calendar year.  The proposed transfers include up...

  7. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

    1991-01-01

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  8. Technology Transfer through the Pipeline and Other Channels: Preprint

    SciTech Connect (OSTI)

    Benner, J.; Hulstrom, R.; Sheldon, P.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Examines some success stories of tech transfer and lessons learned from these experiences that point to possible improvements to expedite transfer to future technologies.

  9. Graphene resonators : analysis and film transfer. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Full Text preview image File size ...

  10. Small Business Innovation Research and Small Business Technology Transfer

    Office of Environmental Management (EM)

    Programs | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's (EERE's) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE)

  11. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. PDF icon Industrial Steam System Heat-Transfer Solutions (June 2003) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  12. ENERGY TRANSFER Shelley Corman Executive Vice President, Interstate Pipelines

    Broader source: Energy.gov (indexed) [DOE]

    TRANSFER Shelley Corman Executive Vice President, Interstate Pipelines ENERGY TRANSFER ASSETS * Map is a general depiction of Energy Transfer assets 2 More than 72,000 miles of natural gas, NGL, crude, and refined products pipelines ENERGY TRANSFER INTERSTATES CONNECTING SUPPLY AND MARKET 3 Fayetteville Express Tiger Trunkline Florida Gas Sea Robin Transwestern Supply Growth 1 Demand Growth Mid Continent Permian Fayetteville Haynesville ET ROVER 4

  13. General Relativistic Radiative Transfer and GeneralRelativistic...

    Office of Scientific and Technical Information (OSTI)

    43 PARTICLE ACCELERATORS; ACCRETION DISKS; BLACK HOLES; MAGNETIC FIELDS; MORPHOLOGY; OSCILLATIONS; RADIANT HEAT TRANSFER; SYNCHROTRONS; VISIBILITY Astrophysics,ASTRO, SYNCHRAD...

  14. Characterization and Development of Advanced Heat Transfer Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Compact,...

  15. FLC Recognizes Laboratory's Technology Transfer Activities - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL FLC Recognizes Laboratory's Technology Transfer Activities August 19, 2004 Golden, Colo. - The Federal Laboratory Consortium for Technology Transfer (FLC) has recognized the Department of Energy's National Renewable Energy Laboratory with three regional awards for technology transfer activities. "These awards acknowledge our success in moving NREL technologies to the private sector," said Tom Williams, director of NREL's Technology Transfer Office. NREL was honored with two

  16. DOE General Counsel for Technology Transfer and Intellectual Property |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy General Counsel for Technology Transfer and Intellectual Property DOE General Counsel for Technology Transfer and Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and technical data) and transfer of those rights from Department laboratories to the

  17. NETL Inventions Earn 2009 Technology Transfer Awards | Department of Energy

    Office of Environmental Management (EM)

    Inventions Earn 2009 Technology Transfer Awards NETL Inventions Earn 2009 Technology Transfer Awards February 13, 2009 - 12:00pm Addthis Washington, DC -- Two technologies developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have earned 2009 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been

  18. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's (EERE's) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE)

  19. Land and Asset Transfer for Beneficial Reuse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Land and Asset Transfer for Beneficial Reuse Land and Asset Transfer for Beneficial Reuse PDF icon Land and Asset Transfer for Beneficial Reuse More Documents & Publications EA-0531: Final Environmental Assessment EIS-0068: Final Environmental Impact Statement EA-1008: Final Environmental Assessment

  20. Standard Form 270

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10. PAYEE (Where check is to be sent if different than item 9) Name: Number and Street: City, State and ZIP Code: Name: Number and Street: City, State and ZIP Code: 11....

  1. Nuclear Material Transaction Report NRC 741_1

    National Nuclear Security Administration (NNSA)

    B 1 1 1 1 COMPANY NAME COMPANY ADDRESS CITY, STATE ZIP CODE CONTACT COMPANY NAME COMPANY ADDRESS CITY, STATE ZIP CODE CONTACT 0 YYY XXX 04 01 2008 BASED ON SHIPPER'S VALUES Example 1-b

  2. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  3. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  4. Technology transfer in the petrochemical industry

    SciTech Connect (OSTI)

    Tanaka, M.

    1994-01-01

    The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

  5. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B; McKeever, John W

    2011-01-01

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  6. Nanofluids for Heat Transfer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Nanofluids for Heat Transfer Argonne National Laboratory Contact ANL About This Technology <p> Comparison of thermal conductivity enhancement in 4 vol % SiC nanofluids with EG/H<sub>2</sub>O and H<sub>2</sub>O as base fluids at various particle sizes.</p> Comparison of thermal conductivity enhancement in 4 vol % SiC nanofluids with EG/H2O and H2O as base fluids at various particle

  7. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  8. Novel Solid State Magnetocaloric Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Magnetocaloric Air Conditioner Novel Solid State Magnetocaloric Air Conditioner Lead Performer: Oak Ridge National Laboratory, Oak Ridge, TN Partners: Vaccumschmelze GmbH & Co. KG., Hanau, Germany DOE Total Funding: $1,360,000 Cost Share: $340,000 Project Term: 09/01/2015 - 08/31/2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 PROJECT OBJECTIVE Current magnetocaloric cooling/heating prototypes employ a heat transfer

  9. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps

    SciTech Connect (OSTI)

    Zaikowski, L.; Mauro, G.; Bird, M.; Karten, B.; Asaoka, S.; Wu, Q.; Cook, A. R.; Miller, J.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  10. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  11. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    SciTech Connect (OSTI)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-08-15

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.

  12. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  16. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  17. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  18. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  19. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  6. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  7. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  8. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 June 7, 2011 WPA Convenes 10th Annual All-States Summit: A Wind Powering America Success Story Approximately 110 members of Wind Powering America's network attended the 10th Annual All-States Summit on May 26 in Anaheim. June 7, 2011 Ruth Douglas Miller Named One of the Top 150 Scientists in Kansas' History Ruth Douglas Miller, associate professor of electrical and computer engineering and Wind Powering America's Wind Applications Center lead at Kansas State University, was added to the Ad

  9. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    SciTech Connect (OSTI)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup ?1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup ?1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.

  10. Technology transfer in the national laboratories

    SciTech Connect (OSTI)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  11. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect (OSTI)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  12. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  13. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  14. Risk transfer via energy savings insurance

    SciTech Connect (OSTI)

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self-insure th e savings. ESI encourages those implementing energy saving projects to go beyond standard, tried-and-true measures and thereby achieve more significant levels of energy savings; and ESI providers stand to be proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy savings objectives and perhaps elevating the quality of information available for program evaluation. Governmental agencies have been pioneers in the use of ESI and could continue to play a role in developing this innovative risk-transfer mechanism. There is particular potential for linkages between ESI and the ENERGY STAR (registered trademark) Buildings Program. It is likely that ENERGY STAR (registered trademark)-labeled commercial buildings (which have lower performance risk thanks to commissioning) would be attractive to providers of energy savings insurance. Conversely, the award of energy savings insurance to an ENERGY STAR (registered trade mark)-labeled building would raise the perceived credibility of the Label and energy savings attributed to the Program.

  15. The Struggle between States and the Federal Government on the Siting of LNG Import Terminals: Has a Red Tide Washed Ashore in the Blue States?

    SciTech Connect (OSTI)

    Desautels, Denise; Ray, Peter

    2005-10-01

    The Energy Policy Act of 2005 transfers, in some circumstances, implementation of the public trust doctrine from the state to the federal government. Implicit in the public trust doctrine is the issue of public safety and environmental concerns. Proponents of such facilities are challenged with weighing such factors to make a successful proposal to federal and state agencies.

  16. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-08-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5.

  17. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays

    SciTech Connect (OSTI)

    Yang, Lei, E-mail: nanoyang@qq.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Dong, Jiazhang; Jiang, Zhongcheng [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Pan, Anlian; Zhuang, Xiujuan [Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China)

    2014-06-14

    We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.01–0.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  18. Efficient Wide Area Data Transfer Protocols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... E cient tools are necessary to move vast amounts of scientific data over high-bandwidth networks in such state- of-the-art collaborations. The Large Hadron Collider 1 (LHC), the ...

  19. Bagless Transfer System Welder Analysis Software

    Energy Science and Technology Software Center (OSTI)

    2003-10-01

    The Bagless Transfer System Welder Analysis Software (BTS WAS) was developed by SRTC for use with the Bagless Transfer System. During the welding process, critical weld parameters such as weld current and voltage, can give valuable informaitoin about the weld. In the past, weld data from the TIG welding process, such as the bagless transfer system in FB-Line, has been monitored using strip chart recorders. The data from the weld process, recorded on the stripmore » chart recorder traces, were reviewed by the supervisor using a procedure and criteria to analyze the weld. This hand checking can be tedious and time consuming. To improve this process, another software package developed by SRTC, the BTS DAS, digitizes the weld data and stores the weld data in a file. The BTS WAS automates the weld analysis process by analyzing the data obtained during the weld process against the same weld criteria that the supervisor currently users. Of course with the automated analysis system the supervisor is still provided the same information in the same chart display format so he can also manually review the data as desired. The BTS WAS reads in a data file that was prevously collected using the BTS DAS software. The software will read the file and parse the data. The user is first prompted to enter the file name. The file is then opened and the operator name and Date/Time of Acquisition are read from the file and displayed on the screen. The binary weld data is then read from the file into an array until the end of the file is reached. The shunt and weld current, voltage, RPM, and position data are displayed on the screen in graphical formats on the front panel. The weld power and resistance are calculated and are also displayed in graphical format on the front panel. Individual tack analysis data is provided for each of the three tacks. The main weld and downslope data is also displayed.« less

  20. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation

    SciTech Connect (OSTI)

    Schwartz, B.J.

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in {approximately}240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH{sub 2}I{sub 2} and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a {approximately}350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  1. Extreme pressure fluid sample transfer pump

    DOE Patents [OSTI]

    Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  2. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL)

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  3. Submersible pumping system with heat transfer mechanism

    SciTech Connect (OSTI)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  4. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L. (Stony Brook, NY); Salzano, Francis J. (Patchogue, NY); Batey, John E. (Stony Brook, NY)

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  5. Direct memory access transfer completion notification

    DOE Patents [OSTI]

    Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos

    2010-07-27

    Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.

  6. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2011-04-12

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  7. Advances in refrigeration and heat transfer engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  8. Foam insulated transfer line test report

    SciTech Connect (OSTI)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  9. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-01-01

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  10. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

  11. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  12. The TIARA Array for the Study of Nucleon Transfer Reactions

    SciTech Connect (OSTI)

    Catford, W.N.; Timis, C.N.; Labiche, M.; Moores, G.; Chapman, R.; Lemmon, R.C.

    2003-08-26

    The TIARA array is designed for the study of nucleon transfer reactions in inverse kinematics, using radioactive beams. Crucially, the energies of coincident gamma-rays will be used to give better energy resolution for final excited states than can be achieved by measuring the energies of particles alone. Thus, an extremely compact array of position sensitive silicon strips will fit inside an array of four segmented clover EXOGAM Ge detectors which can each be mounted as close as 50mm from the target. Approximately 90% of 4{pi} is covered by 400{mu}m silicon detectors manufactured using 6-inch technology. Particle ID is by the kinematical correlation between the angle and the deposited energy, measured in coincidence with the beam-like particle recorded near zero degrees. Construction will be complete early in 2003 and the array will be deployed initially at GANIL, in front of the VAMOS spectrometer. An early application will be the reaction d(56Ni,55Ni)t.

  13. Toward a new nanoLIFT transfer process

    SciTech Connect (OSTI)

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Bourgeade, A.; Hebert, D.; Saut, O.

    2010-02-02

    The Laser Induced Forward Transfer (LIFT) is a direct-write technique used to print biological materials such as living cells or molecules. During the LIFT process, the biomaterial to be printed is deposited on a target submitted to a nanosecond laser shot, and the ejecta are collected onto a receiving substrate. Despite the several advantages of this technique (control of the propelled quantity, no spoiling of the substrate), it remains difficult to be employed due to the high sensitivity of its control parameters. Recently, Duocastella published some experimental results which exhibit the real-time jet formation process, under conditions similar to those present in the LIFT process. In the first Section, a typical experimental setup for LIFT process is presented. Then, simulations of Duocastella's and Guillemot's experiments are carried out to model the jet formation in water when irradiated by an ultraviolet nanosecond laser pulse. The 2D axisymmetric hydrodynamic code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA) is used for these simulations with included equations of state (EOS) to take into account the behavior of water under standard conditions. Finally, an improvement of the LIFT technique which consists in using femtosecond lasers instead of nanosecond ones, is presented. It would allow to process smaller bioelements and to control the jet diameter, as it is directly related to the laser beam waist.

  14. State Energy Program Helps States Plan and Implement Energy Efficiency...

    Energy Savers [EERE]

    Helps States Plan and Implement Energy Efficiency State Energy Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program...

  15. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  16. Analytical and numerical solution of one- and two-dimensional steady heat transfer in a coldplate

    SciTech Connect (OSTI)

    Jones, G.F.; Bennett, G.A.; Bultman, D.H.

    1987-01-01

    We develop analytical models for steady-state, one- and two-dimensional heat transfer in a single-material, flat-plate coldplate. Discrete heat sources are mounted on one side of the plate and heat transfer to a flowing fluid occurs on the other. The models are validated numerically using finite differences. We propose a simple procedure for estimating maximum coldplate temperature at the location of each heat source which includes thermal interaction among the sources. Results from one model are compared with data obtained for a composite coldplate operated in the laboratory. We demonstrate the utility of the models as diagnostic tools to be used for predicting the existence and extent of void volumes and delaminations in the composite material that can occur with coldplates of this type. Based on our findings, recommendations for effective coldplate design are given.

  17. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  18. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  19. Secretary Bodman Announces DOE Technology Transfer Coordinator | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy DOE Technology Transfer Coordinator Secretary Bodman Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts to Bring Energy Options to the Marketplace WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today strengthened the Department of Energy's (DOE) efforts to transfer energy technologies from DOE national laboratories and facilities to the global marketplace by naming Under Secretary for Science,

  20. Renewable Energy Innovations Garner Tech Transfer Awards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovations Garner Tech Transfer Awards Renewable Energy Innovations Garner Tech Transfer Awards May 23, 2012 - 10:11am Addthis Among the Energy Department teams that won awards at the Federal Laboratory Consortium for Technology Transfer was the team above from Pacific Northwest National Lab. They received the Interagency Partnership Award at an awards banquet in Pittsburgh on May 3. The award recognizes employees from at least two different federal agencies or laboratories who have

  1. Globus Online File Transfer - NERSC Tutorial - March 8, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    globusonline.org globus online Reliable File Transfer. No IT Required. NERSC File Transfer Tutorial Steve Tuecke Deputy Director, Computation Institute University of Chicago & Argonne National Laboratory 2 globusonline.org Globus Toolkit Build the Grid Components for building custom grid solutions globustoolkit.org Globus Online Use the Grid Reliable file transfer Software-as-a-Service globusonline.org Some context 3 globusonline.org Globus Online In Action 28.6 Terabytes 31,000 files 56h

  2. Numerical analysis of thermally assisted spin-transfer torque magnetization

    Office of Scientific and Technical Information (OSTI)

    reversal in synthetic ferrimagnetic free layers (Journal Article) | SciTech Connect Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers Citation Details In-Document Search Title: Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was

  3. High Operating Temperature Liquid Metal Heat Transfer Fluids | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to investigate high operating temperature liquid metal heat transfer fluids, funded by the SunShot initiative. The project team is using a combination of modeling along with a variety of property measurement and validation studies to demonstrate that the metal alloys identified can meet all the needs of a

  4. Hydrogen permeability and Integrity of hydrogen transfer pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 03_babu_transfer.pdf More Documents & Publications Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Proceedings of the 2005 Hydrogen Pipeline

  5. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface.

  6. Contacts for the Assistant General Counsel for Technology Transfer and

    Energy Savers [EERE]

    Procurement | Department of Energy Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject Matter/Functional Area Lead Backup Technology Transfer John T. Lucas 202-586-2939 Linda Field 202-586-3440 IP Policy John T. Lucas 202-586-2939 Linda Field 202-586-3440 Litigation Administrative Claims Copyrights/Software Nathaniel Sloan 202-586-4792 Marianne Lynch 202-586-3815 Acquisition/Assistance IP Rights International

  7. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs: Hydropower | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions

  8. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs: Wind | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses

  9. Technology Transfer: Triggering New Global Markets and Job Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth September 20, 2011 - 11:33am Addthis The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013. The Global

  10. Technology Transfer | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Technology Transfer Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 More Information » Technology Transfer Print Text Size: A A A FeedbackShare

  11. NERSC training events: Data Transfer and Archiving; Chemistry and Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Applications training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications February 21, 2011 by Richard Gerber NERSC will present two training events in March: Data Transfer and Archiving March 8, 2011 10:00-12:30 Pacific Time Using Chemistry and Material Sciences Applications at NERSC March 22, 2011 10:00-12:00 Pacific Time Each event will be held

  12. NREL Recognized by FLC for Technology Transfer Activities - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Recognized by FLC for Technology Transfer Activities September 13, 2005 Golden, Colo. - The Federal Laboratory Consortium for Technology Transfer (FLC) has recognized the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) with two regional awards for technology transfer activities. NREL's National Bioenergy Center (NBC) was honored with two "Notable Technology Development" Awards. The first award recognizes the Clean Fractionation, an innovative

  13. NREL Solar Cell Wins Federal Technology Transfer Prize - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize for the commercialization of federally funded research. The Inverted Metamorphic Multijunction (IMM) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The

  14. Technology Transfer Commercialization Act of 2000 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Commercialization Act of 2000 Technology Transfer Commercialization Act of 2000 PUBLIC LAW 106-404-NOV. 1, 2000 To improve the ability of Federal agencies to license federally owned inventions. PDF icon PUBLIC LAW 106-404-NOV. 1, 2000 More Documents & Publications E:\PUBLAW\PUBL404.106 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF Methane Hydrate Research and Development Act of 2000

  15. Annual Report on Technology Transfer and Related Technology Partnering

    Energy Savers [EERE]

    Activities at the National Laboratories and Other Facilities FY 2009-2013 | Department of Energy Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 During the reporting period (2009-13), DOE has developed a sharpened focus on technology transfer activities,

  16. Office of the Assistant General Counsel for Technology Transfer and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intellectual Property | Department of Energy Resources » Office of the Assistant General Counsel for Technology Transfer and Intellectual Property Office of the Assistant General Counsel for Technology Transfer and Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and

  17. Idaho Workers Complete Last of Transuranic Waste Transfers Funded by

    Office of Environmental Management (EM)

    Recovery Act | Department of Energy Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste &ndash; each weighing up to 15 tons &ndash; to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million

  18. Sites Pending Transfer to LM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sites Pending Transfer to LM Sites Pending Transfer to LM Sites Pending Transfer to Legacy Management Note: The following list is subject to change without prior notice and will be updated periodically. California Energy Technology Engineering Center Site Colorado Cañon City Disposal Site Durita Disposal Site Uravan Disposal Site Connecticut Windsor Site Indiana Ft. Wayne Site Iowa Middletown Site Kentucky Paducah Site Massachusetts Attleboro Site Maryland Curtis Bay Site Missouri Berkeley Site

  19. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  20. Overcoming Barriers to the Transfer and Diffusion of Climate...

    Open Energy Info (EERE)

    Gas Topics: Technology characterizations Resource Type: Publications, Guidemanual, Training materials Website: uneprisoe.org Cost: Free Overcoming Barriers to the Transfer...

  1. Argonne Recognized for Excellence in Technology Transfer | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jason Harper Jason Harper Argonne Recognized for Excellence in Technology Transfer By Angela Hardin * April 11, 2014 Tweet EmailPrint The Federal Laboratory Consortium (FLC)...

  2. Property:Power Transfer Method | Open Energy Information

    Open Energy Info (EERE)

    of energy which in turn is transferred through electrical swivels. MHK TechnologiesOTEC + Current facility is land-based (offshore pipelines draw the deep and surface seawater...

  3. The Requesting Access to Dynamic Transfer Capability Pilot (DTC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and control of dynamic transfer adequate for Dispatchers? * What control center (AGC, SCADA, etc.) changes were required to provide adequate visibility and control? * Did the...

  4. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for Concentrating Solar Power Generation Terrafore: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Texas Engineering Experiment ...

  5. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  6. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  7. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  8. Lease of Power Privilege Flowchart: Transferred Work Conduit...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Lease of Power Privilege Flowchart: Transferred Work Conduit Request Through Award...

  9. Methods for Climate Change Technology Transfer Needs Assessments...

    Open Energy Info (EERE)

    Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Jump to: navigation, search Tool...

  10. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and ... Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held ...

  11. UNIDO ICS Portal for Technology Transfer | Open Energy Information

    Open Energy Info (EERE)

    ex.php?titleUNIDOICSPortalforTechnologyTransfer&oldid329335" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  12. EERE-SBIR Technology Transfer Opportunity: H2 Safety Sensors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors for H2 EERE-SBIR Technology Transfer Opportunity Develop low cost electronics packaging manufacturable at high volume, and integrate LANL sensor into a commercial package...

  13. DOE General Counsel for Technology Transfer and Intellectual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property...

  14. Drinking Water and Groundwater Protection Division File Transfer...

    Open Energy Info (EERE)

    File Transfer Protocol (FTP) Site Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Drinking Water and...

  15. TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OF 2000 More Documents & Publications Technology Transfer Commercialization Act of 2000 E:PUBLAWPUBL404.106 Intelligence Reform and Terrorism Prevention Act - December 17, 2004

  16. HQ Voluntary Leave Transfer Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ Voluntary Leave Transfer Program HQ Voluntary Leave Transfer Program Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a lost of pay of at least 24 hours. PDF icon VOLUNTARY-LEAVE-TRANSFER-PROGRAM LISTING-12-31-2015.pdf Responsible Contacts

  17. Light-induced electron transfer vs. energy transfer in molecular thin-film systems

    SciTech Connect (OSTI)

    Renschler, C. L.; Faulkner, L. R.

    1980-01-01

    Quenching of fluoranthene (FA) singlets by tetrabromo-o-benzoquinone (TBBQ) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was studied both in xylene solutions and in spin-cast polystyrene (PS) films. Emphasis was placed on time-resolved fluorescence transients resulting from pulsed excitation. Linear Stern-Volmer plots were obtained for quenching in solution and gave diffusion-controlled rate constants, of 1.45 x 10/sup 10/ M/sup -1/ sec/sup -1/ and 1.53 x 10/sup 10/ M/sup -1/ sec/sup -1/ for TBBQ and TMPD, respectively. TBBQ was found to quench FA singlets in PS over the studied concentration range 12 mM < (TBBQ) < 48 mM, but in its presence FA singlets decayed nonexponentially. The results were interpreted quantitatively in terms of pure Foerster's transfer from FA to TBBQ without diffusion of excitons. The critical transfer radius R/sub 0/ was experimentally determined to be 24.3 A, which is in good agreement with the theoretical value of 23 A calculated from spectral data. Quenching of FA singlets in PS films was found to be independent of FA concentration over a 300 mM to 1200 mM FA concentration range for a constant TBBQ concentration of 24.0 mM. TMPD was only slightly effective as a quencher of FA singlets in PS because it apparently behaves strictly as a contact quencher based on reversible charge transfer. The implications of these results for the design of systems intended to exploit light-induced electron transfer are discussed.

  18. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  19. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  20. State Energy Strategic Plans

    Broader source: Energy.gov [DOE]

    Most state energy offices across the country are required to have current and long-term strategic energy management plans in place. These strategic plans help to ensure that state agencies are...