Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Transfer Operators Associated with Quantum Operations  

E-Print Network (OSTI)

Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

Ç. Aksak; S. Turgut

2010-02-03T23:59:59.000Z

2

Quantum transfer operators and quantum scattering  

E-Print Network (OSTI)

These notes describe a new method to investigate the spectral properties if quantum scattering Hamiltonians, developed in collaboration with J. Sj\\"ostrand and M.Zworski. This method consists in constructing a family of "quantized transfer operators" $\\{M(z,h)\\}$ associated with a classical Poincar\\'e section near some fixed classical energy E. These operators are finite dimensional, and have the structure of "open quantum maps". In the semiclassical limit, the family $\\{M(z,h)\\}$ encode the quantum dynamics near the energy E. In particular, the quantum resonances of the form $E+z$, for $z=O(h)$, are obtained as the roots of $\\det(1-M(z,h))=0$.

Stéphane Nonnenmacher

2010-01-22T23:59:59.000Z

3

Prospects for Money Transfer Models  

E-Print Network (OSTI)

Recently, in order to explore the mechanism behind wealth or income distribution, several models have been proposed by applying principles of statistical mechanics. These models share some characteristics, such as consisting of a group of individual agents, a pile of money and a specific trading rule. Whatever the trading rule is, the most noteworthy fact is that money is always transferred from one agent to another in the transferring process. So we call them money transfer models. Besides explaining income and wealth distributions, money transfer models can also be applied to other disciplines. In this paper we summarize these areas as statistical distribution, economic mobility, transfer rate and money creation. First, money distribution (or income distribution) can be exhibited by recording the money stock (flow). Second, the economic mobility can be shown by tracing the change in wealth or income over time for each agent. Third, the transfer rate of money and its determinants can be analyzed by tracing t...

Wang, Y; Xi, N; Wang, Yougui; Ding, Ning; Xi, Ning

2005-01-01T23:59:59.000Z

4

Prospects for Money Transfer Models  

E-Print Network (OSTI)

Summary. Recently, in order to explore the mechanism behind wealth or income distribution, several models have been proposed by applying principles of statistical mechanics. These models share some characteristics, such as consisting of a group of individual agents, a pile of money and a specific trading rule. Whatever the trading rule is, the most noteworthy fact is that money is always transferred from one agent to another in the transferring process. So we call them money transfer models. Besides explaining income and wealth distributions, money transfer models can also be applied to other disciplines. In this paper we summarize these areas as statistical distribution, economic mobility, transfer rate and money creation. First, money distribution (or income distribution) can be exhibited by recording the money stock (flow). Second, the economic mobility can be shown by tracing the change in wealth or income over time for each agent. Third, the transfer rate of money and its determinants can be analyzed by tracing the transferring process of each one unit of money. Finally, money creation process can also be investigated by permitting agents go into debts. Some future extensions to these models are anticipated to be structural improvement and generalized mathematical analysis.

Yougui Wang; Ning Ding; Ning Xi

2005-01-01T23:59:59.000Z

5

by E. Lance Cole Operations Manager Petroleum Technology Transfer Council  

NLE Websites -- All DOE Office Websites (Extended Search)

World Energy Vol. 11 No. 2 2008 World Energy Vol. 11 No. 2 2008 2 by E. Lance Cole Operations Manager Petroleum Technology Transfer Council Jim Blankenship Geoscience Director American Association of Petroleum Geologists Tom Williams PTTC Board Member and Retired Vice President, Technology Services Noble Corporation Ken Oglesby Managing Partner Impact Technologies LLC E&P Technology: From Idea to Widespread Adoption in the U.S. M any factors influence the degree to which a new exploration and production (E&P) technology is accepted by industry and grows to realize its full market potential. These include the introduction of a good idea that is needed by industry, intellectual property protection, capitalization at each level of development, field testing, the business model, technology transfer and

6

Automated gas transfer systems for low pressure operations  

Science Conference Proceedings (OSTI)

The introduction of new components and the modification of commercially available hardware have been instrumental in the automation of low pressure gas transfer systems. The benefits from the automation have been faster sample operation, increased precision and a safer environment for the operator.

Baker, R.W.; Hoseus, N.L.

1988-01-22T23:59:59.000Z

7

High Operating Temperature Heat Transfer Fluids for Solar Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer Fluids for Solar Thermal Power Generation UCLA, UCB, Yale Award Number: DE-EE0005941 | January 9, 2013 | Sungtaek Ju 1.1 Thermochemistry modeling Identified promising...

8

Design and operation of solar thermal heat transfer systems  

Science Conference Proceedings (OSTI)

The importance of heat transfer systems in the collection and use of solar energy is discussed. The success or failure of many solar energy systems has been determined by the design of the heat transfer system. This report includes a short summary of some of the DOE sponsored solar industrial process heat sites. From the design, construction, and operation of these systems many lessons were learned which will be important to designers and potential users of solar thermal systems. Also included is a discussion of solar collector foundation over-design that has increased the collector system costs.

Rush, E.E.

1985-01-01T23:59:59.000Z

9

High Operating Temperature Liquid Metal Heat Transfer Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

10

A model for laboratory tech transfer investment  

Science Conference Proceedings (OSTI)

A simple model has been developed to address a pragmatic question: What fraction of its research and development budget should a national laboratory devote to enhancing technology in the private sector? In dealing with lab-wide budgets in an aggregate sense, the model uses three parameters - fraction of lab R&D transferable to industry, transfer efficiency and payback to laboratory missions - to partition fixed R&D resources between technology transfer and core missions. It is a steady-state model in that the transfer process is assumed to work in equilibrium with technology generation. The results presented should be of use to those engaged in managing and overseeing federal laboratory technology transfer activities.

Otey, G.R.; Carson, C.C.; Bomber, T.M.; Rogers, J.D.

1994-06-01T23:59:59.000Z

11

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid High Operating Temperature Liquid Metal Heat Transfer Fluids to someone by E-mail Share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Facebook Tweet about SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Twitter Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Google Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Delicious Rank SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Digg Find More places to share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards

12

The Economic Mobility in Money Transfer Models  

E-Print Network (OSTI)

In this paper, we investigate the economic mobility in some money transfer models which have been applied into the research on monetary distribution. We demonstrate the mobility by recording the agents' ranks time series and observing the volatility. We also compare the mobility quantitatively by employing an index, "the per capita aggregate change in log-income", raised by economists. Like the shape of distribution, the character of mobility is also decided by the trading rule in these transfer models. It is worth noting that even though different models have the same type of distribution, their mobility characters may be quite different.

Ding, N; Wang, Y; Ding, Ning; Xi, Ning; Wang, Yougui

2005-01-01T23:59:59.000Z

13

RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM  

SciTech Connect

This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL

2010-08-01T23:59:59.000Z

14

The Operational Risk Simulation Model (ORSIM)  

Science Conference Proceedings (OSTI)

The Operational Risk Simulation Model (ORSIM) permits power plant owners to understand the implications of new operational policies and unanticipated demands on the organization.

2006-03-30T23:59:59.000Z

15

Dynamic Process of Money Transfer Models  

E-Print Network (OSTI)

We have studied numerically the statistical mechanics of the dynamic phenomena, including money circulation and economic mobility, in some transfer models. The models on which our investigations were performed are the basic model proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with diverse saving rate [3]. The velocity of circulation is found to be inversely related with the average holding time of money. In order to check the nature of money transferring process in these models, we demonstrated the probability distributions of holding time. In the model with uniform saving rate, the distribution obeys exponential law, which indicates money transfer here is a kind of Poisson process. But when the saving rate is set diversely, the holding time distribution follows a power law. The velocity can also be deduced from a typical individual's optimal choice. In this way, an approach for building the micro-...

Wang, Y; Wang, Yougui; Ding, Ning

2005-01-01T23:59:59.000Z

16

TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION  

SciTech Connect

The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

Lee, S.

2013-06-27T23:59:59.000Z

17

BY tank farm waste inventory and transfer data ITS-2 operation during January To June 1972  

Science Conference Proceedings (OSTI)

Daily record inventory of pumping activities and liquid level changes including occasional operations comments for the BY Tank Farm. Waste inventory and transfer data for ITS-2 operation during January to June 1972.

Reich, F.R., Westinghouse Hanford

1996-08-02T23:59:59.000Z

18

NISTIR 6299 A Heat Transfer Model for Fire Fighter's ...  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 6299 A Heat Transfer Model for Fire Fighter's Protective Clothing William E. Mell J. Randall Lawson United ...

1999-05-06T23:59:59.000Z

19

The ISR Argus 500 system - control of the beam transfer power supplies by the Argus 500 computer operators manual  

E-Print Network (OSTI)

The ISR Argus 500 system - control of the beam transfer power supplies by the Argus 500 computer operators manual

Kemp, D

1970-01-01T23:59:59.000Z

20

High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)  

DOE Green Energy (OSTI)

The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modelling Carbon with Transferable Empirical Potentials  

Science Conference Proceedings (OSTI)

Complexities associated with hybridization and anisotropy meant that transferable potentials for carbon were slow to emerge, lagging decades behind similar ...

22

Development of a 3D atmospheric radiative transfer model  

Science Conference Proceedings (OSTI)

The 3D atmospheric radiative transfer model is established based on MODTRAN4. Moreover, the methods of calculating the ratio of atmospheric transmission, path radiation and single scattering solar radiation are presented. This 3D model is running by ... Keywords: MODTRAN4, atmospheric radiative transfer model, infrared radiation

Zhifeng Lu; Ge Li; Gang Guo; Kedi Huang

2008-05-01T23:59:59.000Z

23

Cross Validation of Satellite Radiation Transfer Models during...  

Open Energy Info (EERE)

Cross Validation of Satellite Radiation Transfer Models during SWERA Project in Brazil (Abstract):  This work describes the cross validation between two different...

24

CFD Modelling of Heat Transfer in Supersonic Nozzles for ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... CFD Modelling of Heat Transfer in Supersonic Nozzles for Magnesium Production by Peter Witt, M.N.H. Khan, and Geoffrey Brooks ...

25

Improvements to the SHDOM Radiative Transfer Modeling Package  

NLE Websites -- All DOE Office Websites (Extended Search)

to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration...

26

A Rapid Radiative Transfer Model for Reflection of Solar Radiation  

Science Conference Proceedings (OSTI)

A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over ...

X. Xiang; E. A. Smith; C. G. Justus

1994-07-01T23:59:59.000Z

27

The Gastropod Fast Radiative Transfer Model for Advanced Infrared Sounders and Characterization of Its Errors for Radiance Assimilation  

Science Conference Proceedings (OSTI)

Principal aspects of the development of Gastropod, a fixed-pressure-grid fast radiative transfer model for the Atmospheric Infrared Sounder (AIRS), are described. Performance of the forward and gradient operators is characterized, and the impact ...

V. Sherlock; A. Collard; S. Hannon; R. Saunders

2003-12-01T23:59:59.000Z

28

Airtight container for the transfer of atmosphere-sensitive materials into vacuum-operated characterization instruments  

Science Conference Proceedings (OSTI)

This paper describes the design and operation of a simple airtight container devised to facilitate the transfer of atmosphere-sensitive samples from a glovebox to the vacuum chamber of an analytical instrument such as a scanning electron microscope. The use of this device for characterizing the microstructure of highly hygroscopic strontium iodide ceramics by scanning electron microscopy is illustrated as an application example.

Gaume, Romain M. [CREOL, the College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816-2700 (United States); Joubert, Lydia-Marie [Cell Sciences Imaging Facility, Beckman Center, Stanford University, Stanford, California 94305 (United States)

2011-12-15T23:59:59.000Z

29

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

30

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids UCLA logo University of California Berkeley logo Yale logo Four graphics in a grid that represent the sputtering technique being used in this project. Combinatorial screening and high throughput characterization of materials will be used to identify, develop, and demonstrate metal alloys that meet the MURI HOT Fluids targets suitable for CSP applications. The University of California, Los Angeles, the University of California, Berkeley, and Yale University The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

32

MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA  

NLE Websites -- All DOE Office Websites (Extended Search)

MODELING MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui Simulation Research Group, Building Technologies Department Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA ABSTRACT This paper describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings" library. The model can be used as a single room or to compose a multizone building model. We discuss how the model is de- composed into submodels for the individual heat transfer phenomena. We also discuss the main physical assumptions. The room model can be parameterized to use di↵erent modeling assump- tions, leading to linear or non-linear di↵erential algebraic systems of equations. We present nu- merical experiments that show

33

Modeling and Simulation of HVAC Faulty Operations and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues Title Modeling and Simulation of HVAC Faulty Operations and Performance...

34

SY-101 Rapid Transfer Project Low Temperature Operations Review and Recommendations to Support Lower Temperature Limits  

SciTech Connect

The lower temperature limit for the 241 SY-101 RAPID transfer project is currently set at 20 F Based on the analysis and recommendations in this document this limit can be lowered to 0 F. Analysis of all structures systems and components (SSCs) indicate that a reduction in operating temperature may be achieved with minor modifications to field-installed equipment. Following implementation of these changes it is recommended that the system requirements be amended to specify a temperature range for transfer or back dilute evolutions of 0 F to 100 F.

HICKMAN, G.L.

2000-01-10T23:59:59.000Z

35

Community Radiative Transfer Model for Stratospheric Sounding Unit  

Science Conference Proceedings (OSTI)

To better use the Stratospheric Sounding Unit (SSU) data for reanalysis and climate studies, issues associated with the fast radiative transfer (RT) model for SSU have recently been revisited and the results have been implemented into the ...

Yong Chen; Yong Han; Quanhua Liu; Paul Van Delst; Fuzhong Weng

2011-06-01T23:59:59.000Z

36

Combined Operating License Model Program Plan  

Science Conference Proceedings (OSTI)

The Model Program Plan (MPP) provides functional guidance on how to prepare a Combined Operating License (COL) application for a new nuclear power facility when incorporating previous findings from both design certification (DC) and an early site permit (ESP) proceedings. The plan identifies the activities necessary to prepare an application and provides guidance on planning and managing a COL program, including working with DC and ESP holders and using subcontracted resources to develop necessary new in...

2003-11-17T23:59:59.000Z

37

MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION  

SciTech Connect

In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

2010-07-18T23:59:59.000Z

38

Off-resonance frequency operation for power transfer in a loosely coupled air core transformer  

DOE Patents (OSTI)

A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

Scudiere, Matthew B

2012-11-13T23:59:59.000Z

39

Operator splitting approach applied to oscillatory flow and heat transfer in a tube  

Science Conference Proceedings (OSTI)

The method of operator splitting is applied to an advection-diffusion model as it occurs in a pulse tube. Firstly, the governing equations of the simplified model are studied and the mathematical description is derived. Then the splitting approach is ... Keywords: 35L65, 65M06, 80A20, Domain decomposition, Operator splitting, Pulse tube, Recuperator, Taylor dispersion

R. Widura; M. Lehn; K. Muralidhar; R. Scherer

2008-02-01T23:59:59.000Z

40

Cross Validation of Satellite Radiation Transfer Models during SWERA  

Open Energy Info (EERE)

Cross Validation of Satellite Radiation Transfer Models during SWERA Cross Validation of Satellite Radiation Transfer Models during SWERA Project in Brazil Dataset Summary Description (Abstract): This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the SUNY-Albany. The model cross validation was performed by using two reference sites in Brazil: at Caicó (06°28'01"S - 037°05'05"W,175.8 m), and Florianópolis (27°34'18"S - 048°31'42"W, 10 m), Satellite data were collected by INPE-CPTEC for GOES-8, that also provides for its quality assessment, sectoring, storing and distribution to the participating teams. In this work we show the first results of this cross-validation along with some discussions on model deviations

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Hanford waste feed delivery operational research model  

Science Conference Proceedings (OSTI)

The Hanford cleanup mission is to vitrify 56 million gallons of nuclear waste, currently stored in 177 underground tanks, at the Waste Treatment and Immobilization Plant (WTP). The WTP operations begin in 2019. Waste transfers from the Tank Farms to ...

Joanne Berry; Vishvas Patel; Karthik Vasudevan

2011-12-01T23:59:59.000Z

42

S-102 Transfer Pump Restriction Modeling Results  

SciTech Connect

It was determined that a radioactive waste leak in the Hanford S Farm in the vicinity of the S-102 retrieval pump discharge occurred because of over-pressurization and failure of the S-102 dilution water supply hose while operating the retrieval pump in reverse with an obstructed suction cavity and an unobstructed flow path to the dilution water supply hose. This report describes efforts to identify plausible scenarios for the waste leak to occur.

Wells, Beric E.; Johnson, Kenneth I.; Rector, David R.; Trent, Donald S.

2008-03-27T23:59:59.000Z

43

Modeling Power System Operation with Intermittent Resources  

Science Conference Proceedings (OSTI)

Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

2013-02-27T23:59:59.000Z

44

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

for convective and radiative heat transfer yielded a twofoldModeling of Heat Transfer in Rooms in the Modelica “of California. MODELING OF HEAT TRANSFER IN ROOMS IN THE

Wetter, Michael

2013-01-01T23:59:59.000Z

45

OPERATIONAL CHALLENGES IN MIXING AND TRANSFER OF HIGH YIELD STRESS SLUDGE WASTE  

SciTech Connect

The ability to mobilize and transport non-Newtonian waste is essential to advance the closure of highly radioactive storage tanks. Recent waste removal operations from Tank 12H at the Savannah River Site (SRS) encountered sludge mixtures with a yield stress too high to pump. The waste removal equipment for Tank 12H was designed to mobilize and transport a diluted slurry mixture through an underground 550m long (1800 ft) 0.075m diameter (3 inch) pipeline. The transfer pump was positioned in a well casing submerged in the sludge slurry. The design allowed for mobilized sludge to enter the pump suction while keeping out larger tank debris. Data from a similar tank with known rheological properties were used to size the equipment. However, after installation and startup, field data from Tank 12H confirmed the yield stress of the slurry to exceed 40 Pa, whereas the system is designed for 10 Pa. A revision to the removal strategy was required, which involved metered dilution, blending, and mixing to ensure effective and safe transfer performance. The strategy resulted in the removal of over 255,000 kgs of insoluble solids with four discrete transfer evolutions for a total transfer volume of 2400 m{sup 3} (634,000 gallons) of sludge slurry.

Caldwell, T.; Bhatt, P.

2009-12-07T23:59:59.000Z

46

THERM: Two-Dimensional Building Heat-Transfer Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 THERM: Two-Dimensional Building Heat-Transfer Modeling For more information and to download THERM, please visit our website: http://windows.lbl.gov/software/therm The Windows and Daylighting Group's two-year-old computer program THERM 1.0 is a state-of-the-art tool for modeling two-dimensional heat-transfer effects in building components. The thermal property information THERM provides is important for the design and application of building components such as windows, walls, foundations, roofs and doors. This Microsoft Windows-based program has great potential to users such as building component manufacturers, educators, students, architects, engineers and others who are interested in assessing the heat-transfer properties of single products, product interactions, or integrated systems. THERM

47

Modeling of Copper Converter Foamover and Operational ...  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

48

Unified Model for the Heat Transfer Processes that Occur During  

E-Print Network (OSTI)

A unified general model for the heat transfer processes that occur within a food product subjected to canning or aseptic thermal treatment, is presented. Two principles are extensively used in the model building process: system segregation and energy balancing. The model is summarized in an algorithm, whose specification is showed for different combinations of processing system type (PST) and product formulation (PF) with a single particle type. A discussion on the practical relevance of proper product identification in the case of aseptic processing, is included. Finally, an illustration is given on the results that can be obtained from the model algorithm application, in a comparative study of different PST-PF combinations.

Jose F. Pastrana; Harvey J. Gold; Kenneth R. Swanzel; Pastrana Gold; Jose F. Pastrana; Harvey J. Gold; Kenneth R. Swartzel

1992-01-01T23:59:59.000Z

49

The Successive-Order-of-Interaction Radiative Transfer Model. Part II: Model Performance and Applications  

Science Conference Proceedings (OSTI)

Radiative transfer models for scattering atmospheres that are accurate yet computationally efficient are required for many applications, such as data assimilation in numerical weather prediction. The successive-order-of-interaction (SOI) model is ...

Christopher W. O’Dell; Andrew K. Heidinger; Thomas Greenwald; Peter Bauer; Ralf Bennartz

2006-10-01T23:59:59.000Z

50

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

51

Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index  

E-Print Network (OSTI)

This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results show that transfer efficiency is not influenced by the climate, and the influence is in accordance with that in other climates. The article also presents data on the energy consumption caused by the improvement of the transfer efficiency of the outdoor pipe network and the operating efficiency of the boiler, and the calculated formula for the building heat consumption index on the condition of saving 65 percent energy.

Fang, X.; Wang, Z.; Liu, H.

2006-01-01T23:59:59.000Z

52

Spatial and Temporal Transferability of a Distributed Energy-Balance Glacier Melt Model  

Science Conference Proceedings (OSTI)

Modeling melt from glaciers is crucial to assessing regional hydrology and eustatic sea level rise. The transferability of such models in space and time has been widely assumed but rarely tested. To investigate melt model transferability, a ...

Andrew H. MacDougall; Gwenn E. Flowers

2011-03-01T23:59:59.000Z

53

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

54

Measurement and Modeling Implications of Transfer and Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement and Modeling Implications of Transfer and Transformation Measurement and Modeling Implications of Transfer and Transformation Processes at the Plant/Air Interface Speaker(s): Randy Maddalena Date: October 13, 1998 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Richard Sextro To understand the chemodynamic role of vegetation in a multimedia system, the rate and extent of chemical partitioning from adjacent environmental media and the rate of chemical transformation associated with vegetation need to be determined. An exposure system was used to isolate and expose above ground vegetation to semi-volatile air contaminants. Measurements of phenanthrene, anthracene, fluoranthene and pyrene in the chamber air and the plant tissue were collected during both the uptake and clearance phase of exposure events. The measurements were fitted to the mass balance of the

55

CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT  

Open Energy Info (EERE)

ISES- 2003 ISES- 2003 CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL Enio B. Pereira, Fernando R. Martins 1 Brazilian Institute for Space Research - INPE, São José dos Campos, 12245-970, SP, Brazil Phone + 55 12 39456741, Fax + 55 12 39456810, enio@dge.inpe.br Samuel L. Abreu, Hans Georg Beyer, Sergio Colle, and Solar Energy Laboratory - LABSOLAR - Department of Mechanical Engineering, Federal University of Santa Catarina -UFSC, Florianopolis, 88040-900, (SC), Brazil, Richard Perez The University at Albany (SUNY), ASRC-CESTM, Albany, 12203 (NY), USA Abstract - This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the

56

Operational Readiness Review Implementation Plan for the K Basin Fuel Transfer System  

Science Conference Proceedings (OSTI)

This implementation plan has been prepared to comply with the requirements of U.S. Department of Energy (DOE) Order 425.1A, Startup and Restart of Nuclear Facilities, and DOE-STD-3006-2000, Planning and Conduct of Operational Readiness Reviews (ORR) (DOE 2002). The scope of the ORR is described in the contractor K Basin Fuel Transfer System (FTS) Plan of Action (POA), which was prepared by Spent Nuclear Fuel (SNF) Project line management and approved by the DOE Richland Operations Office (RL) Manager on April 4, 2002 (FH 2002a). While the Project Hanford Management Contractor has been revised to include DOE Order 425.1B, the contractor implementing procedure, ''F-PRO-055, Startup Readiness (Revision 9) has not yet been approved by RL for contractor use. Appendix A provides a crosswalk between the requirements of DOE Order 425.1A and DOE Order 425.1B to show that all requirements of DOE 425.1B are covered by this implementation plan. DOE Order 425.1B indicates that the Secretarial Officer is the Authorization Authority when substantial modifications are made to a Hazard Category 2 nuclear facility. This Authorization Authority has been delegated to the RL Manager by memorandum from Jessie Hill Roberson, dated November 20, 2001 (Roberson 2001). The scope of the ORR is described in the RL Plan of Action, K Basin Fuel Transfer System, prepared by DOE project line management and approved by the RL Manager, the designated approval authority, on September 12, 2002 (Schlender 2002). This implementation plan provides the overall approach and guidelines for performance of the DOE ORR. Appendix B contains the Criteria and Review Approach Documents (CRAD), which define the review objectives and criteria as well as the approach for assessing each objective. ORR results will be published in a final report, as discussed in Section 9.4.

DAVIES, T.H.

2002-09-23T23:59:59.000Z

57

A 3-D multiband closure for radiation and neutron transfer moment models  

Science Conference Proceedings (OSTI)

We derive a 3D multi-band moment model and its associated closure for radiation and neutron transfer. The new closure is analytical and nonlinear but very simple. Its derivation is based on the maximum entropy closure and assumes a Wien shape for the ... Keywords: Maximum entropy closure, Moment models, Multi-band models, Multi-bin models, Neutron transfer, ODF, Radiative transfer

J. -F. Ripoll; A. A. Wray

2008-02-01T23:59:59.000Z

58

The AROME-France Convective-Scale Operational Model  

Science Conference Proceedings (OSTI)

After six years of scientific, technical developments and meteorological validation, the Application of Research to Operations at Mesoscale (AROME-France) convective-scale model became operational at Météo-France at the end of 2008. This paper ...

Y. Seity; P. Brousseau; S. Malardel; G. Hello; P. Bénard; F. Bouttier; C. Lac; V. Masson

2011-03-01T23:59:59.000Z

59

SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY  

Science Conference Proceedings (OSTI)

This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.

CARRO CA

2011-07-15T23:59:59.000Z

60

A comparison of two heat transfer models for estimating thermal drawdown in Hot Dry Rock reservoirs  

DOE Green Energy (OSTI)

Estimates of thermal drawdown in Hot Dry Rock geothermal systems have been made with two different models of heat transfer from hydraulically fractured reservoir rock blocks to water circulated through the fracture permeability. One model is based on deconvolution of experimental tracer response curves into a network of flowpaths connected in parallel with heat transfer calculated individually in each flowpath. The second model is based on one-dimensional flow through the rock with a block size distribution described as a group of equivalent-radius spheres for which the heat transfer equations can be solved analytically. The two-models were applied to the planned Phase II long-term thermal drawdown experiment at Fenton Hill, NM. The results show good agreement between the two models, with estimates of temperature cooldown from 240/sup 0/C to 150/sup 0/C in a few years depending on selected operation parameters, but with somewhat differing cooldown curve characteristic shapes. Data from the long-term experiment will be helpful in improving the two models.

Robinson, B.A.; Kruger, P.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermodynamics of enhanced heat transfer: a model study  

E-Print Network (OSTI)

Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (human sweating system, enzyme catalysis, facilitated diffusion across bio-membranes, industrial heat exchangers). The thermodynamics of such processes remains however open. Here we study enhanced heat transfer by a model junction immersed between two thermal baths at different temperatures $T_h$ and $T_c$ ($T_h>T_c$). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process does demand consumption and subsequent dissipation of work. The efficiency of enhancement is defined via the increment in the heat power divided over the amount of consumed work. We show that this efficiency is bounded from above by $T_c/(T_h-T_c)$. Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot. It also shares some (but not all) physical features of the Carnot bound.

Karen Hovhannisyan; Armen E. Allahverdyan

2010-07-20T23:59:59.000Z

62

Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation  

Science Conference Proceedings (OSTI)

Development of fast and accurate radiative transfer models for clear atmospheric conditions has enabled direct assimilation of clear-sky radiances from satellites in numerical weather prediction models. In this article, fast radiative transfer ...

Fuzhong Weng

2007-11-01T23:59:59.000Z

63

A 3-D Canopy Radiative Transfer Model for Global Climate Modeling: Description, Validation and Application  

Science Conference Proceedings (OSTI)

The process of solar radiative transfer at the land surface is important to energy, water and carbon balance, especially for vegetated areas. Currently the most commonly used two-stream model considers the Plant Functional Types (PFTs) within a ...

Hua Yuan; Robert E. Dickinson; Yongjiu Dai; Muhammad J. Shaikh; Liming Zhou; Wei Shangguan; Duoying Ji

64

Modelling charge transfer reactions with the frozen density embedding formalism  

SciTech Connect

The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Institute for Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany)

2011-12-21T23:59:59.000Z

65

Exhibit A: Modeling in Support of Two Unit Operating Configurations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling in Support of Two Unit Operating Configurations Modeling in Support of Two Unit Operating Configurations Exhibit A: Modeling in Support of Two Unit Operating Configurations Docket No. EO-05-01: Tables showing modeling of emissions from units of the Mirant Potomac Power Plant. Exhibit A: Modeling in Support of Two Unit Operating Configurations More Documents & Publications Comments on Emergency Order to Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA from the Chesapeake Climate Action Network. Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of

66

Crude Oil Price Forecasting: A Transfer Learning Based Analog Complexing Model  

Science Conference Proceedings (OSTI)

Most of the existing models for oil price forecasting only use the data in the forecasted time series itself. This study proposes a transfer learning based analog complexing model (TLAC). It first transfers some related time series in source domain to ... Keywords: transfer learning method, analog complexing model, genetic algorithm, crude oil price forecasting

Jin Xiao; Changzheng He; Shouyang Wang

2012-08-01T23:59:59.000Z

67

Modification of an Operational Dispersion Model for Urban Applications  

Science Conference Proceedings (OSTI)

An operational multisource, multireceptor Gaussian dispersion model, the Danish regulatory model Operationelle Meteorologiske Luftkvalitetsmodeller (OML) has been modified for applications in urban environments. A so-called roughness sublayer has ...

Peter de Haan; Mathias W. Rotach; Maja Werfeli

2001-05-01T23:59:59.000Z

68

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network (OSTI)

Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from/into the ground. This paper summarizes the authors' studies on heat transfer in ground-coupled heat pump systems. Taking the fluid axial convective heat transfer and thermal “short-circuiting” among U-tube legs into account, a quasi-3-D model has been solved for heat transfer inside boreholes. The transient 2-D temperature response in a semi-infinite medium with a line-source of finite length has also been derived for heat conduction outside boreholes. In order to investigate the impact of groundwater advection on the performance of ground heat exchangers, an analytical solution is obtained for a line heat source in an infinite porous medium with groundwater advection. These explicit expressions have more solid theoretical basis, and can be easily incorporated into computer programs for thermal analysis and engineering design of ground heat exchangers.

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

69

Thermodynamics of enhanced heat transfer: a model study  

E-Print Network (OSTI)

Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (human sweating system, enzyme catalysis, facilitated diffusion across bio-membranes, industrial heat exchangers). The thermodynamics of such processes remains however open. Here we study enhanced heat transfer by a model junction immersed between two thermal baths at different temperatures $T_h$ and $T_c$ ($T_h>T_c$). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process does demand consumption and subsequent dissipation of work. The efficiency of enhancement is defined via the increment in the heat power divided over the amount of consumed work. We show that this efficiency is bounded from above by $T_c/(T_h-T_c)$. Formally this is identical to the Carnot bound for the efficiency of ordinary ...

Hovhannisyan, Karen; 10.1088/1742-5468/2010/06/P06010

2010-01-01T23:59:59.000Z

70

Simulation of Static Flying Attitudes with Different Heat Transfer Models for a Flying-Height Control Slider with Thermal Protrusion  

E-Print Network (OSTI)

Zhang, S. , Bogy, D.B. : A heat transfer model for thermal ?A phenomenological heat transfer model for the molecular gasWong, C.H. : A generalized heat transfer model for thin ?lm

Chen, Du; Bogy, David B.

2010-01-01T23:59:59.000Z

71

System modelling to support accelerated fuel transfer rate at EBR-II  

Science Conference Proceedings (OSTI)

The Experimental Breeder Reactor-II (EBR-II) ia a 62.5 MW(th) liquid metal reactor operated by Argonne National Laboratory for The United States Department of Energy. The reactor is located near Idaho Falls, Idaho at the Argonne-West site (ANL-W). Full power operation was achieved in 1964,- the reactor operated continuously since that time until October 1994 in a variety of configurations depending on the programmatic mission. A three year program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. It was intended to operate the reactor during the three year blanket unloading program, followed by about a half year of driver fuel unloading. However, in the summer of 1994, Congress dictacted that EBR-II be shut down October 1, and complete defueling without operation. To assist in the planning for resources needed for this defueling campaign, a mathematical model of the fuel handling sequence was developed utilizing the appropriate reliability factors and inherent mm constraints of each stage of the process. The model allows predictions of transfer rates under different scenarios. Additionally, it has facilitated planning of maintenance activities, as well as optimization of resources regarding manpower and modification effort. The model and its application is described in this paper.

Imel, G.R.; Houshyar, A.; Planchon, H.P.; Cutforth, D.C.

1995-06-01T23:59:59.000Z

72

Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Poisson Stochastic Radiative Transfer Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and Pomraning 1992; Barker et al. 1992; Malvagi et al. 1993; Kargin and Prigarin 1994; Prigarin and Titov 1996; Marshak et al. 1998; Prigarin et al. 1998, 2001; Evans et al. 1999, 2001). Recently Kassianov (2003a) generalized the Titov's (1990) stochastic model

73

Numerical heat transfer attic model using a radiant barrier system  

Science Conference Proceedings (OSTI)

A two-dimensional, steady-state finite-element model was developed to simulate the thermal effects of the application of an attic radiant barrier system (ARBS) inside a ventilated residential attic. The attic is ventilated using the exhaust air from an evaporative cooler. The study uses a {kappa}-{epsilon} turbulent model to describe the velocity and temperature distributions in the attic. The ambient temperature and solar isolation densities on the outside inclined attic surfaces are used as driving functions for the model. The model also included the appropriate heat exchange modes of convection and radiation on these outside surfaces. Several recirculation zones were visually observed in the attic flow pattern. Also, the use of the ARBS seems to lower the heat transfer through the ceiling by 25--30%, but this effect decreases significantly as the outside ventilation rates are increased through the attic space. The 2D model revealed some interesting temperature distributions along the attic surfaces that could not have been predicted by the one-dimensional models. The lower emissivity ARBS seems to raise the temperature of the inclined attic surfaces as well as the temperature of the exhausted ventilation air.

Moujaes, S.F.; Alsaiegh, N.T.

2000-04-01T23:59:59.000Z

74

A transfer model using a typed feature structure rewriting system with inheritance  

Science Conference Proceedings (OSTI)

We propose a model for transfer in machine translation which uses a rewriting system for typed feature structures. The grammar definitions describe transfer relations which are applied on the input structure (a typed feature structure) by the ...

Rémi Zajac

1989-06-01T23:59:59.000Z

75

Rod Bundle Heat Transfer for Pressurized Water Reactors at Operating Conditions  

Science Conference Proceedings (OSTI)

Currently available heat transfer correlations for subcooled forced convection and subcooled boiling have not been validated with rod-array data at typical PWR fluid conditions. At the present time, rod bundle heat transfer processes cannot be analyzed with sufficient accuracy to make sound decisions regarding changes that might avoid an Axial Offset Anomaly (AOA).

2000-07-14T23:59:59.000Z

76

Modeling of switching operations using fault matrix method  

Science Conference Proceedings (OSTI)

Switching operations in energy supply networks are either modeled by adding or removing artificial nodes which results in state dependent grid topology or by setting the switch impedance to high or low value. This procedure is not very accurate and can ... Keywords: admittance matrix, fault matrix method, power system, switching operation, transmission lines

Martin Wolter; Bernd R. Oswald

2007-05-01T23:59:59.000Z

77

Operations modeling and analysis of an underground coal mine  

Science Conference Proceedings (OSTI)

In general, it is quite difficult to describe and model operations and conveyance systems precisely in underground coal mines because of geological components, poor visibility, unreliable installed facilities, and difficult work conditions. In this study, ...

Kanna Miwa; Soemon Takakuwa

2011-12-01T23:59:59.000Z

78

THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL  

SciTech Connect

Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

BERRY J; GALLAHER BN

2011-01-13T23:59:59.000Z

79

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields  

SciTech Connect

In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

Zigh, Ghani; Solis, Jorge; Fort, James A.

2011-01-14T23:59:59.000Z

80

Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for ...

Qing Yue; K. N. Liou; S. C. Ou; B. H. Kahn; P. Yang; G. G. Mace

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling and Simulation for Mission Operations Work System Design  

Science Conference Proceedings (OSTI)

Work system analysis and design is complex and nondeterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business ... Keywords: Agent Languages, Business Process Modeling, Mission Operations Design, Multiagent Simulation, Work Practices

Maarten Sierhuis; William J. Clancey; Chin Seah; Jay P. Trimble; Michael H. Sims

2003-04-01T23:59:59.000Z

82

Heat transfer through porous multiphase systems measurement, modelling and applications in printing of coated papers.  

E-Print Network (OSTI)

??This work examines the thermal transfer through porous media by means of measurement of the effective thermal conductivity and modelling of the structural parameters. While… (more)

Gerstner, Philip

2010-01-01T23:59:59.000Z

83

Modelling of mass transfer during wood fermentation processes to produce bioalcohol.  

E-Print Network (OSTI)

??The aim of this work is to model the bioethanol production by wood degradation, and to check if there is mass transfer limitations in the… (more)

Spalluto, Giorgio

2011-01-01T23:59:59.000Z

84

Application Of A Spherical-Radial Heat Transfer Model To Calculate...  

Open Energy Info (EERE)

Application Of A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

85

Modeling of Heat Transfer during Cooling of a Hot Steel Plate  

Science Conference Proceedings (OSTI)

Thus, it is crucial to develop accurate heat transfer models in order to predict the temperature history during cooling of steel plates. The present study describes a  ...

86

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

DOE Green Energy (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01T23:59:59.000Z

87

Operating experience with Huntorf, 290 MW - world's first air storage system energy transfer (ASSET) plant  

Science Conference Proceedings (OSTI)

This paper describes in detail the operating experience with the plant as a system and also performance of the different equipment. During these first years of operation, all problems seem to have been solved and the plant has been integrated into daily operation of the NWK system. 4 refs.

Maass, P.; Stys, Z.S.

1980-01-01T23:59:59.000Z

88

Modeling the Heating of Biological Tissue based on the Hyperbolic Heat Transfer Equation  

E-Print Network (OSTI)

In modern surgery, a multitude of minimally intrusive operational techniques are used which are based on the punctual heating of target zones of human tissue via laser or radio-frequency currents. Traditionally, these processes are modeled by the bioheat equation introduced by Pennes, who considers Fourier's theory of heat conduction. We present an alternative and more realistic model established by the hyperbolic equation of heat transfer. To demonstrate some features and advantages of our proposed method, we apply the obtained results to different types of tissue heating with high energy fluxes, in particular radiofrequency heating and pulsed laser treatment of the cornea to correct refractive errors. Hopefully, the results of our approach help to refine surgical interventions in this novel field of medical treatment.

Tung, M M; Molina, J A Lopez; Rivera, M J; Berjano, E J

2008-01-01T23:59:59.000Z

89

Modelling Heat Transfer in Nanofluids Based on Coupled MD ...  

Science Conference Proceedings (OSTI)

Simulations have shown that the additional heat transfer caused by the collision of the nanoparticles with the heat source contributes significantly to the ...

90

Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver  

DOE Green Energy (OSTI)

This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

Forristall, R.

2003-10-01T23:59:59.000Z

91

Modeling radiative transfer in photobioreactors for algal growth  

Science Conference Proceedings (OSTI)

Simulations of radiative transfer within an air-lift photobioreactor (PBR) are demonstrated by coupling it to the fluid hydrodynamics and employing wavelength dependant properties for the participating media. The radiative properties of the algal media ... Keywords: CFD, Computer simulation, Photobioreactor, Radiation transfer

Zachary C. Wheaton; Gautham Krishnamoorthy

2012-09-01T23:59:59.000Z

92

Center for Energy Efficiency and Renewable Energy at University of Massachusetts 3D Model of Heat Transfer and Fluid3D Model of Heat Transfer and Fluid  

E-Print Network (OSTI)

Center for Energy Efficiency and Renewable Energy at University of Massachusetts 3D Model of Heat for Energy Efficiency and Renewable Energy at University of Massachusetts 3D Model of Heat Transfer and Fluid WindowModeling a 3D Window Future WorkFuture Work #12;Center for Energy Efficiency and Renewable Energy

Massachusetts at Amherst, University of

93

Hierarchical fusion of expert opinions in the Transferable Belief Model, application to climate sensitivity  

Science Conference Proceedings (OSTI)

This paper examines the fusion of conflicting and not independent expert opinion in the Transferable Belief Model. A hierarchical fusion procedure based on the partition of experts into schools of thought is introduced, justified by the sociology of ... Keywords: Climate sensitivity, Expert aggregation, Information fusion, Transferable Belief Model

Minh Ha-Duong

2008-11-01T23:59:59.000Z

94

Socially responsible modeling: a stakeholder approach to the implementation of ethical modeling in operations research  

Science Conference Proceedings (OSTI)

A common dilemma for modelers in operations research (OR) involves how to construct ethically sensitive models. Concern for ethical modeling has recently become more widespread in the OR literature. Arguably, however, this concern has not manifested ... Keywords: Decision making, Ethics, Management science, Operations research, Social performance, Stakeholders

Matthew J. Drake; Virginia W. Gerde; David M. Wasieleski

2011-01-01T23:59:59.000Z

95

Radiative Transfer Modeling of a Coniferous Canopy Characterized by Airborne Remote Sensing  

Science Conference Proceedings (OSTI)

Solar radiation beneath a forest canopy can have large spatial variations, but this is frequently neglected in radiative transfer models for large-scale applications. To explicitly model spatial variations in subcanopy radiation, maps of canopy ...

Richard Essery; Peter Bunting; Aled Rowlands; Nick Rutter; Janet Hardy; Rae Melloh; Tim Link; Danny Marks; John Pomeroy

2008-04-01T23:59:59.000Z

96

Advantages of a Topographically Controlled Runoff Simulation in a Soil–Vegetation–Atmosphere Transfer Model  

Science Conference Proceedings (OSTI)

Two methods to incorporate subgrid variability in soil moisture and runoff production into soil–vegetation–atmosphere transfer (SVAT) models are compared: 1) the variable infiltration capacity model approach (VIC), and 2) a modified “TOPMODEL” ...

Kirsten Warrach; Marc Stieglitz; Heinz-Theo Mengelkamp; Ehrhard Raschke

2002-04-01T23:59:59.000Z

97

Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloudy Sky RRTM Shortwave Radiative Transfer and Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or to other data-validated radiation models. This work extends the clear-sky shortwave (SW) GCM evaluation presented by Iacono et al. (2001) to computations including clouds. The rapid radiative transfer model (RRTM) SW radiation model accurately reproduces clear-sky direct beam fluxes from the Line-By-Line Radiative Transfer

98

Glass Furnace Model (GFM) development and technology transfer program final report.  

Science Conference Proceedings (OSTI)

A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

Lottes, S. A.; Petrick, M.; Energy Systems

2007-12-04T23:59:59.000Z

99

An Improved Microwave Radiative Transfer Model for Tropical Oceanic Precipitation  

Science Conference Proceedings (OSTI)

In preparation for the launch of TRMM, new algorithms must be created that take advantage of the combined data from radar and microwave radiometers that will be on board the satellite. A microwave radiative transfer algorithm with a one-...

Jeffrey R. Tesmer; Thomas T. Wilheit

1998-05-01T23:59:59.000Z

100

Numerical Discretization of Rotated Diffusion Operators in Ocean Models  

Science Conference Proceedings (OSTI)

A method to improve the behavior of the numerical discretization of a rotated diffusion operator such as, for example, the isopycnal diffusion parameterization used in large-scale ocean models based on the so-called z-coordinate system is ...

J-M. Beckers; H. Burchard; E. Deleersnijder; P. P. Mathieu

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling of data center airflow and heat transfer: State of the art and future trends  

Science Conference Proceedings (OSTI)

An assessment of the current thermal modeling methodologies for data centers is presented, with focus on the use of computational fluid dynamics and heat transfer as analysis tools, and model validation. Future trends in reduced or compact modeling of ... Keywords: Data center, Reduced order models, Thermal modeling

Jeffrey Rambo; Yogendra Joshi

2007-06-01T23:59:59.000Z

102

Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System  

SciTech Connect

ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.

Ying, Alice [University of California, Los Angeles; Popov, Emilian L [ORNL

2011-01-01T23:59:59.000Z

103

A Dynamically Adapting Weather and Dispersion Model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA)  

Science Conference Proceedings (OSTI)

The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) and its embedded Atmospheric Dispersion Model is a new atmospheric simulation system for real-time hazard prediction, conceived out of a need to advance the state of the ...

David P. Bacon; Nash’at N. Ahmad; Zafer Boybeyi; Thomas J. Dunn; Mary S. Hall; Pius C. S. Lee; R. Ananthakrishna Sarma; Mark D. Turner; Kenneth T. Waight III; Steve H. Young; John W. Zack

2000-07-01T23:59:59.000Z

104

Attachment A: Modeling in Support of Additional Two-Unit Operating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attachment A: Modeling in Support of Additional Two-Unit Operating Configurations Attachment A: Modeling in Support of Additional Two-Unit Operating Configurations Docket No....

105

Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.  

Science Conference Proceedings (OSTI)

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

2004-01-01T23:59:59.000Z

106

Spatial transfer functions: a unified approach to specifying deformation in volume modeling and animation  

Science Conference Proceedings (OSTI)

In this paper, we introduce the concept of spatial transfer functions as a unified approach to volume modeling and animation. A spatial transfer function is a function that defines the geometrical transformation of a scalar field in space, and is a generalization ...

M. Chen; D. Silver; A. S. Winter; V. Singh; N. Cornea

2003-07-01T23:59:59.000Z

107

Modeling, fabrication and characterization of micro-coils as magnetic inductors for wireless power transfer  

Science Conference Proceedings (OSTI)

This work presents modeling, fabrication and characterization of planar microcoils for wireless power transfer in medical implanted devices, proposing integrated technology as a way to reduce the dimensions and achieve higher efficiency. The wireless ... Keywords: Inductive coupling, Inductive planar coils, Wireless power transfer

Massimiliano Amato, Francesco Dalena, Cristina Coviello, Massimo De Vittorio, Simona Petroni

2013-11-01T23:59:59.000Z

108

Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation  

SciTech Connect

Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

Wu Dianliang; Zhu Hongmin [Shanghai Jiao Tong University (China); Shanghai Key Laboratory of Advance Manufacturing Environment (China)

2010-05-21T23:59:59.000Z

109

An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Update on Radiative Transfer Model Development at Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc. J. S. Delamere, S. A. Clough, E. J. Mlawer, Sid-Ahmed Boukabara, K. Cady-Pereira, and M. Shepard Atmospheric and Environmental Research, Inc. Lexington, Maine Introduction Over the last decade, a suite of radiative transfer models has been developed at Atmospheric and Environmental Research, Inc. (AER) with support from the Atmospheric and Radiation Measurement (ARM) Program. These models span the full spectral regime from the microwave to the ultraviolet, and range from monochromatic to band calculations. Each model combines the latest spectroscopic advancements with radiative transfer algorithms to efficiently compute radiances, fluxes, and cooling

110

An Evaluation of Environment Canada's Operational Ocean Wave Model Based on Moored Buoy Data  

Science Conference Proceedings (OSTI)

An operational ocean wave model called the Canadian Spectral Ocean Wave Model (CSOWM) has been implemented in the operational forecasting system of the Atmospheric Environment Service, Environment Canada, since early 1991. The present operational ...

M. L. Khandekar; R. Lalbeharry

1996-06-01T23:59:59.000Z

111

Heat transfer research and power cycle transient modeling  

DOE Green Energy (OSTI)

Fine axial flutes enhance heat transfer in vertical shell-and-tube exchangers with water inside the tubes and ammonia evaporating or condensing in layer flow on the shell side. Single-tube experiments with R-11 and ammonia indicate local shell-side coefficients 3 to 5 times those for corresponding smooth tubes. Single-tube experiments with water indicate that at moderate velocities the tube-side coefficients are enhanced by a factor equal to the ratio of fluted-to-smooth surface areas while the fluid friction is similarly increased. The experimental data are transformed into mean individual coefficients for ammonia and water. Overall coefficients for a particular case are presented to illustrate the efficacy of enhancement by flutes on one or both sides of the heat transfer surface. Means are described for using emerging data to predict the static and dynamic behavior of the power cycle and the interactions of components throughout the complete power plant.

Rothfus, R.R.; Neuman, C.P.

1977-03-23T23:59:59.000Z

112

Modelling excitonic-energy transfer in light-harvesting complexes  

E-Print Network (OSTI)

The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

Kramer, Tobias

2013-01-01T23:59:59.000Z

113

Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments  

Science Conference Proceedings (OSTI)

This paper investigates the performance of the National Centers for Environmental Prediction (NCEP) Noah land surface model at two semiarid sites in southern Arizona. The goal is to evaluate the transferability of calibrated parameters (i.e., ...

Terri S. Hogue; Luis Bastidas; Hoshin Gupta; Soroosh Sorooshian; Ken Mitchell; William Emmerich

2005-02-01T23:59:59.000Z

114

Transferability of a Three-Dimensional Air Quality Model between Two Different Sites in Complex Terrain  

Science Conference Proceedings (OSTI)

The three-dimensional, diagnostic, particle-in-cell transport and diffusion model MATHEW/ADPIC is used to test its transferability from one site in complex terrain to another with different characteristics, under stable nighttime drainage flow ...

Rolf Lange

1989-07-01T23:59:59.000Z

115

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

Tabares Velasco, P. C.

2011-04-01T23:59:59.000Z

116

An Estimation of the Bulk Transfer Coefficients for a Bare Soil Surface Using a Linear Model  

Science Conference Proceedings (OSTI)

A linear heat budget model is developed to estimate the daytime means of the bulk transfer coefficients for heat and evaporation efficiency using the daily variation of observational data. The daily variation of shortwave radiation, ground-level ...

Dai Matsushima; Junsei Kondo

1995-04-01T23:59:59.000Z

117

Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds  

Science Conference Proceedings (OSTI)

The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. ...

H. W. Barker; G. L. Stephens; P. T. Partain; J. W. Bergman; B. Bonnel; K. Campana; E. E. Clothiaux; S. Clough; S. Cusack; J. Delamere; J. Edwards; K. F. Evans; Y. Fouquart; S. Freidenreich; V. Galin; Y. Hou; S. Kato; J. Li; E. Mlawer; J.-J. Morcrette; W. O'Hirok; P. Räisänen; V. Ramaswamy; B. Ritter; E. Rozanov; M. Schlesinger; K. Shibata; P. Sporyshev; Z. Sun; M. Wendisch; N. Wood; F. Yang

2003-08-01T23:59:59.000Z

118

Dynamic model of power system operation incorporating load control  

SciTech Connect

Load management has been proposed as a means whereby an electric utility can reduce its requirements for additional generation, transmission, and distribution investments, shift fuel dependency from limited to more abundant energy resources, and improve the efficiency of the electric energy system. There exist, however, serious technological and economic questions which must be answered to define the cost trade-offs between initiating a load management strategy or adding additional capacity to meet the load. One aspect of this complex problem is to determine how the load profile might be modified by the load management option being considered. Towards this end, a model has been developed to determine how a power system with an active load control system should be operated to make the best use of its available resources. The model is capable of handling all types of conventional generating sources including thermal, hydro, and pumped storage units, and most appliances being considered for direct control including those with inherent or designed storage characteristics. The model uses a dynamic programming technique to determine the optimal operating strategy for a given set of conditions. The use of the model is demonstrated. Case study results indicate that the production cost savings that can be achieved through the use of direct load control are highly dependent on utility characteristics, load characteristics, storage capacity, and penetration. The load characteristics that produce the greatest savings are: large storage capacity; high coincidence with the system peak; large connected load per point; and moderately high diversity fraction.

Kuliasha, M.A.

1980-10-01T23:59:59.000Z

119

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report  

Open Energy Info (EERE)

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Dataset Summary Description (Abstract): This partial report describes the results obtained by two of the core radiative transfer models adopted in the SWERA Project for global horizontal solar irradiation during the cross-validation step. They are BRASIL-SR and SUNY-ALBANY models (Martins, 2001; Stuhlmann et al. 1990; Perez et al., 2002). The results from other two other core models, NREL and DLR, are not yet available. The HELIOSAT was included as a reference model at this stage. The HELIOSAT model is widely employed for solar energy assessment in Europe and is well know by the solar energy community worldwide (Beyer et al., 1996; Cano et al., 1986). (Purpose): SWERA solar cross-validation study

120

Transient PVT measurements and model predictions for vessel heat transfer. Part II.  

SciTech Connect

Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of Standardized Probabilistic Risk Assessment Models for Shutdown Operations Integrated in SPAR Level 1 Model  

SciTech Connect

Nuclear plant operating experience and several studies show that the risk from shutdown operation during Modes 4, 5, and 6 at pressurized water reactors and Modes 4 and 5 at boiling water reactors can be significant. This paper describes using the U.S. Nuclear Regulatory Commission’s full-power Standardized Plant Analysis Risk (SPAR) model as the starting point for development of risk evaluation models for commercial nuclear power plants. The shutdown models are integrated with their respective internal event at-power SPAR model. This is accomplished by combining the modified system fault trees from the SPAR full-power model with shutdown event tree logic. Preliminary human reliability analysis results indicate that risk is dominated by the operator’s ability to correctly diagnose events and initiate systems.

S. T. Khericha; J. Mitman

2008-05-01T23:59:59.000Z

122

Engineering Model of Liquid Storage Utility Tank for Heat Transfer Analysis  

SciTech Connect

The utility or chemical storage tank requires special engineering attention and heat transfer analysis because the tank content is very sensitive to temperature and surrounding environment such as atmospheric or outside air, humidity, and solar radiation heat. A simplified heat transfer model was developed to calculate the liquid content temperature of utility storage tank. The content of the utility storage tanks can be water or any other chemical liquid. An engineering model of liquid storage tank for heat transfer analysis and temperature calculations are presented and discussed in the examples of Tanks No. 1 containing oxalic acid and No. 2 containing sodium tetraphenylborate solution.

Kwon, K.C.

1995-09-27T23:59:59.000Z

123

Physically Based Satellite Retrieval of Precipitation Using a 3D Passive Microwave Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A precipitation retrieval algorithm based on the application of a 3D radiative transfer model to a hybrid physical-stochastic 3D cloud model is described. The cloud model uses a statistical rainfall clustering scheme to generate 3D cloud ...

J. L. Haferman; E. N. Anagnostou; D. Tsintikidis; W. F. Krajewski; T. F. Smith

1996-08-01T23:59:59.000Z

124

Ferromagnetism in Hubbard model in many-electron operator representation  

Science Conference Proceedings (OSTI)

The Hubbard model for a metal with strong correlations is considered in the representation of many-electron X-operators. General self-consistent expressions are obtained for the one-particle Green function taking into account fluctuation corrections. The stability regions of the saturated and unsaturated ferromagnetism in the ground state on the n-U plane (n is the electron concentration and U is the Coulomb interaction parameter) are determined for various bare densities of states (semi-elliptic band and the square, cubic, and hypercubic lattices).

Zarubin, A. V.; Irkhin, V. Yu., E-mail: Valentin.Irkhin@imp.uran.ru [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

2012-05-15T23:59:59.000Z

125

MEAM with Charge Transfer for TM Oxide Modeling  

Science Conference Proceedings (OSTI)

Abstract Scope, Transition metal (TM) oxides are important material with diverse applications including ... Density functional theory (DFT) modeling studies have provided useful bulk ... Atomistic Modeling of Radiation Damage in bcc Uranium.

126

Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors  

SciTech Connect

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

WRIGHT,STEVEN A.; HOUTS,MICHAEL

2000-11-22T23:59:59.000Z

127

Modeling of Heat and Mass Transfer in Fusion Welding  

Science Conference Proceedings (OSTI)

In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

Zhang, Wei [ORNL

2011-01-01T23:59:59.000Z

128

Intercomparison of Radiation Transfer Models Representing Direct Shortwave Forcing by Sulfate Aerosols  

E-Print Network (OSTI)

A study has been conducted, involving 15 models by 12 groups, to compare modeled forcing (change in shortwave radiation budget) due to sulfate aerosol for a wide range of values of particle radius, optical depth, surface albedo, and solar zenith angle (SZA). The models included high- and low-spectral resolution models, incorporating a variety of radiative transfer approximations, as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the radiative transfer models were examined and the differences characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence), except at high surface albedo combined with low SZA. The relative standard deviation of the zenith-angle-average normalized broadband forcing for 15 models was 8% for particle radius near the maximum in magnitude of this forcing (ca....

Sulfate Aerosols; Stephen E Schwartz

1998-01-01T23:59:59.000Z

129

Energy transfers in shell models for MHD turbulence  

E-Print Network (OSTI)

A systematic procedure to derive shell models for MHD turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross-helicity and the magnetic helicity as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest neighbour shells, this procedure reproduces well known models but suggests a reinterpretation of the energy fluxes.

T. Lessinnes; M. K. Verma; D. Carati

2008-07-31T23:59:59.000Z

130

Photosynthetic models with maximum entropy production in irreversible charge transfer steps  

Science Conference Proceedings (OSTI)

Steady-state bacterial photosynthesis is modelled as cyclic chemical reaction and is examined with respect to overall efficiency, power transfer efficiency, and entropy production. A nonlinear flux-force relationship is assumed. The simplest two-state ... Keywords: Bacterial photosynthesis, Efficiency, Entropy production, Kinetic models, Power

Davor Jureti?; PašKo Upanovi?

2003-12-01T23:59:59.000Z

131

Change in regime and transfer function models of global solar radiation in Kuwait  

Science Conference Proceedings (OSTI)

The development of the models for global solar radiation in Kuwait is based on removing the annual periodicity and seasonal variation. The first methodology used here is the change in regime technique that relies on dividing the observations into two ... Keywords: ARMA model, Harmonic analysis, Solar radiation, Transfer function

S. A. Al-Awadhi

2005-09-01T23:59:59.000Z

132

Original article: Comparison of numerical models in radiative heat transfer with application to circuit-breaker simulations  

Science Conference Proceedings (OSTI)

Two different modeling approaches for the numerical computation of the radiation energy exchange in the context of the simulation of high-voltage circuit breakers are investigated. These are the basic Radiative Transfer Equation method and the P1 model ... Keywords: CFD modeling, Circuit breakers, Finite volume discretization, P1 model, Radiative heat transfer

Matthieu Melot; Jean-Yves TréPanier; Ricardo Camarero; Eddy Petro

2012-08-01T23:59:59.000Z

133

Spectroscopic investigation of photo-induced proton-coupled electron transfer and Dexter energy transfer in model systems  

E-Print Network (OSTI)

Spectroscopic investigations of systems designed to advance the mechanistic interrogation of photo-induced proton coupled electron transfer (PCET) and proton-coupled (through-bond) energy transfer (PCEnT) are presented. ...

Young, Elizabeth R. (Elizabeth Renee), 1980-

2009-01-01T23:59:59.000Z

134

Complex Geometry Creation and Turbulent Conjugate Heat Transfer Modeling  

Science Conference Proceedings (OSTI)

The multiphysics capabilities of COMSOL provide the necessary tools to simulate the turbulent thermal-fluid aspects of the High Flux Isotope Reactor (HFIR). Version 4.1, and later, of COMSOL provides three different turbulence models: the standard k-{var_epsilon} closure model, the low Reynolds number (LRN) k-{var_epsilon} model, and the Spalart-Allmaras model. The LRN meets the needs of the nominal HFIR thermal-hydraulic requirements for 2D and 3D simulations. COMSOL also has the capability to create complex geometries. The circular involute fuel plates used in the HFIR require the use of algebraic equations to generate an accurate geometrical representation in the simulation environment. The best-estimate simulation results show that the maximum fuel plate clad surface temperatures are lower than those predicted by the legacy thermal safety code used at HFIR by approximately 17 K. The best-estimate temperature distribution determined by COMSOL was then used to determine the necessary increase in the magnitude of the power density profile (PDP) to produce a similar clad surface temperature as compared to the legacy thermal safety code. It was determined and verified that a 19% power increase was sufficient to bring the two temperature profiles to relatively good agreement.

Bodey, Isaac T [ORNL; Arimilli, Rao V [ORNL; Freels, James D [ORNL

2011-01-01T23:59:59.000Z

135

Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations  

Science Conference Proceedings (OSTI)

Laboratory (PNNL) conducted an extensive evaluation of the ability of three ultrasonic instruments to detect critical velocity for a broad range of simulated Hanford nuclear waste streams containing particles with mean particle sizes of >50 microns. Evaluations were perform using the pipe loop at the Process Development Laboratory – East (PDL-E) at PNNL that was designed and built to evaluate the pipeline plugging issue during slurry transfer operations at the Hanford Waste Treatment Plant. In 2011 the ability of the ultrasonic PulseEcho system to detect critical velocity continued to be evaluated using the PDL-E flow loop and new simulants containing high-density particles with a mean particle size of < 15 microns. The PDL-E flow loop was modified for the 2011 testing to include a new test section that contained 5-MHz and 10-MHz ultrasonic transducers non-invasively mounted to schedule 40 pipe. The test section also contained reference instrumentation to facilitate direct comparison of the real-time PulseEcho transducer responses with experimentally observed critical velocities. This paper presents the results from the 2011 PulseEcho evaluation using a variety of simulated Hanford nuclear waste streams that were selected to encompass the expected high-level waste feed properties.

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F.; Thien, Michael G.; Wooley, Theodore A.

2012-04-01T23:59:59.000Z

136

SP-100 operational life model. Fiscal Year 1990 annual report  

DOE Green Energy (OSTI)

This report covers the initial year`s effort in the development of an Operational Life Model (OLM) for the SP-100 Space Reactor Power System. The initial step undertaken in developing the OLM was to review all available documentation from GE on their plans for the OLM and on the degradation and failure mechanisms envisioned for the SP-100. In addition, the DEGRA code developed at JPL, which modelled the degradation of the General Purpose Heat Source based Radioisotope Thermoelectric Generator (GPHS-RTG), was reviewed. Based on the review of the degradation and failure mechanisms, a list of the most pertinent degradation effects along with their key degradation mechanisms was compiled. This was done as a way of separating the mechanisms from the effects and allowing all of the effects to be incorporated into the OLM. The emphasis was on parameters which will tend to change performance as a function of time and not on those that are simply failures without any prior degradation.

Ewell, R.; Awaya, H.

1990-12-14T23:59:59.000Z

137

Models for Metal Hydride Particle Shape, Packing, and Heat Transfer  

E-Print Network (OSTI)

A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

Kyle C. Smith; Timothy S. Fisher

2012-05-04T23:59:59.000Z

138

A mass transfer model of ammonia volatilisation from anaerobic digestate  

SciTech Connect

Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

Whelan, M.J., E-mail: m.j.whelan@cranfield.ac.u [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Everitt, T.; Villa, R. [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

2010-10-15T23:59:59.000Z

139

3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells  

DOE Green Energy (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant Hawkes; James E. O'Brien

2008-10-01T23:59:59.000Z

140

Integrated Modeling of Electric Power System Operations and Electricity Market Risks with Applications .  

E-Print Network (OSTI)

??Through integrated modeling of power system operations and market risks, this thesis addresses a variety of important issues on market signals modeling, generation capacity scheduling,… (more)

Sun, Haibin

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Current Capability of Operational Numerical Models in Predicting Tropical Cyclone Intensity in the Western North Pacific  

Science Conference Proceedings (OSTI)

Forecasts of tropical cyclone (TC) intensity from six operational models (three global models and three regional models) during 2010 and 2011 are assessed to study the current capability of model guidance in the western North Pacific. The ...

Hui Yu; Peiyan Chen; Qingqing Li; Bi Tang

2013-04-01T23:59:59.000Z

142

Consistent data operations for multi-databases in extended possibility-based data models  

Science Conference Proceedings (OSTI)

This paper considers the data operation for multi-databases in an extended possibility-based data model. Owing to the complexity of the data model considered, inconsistent redundancy of tuples may occur when database relations being operated are associated ... Keywords: Data operation, Extended possibility-based data model, Fuzzy databases, Proximity relations

Julie Yu-Chih Liu; Pei-Chann Chang; Clark P. C. Yeh

2009-04-01T23:59:59.000Z

143

A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part I: Present Climate Simulation  

Science Conference Proceedings (OSTI)

The present-day climatology of a global climate model (GENESIS Version 1.02) is described. The model includes a land-surface transfer component (LSX) that accounts for the physical effects of vegetation. The atmospheric general circulation model ...

Starley L. Thompson; David Pollard

1995-04-01T23:59:59.000Z

144

Fenix Secure Operating System: Principles, Models and Architecture  

Science Conference Proceedings (OSTI)

The paper introduces design principles of Secure Operating System Fenix developed in Information Security Centre of Saint-Petersburg Technical University. Fenix is a special purpose secure operating system supposed to be a basis for secure information ...

Dmitry P. Zegzhda; Pavel G. Stepanov; Alexey D. Otavin

2001-05-01T23:59:59.000Z

145

Ownership transfer for non-federate object and time management in developing an hla compliant logistics model.  

Science Conference Proceedings (OSTI)

A seaport simulation model, PORTSIM, has been developed for the Department of Defense (DOD) at Argonne National Laboratory. PORTSIM simulates the detailed processes of cargo loading and unloading in a seaport and provides throughput capability, resource utilization, and other important information on the bottlenecks in a seaport operation, which are crucial data in determining troop and equipment deployment capability. There are two key problems to solve in developing the HLA-compliant PORTSIM model. The first is the cargo object ownership transfer problem. In PORTSIM, cargo items, e.g. vehicles, containers, and pallets, are objects having asset attributes. Cargo comes to a seaport for loading or unloading. The ownership of a cargo object transfers from its carrier to the port and then from the port to a new carrier. Each owner of the cargo object is responsible for publishing and updating the attributes of the cargo object when it has the ownership. This creates a unique situation in developing the PORTSIM federate object model, that is, the ownership of the object instead of the attributes needs to be changed in handling the cargo object in the PORTSIM federate. The ownership management service provided by the current RTI does not directly address this issue. The second is the time management issue. PORTSIM is an event-driven simulation that models seaport operations over time. To make PORTSIM HLA compliant, time management must be addressed to allow for synchronization with other simulation models. This paper attempts to address these two issues and methodologies developed for solving these two problems.

Li, Z.

1998-01-12T23:59:59.000Z

146

Finite-volume model for chemical vapor infiltration incorporating radiant heat transfer. Interim report  

SciTech Connect

Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.

Smith, A.W.; Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-05-01T23:59:59.000Z

147

Modeling the free energy surfaces of electron transfer in condensed phases  

E-Print Network (OSTI)

PROOF COPY 509037JCP Modeling the free energy surfaces of electron transfer in condensed phases analytical solution for the ET free energy surfaces demonstrates the following features: i the range of ET reaction coordinates is limited by a one-sided fluctuation band, ii the ET free energies are infinite

Matyushov, Dmitry

148

Modeling of the Output and Transfer Characteristics of Graphene Field-Effect Transistors  

Science Conference Proceedings (OSTI)

We obtain the output and transfer characteristics of graphene field-effect transistors by using the charge-control model for the current, based on the solution of the Boltzmann equation in the field-dependent relaxation time approximation. Closed expressions ...

Brett W. Scott; Jean-Pierre Leburton

2011-09-01T23:59:59.000Z

149

A Computation of the Stratospheric Diabatic Circulation Using an Accurate Radiative Transfer Model  

Science Conference Proceedings (OSTI)

The global diabatic circulation is computed for the months of January, April, July and October over the altitude region 100 to 0.1 mb using an accurate troposphere-stratosphere radiative transfer model, SBUV and SME ozone data, and NMC ...

Joan E. Rosenfield; Mark R. Schoeberl; Marvin A. Geller

1987-03-01T23:59:59.000Z

150

Modelling of heat transfer at glass/mould interface in press and blow forming processes  

Science Conference Proceedings (OSTI)

Numerical models may play an important role in the optimization of the quality of hollow-ware glass articles in glass industry. Due to the complexity of the phenomena involved a coupling between thermal and mechanical aspects is crucial. One of the key ... Keywords: Finite elements, Glass forming, Heat conduction, Heat transfer coefficient, Interface element, Press/blow process

Sébastien Grégoire; José M. A. César de Sá; Philippe Moreau; Dominique Lochegnies

2007-08-01T23:59:59.000Z

151

On exact and perturbation solutions to nonlinear equations for heat transfer models  

E-Print Network (OSTI)

We analyze some exact and approximate solutions to nonlinear equations for heat transfer models. We prove that recent results derived from a method based on Lie algebras are either trivial or wrong. We test a simple analytical expression based on the hypervirial theorem and also discuss earlier perturbation results.

Francisco M. Fernández

2009-11-01T23:59:59.000Z

152

Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for GCM Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Evaluation of RRTMG_SW, Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for General Circulation Model Applications M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Center for Medium-Range Weather Forecasts Reading, United Kingdom Y.-T. Hou National Centers for Environmental Prediction Camp Springs, Maryland Introduction The k-distribution shortwave radiation model developed for the Atmospheric Radiation Measurement (ARM) Program, RRTM_SW_V2.4 (Clough et al. 2004), utilizes the discrete ordinates radiative transfer model, DISORT, for scattering calculations and 16 g-points in each of its 16 spectral bands. DISORT provides agreement with line-by-line flux calculations to within 1 Wm

153

Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation  

E-Print Network (OSTI)

Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation-switching model for the risk adjusted natural gas spot price and study the implications of the model on the valuation and optimal operation of natural gas storage facilities. We calibrate the model parameters to both

Forsyth, Peter A.

154

Exhibit A: ENSR Modeling in Support of Individual Unit Operation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan Exhibit D: Mirant Potomac River...

155

Technical Repair Guidelines for Limitorque Gear Operator Models HBC 0-10  

Science Conference Proceedings (OSTI)

This technical repair guide (TRG) for Limitorque gear operator models HBC-0 through HBC-10 is the fourth in a series of documents devoted to the comprehensive maintenance and repair of Limitorque valve actuators. This guide provides instructions for engineering, operations, and maintenance personnel on the repair, maintenance, and operation of Limitorque HBC gear operators and their accessories.

1993-10-02T23:59:59.000Z

156

Modeling safe operating area in hardware description languages  

Science Conference Proceedings (OSTI)

Creating a Robust Design requires that the operating conditions of each component of the design are carefully measured and compared with its Safe Operating, a task commonly referred to as stress analysis. In this paper we analyze the relationship between ... Keywords: MAST, VHDL-AMS, stress analysis

Leonid Goldgeisser; Ernst Christen; Zhichao Deng

2007-06-01T23:59:59.000Z

157

Fundamental Drop Dynamics and Mass Transfer Experiments to Support Solvent Extraction Modeling Efforts  

SciTech Connect

In support of the Nuclear Energy Advanced Modeling Simulation Safeguards and Separations (NEAMS SafeSep) program, the Idaho National Laboratory (INL) worked in collaboration with Los Alamos National Laboratory (LANL) to further a modeling effort designed to predict mass transfer behavior for selected metal species between individual dispersed drops and a continuous phase in a two phase liquid-liquid extraction (LLE) system. The purpose of the model is to understand the fundamental processes of mass transfer that occur at the drop interface. This fundamental understanding can be extended to support modeling of larger LLE equipment such as mixer settlers, pulse columns, and centrifugal contactors. The work performed at the INL involved gathering the necessary experimental data to support the modeling effort. A custom experimental apparatus was designed and built for performing drop contact experiments to measure mass transfer coefficients as a function of contact time. A high speed digital camera was used in conjunction with the apparatus to measure size, shape, and velocity of the drops. In addition to drop data, the physical properties of the experimental fluids were measured to be used as input data for the model. Physical properties measurements included density, viscosity, surface tension and interfacial tension. Additionally, self diffusion coefficients for the selected metal species in each experimental solution were measured, and the distribution coefficient for the metal partitioning between phases was determined. At the completion of this work, the INL has determined the mass transfer coefficient and a velocity profile for drops rising by buoyancy through a continuous medium under a specific set of experimental conditions. Additionally, a complete set of experimentally determined fluid properties has been obtained. All data will be provided to LANL to support the modeling effort.

Kristi Christensen; Veronica Rutledge; Troy Garn

2011-09-01T23:59:59.000Z

158

Southern Hemisphere Medium-Range Forecast Skill and Predictability: A Comparison of Two Operational Models  

Science Conference Proceedings (OSTI)

The skill of two global numerical weather prediction models, the National Centers for Environmental Prediction (NCEP) medium-range forecast model and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model, has been ...

James A. Renwick; Craig S. Thompson

2001-09-01T23:59:59.000Z

159

Information transfer model of natural processes: from the ideal gas law to the K effect  

E-Print Network (OSTI)

Information theory provides shortcuts which allow to deal with complex systems. The basic idea one uses for this purpose is the maximum entropy principle developed by Jaynes. However, an extensions of this maximum entropy principle to systems far from thermal equilibrium or even to non-physical systems is problematic because it requires an adequate choice of constraints. In this paper we apply the information theory in an even more abstract way and propose an information transfer model of natural processes which does not require any choice of adequate constraints. It is, therefore, directly applicable to systems far from thermal equilibrium and to non-physical systems/processes (e.g. biological processes and economical processes). We demonstrate the validity and the applicability of the information transfer concept by three well understood physical processes. As an interesting astronomical application we will show that the information transfer concept allows to rationalize and to quantify the K effect.

P. Fielitz; G. Borchardt

2009-05-05T23:59:59.000Z

160

Snow Model Verification Using Ensemble Prediction and Operational Benchmarks  

Science Conference Proceedings (OSTI)

Hydrologic model evaluations have traditionally focused on measuring how closely the model can simulate various characteristics of historical observations. Although advancing hydrologic forecasting is an often-stated goal of numerous modeling ...

Kristie J. Franz; Terri S. Hogue; Soroosh Sorooshian

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Operating Regime Approach to Nonlinear Modelling and Control  

E-Print Network (OSTI)

Johansen,T.A. Murray-Smith,R. Multiple Model Approaches to Modelling and Control pp 3-72 Taylor and Francis

Johansen, T.A.; Murray-Smith, R.

162

A one-dimensional material transfer model for HECTR version 1. 5  

DOE Green Energy (OSTI)

HECTR (Hydrogen Event Containment Transient Response) is a lumped-parameter computer code developed for calculating the pressure-temperature response to combustion in a nuclear power plant containment building. The code uses a control-volume approach and subscale models to simulate the mass, momentum, and energy transfer occurring in the containment during a loss-of-collant-accident (LOCA). This document describes one-dimensional subscale models for mass and momentum transfer, and the modifications to the code required to implement them. Two problems were analyzed: the first corresponding to a standard problem studied with previous HECTR versions, the second to experiments. The performance of the revised code relative to previous HECTR version is discussed as is the ability of the code to model the experiments. 8 refs., 5 figs., 3 tabs.

Geller, A.S.; Wong, C.C.

1991-08-01T23:59:59.000Z

163

Impact of Changes to the Radiation Transfer Parameterizations Plus Cloud Optical. Properties in the ECMWF Model  

Science Conference Proceedings (OSTI)

A new radiation package, shown to correct most of the systematic errors of the operational ECMWF radiation scheme, has been extensively tested in the ECMWF forecast model. Improvements in the clear-sky fluxes and radiative heating/cooling rate ...

Jean-Jacques Morcrette

1990-04-01T23:59:59.000Z

164

Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations  

Science Conference Proceedings (OSTI)

A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) ...

Gabriëlle J. M. De Lannoy; Rolf H. Reichle; Valentijn R. N. Pauwels

2013-06-01T23:59:59.000Z

165

Estimation of Sensible and Latent Heat Fluxes from Soil Surface Temperature Using a Linear Air-Land Heat Transfer Model  

Science Conference Proceedings (OSTI)

The authors present a linearized model of the heat transfer between the soil layer and the atmosphere. Using this model, the moisture availability at the surface can be estimated from the diurnal variations of the soil surface temperature and ...

Fujio Kimura; Yugo Shimizu

1994-04-01T23:59:59.000Z

166

Preliminary design capability enhancement via development of rotorcraft operating economics model  

E-Print Network (OSTI)

The purpose of this thesis is to develop a means of predicting direct operating cost (DOC) for new commercial rotorcraft early in the design process. This project leverages historical efforts to model operating costs in ...

Giansiracusa, Michael P

2010-01-01T23:59:59.000Z

167

Operational simulation model of the raw material handling in an integrated steel making plant  

Science Conference Proceedings (OSTI)

This article is focused on the design and implementation of an operational simulation model (OSM) of the handling of raw material in an integrated steel making plant, considering operations of receiving, unloading, stocking, handling and supplying the ...

Robson Jacinto Coelho; Paula Fernandes Lana; Adriano César Silva; Takeo Fugiwara Santos; ArcelorMittal Tubarão; Marcelo Moretti Fioroni; Luiz Augusto G. Franzese; Daniel de Oliveira Mota; Paragon Tecnologia; Luiz Bueno da Silva

2009-12-01T23:59:59.000Z

168

Modeling operator performance in low task load supervisory domains  

E-Print Network (OSTI)

Currently, numerous automated systems need constant monitoring but require little to no operator interaction for prolonged periods, such as unmanned aerial systems, nuclear power plants, and air traffic management systems. ...

Mkrtchyan, Armen A

2011-01-01T23:59:59.000Z

169

A knowledge based model of electric utility operations. Final report  

SciTech Connect

This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

NONE

1993-08-11T23:59:59.000Z

170

Modeling of solid-side mass transfer in desiccant particle beds  

DOE Green Energy (OSTI)

A model is proposed for heat and mass transfer in a packed bed of desiccant particles and accounts for both Knudsen and surface diffusion within the particles. Using the model, predictions are made for the response of thin beds of silica gel particles to a step change in air inlet conditions compared to mental results. The predictions are found to be satisfactory and, in general, superior to those of pseudogas-side controlled models commonly used for the design of desiccant dehumidifiers for solar air conditioning application.

Pesaran, A.A.; Mills, A.F.

1984-02-01T23:59:59.000Z

171

A Preliminary Investigation of Temperature Errors in Operational Forecasting Models  

Science Conference Proceedings (OSTI)

Temperatures taken from model output (FOUS reports) routinely transmitted by the National Centers for Environmental Prediction are tabulated to determine errors during three months in the summer of 1996. These short-term model forecasts are ...

Frank P. Colby Jr.

1998-03-01T23:59:59.000Z

172

Whole-Building Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model: Preprint  

DOE Green Energy (OSTI)

A three-dimensional, finite-element, heat-transfer computer program was developed to study ground-coupled heat transfer from buildings. It was used in conjunction with the SUNREL whole-building energy simulation program to analyze ground-coupled heat transfer from buildings, and the results were compared with the simple ground-coupled heat transfer models used in whole-building energy simulation programs. The detailed model provides another method of testing and refining the simple models and analyzing complex problems. This work is part of an effort to improve the analysis of the ground-coupled heat transfer in building energy simulation programs. The output from this detailed model and several others will form a set of reference results for use with the BESTEST diagnostic procedure. We anticipate that the results from the work will be incorporated into ANSI/ASHRAE 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

Deru, M.; Judkoff, R.; Neymark, J.

2002-08-01T23:59:59.000Z

173

Application Of A Spherical-Radial Heat Transfer Model To Calculate  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Application Of A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Details Activities (0) Areas (0) Regions (0) Abstract: This paper presents estimates of the undisturbed formation temperatures in a geothermal exploration well drilled in the Ceboruco area in the western part of the Mexican Volcanic Belt. The method used assumes

174

Mechanistic Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide.  

E-Print Network (OSTI)

??Mechanistic modeling of an underbalanced drilling operation using carbon dioxide has been developed in this research. The use of carbon dioxide in an underbalanced drilling… (more)

ALAdwani, Faisal Abdullah

2007-01-01T23:59:59.000Z

175

Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling  

Science Conference Proceedings (OSTI)

A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

2003-07-20T23:59:59.000Z

176

Modeling and optimization of stencil printing operations: A comparison study  

Science Conference Proceedings (OSTI)

This paper presents a comparison study for the optimization of stencil printing operations using hybrid intelligence technique and response surface methodology (RSM). An average 60% of soldering defects are attributed to solder paste stencil printing ... Keywords: DPMO, Fuzzy quality loss function, Genetic algorithms, Neural network, Printed circuit board, Stencil printing, Surface mount technology

Tsung-Nan Tsai

2008-04-01T23:59:59.000Z

177

Model Error Representation in an Operational Ensemble Kalman Filter  

Science Conference Proceedings (OSTI)

Since 12 January 2005, an ensemble Kalman filter (EnKF) has been used operationally at the Meteorological Service of Canada to provide the initial conditions for the medium-range forecasts of the ensemble prediction system. One issue in EnKF ...

P. L. Houtekamer; Herschel L. Mitchell; Xingxiu Deng

2009-07-01T23:59:59.000Z

178

CFD Modeling of Splash in Molten Materials Processing Operations  

Science Conference Proceedings (OSTI)

A Coupled CFD-Thermodynamic-Kinetic Model to Simulate a Gas Stirred Ladle ... Exercise on Thermal and Thermosolutal Natural Convection in Liquid Alloys.

179

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach  

SciTech Connect

For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

180

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach  

SciTech Connect

Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On Subgrid Models and Filter Operations in Large Eddy Simulations  

Science Conference Proceedings (OSTI)

Large eddy simulations use a subgrid model, which is characterized by a length scale that is often related to the scale of the computational mesh by a numerical constant, Cs. Mason and Callen argued that this subgrid model and its length scale ...

P. J. Mason; A. R. Brown

1999-07-01T23:59:59.000Z

182

Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities  

Science Conference Proceedings (OSTI)

Since April 2007, the numerical weather prediction model, COSMO (Consortium for Small Scale Modelling), has been used operationally in a convection-permitting configuration, named COSMO-DE, at the Deutscher Wetterdienst (DWD; German weather ...

Michael Baldauf; Axel Seifert; Jochen Förstner; Detlev Majewski; Matthias Raschendorfer; Thorsten Reinhardt

2011-12-01T23:59:59.000Z

183

The Operational Eta Model Precipitation and Surface Hydrologic Cycle of the Columbia and Colorado Basins  

Science Conference Proceedings (OSTI)

The surface hydrology of the United States’ western basins is investigated using the National Centers for Environmental Prediction operational Eta Model forecasts. During recent years the model has been subject to changes and upgrades that ...

Yan Luo; Ernesto H. Berbery; Kenneth E. Mitchell

2005-08-01T23:59:59.000Z

184

A Comparison of the Performance of Two Operational Dynamic Tropical Cyclone Models  

Science Conference Proceedings (OSTI)

This paper compares the performance of two multi-level high-resolution baroclinic tropical cyclone models which are currently in operational use. In the Atlantic, the National Hurricane Center utilizes the Movable Fine-mesh Model (MFM) for ...

Michael Fiorino; Edward J. Harrison Jr.; Donald G. Marks

1982-07-01T23:59:59.000Z

185

Models for the Prediction of Tropical Cyclone Motion over the North Atlantic: An Operational Evaluation  

Science Conference Proceedings (OSTI)

This study provides an operational evaluation of the seven prediction models-five statistical and two dynamical-used at the National Hurricane Center. Following a brief description of the rationale for each model, various performance ...

Charles J. Neumann; Joseph M. Pelissier

1981-03-01T23:59:59.000Z

186

Development of a Heat Transfer Model for the Integrated Facade Heating  

E-Print Network (OSTI)

Façade heating is a special application of radiant heating and cooling technology and is used to enhance the indoor comfort level of offices, hotels and museums. Mullion radiators are typically used to implement façade heating. This paper analyzes the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts the measured temperatures with a root mean squared error (RMSE) of the hot water return temperature, the mullion surface temperature, and the window surface temperature of 0.90°F, 0.98°F and 1.15°F, respectively. The factors which affect the heating capacity of mullion radiators have been analyzed. The analysis shows that the supply water temperature is the primary factor which affects the heating or cooing capacity of window mullions and the mullion surface temperature. Return water temperature and mullion surface temperature are quasi-linear functions often water supply temperature. Mullion surface temperature, indoor air temperature gradient on the glazing surface within one foot from mullions is much higher than in the central part of the window. The temperatures in the central 2 feet of a 4-foot window show almost no influence by the mullion surface temperature. Also, the conductive thermal resistance of the mullion double tubes with fillings between two tubes plays a decisive role in controlling the mullion and window frame temperatures.

Gong, X.; Archer, D. H.; Claridge, D. E.

2007-01-01T23:59:59.000Z

187

Soil Temperature and Moisture Errors in Operational Eta Model Analyses  

Science Conference Proceedings (OSTI)

Proper partitioning of the surface heat fluxes that drive the evolution of the planetary boundary layer in numerical weather prediction models requires an accurate specification of the initial state of the land surface. The National Centers for ...

Christopher M. Godfrey; David J. Stensrud

2008-06-01T23:59:59.000Z

188

An Experimental Implementation of Oblivious Transfer in the Noisy Storage Model  

E-Print Network (OSTI)

Cryptography's importance in our everyday lives continues to grow in our increasingly digital world. Oblivious transfer (OT) has long been a fundamental and important cryptographic primitive since it is known that general two-party cryptographic tasks can be built from this basic building block. Here we show the experimental implementation of a 1-2 random oblivious transfer (ROT) protocol by performing measurements on polarization-entangled photon pairs in a modified entangled quantum key distribution system, followed by all of the necessary classical post-processing including one-way error correction. We successfully exchange a 1,366 bits ROT string in ~3 min and include a full security analysis under the noisy storage model, accounting for all experimental error rates and finite size effects. This demonstrates the feasibility of using today's quantum technologies to implement secure two-party protocols.

C. Erven; N. Ng; N. Gigov; R. Laflamme; S. Wehner; G. Weihs

2013-08-23T23:59:59.000Z

189

A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media  

E-Print Network (OSTI)

In this paper, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is developed for simulating convection heat transfer in porous media at the representative elementary volume scale. In the model, a MRT-LB equation is used to simulate the flow field, while another MRT-LB equation is employed to simulate the temperature field. The effect of the porous media is considered by introducing the porosity into the equilibrium moments, and adding a forcing term to the MRT-LB equation of the flow field in the moment space. The proposed MRT-LB model is validated by numerical simulations of several two-dimensional convection problems in porous media. The numerical results predicted by the present MRT-LB model agree well with those reported in the literature.

Q. Liu; Y. L. He; Q. Li

2013-08-09T23:59:59.000Z

190

Operational advances in ring current modeling using RAM-SCB  

Science Conference Proceedings (OSTI)

The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) combines a kinetic model of the ring current with a force-balanced model of the magnetospheric magnetic field to create an inner magnetospheric model that is magnetically self consistent. RAM-SCB produces a wealth of outputs that are valuable to space weather applications. For example, the anisotropic particle distribution of the KeV-energy population calculated by the code is key for predicting surface charging on spacecraft. Furthermore, radiation belt codes stand to benefit substantially from RAM-SCB calculated magnetic field values and plasma wave growth rates - both important for determining the evolution of relativistic electron populations. RAM-SCB is undergoing development to bring these benefits to the space weather community. Data-model validation efforts are underway to assess the performance of the system. 'Virtual Satellite' capability has been added to yield satellite-specific particle distribution and magnetic field output. The code's outer boundary is being expanded to 10 Earth Radii to encompass previously neglected geosynchronous orbits and allow the code to be driven completely by either empirical or first-principles based inputs. These advances are culminating towards a new, real-time version of the code, rtRAM-SCB, that can monitor the inner magnetosphere conditions on both a global and spacecraft-specific level. This paper summarizes these new features as well as the benefits they provide the space weather community.

Welling, Daniel T [Los Alamos National Laboratory; Jordanova, Vania K [Los Alamos National Laboratory; Zaharia, Sorin G [Los Alamos National Laboratory; Morley, Steven K [Los Alamos National Laboratory

2010-12-03T23:59:59.000Z

191

Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology  

SciTech Connect

The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

1998-08-01T23:59:59.000Z

192

Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations  

Science Conference Proceedings (OSTI)

Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary ... Keywords: Crop model, G95, Gfortran, Linux, Open source, Windows

K. R. Thorp; J. W. White; C. H. Porter; G. Hoogenboom; G. S. Nearing; A. N. French

2012-02-01T23:59:59.000Z

193

Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land–Atmosphere Schemes for Environmental Modeling  

Science Conference Proceedings (OSTI)

A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The ...

D. T. Mihailovic; K. Alapaty; B. Lalic; I. Arsenic; B. Rajkovic; S. Malinovic

2004-10-01T23:59:59.000Z

194

A Radiation Fog Model with a Detailed Treatment of the Interaction between Radiative Transfer and Fog Microphysics  

Science Conference Proceedings (OSTI)

A one-dimensional radiation fog model is presented which includes a detailed description of the interaction between atmospheric radiative transfer and the microphysical structure of the fog. Aerosol particles and activated cloud droplets are ...

A. Bott; U. Sievers; W. Zdunkowski

1990-09-01T23:59:59.000Z

195

paNTICA: A Fast 3D Radiative Transfer Scheme to Calculate Surface Solar Irradiance for NWP and LES Models  

Science Conference Proceedings (OSTI)

The resolution of numerical weather prediction models is constantly increasing, making it necessary to consider three-dimensional radiative transfer effects such as cloud shadows cast into neighboring grid cells and thus affecting radiative ...

Ulrike Wissmeier; Robert Buras; Bernhard Mayer

2013-08-01T23:59:59.000Z

196

The rational quantification of social housing: an operative research model  

Science Conference Proceedings (OSTI)

This work has addressed the issue of the urban redevelopment of brownfield sites. It has developed an evaluation model for the quantification of the social housing component that the private investor must make in favor of the public administration. The ... Keywords: brownfield sites, housing market, linear programming, private utility, public utility, social housing, urban redevelopment

Gianluigi De Mare; Antonio Nesticò; Francesco Tajani

2012-06-01T23:59:59.000Z

197

Operational Ensemble Cloud Model Forecasts: Some Preliminary Results  

Science Conference Proceedings (OSTI)

From 15 July through 30 September of 2001, an ensemble cloud-scale model was run for the Storm Prediction Center on a daily basis. Each ensemble run consisted of 78 members whose initial conditions were derived from the 20-km Rapid Update Cycle ...

Kimberly L. Elmore; Steven J. Weiss; Peter C. Banacos

2003-10-01T23:59:59.000Z

198

Developing a Process-Oriented Notation for Modeling Operational Risks - A Conceptual Metamodel Approach to Operational Risk Management in Knowledge Intensive Business Processes within the Financial Industry  

Science Conference Proceedings (OSTI)

According to the Basel II committee operational risks are the least understood and manageable risks in banks. Operational risks in banks are closely linked to the underlying business process landscape. Recently, researchers have suggested to model this ...

Burkhard Weiss; Axel Winkelmann

2011-01-01T23:59:59.000Z

199

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

200

Validated, unified model for optics and heat transfer in line-axis concentrating solar energy collectors  

SciTech Connect

A rigorous numerical simulation model for the prediction of the combined optical and thermofluid behaviour of line-axis concentrating solar energy collectors combines two-dimensional steady-state finite element analysis of convective heat transfer and ray-trace techniques. The optical analysis considers both direct and diffuse insolation components and is therefore useful for the analysis of compound parabolic concentrating collectors. Experiments using Mach-Zehnder interferometry indicate a parametric range for which such a two-dimensional representation is valid.

Eames, P.C.; Norton, B. (Univ. of Ulster (United Kingdom))

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Three-Dimensional Modeling of Shape Memory Polymers Considering Finite Deformations and Heat Transfer  

E-Print Network (OSTI)

Shape memory polymers (SMPs) are a relatively new class of active materials that can store a temporary shape and return to the original configuration upon application of a stimulus such as temperature. This shape changing ability has led to increased interest in their use for biomedical and aerospace applications. A major challenge, however, in the advancement of these applications is the ability to accurately predict the material behavior for complex geometries and boundary conditions. This work addresses this challenge by developing an experimentally calibrated and validated constitutive model that is implemented as a user material subroutine in Abaqus ? a commercially available finite element software package. The model is formulated in terms of finite deformations and assumes the SMP behaves as a thermoelastic material, for which the response is modeled using a compressible neo-Hookean constitutive equation. An internal state variable, the glassy volume fraction, is introduced to account for the phase transformation and associated stored deformation upon cooling from the rubbery phase to the glassy phase and subsequently recovered upon heating. The numerical implementation is performed such that a system of equations is solved using a Newton-Raphson method to find the updated stress in the material. The conductive heat transfer is incorporated through solving Fourier's law simultaneously with the constitutive equations. To calibrate and validate the model parameters, thermomechanical experiments are performed on an amorphous, thermosetting polyurethane shape memory polymer. Strains of 10-25% are applied and both free recovery (zero load) and constrained displacement recovery boundary conditions are considered for each value of applied strain. Using the uniaxial experimental data, the model is then calibrated and compared to the 1-D experimental results. The validated finite element analysis tool is then used to model biomedical devices, including cardiovascular tubes and thrombectomy devices, fabricated from shape memory polymers. The effects of heat transfer and complex thermal boundary conditions are evaluated using coupled thermal-displacement analysis, for which the thermal material properties were experimentally calibrated.

Volk, Brent 1985-

2012-12-01T23:59:59.000Z

202

Control software architecture and operating modes of the Model M-2 maintenance system  

SciTech Connect

The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures.

Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

1984-04-01T23:59:59.000Z

203

Modeling of Particulate Matter Emissions from Agricultural Operations  

E-Print Network (OSTI)

State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators. In this research, a process was developed to determine distances from emitting sources to where the estimated concentrations were less than the National Ambient Air Quality Standards (NAAQS). These distances are a function of emission rates and meteorological conditions. Different protocols were used to develop emission factors for cattle feedyards and layer houses. Dispersion modeling with American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was conducted to determine the emissions of particulate matter. These data were used to determine the distances from the sources to where the concentrations of particulate matter (PM) would be less than the NAAQS. The current air-permitting process requires that concentrations from a source do not exceed the NAAQS at the property line and beyond for the facility to be in compliance with its permit conditions. Emission factors for particulate matter less than 10 micrometers (PM10) were developed for cattle feedyards using a reverse modeling protocol and Tapered Element Oscillating Microbalance (TEOM) sampler data. Corrections were applied to the TEOM measurements to account for TEOM vs. filter-based low-volume (FBLV) sampler bias and over-sampling of PM10 pre-collectors. Invalid concentrations and dust peaks larger than mean ± 3 times the standard deviation were excluded from this study. AERMOD predictions of downwind concentrations at cotton gins were observed for compliance with 24-hour PM10 and PM2.5 NAAQS at property lines. The emissions from three cotton gins were analyzed at 50 m and 100 m distances. TEOM and FBLV samplers were used to collect 24-hour PM10 measurements inside a laying hen house. The distances to the property lines at which the emissions of PM10 were below the 24-hour average PM10 standards were estimated using AERMOD. The results suggested that the special use of the NAAQS for as the property-line concentration not to be exceeded, could be problematic to agriculture. Emission factors that were comparable of published emission factors were obtained in this study. Large distances to property lines were required when minimum flow rate recommendations were not considered. Emission factors that are representative of the emissions in a particular facility are essential; else facilities could be inappropriately regulated.

Bairy, Jnana 1988-

2013-05-01T23:59:59.000Z

204

A New Operational Model for Satellite-Derived Irradiances: Description and  

Open Energy Info (EERE)

A New Operational Model for Satellite-Derived Irradiances: Description and A New Operational Model for Satellite-Derived Irradiances: Description and Validation Dataset Summary Description (Abstract): We present a new simple model capable of exploiting geostationary satellite visible images for the production of site/time specific global and direct irradiances The new model features new clear sky global and direct irradiance functions, a new cloud-index-to-irradiance index function, a new global-to-direct-irradiance conversion model. The model can also exploit operationally available snow cover resource data, while deriving local ground specular reflectance characteristics from the stream of incoming satellite data. Validation against 10 US locations representing a wide range of climatic environments indicates that model performance is

205

Three-dimensional dust radiative-transfer models: The Pinwheel Nebula of WR104  

E-Print Network (OSTI)

We present radiative-transfer modelling of the dusty spiral Pinwheel Nebula observed around the Wolf-Rayet/OB-star binary WR104. The models are based on the three-dimensional radiative-transfer code TORUS, modified to include an adaptive mesh that allows us to adequately resolve both the inner spiral turns (sub-AU scales) and the outer regions of the nebula (distances of 10^4 AU from the central source). The spiral model provides a good fit to both the spectral energy distribution and Keck aperture masking interferometry, reproducing both the maximum entropy recovered images and the visibility curves. We deduce a dust creation rate of 8+-1 x 10^{-7} solar masses per year, corresponding to approximately 2% by mass of the carbon produced by the Wolf-Rayet star. Simultaneous modelling of the imaging and spectral data enables us to constrain both the opening-angle of the wind-wind collision interface and the dust grain size. We conclude that the dust grains in the inner part of the Pinwheel nebula are small (~100A), in agreement with theoretical predictions, although we cannot rule out the presence of larger grains (~1 micron) further from the central binary. The opening angle of the wind-wind collision interface appears to be about 40 degrees, in broad agreement with the wind parameters estimated for the central binary. We discuss the success and deficiencies of the model, and the likely benefits of applying similar techniques to the more the more complex nebulae observed around other WR/O star binaries.

Tim J Harries; John D Monnier; Neil H Symington; Ryuichi Kurosawa

2004-01-27T23:59:59.000Z

206

Making the Most out of Distributed Generation without Endangering Normal Operation: A Model-Based Technical-Policy Approach.  

E-Print Network (OSTI)

??In this dissertation we introduce a model-based approach for efficiently locating and operating distributed generation (DG) without endangering stable system operation. The proposed approach supports… (more)

Nazari, Masoud Honarvar

2012-01-01T23:59:59.000Z

207

3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D  

E-Print Network (OSTI)

We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

Lobel, A; Blomme, R

2010-01-01T23:59:59.000Z

208

Thermal-radiation heat-transfer model for degraded cores. [PWR; BWR  

SciTech Connect

One consequence of the accident at the Three Mile Island Unit 2 (TMI-2) nuclear power plant is a realization by the nuclear power technical community that there is a need for calculational tools that can be used to analyze the TMI-2 accident and to investigate hypothetical situations involving degraded light-water reactor (LWR) cores. As a result, there are now several ongoing modeling and code development efforts in the United States among which is the development of the MIMAS (Multifield Integrated Meltdown Analysis System code) at the Los Alamos National Laboratory. This paper describes a thermal-radiation heat-transfer model for LWR degraded cores that has been developed for the MIMAS code.

Tomkins, J.L.

1983-01-01T23:59:59.000Z

209

Model-based computer-aided design environment for operational design  

Science Conference Proceedings (OSTI)

To meet the increasing market challenges in chemical industry, it is imperative to improve process design and the supportive computer-aided engineering tools so that they can support lifecycle activities. This research work proposes detailed mechanism ... Keywords: change management, computer-aided design, operational design, operational design modeling

Hossam A. Gabbar; Atsushi Aoyama; Yuji Naka

2004-06-01T23:59:59.000Z

210

A Rapidly Deployable Operational Mesoscale Modeling System for Emergency-Response Applications  

Science Conference Proceedings (OSTI)

An operational mesoscale model–based forecasting system has been developed for use by U.S. Army Test and Evaluation Command meteorologists in their support of test-range operations. This paper reports on the adaptation of this system to permit ...

Thomas T. Warner; James F. Bowers; Scott P. Swerdlin; Brian A. Beitler

2004-05-01T23:59:59.000Z

211

Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office Numerical Weather Prediction Models  

Science Conference Proceedings (OSTI)

Zenith total delay (ZTD) observations derived from ground-based GPS receivers have been assimilated operationally into the Met Office North Atlantic and European (NAE) numerical weather prediction (NWP) model since 2007. Assimilation trials were ...

Gemma V. Bennitt; Adrian Jupp

2012-08-01T23:59:59.000Z

212

On the Use of Mesoscale and Cloud-Scale Models in Operational Forecasting  

Science Conference Proceedings (OSTI)

In the near future, the technological capability will be available to use mesoscale and cloud-scale numerical models for forecasting convective weather in operational meteorology. We address some of the issues concerning effective utilization of ...

Harold E. Brooks; Charles A. Doswell III; Robert A. Maddox

1992-03-01T23:59:59.000Z

213

Flexible Power System Operations Simulation Model for Assessing Wind Integration: Preprint  

SciTech Connect

In this paper a model was developed to mimic operator behavior using a combination of security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control programs.

Ela, E.; Milligan, M.; O' Malley, M.

2011-03-01T23:59:59.000Z

214

Operational Implementation of the Fritsch–Chappell Convective Scheme in the 24-km Canadian Regional Model  

Science Conference Proceedings (OSTI)

The objective and subjective evaluations that led to the implementation of the Fritsch and Chappell (FC) convective scheme in the new 24-km Canadian operational regional model are described in this study. Objective precipitation scores computed ...

Stéphane Bélair; André Méthot; Jocelyn Mailhot; Bernard Bilodeau; Alain Patoine; Gérard Pellerin; Jean Côté

2000-06-01T23:59:59.000Z

215

A Quasi-Lagrangian Regional Model Designed for Operational Weather Prediction  

Science Conference Proceedings (OSTI)

A regional numerical weather prediction model is designed using the quasi-Lagrangian method for operational forecasting of synoptic and mesoscale disturbances. The nonlinear advective terms and the total forcing experienced by a fluid parcel are ...

Mukut B. Mathur

1983-10-01T23:59:59.000Z

216

Skill of Operational Dynamical Models in Cyclone Prediction Out to Five-Days Range during ERICA  

Science Conference Proceedings (OSTI)

Investigating the skill of prediction of surface cyclones by operational models to ranges of five days, we studied the central and western North Atlantic region for the December 1988 through February 1989 period of the Experiment on Rapidly ...

Frederick Sanders

1992-03-01T23:59:59.000Z

217

Heterogeneous Correlation Modeling Based on the Wavelet Diagonal Assumption and on the Diffusion Operator  

Science Conference Proceedings (OSTI)

This article discusses several models for background error correlation matrices using the wavelet diagonal assumption and the diffusion operator. The most general properties of filtering local correlation functions, with wavelet formulations, are ...

Olivier Pannekoucke

2009-09-01T23:59:59.000Z

218

The Operational Global Icosahedral–Hexagonal Gridpoint Model GME: Description and High-Resolution Tests  

Science Conference Proceedings (OSTI)

The German Weather Service (Deutscher Wetterdienst) has recently developed a new operational global numerical weather prediction model, named GME, based on an almost uniform icosahedral–hexagonal grid. The GME gridpoint approach avoids the ...

Detlev Majewski; Dörte Liermann; Peter Prohl; Bodo Ritter; Michael Buchhold; Thomas Hanisch; Gerhard Paul; Werner Wergen; John Baumgardner

2002-02-01T23:59:59.000Z

219

Model Output Statistics Forecasts: Three Years of Operational Experience in the Netherlands  

Science Conference Proceedings (OSTI)

In the Netherlands, one to five day Model Output Statistics (MOS) forecasts have been used operationally since November 1983. The weather elements predicted are the probability of precipitation, the conditional probability of frozen precipitation,...

C. Lemcke; S. Kruizinga

1988-05-01T23:59:59.000Z

220

Provably near-optimal algorithms for multi-stage stochastic optimization models in operations management  

E-Print Network (OSTI)

Many if not most of the core problems studied in operations management fall into the category of multi-stage stochastic optimization models, whereby one considers multiple, often correlated decisions to optimize a particular ...

Shi, Cong, Ph.D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Use of a Mixed-Layer Model to Investigate Problems in Operational Prediction of Return Flow  

Science Conference Proceedings (OSTI)

Inaccuracy in the numerical prediction of the moisture content of return-flow air over the Gulf of Mexico continues to plague operational forecasters. At the Environmental Modeling Center/National Centers for Environmental Prediction in the ...

John M. Lewis

2007-07-01T23:59:59.000Z

222

Evaluation of the Operational Multiscale Environment Model with Grid Adaptivity against the European Tracer Experiment  

Science Conference Proceedings (OSTI)

The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) is a multiscale nonhydrostatic atmospheric simulation system based on an adaptive unstructured grid. The basic philosophy behind the OMEGA development has been the creation ...

Zafer Boybeyi; Nash'at N. Ahmad; David P. Bacon; Thomas J. Dunn; Mary S. Hall; Pius C. S. Lee; R. Ananthakrishna Sarma; Tim R. Wait

2001-09-01T23:59:59.000Z

223

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

224

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

225

Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation of Domain-Averaged Irradiance Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud fields in a realistic way and how to use them in a relatively simple one-dimensional (1D) radiative transfer model to compute the domain averaged irradiance. To address this issue, a simple shortwave radiative transfer model that can treat the vertical cloud optical property correlation is developed. The model is based on the gamma-weighted

226

A combined heat transfer and quartz dissolution/deposition model for a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

A kinetic model of silica transport has been coupled to a heat transfer model for a Hot Dry Rock (HDR) geothermal reservoir to examine the effect of silica rock-water interactions on fracture aperture and permeability. The model accounts for both the dissolution and deposition of silica. Zones of local dissolution and deposition were predicted, but their effect on aperture and permeability were fairly small for all cases studied. Initial rock temperature, reservoir size, and the ratio of rock surface area to fluid volume have the largest effect on the magnitude of silica mass transferred between the liquid and solid phases. 13 refs., 6 figs.

Robinson, B.A.; Pendergrass, J.

1989-01-01T23:59:59.000Z

227

Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation  

E-Print Network (OSTI)

In this paper, we propose a one-factor regime-switching model for the risk adjusted natural gas spot price and study the implications of the model on the valuation and optimal operation of natural gas storage facilities. We calibrate the model parameters to both market futures and options on futures. Calibration results indicate that the regime-switching model is a better fit to market data compared to a one-factor mean-reverting model similar to those used by other authors to value gas storage. We extend a semi-Lagrangian timestepping scheme from Chen and Forsyth (2007) to solve the gas storage pricing problem, essentially a stochastic control problem, and conduct a convergence analysis of the scheme. Numerical results also indicate that the regime-switching model can generate operational strategies for gas storage facilities that reflect the existence of multiple regimes in the market as well as the regime shifts due to various exogenous events.

Zhuliang Chen; Peter A. Forsyth

2007-01-01T23:59:59.000Z

228

A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream  

SciTech Connect

A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.

E.A. Boiko; S.V. Pachkovskii [Polytechnic Institute, Federal University of Siberia, Krasnoyarsk (Russian Federation)

2008-12-15T23:59:59.000Z

229

Application of mechanistic models for flow distribution and heat transfer in finned tube bundles.  

E-Print Network (OSTI)

?? The focus of this thesis was heat transfer and pressure drop in staggered tube bundles with solid and serrated fins. The first part of… (more)

Eikill, Astrid Oygarden

2013-01-01T23:59:59.000Z

230

Heat transfer modeling at an interface between a porous medium and a free region.  

E-Print Network (OSTI)

??This work deals with the study of heat transfer between a porous medium and a free medium, using multi scale approaches. First, we derive the… (more)

D'hueppe, Aliénor

2011-01-01T23:59:59.000Z

231

The Development of a Non-Equilibrium Dispersed Flow Film Boiling Heat Transfer Modeling Package.  

E-Print Network (OSTI)

??The dispersed flow film boiling (DFFB) heat transfer regime is important to several applications including cryogenics, rocket engines, steam generators, and in the safety analysis… (more)

Meholic, Michael

2011-01-01T23:59:59.000Z

232

A Discrete Ordinate, Multiple Scattering, Radiative Transfer Model of the Venus Atmosphere from 0.1 to 260 ?m  

Science Conference Proceedings (OSTI)

The authors describe a new radiative transfer model of the Venus atmosphere (RTM) that includes optical properties from nine gases and four cloud modes between 0.1 and 260 ?m. A multiple-stream discrete ordinate flux solver is used to calculate ...

Christopher Lee; Mark Ian Richardson

2011-06-01T23:59:59.000Z

233

A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere. Part I: Spatial Effects  

Science Conference Proceedings (OSTI)

A new Monte Carlo–based three-dimensional (3D) radiative transfer model of high spectral and spatial resolution is presented. It is used to investigate the difference in broadband solar radiation absorption, top-of-the-atmosphere upwelling, and ...

William O’Hirok; Catherine Gautier

1998-06-01T23:59:59.000Z

234

A Three-Dimensional Radiative Transfer Model to Investigate the Solar Radiation within a Cloudy Atmosphere. Part II: Spectral Effects  

Science Conference Proceedings (OSTI)

In this second part of a two-part paper, the spectral response of the interaction between gases, cloud droplets, and solar radiation is investigated using a Monte Carlo-based three-dimensional (3D) radiative transfer model with a spectral ...

William O’Hirok; Catherine Gautier

1998-10-01T23:59:59.000Z

235

Models, Calculation and Optimization of Gas Networks, Equipment and Contracts for Design, Operation, Booking and Accounting  

E-Print Network (OSTI)

There are proposed models of contracts, technological equipment and gas networks and methods of their optimization. The flow in network undergoes restrictions of contracts and equipment to be operated. The values of sources and sinks are provided by contracts. The contract models represent (sub-) networks. The simplest contracts represent either nodes or edges. Equipment is modeled by edges. More sophisticated equipment is represented by sub-networks. Examples of such equipment are multi-poles and compressor stations with many entries and exits. The edges can be of different types corresponding to equipment and contracts. On such edges, there are given systems of equation and inequalities simulating the contracts and equipment. On this base, the methods proposed that allow: calculation and control of contract values for booking on future days and for accounting of sales and purchases; simulation and optimization of design and of operation of gas networks. These models and methods are realized in software syst...

Ostromuhov, Leonid A

2011-01-01T23:59:59.000Z

236

Modeling with finite element the convective heat transfer in civil building EPS insulated walls  

Science Conference Proceedings (OSTI)

In this paper we present the analysis of convective heat transfer in the walls of a house insulated with polystyrene. In the first part we make an evaluation of the insulation that is currently used in the houses. We start the simulation using a real ... Keywords: convective heat transfer, dew-point, finite element, polystyrene insulation

Madalina Xenia Calbureanu; Mihai Lungu; Dragos Tutunea; Raluca Malciu; Alexandru Dima

2010-10-01T23:59:59.000Z

237

Cloud and Precipitation Parameterization in a Meso-Gamma-Scale Operational Weather Prediction Model  

Science Conference Proceedings (OSTI)

The paper assesses the difficulties of running an operational NWP model in the resolution range of 3–8 km. In this case, deep convection cells are neither much smaller than the grid box as assumed by most parameterization schemes, nor completely ...

Luc Gerard; Jean-Marcel Piriou; Radmila Brožková; Jean-François Geleyn; Doina Banciu

2009-11-01T23:59:59.000Z

238

Identification of chiller model in HVAC system using fuzzy inference rules with Zadeh's implication operator  

Science Conference Proceedings (OSTI)

In the heating, ventilating, and air-conditioning (HVAC) system, chiller is the central part and one of the primary energy consumers. For the purpose of saving energy, the identification of the chiller model is of great significance. In this paper, based ... Keywords: chiller, fuzzy inference system, implication operator, improved genetic algorithm

Yukui Zhang; Shiji Song; Cheng Wu; Kang Li

2010-09-01T23:59:59.000Z

239

Modeling uncertain variables of the weighted average operation by fuzzy vectors  

Science Conference Proceedings (OSTI)

The paper deals with the fuzzy extension of the weighted average operation. First, we study the convenient ways how uncertain weights and weighted values can be modeled by fuzzy vectors. We show that, in comparison to a tuple of fuzzy numbers that have ... Keywords: Fuzzy probabilities, Fuzzy vector, Fuzzy weighted average, Multiple criteria decision making, Normalized fuzzy weights, Separability of fuzzy vectors

Ond?Ej Pavla?Ka

2011-11-01T23:59:59.000Z

240

Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model  

Science Conference Proceedings (OSTI)

This paper presents results from radar reflectivity data assimilation experiments with the non-hydrostatic limited area model AROME (Application of Research to Operations at Mesoscale) in an operational context. A one-dimensional (1D) Bayesian ...

Eric Wattrelot; Olivier Caumont; Jean-François Mahfouf

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

242

Experimental Modeling of VHTR Plenum Flows during Normal Operation and Pressurized Conduction Cooldown  

DOE Green Energy (OSTI)

The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.

Glenn E McCreery; Keith G Condie

2006-09-01T23:59:59.000Z

243

Transfer coefficients for the Gibbs surface in a two-phase mixture in the non-equilibrium square gradient model  

E-Print Network (OSTI)

In this paper we calculate the transfer coefficients for evaporation and condensation of mixtures. We use the continuous profiles of various thermodynamic quantities through the interface, obtained in our previous works using the square gradient model. Furthermore we introduce the Gibbs surface and obtain the excess entropy production for a surface. Following the traditional non-equilibrium thermodynamic approach we introduce the surface transfer coefficients which we are able to determine from the continuous solution. The knowledge of these coefficients is important for many industrial applications which involve transport through a surface, such as for instance distillation. In our approach the values of the local resistivities in the liquid and the vapor phases are chosen on the basis of experimental values. In the interfacial region there are small peaks in these resistivities. Three amplitudes control the magnitude of these peaks. Possible values of these amplitudes are found by matching the diagonal transfer coefficients to values predicted by kinetic theory. Using these amplitudes we find that the value of the cross resistivities is 1-2 orders of magnitude higher then the one from kinetic theory. The results of both kinetic theory and molecular dynamics simulations support the existence of small peaks in the local resistivities in the interfacial region. The square gradient approach gives an independent way to determine the transfer coefficients for surfaces. The results indicate that kinetic theory underestimates the interfacial transfer coefficients in real fluids.

K. S. Glavatskiy; D. Bedeaux

2009-07-11T23:59:59.000Z

244

Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine  

DOE Green Energy (OSTI)

Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.

Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.

2010-10-01T23:59:59.000Z

245

Two-fluid matter-quintessence FLRW models: energy transfer and the equation of state of the universe  

E-Print Network (OSTI)

Recent observations support the view that the universe is described by a FLRW model with $\\Omega_m^0 \\approx 0.3$, $\\Omega_{\\Lambda}^0 \\approx 0.7$, and $w \\leq -1/3$ at the present epoch. There are several theoretical suggestions for the cosmological $\\Lambda$ component and for the particular form of the energy transfer between this dark energy and matter. This gives a strong motive for a systematic study of general properties of two-fluid FLRW models. We consider a combination of one perfect fluid, which is quintessence with negative pressure ($p_Q = w\\epsilon_Q$), and another perfect fluid, which is a mixture of radiation and/or matter components with positive pressure ($p = \\beta \\epsilon_m$), which define the associated one-fluid model ($p = \\gamma \\epsilon$). We introduce a useful classification which contains 4 classes of models defined by the presence or absence of energy transfer and by the stationarity ($w = const.$ and $\\beta = const.$) or/and non stationarity ($w$ or $\\beta$ time dependent) of the equations of state. It is shown that, for given $w$ and $\\beta$, the energy transfer defines $\\gamma$ and, therefore, the total gravitating mass and dynamics of the model. We study important examples of two-fluid FLRW models within the new classification. The behaviour of the energy content, gravitating mass, pressure, and the energy transfer are given as functions of the scale factor. We point out three characteristic scales, $a_E$, $a_{\\cal P}$ and $a_{\\cal M}$, which separate periods of time in which quintessence energy, pressure and gravitating mass dominate. Each sequence of the scales defines one of 6 evolution types.

A. Gromov; Yu. Baryshev; P. Teerikorpi

2002-09-23T23:59:59.000Z

246

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

Flow, Transport, and Heat Transfer in Porous and Fracturedtransport, and heat transfer in porous and fracturedflow, chemical transport, and heat transfer in rock. These

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

247

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

transport, and heat transfer processes in porous media. 2.1.mass transport, and heat-transfer processes through porousinvolved. These heat-transfer processes are complicated by

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

248

Formal Calibration Methodology for CFD Model Development to Support the Operation of Energy Efficient Buildings  

E-Print Network (OSTI)

Computational Fluid Dynamics (CFD) is a robust tool for modeling interactions within and between fluids and solids. CFD can help understand and predict phenomena that are difficult to test experimentally leading to cleaner, healthier, and better controlled internal environments. In this research a CFD model of the internal environment of an office space will be developed. The CFD model will then be calibrated using real data taken from a well-positioned wireless sensor network and weather station. The work focuses on developing systematically calibrated CFD models for controlled environments that include clean rooms, health environments, pharmaceutical storage rooms and information and communication technology locations, utilizing wireless sensor networks. The calibrated CFD model will be used to optimize the positions of the physical sensors for the control of energy efficient internal environments by building operators. This could result in significant energy and economic savings and lead to more accurately controlled internal environments.

Hajdukiewicz, M.; Keane, M.; O'Flynn, B.; O'Grady, W.

2010-01-01T23:59:59.000Z

249

Specification of Eddy Transfer Coefficients in Coarse-Resolution Ocean Circulation Models  

Science Conference Proceedings (OSTI)

Parametric representations of oceanic geostrophic eddy transfer of heat and salt are studied ranging fromhorizontal diffusion to the more physically based approaches of Green and Stone (GS) and Gent and McWilliams(GM). The authors argue for a ...

Martin Visbeck; John Marshall; Tom Haine; Mike Spall

1997-03-01T23:59:59.000Z

250

Numerical modeling of pool spreading, heat transfer and evaporation in liquefied natural gas (LNG).  

E-Print Network (OSTI)

?? This master's thesis is a continuation of previous theses written at ComputIT AS. It treats heat transfer to LNG pools boiling on water through… (more)

Myrmo, Øystein

2011-01-01T23:59:59.000Z

251

Memristive Transfer Matrices  

E-Print Network (OSTI)

An electrical analysis is performed for a memristor crossbar array integrated with operational amplifiers including the effects of parasitic or contact resistances. It is shown that the memristor crossbar array can act as a transfer matrix for a multiple input-multiple output signal processing system. Special cases of the transfer matrix are described related to reconfigurable analog filters, waveform generators, analog computing, and pattern similarity. Keywords: transfer matrix, memristor, analog electronics, crossbar, operational amplifier, reconfigurable electronics

Mouttet, Blaise

2010-01-01T23:59:59.000Z

252

Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer Models  

E-Print Network (OSTI)

This dissertation focuses on the global investigation of optically thin cirrus cloud optical thickness (tau) and microphysical properties, such as, effective particle size (D_(eff)) and ice crystal habits (shapes), based on the global satellite observations and fast radiative transfer models (RTMs). In the first part, we develop two computationally efficient RTMs simulating satellite observations under cloudy-sky conditions in the visible/shortwave infrared (VIS/SWIR) and thermal inferred (IR) spectral regions, respectively. To mitigate the computational burden associated with absorption, thermal emission and multiple scattering, we generate pre-computed lookup tables (LUTs) using two rigorous models, i.e., the line-by-line radiative transfer model (LBLRTM) and the discrete ordinates radiative transfer model (DISORT). The second part introduces two methods (i.e., VIS/SWIR- and IR-based methods) to retrieve tau and D_(eff) from satellite observations in corresponding spectral regions of the two RTMs. We discuss the advantages and weakness of the two methods by estimating the impacts from different error sources on the retrievals through sensitivity studies. Finally, we develop a new method to infer the scattering phase functions of optically thin cirrus clouds in a water vapor absorption channel (1.38-µm). We estimate the ice crystal habits and surface structures by comparing the inferred scattering phase functions and numerically simulated phase functions calculated using idealized habits.

Wang, Chenxi

2013-08-01T23:59:59.000Z

253

Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code  

DOE Green Energy (OSTI)

The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the design of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.

Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

1977-08-01T23:59:59.000Z

254

CFD MODELING OF ITER CABLE-IN-CONDUIT SUPERCONDUCTORS. PART V: COMBINED MOMENTUM AND HEAT TRANSFER IN RIB ROUGHENED PIPES  

Science Conference Proceedings (OSTI)

Computational Fluid Dynamics (CFD) techniques have been proposed and applied in a series of papers to analyze cable-in-conduit conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER). Previous work on the pressure drop in the central channel of ITER CICC is extended here to the problem of combined heat and momentum transfer. The CFD model, solved by the FLUENT commercial code, is first validated against 2D and 3D data from compact heat exchangers, showing good agreement. The Colburn analogy between the friction factor f and the Nusselt number Nu is not verified in the considered 2D geometries, as shown by both experiment and simulation. The validated CFD model is finally applied to the 3D analysis of central channel-like geometries relevant for ITER CICC. It is shown that the heat transfer coefficient on the central channel side stays relatively close to the smooth-pipe (Dittus-Boelter) value.

Zanino, R.; Giors, S. [Dipartimento di Energetica, Politecnico Torino, I-10129 (Italy)

2008-03-16T23:59:59.000Z

255

Incorporation of system operation strategies in water rights modeling and analysis  

E-Print Network (OSTI)

of the state of Texas. Effective management of this stochastic resource requires that the availability of water for various uses be estimated to a high degree of confidence. The availability of water is constrained by a variety of hydrologic, physical, environmental, and institutional factors. The adoption of the doctrine of prior appropriation by the state of Texas and the administration of the associated system of water rights places a significant institutional constraint upon the availability of water in the state. This thesis describes a generalized river basin simulation model (TAMUWRAP) capable of analyzing the hydrologic and institutional availability of water to specific users under a prior appropriative system of water rights. The model analyzes the availability of water to individual water rights considering system reservoir operations, return flows, hydroelectric power generation, negative incremental inflows between basin locations, and buffer zone operations. The model can also determine the availability of water to groups of water rights with multiple dates of priority and storage in multiple reservoirs. A case study applying TAMUWRAP to the Brazos River Basin in Texas is presented. The effects of various model options upon simulation results are demonstrated, concentrating on the system of reservoirs and water right permits owned by the Brazos River Authority. The effects of the incorporation of a system reservoir operating permit into the Texas water rights permit structure is investigated. Study results indicate that the Bmws River Authority benefits from conjunctive operation of its system of reservoir and might be able to increase its annual permitted diversion amount with a system permit.

Dunn, David Douglas

1993-01-01T23:59:59.000Z

256

Thermal and Corona Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

In an attempt to meet increasing demand by pushing more power through existing lines, the power industry has frequently resorted to operating overhead transmission lines at higher temperatures than ever before. There is reason to believe that the empirical models developed in the past for determining conductor temperature and corona performance are in error at these elevated temperatures. In an effort to safely and reliably push more power, it will be important for utilities to understand the temperature...

2007-12-11T23:59:59.000Z

257

Multimodel Analysis of Energy and Water Fluxes: Intercomparisons between Operational Analyses, a Land Surface Model, and Remote Sensing  

Science Conference Proceedings (OSTI)

Using data from seven global model operational analyses (OA), one land surface model, and various remote sensing retrievals, the energy and water fluxes over global land areas are intercompared for 2003/04. Remote sensing estimates of ...

Raghuveer K. Vinukollu; Justin Sheffield; Eric F. Wood; Michael G. Bosilovich; David Mocko

2012-02-01T23:59:59.000Z

258

The Meteorological Model BOLAM at the National Observatory of Athens: Assessment of Two-Year Operational Use  

Science Conference Proceedings (OSTI)

Since November 1999, the hydrostatic meteorological Bologna Limited-Area Model (BOLAM) has been running operationally at the National Observatory of Athens. The assessment of the model forecast skill during the 2-yr period included (a) ...

K. Lagouvardos; V. Kotroni; A. Koussis; H. Feidas; A. Buzzi; P. Malguzzi

2003-11-01T23:59:59.000Z

259

A numerical model of convective heat transfer in a three dimensional channel with baffles  

E-Print Network (OSTI)

A numerical investigation of laminar forced convective heat transfer was performed in a three-dimensional channel with baffles in which a uniform heat flux was applied to the top and bottom walls, and the side walls were considered adiabatic. The trade-off between heat transfer enhancement and pressure drop produced by the baffles was studied for periodically fully developed flow (PDF). The numerical analysis was performed using a finite volume approach. The computer code was validated against the experimental results of Goldstein and Kreid (1967) and Beavers et. al. (1970) for a three-dimensional laminar flow in a channel without baffles. Parametric runs were made for Reynolds Numbers (Re) of 150, 250, 3 50, and 450, for blockage ratios (H/Dy) of 0. 5, 0.6, 0. 7, 0.8. Heat transfer behavior was studied for Prandtl Numbers (Pr) of 0. 7 and 7. 0, and for wall thermal conductivity to fluid thermal conductivity ratios (K) of 1, 10, 100 and 1000. It was found that three dimensional effects were present for the range of Reynolds number studied. The pressure drop penalty becomes highly important above blockage ratios of 0.7. Higher heat transfer enhancement was found for high Prandtl numbers (Pr--7. 0) than for low Prandtl numbers (Pr--O. 7). The heat transfer enhancement due to an increase in the thermal conductivity ratio of the solid to the fluid regions is greater than the one obtained by increasing the blockage ratio.

Lopez Buso, Jorge Ricardo

1995-01-01T23:59:59.000Z

260

Numerical study on transient heat transfer under soil with plastic mulch in agriculture applications using a nonlinear finite element model  

E-Print Network (OSTI)

In this paper is developed a simple mathematical model of transient heat transfer under soil with plastic mulch in order to determine with numerical studies the influence of different plastic mulches on the soil temperature and the evolutions of temperatures at different depths with time. The governing differential equations are solved by a Galerkin Finite Element Model, taking into account the nonlinearities due to radiative heat exchange between the soil surface, the plastic mulch and the atmosphere. The model was validated experimentally giving good approximation of the model to the measured data. Simulations were run with the validated model in order to determine the optimal combination of mulch optical properties to maximize the soil temperature with a Taguchi's analysis, proving that the material most used nowadays in Colombia is not the optimal and giving quantitative results of the properties the optimal mulch must possess.

De Castro, Carlos Armando

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materials measurement and accounting in an operating plutonium conversion and purification process. Phase I. Process modeling and simulation. [PUCSF code  

SciTech Connect

A model of an operating conversion and purification process for the production of reactor-grade plutonium dioxide was developed as the first component in the design and evaluation of a nuclear materials measurement and accountability system. The model accurately simulates process operation and can be used to identify process problems and to predict the effect of process modifications.

Thomas, C.C. Jr.; Ostenak, C.A.; Gutmacher, R.G.; Dayem, H.A.; Kern, E.A.

1981-04-01T23:59:59.000Z

262

Radiative Transfer to Space through a Precipitating Cloud at Multiple Microwave Frequencies. Part I: Model Description  

Science Conference Proceedings (OSTI)

In a two-part study we investigate the impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation at several frequencies across the EHF and lower SHF portions of the microwave spectrum in order ...

Alberto Mugnai; Eric A. Smith

1988-09-01T23:59:59.000Z

263

A NEW OPERATIONAL MODEL FOR SATELLITE-DERIVED IRRADIANCES DESCRIPTION AND VALIDATION  

Open Energy Info (EERE)

Published in Solar Energy - Vol. 73, 5, pp. 307-317, (2002) Published in Solar Energy - Vol. 73, 5, pp. 307-317, (2002) 1 of 23 A NEW OPERATIONAL MODEL FOR SATELLITE-DERIVED IRRADIANCES DESCRIPTION AND VALIDATION Richard Perez * Pierre Ineichen ** Kathy Moore * Marek Kmiecik * Cyril Chain *** Ray George **** Frank Vignola ***** * ASRC - The University at Albany, Albany, NY, USA ** CUEPE - University of Geneva, Geneva, Switzerland *** Vaulx-en-Velin, France **** NREL, Golden, CO, USA ***** University of Oregon, Eugene, OR, USA Published in Solar Energy - Vol. 73, 5, pp. 307-317, (2002) 2 of 23 ABSTRACT We present a new simple model capable of exploiting geostationary satellite visible images for the production of site/time specific global and direct irradiances The new model features new clear sky global and direct irradiance functions, a new

264

A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation  

Science Conference Proceedings (OSTI)

Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2006-01-01T23:59:59.000Z

265

Characterization and modelling of the heat transfers in a pilot-scale reactor during composting under forced aeration  

SciTech Connect

The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5 Degree-Sign C and the peaks of temperature occurred with less than 8 h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5 Degree-Sign C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost.

Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea/Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Petiot, C.; Benoist, J.C.; Druilhe, C. [Irstea/Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France)

2012-06-15T23:59:59.000Z

266

Full surface local heat transfer coefficient measurements in a model of an integrally cast impingement cooling geometry  

SciTech Connect

Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.

Gillespie, D.R.H.; Wang, Z.; Ireland, P.T. [Univ. of Oxford (United Kingdom). Dept. of Engineering Science; Kohler, S.T. [Rolls Royce, Bristol (United Kingdom)

1998-01-01T23:59:59.000Z

267

Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations  

Science Conference Proceedings (OSTI)

This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

Tyner, C.J.; Birk, S.M.

1995-09-01T23:59:59.000Z

268

Transition of the Coastal and Estuarine Storm Tide Model to an Operational Storm Surge Forecast Model: A Case Study of the Florida Coast  

Science Conference Proceedings (OSTI)

The operational forecast demands and constraints of the National Hurricane Center require that a storm surge model in research mode be tested against a benchmark model such as Sea, Lake, and Overland Surges from Hurricanes (SLOSH) for accuracy, ...

Keqi Zhang; Yuepeng Li; Huiqing Liu; Jamie Rhome; Cristina Forbes

2013-08-01T23:59:59.000Z

269

The Oklahoma Dispersion Model: Using the Gaussian Plume Model as an Operational Management Tool for Determining Near-Surface Dispersion Conditions across Oklahoma  

Science Conference Proceedings (OSTI)

The Oklahoma Dispersion Model (ODM) represents a current innovative application of the classic Gaussian plume model in an operational setting. Utilizing a statewide mesoscale automated weather station network (the Oklahoma Mesonet) for current ...

J. D. Carlson; Derek S. Arndt

2008-02-01T23:59:59.000Z

270

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

271

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

272

Using a Parameterization of a Radiative Transfer Model to Build High-Resolution Maps of Typical Clear-Sky UV Index in Catalonia, Spain  

Science Conference Proceedings (OSTI)

To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The ...

Jordi Badosa; Josep-Abel González; Josep Calbó; Michiel van Weele; Richard L. McKenzie

2005-06-01T23:59:59.000Z

273

A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model  

Science Conference Proceedings (OSTI)

The Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres (MYSTIC) three-dimensional radiative transfer model was used in a parametric study to determine the strength of longwave radiative heating and cooling in ...

Sebastian W. Hoch; C. David Whiteman; Bernhard Mayer

2011-12-01T23:59:59.000Z

274

The Angular Distribution of UV-B Sky Radiance under Cloudy Conditions: A Comparison of Measurements and Radiative Transfer Calculations Using a Fractal Cloud Model  

Science Conference Proceedings (OSTI)

In recent years, global warming concerns have focused attention on cloud radiative forcing and its accurate encapsulation in radiative transfer measurement and modeling programs. At present, this process is constrained by the dynamic movement and ...

Christopher Kuchinke; Kurt Fienberg; Manuel Nunez

2004-05-01T23:59:59.000Z

275

Surface Solar Radiation Flux and Cloud Radiative Forcing for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): A Satellite, Surface Observations, and Radiative Transfer Model Study  

Science Conference Proceedings (OSTI)

This study presents surface solar radiation flux and cloud radiative forcing results obtained by using a combination of satellite and surface observations interpreted by means of a simple plane-parallel radiative transfer model called 2001. This ...

Catherine Gautier; Martin Landsfeld

1997-05-01T23:59:59.000Z

276

Handbook of heat and mass transfer. Volume 2  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

277

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

fluid flow and heat-transfer processes. The physicalcoupled fluid-flow and heat-transfer processes has proven toin which flow and heat transfer processes along drifts are

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

278

Building model systems to understand Proton-Coupled Electron Transfer in heme : spectroscopic investigation of charge transfer to axially bound diimide acceptors  

E-Print Network (OSTI)

Proton-Coupled Electron Transfer (PCET) is an important mechanistic motif in chemistry, which allows for efficient charge transport in many biological systems. We seek to understand how the proton and electron motions are ...

Hanson, Christina J

2013-01-01T23:59:59.000Z

279

Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models  

Science Conference Proceedings (OSTI)

Four different parameterizations of the nonlinear energy transfer Snl in a surface wave spectrum are in investigated. Two parameterizations are based on a relatively small number of parameters and are useful primarily for application in ...

S. Hasselmann; K. Hasselmann; J. H. Allender; T. P. Barnett

1985-11-01T23:59:59.000Z

280

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Convective heat transfer model for determining quench recovery of high temperature superconducting YBCO in liquid nitrogen  

E-Print Network (OSTI)

Stability of a superconducting magnet is critical for reliable operation of a device in which the magnet plays a role. With the advent of high temperature superconductors (HTS), liquid nitrogen may be used to cool HTS ...

Jankowski, Joseph Edward, 1980-

2004-01-01T23:59:59.000Z

282

Operational forecasting based on a modified Weather Research and Forecasting model  

DOE Green Energy (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

283

Studies on the Bulk Transfer Coefficients over a Vegetated Surface with a Multilayer Energy Budget Model  

Science Conference Proceedings (OSTI)

A multilayer energy budget model for vegetation canopy is developed to describe the fluxes of sensible and latent heat exchanged between the vegetated surface and the atmosphere. The model gives satisfactory results when the calculated radiative ...

Junsei Kondo; Tsutomu Watanabe

1992-12-01T23:59:59.000Z

284

Stochastic Models of Shear-Flow Turbulence with Enstrophy Transfer to Subgrid Scales  

Science Conference Proceedings (OSTI)

A stochastic model for shear-flow turbulence is constructed under the constraint that the parameterized nonlinear eddy–eddy interactions conserve energy but dissipate potential enstrophy. This parameterization is appropriate for truncated models ...

Timothy DelSole

1999-11-01T23:59:59.000Z

285

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

infrared radia- tion and solar radiation. Figure 1 shows theIn the window model, a solar radiation balance is solved forexterior shade. The model solar radiation balance implements

Wetter, Michael

2013-01-01T23:59:59.000Z

286

Advances in the identification of electrochemical transfer function models using Prony analysis  

Science Conference Proceedings (OSTI)

This paper further advances the usefulness and understanding of Prony analysis as a tool for identification of power system electromechanical oscillation models. These linear models are developed by analyzing power system ring-down data. The presented results allow more generality in the assumed model formulation. In addition, a comparison is made between Prony analysis and autoregressive moving-average (KARMA) modeling, which has also been proposed for analysis of system oscillations. Under the conditions investigated, the Prony algorithm performed more accurate identification.

Trudnowski, D.J. (Pacific Northwest Lab., Richland, WA (United States)); Donnelly, M.K. (Control Tech., Inc., Bozeman, MT (United States)); Hauer, J.F. (USDOE Bonneville Power Administration, Portland, OR (United States))

1993-02-01T23:59:59.000Z

287

The Regional Analysis System for the Operational “Early” Eta Model: Original 80-km Configuration and Recent Changes  

Science Conference Proceedings (OSTI)

The analysis component of the National Centers for Environmental Prediction (NCEP) operational “early” 80-km eta model, as implemented in July 1993, is described. This optimum interpolation (OI) analysis is fully multivariate for wind and ...

Eric Rogers; Dennis G. Deaven; Geoffrey S. Dimego

1995-12-01T23:59:59.000Z

288

Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part I: Warm Season Results  

Science Conference Proceedings (OSTI)

The summertime improvement resulting from the operational implementation of a new surface modeling and assimilation strategy into the Canadian regional weather forecasting system is described in this study. The surface processes over land are ...

Stéphane Bélair; Louis-Philippe Crevier; Jocelyn Mailhot; Bernard Bilodeau; Yves Delage

2003-04-01T23:59:59.000Z

289

Advances in the identification of transfer function models using Prony analysis  

SciTech Connect

This paper further advances the usefulness and understanding of Prony analysis as a tool for identification of models. The presented results allow more generality in the assumed model formulation. In addition, a comparison is made between Prony analysis and autoregressive moving-average (ARMA) modeling. Special attention is given to system conditions often encountered with power system electromechanical dynamics.

Trudnowski, D.J.; Donnelly, M.K. [Pacific Northwest Lab., Richland, WA (US); Hauer, J.F. [Bonneville Power Administration, Portland, OR (US)

1993-06-01T23:59:59.000Z

290

An Integrated Framework for Gas Turbine Based Power Plant Operational Modeling and Optimization .  

E-Print Network (OSTI)

??The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the… (more)

Zhao, Yongjun

2005-01-01T23:59:59.000Z

291

Slack bus modeling for distributed generation and its impacts on distribution system analysis, operation and planning.  

E-Print Network (OSTI)

??Distribution system operating environments are changing rapidly. Proper distributed generation placement and operating will bring benefits for supporting voltage, reducing system loss, enhancing system reliability,… (more)

Tong, Shiqiong

2007-01-01T23:59:59.000Z

292

Theoretical analysis of acceleration measurements in a model of an operating wind turbine.  

Science Conference Proceedings (OSTI)

Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMS{copyright} The benefit of using a simulation model as opposed to a physical experiment to examine the merits of acceleration-based load identification methods is that models of the structural dynamics and aerodynamics enable one to compare estimates of the deflection and loading with actual values. Realistic wind conditions are applied to the wind turbine and used to estimate the operational displacement and acceleration of the rotor. The per-revolution harmonics dominate the displacement and acceleration response. Turbulent wind produces broadband excitation that includes both the harmonics and modal vibrations, such as the tower modes. Power Spectral Density estimates of the acceleration along the span of the rotor blades indicate that the edge modes may be coupled to the second harmonic.

Adams, Douglas E. (Purdue University, Lafayette, IN); Rumsey, Mark Allen; White, Jonathan Randall

2010-04-01T23:59:59.000Z

293

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 1: Development  

SciTech Connect

This paper describes a transient heat and mass transfer model of residential attics. The model is used to predict hourly ceiling heat gain/loss in residences with the purpose of estimating reductions in cooling and heating loads produced by radiant barriers. The model accounts for transient conduction, convection, and radiation and incorporates moisture and air transport across the attic. Environmental variables, such as solar loads on outer attic surfaces and sky temperatures, are also estimated. The model is driven by hourly weather data which include: outdoor dry bulb air temperature, horizontal solar and sky radiation, wind speed and direction, relative humidity (or dew point), and cloud cover data. The output of the model includes ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures, and attic dry bulb air temperatures. The calculated fluxes have been compared to experimental data of side-by-side testing of attics retrofit with radiant barriers. The model predicts ceiling heat flows with an error of less than 10% for most cases.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; O`Neal, D.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Turner, W.D. [Texas Engineering Experiment Station, College Station, TX (United States). Energy Systems Lab.

1998-02-01T23:59:59.000Z

294

Magnetized GRB outflow model: weak reverse shock emission and short energy transfer timescale  

E-Print Network (OSTI)

We show that the absence of the bright optical flashes in most {\\it Swift} Gamma-ray Burst (GRB) afterglows can be explained, if the reverse shock region is magnetized with a $\\sigma \\sim 1$, or the emission spectrum of the electrons accelerated in the mildly magnetized ($0.1magnetized outflow is sub-relativistic, where $\\sigma$ is the ratio of the magnetic energy flux to the particle energy flux. We also find that for $\\sigma\\gg 1$, the energy transfer between the magnetized ejecta and the forward shock may be too quick to account for the shallow decline phase that is well detected in many {\\it Swift} GRB X-ray afterglows.

Yi-Zhong Fan

2008-08-05T23:59:59.000Z

295

The ‘porin–cytochrome’ model for microbe-to-mineral electron transfer  

Science Conference Proceedings (OSTI)

Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via 'porin-cytochrome' electron transport modules. The molecular structure of an outer-membrane extracellular-facing deca-haem terminus for such a module has recently been resolved. It is debated how, once outside the cells, electrons are transferred from outer-membrane cytochromes to insoluble electron sinks. This may occur directly or by assemblies of cytochromes, perhaps functioning as 'nanowires', or via electron shuttles. Here we review recent work in this field and explore whether it allows for unification of the electron transport mechanisms supporting extracellular mineral respiration in Shewanella that may extend into other genera of Gram-negative bacteria.

Richardson, David J.; Butt, Julea N.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Edwards, Marcus J.; White, Gaye F.; Baiden, Nanakow; Gates, Andrew J.; Marritt, Sophie; Clarke, Thomas A.

2012-05-30T23:59:59.000Z

296

Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.  

SciTech Connect

Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

2004-06-01T23:59:59.000Z

297

Risk identification and assessment for build-operate-transfer projects: A fuzzy multi attribute decision making model  

Science Conference Proceedings (OSTI)

In recent years, BOT approach has provided an increasingly popular project financing to move toward infrastructure development in Asian countries such as Iran. There are many complexities in projects because of the variety of factors in project's trend ... Keywords: BOT projects, FMADM, Risk identification, Risk ranking

Sadoullah Ebrahimnejad; Seyed Meysam Mousavi; Hamed Seyrafianpour

2010-01-01T23:59:59.000Z

298

ORCED: A model to simulate the operations and costs of bulk-power markets  

SciTech Connect

Dramatic changes in the structure and operation of US bulk-power markets require new analytical tools. The authors developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to analyze a variety of public-policy issues related to the many changes underway in the US electricity industry. Such issues include: policy and technology options to reduce carbon emissions from electricity production; the effects of electricity trading between high- and low-cost regions on consumers and producers in both regions; the ability of the owners of certain generating units to exercise market power as functions of the transmission link between two regions and the characteristics of the generating units and loads in each region; and the market penetration of new energy-production and energy-use technologies and the effects of their adoption on fuel use, electricity use and costs, and carbon emissions. ORCED treats two electrical systems connected by a single transmission link ORCED uses two load-duration curves to represent the time-varying electricity consumption in each region. The two curves represent peak and offpeak seasons. User specification of demand elasticities permits ORCED to estimate the effects of changes in electricity price, both overall and hour by hour, on overall electricity use and load shapes. ORCED represents the electricity supply in each region with 26 generating units. The two regions are connected by a single transmission link. This link is characterized by its capacity (MW), cost ({cents}/kWh), and losses (%). This report explains the inputs to, outputs from, and operation of ORCED. It also presents four examples showing applications of the model to various public-policy issues related to restructuring of the US electricity industry.

Hadley, S.; Hirst, E.

1998-06-01T23:59:59.000Z

299

CKow -- A More Transparent and Reliable Model for Chemical Transfer to Meat and Milk  

E-Print Network (OSTI)

JRC) Ispra: Italy, 2003. RTI Methodology for predictingbiotransfer factors; RTI Project Number 08860.002.015,regression (hereafter called RTI model) which is recommended

Rosenbaum, Ralph K.

2010-01-01T23:59:59.000Z

300

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically,… (more)

Williamson, Nicholas J

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

for one-dimensional heat conduction in a solid only needs todifferent models to compute heat conduction through opaqueone-dimensional heat conduction through multi-layered

Wetter, Michael

2013-01-01T23:59:59.000Z

302

The Use of a Co-operative Student Model of Learner Characteristics to Configure a Multimedia Application  

Science Conference Proceedings (OSTI)

This paper describes an investigation into the ways in which learning using a multimedia application can be supported and enhanced by means of a simple co-operative student model of learner characteristics. This paper reports the design, implementation ... Keywords: CAL, Grounded Theory, Student model, evaluation, global descriptors, multimedia

Trevor Barker; Sara Jones; Carol Britton; David Messer

2002-03-01T23:59:59.000Z

303

Tech Transfer  

Tech Transfer The Industrial Partnerships Office is improving tech transfer processes with our very own Yellow Belt. Several of the Lab's process ...

304

Parameterization of Atmospheric Radiative Transfer. Part I: Validity of Simple Models  

Science Conference Proceedings (OSTI)

This paper outlines a radiation parameterization method for deriving broadband fluxes that is currently being implemented in a number of global and regional atmospheric models. The rationale for the use of the 2-stream method as a way of solving ...

Graeme L. Stephens; Philip M. Gabriel; Philip T. Partain

2001-11-01T23:59:59.000Z

305

Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling  

Science Conference Proceedings (OSTI)

Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

Pollard, M.; Ohlrogge, J.

1999-12-01T23:59:59.000Z

306

Overview of heat transfer and fluid flow problem areas encountered in stirling engine modeling  

SciTech Connect

NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

Tew, R.C. Jr.

1988-02-01T23:59:59.000Z

307

Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon  

SciTech Connect

The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). The authors extend their evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments. The modeling approach distinguishes between two different sediment particles types: a light-density fraction representing carbonaceous particles such as charcoal, coal, coke, cenospheres, or wood, and a heavy-density fraction representing the mineral phase with coatings of organic matter. A third particle type in the numerical model is AC. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For the AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. After AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after 5 years. 19 refs., 5 figs., 4 tabs.

David Werner; Upal Ghosh; Richard G. Luthy [University of Newcastle upon Tyne, Newcastle (United Kingdom)

2006-07-01T23:59:59.000Z

308

A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping  

Office of Scientific and Technical Information (OSTI)

WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping Systems by K. C. Kwon Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 A document prepared for ASME CONFERENCE - HEAT EXCHANGER COMMITTEE MEETING 8 , INTERNATIONAL JOINT POWER GENERATION CONFERENCE 1998 at Baltimore, MA, USA from 8/23/98 - 8/26/98. DOE Contract No. DE-AC09-96SR18500 This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

309

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

fluid flow, multicomponent transport, and heat transfer in porous and fractured media,fluid flow, solute transport, and heat transfer occur in porous and fractured media.fluid flow, mass transport, and heat-transfer processes through porous and fractured media.

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

310

Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2  

E-Print Network (OSTI)

on Photovoltaic Energy Conversion, K. Kurokawa ed. (Arisumi, Osaka, Japan, 2003), pp. 344­347. 10. F. Leblanc, J European Photovoltaic Solar Energy Conference, James & James ed. (Alden, Glasgow, UK, 2000), pp. 522 thin film silicon solar cells: optical model," in 16th European Photovoltaic Solar Energy Conference

311

An efficient instantiation algorithm for simulating radiant energy transfer in plant models  

Science Conference Proceedings (OSTI)

We describe a complete lighting simulation system tailored for the difficult case of vegetation scenes. Our algorithm is based on hierarchical instantiation for radiosity and precise phase function modeling. It allows efficient calculations both in terms ... Keywords: Plant growth simulation, calibrated physiological simulation, instantiation, landscape simulation, lighting simulation, radiosity

Cyril Soler; François X. Sillion; Frédéric Blaise; Philippe Dereffye

2003-04-01T23:59:59.000Z

312

Predictive clothing insulation model based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

2012) Predictive clothing insulation model based on outdoorPredictive clothing insulation model based on outdoor airpredictive models of clothing insulation have been developed

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

313

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

314

Development of a Proteoliposome Model to Probe Transmembrane Electron-Transfer Reactions  

Science Conference Proceedings (OSTI)

The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system has been developed that contains methyl viologen (MV) as an internalised electron acceptor and valinomycin (V) as a membrane associated cation exchanger. These proteoliposomes can be used as a model system to investigate MtrCAB function.

White, Gaye F.; Shi, Zhi; Shi, Liang; Dohnalkova, Alice; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas

2012-12-01T23:59:59.000Z

315

Mathematical modeling of heat and mass transfer in packed-bed adsorbers/regenerators  

SciTech Connect

Adsorber-regenerators are used extensively in the process industries for gas cleaning and separation. Nonisothermal adsorption is studied by incorporating its mathematical description into a model consisting of the full two-dimensional Navier-Stokes equations and energy and species concentration equations to simulate the processes in fixed-bed industrial adsorber/regenerators. The model partial-differential equations are solved numerically by using well-established computational fluid dynamics techniques. The equilibrium between gas and solid is considered nonlinear, which is described by Freundlich-type equations. The transport and adsorption of a compound from a solvent to and into an adsorbent are described by a two-step process: transport through the film to the outer surface of the particle and diffusion into the porous particle. The effect of fill resistance is discussed, as well as a two-equation turbulence model. Solutions obtained for a typical industrial adsorber/regenerator demonstrate the potential of this method. The computed results for various flow ratios and parameters in the Freundlich equations are shown to be physically plausible.

Gouvalias, G.S.; Markatos, N.C. (National Technical Univ., Athens (Greece). Dept. of Chemical Engineering)

1993-11-01T23:59:59.000Z

316

Intermodal transfer of spent fuel  

Science Conference Proceedings (OSTI)

As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel.

Neuhauser, K.S. (Sandia National Labs., Albuquerque, NM (United States)); Weiner, R.F. (Western Washington Univ., Bellingham, WA (United States))

1991-01-01T23:59:59.000Z

317

Transferring Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

318

Equivalent Transformations in the Model of Programs with Commuting and Monotone Operators  

Science Conference Proceedings (OSTI)

The fundamental problem in the theory of algebraic program models is considered. It consists in constructing a system of equivalent transformations of program schemes that is complete in the model. It is solved for a model different from those considered ...

R. I. Podlovchenko

2002-11-01T23:59:59.000Z

319

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

or chemical species in a multiphase porous medium system canand radiation in a multiphase, multicomponent, porous mediummultiphase flow, multicomponent transport, and heat transfer in porous

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

320

Model of variable speed constant frequency double fed wind power generation system and analysis of its operating performance  

Science Conference Proceedings (OSTI)

Structure of variable speed constant frequency double fed wind power generation system (WPGS) was analyzed, and its model was established. Maximum power point tracking (MPPT) control, constant power control and vector control for WPGS were discussed. ... Keywords: operating performance, variable speed constant frequency, vector control, wind power generation system

Pan Tinglong; Ji Zhicheng

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm?1, 0.1 cm?1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere ...

Chenxi Wang; Ping Yang; Steven Platnick; Andrew K. Heidinger; Bryan A. Baum; Thomas Greenwald; Zhibo Zhang; Robert E. Holz

2013-03-01T23:59:59.000Z

322

Bounds on the number of bound states in the transfer matrix spectrum for some weakly correlated lattice models  

Science Conference Proceedings (OSTI)

We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H{sub o}+W where H{sub o}=-{gamma}{Delta}{sub l}, 0 lattice Laplacian: {gamma}={beta}, the inverse temperature for spin systems and {gamma}={kappa}{sup 3} where {kappa} is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound Double-Vertical-Line W(x, y) Double-Vertical-Line Less-Than-Or-Slanted-Equal-To cexp ( -a( Double-Vertical-Line x Double-Vertical-Line + Double-Vertical-Line y Double-Vertical-Line )), a large: exp-a={beta}/{beta}{sub o}{sup (1/2)}({kappa}/{kappa}{sub o}) for spin (QCD) models. H{sub o}, W, and H act in l{sub 2}(Z{sup d}), d Greater-Than-Or-Slanted-Equal-To 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.

O'Carroll, Michael [Departamento de Matematica Aplicada e Estatistica, ICMC-USP, C.P. 668,13560-970 Sao Carlos, Sao Paulo (Brazil)

2012-07-15T23:59:59.000Z

323

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

324

Study on Real Options Model of Operating Capital Value of Generator for Spinning Reserve and Risk Assessment Based on Monte Carlo Methods  

Science Conference Proceedings (OSTI)

Electricity market has complex market rules, and its operation with great uncertainty. In this paper, the real options model of operating capital value of generator for spinning reserve is constructed under uncertainty market conditions including uncertainty ...

Xin Ma

2008-10-01T23:59:59.000Z

325

A survey of publicly available transfer capability data  

Science Conference Proceedings (OSTI)

This paper summarizes the transmission system data resources used to construct a North American network representation modeled in the Spot Market Network (SMN) model developed at Argonne National Laboratory (ANL). The data, largely available through various FERC Form 715 reports, are used to construct a network representation capable of modeling interarea transfer opportunities between modeled systems. A brief introduction of the SMN model and the desired level of transmission detail is first described. Next, various data resources that report published transfer capabilities essential to model operation are introduced. Modifications or adaptations of individual published network topologies are described, which are supported through extensive examinations of alternate data sources, as well as through discussions with knowledgeable operations experts or regional staff. The method of obtaining the current SMN network formulation is finally presented to illustrate the integration of regional and subregional network detail into the North American SMN transmission representation.

Kavicky, J.A.; VanKuiken, J.C.

1995-07-01T23:59:59.000Z

326

The Description of the Navy Operational Global Atmospheric Prediction System's Spectral Forecast Model  

Science Conference Proceedings (OSTI)

We present a description of the development of the spectral forecast components of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The original system, called 3.0, was introduced in January 1988. New versions were introduced ...

Timothy F. Hogan; Thomas E. Rosmond

1991-08-01T23:59:59.000Z

327

System dynamics modeling for human performance in nuclear power plant operation  

E-Print Network (OSTI)

Perfect plant operation with high safety and economic performance is based on both good physical design and successful organization. However, in comparison with the affection that has been paid to technology research, the ...

Chu, Xinyuan

2006-01-01T23:59:59.000Z

328

An All-Weather Observational Operator for Radiance Data Assimilation with Mesoscale Forecast Models  

Science Conference Proceedings (OSTI)

Assimilating satellite radiance data under all weather conditions remains an outstanding problem in numerical weather prediction. This study develops an observational operator for use in radiance assimilation under both clear and cloudy ...

Thomas J. Greenwald; Rolf Hertenstein; Tomislava Vuki?evi?

2002-07-01T23:59:59.000Z

329

Diagnosing a Colorado Heavy Snow Event with a Nonhydrostatic Mesoscale Numerical Model Structured for Operational Use  

Science Conference Proceedings (OSTI)

State-of-the-art data sources, such as Doppler radar, automated surface observations, wind profiler, digital satellite, and aircraft reports, are for the first time providing the capability to generate real-time, operational three-dimensional ...

Johns Snook; Roger A. Pielke

1995-06-01T23:59:59.000Z

330

Changes to the 1995 NCEP Operational Medium-Range Forecast Model Analysis–Forecast System  

Science Conference Proceedings (OSTI)

Recent changes in the operational National Centers for Environmental Prediction (formerly the National Meteorological Center) global analysis–forecast system are described. The most significant analysis change was the direct use of satellite-...

Peter Caplan; John Derber; William Gemmill; Song-You Hong; Hua-Lu Pan; David Parrish

1997-09-01T23:59:59.000Z

331

An Operation-Based Scheme for a Multiyear and Multipurpose Reservoir to Enhance Macroscale Hydrologic Models  

Science Conference Proceedings (OSTI)

This paper develops an operation-based numerical scheme for simulating storage in and outflow from a multiyear and multipurpose reservoir at a daily time step in order to enhance the simulation capacity of macroscale land surface hydrologic ...

Yiping Wu; Ji Chen

2012-02-01T23:59:59.000Z

332

Modelling the Effects of Nuclear Fuel Reservoir Operation in a Competitive Electricity Market  

E-Print Network (OSTI)

In many countries, the electricity systems are quitting the vertically integrated monopoly organization for an operation framed by competitive markets. In such a competitive regime one can ask what the optimal management ...

Lykidi, Maria

333

An Operational Model for Forecasting Probability of Precipitation and Yes/No Forecast  

Science Conference Proceedings (OSTI)

An operational system for forecasting probability of precipitation (PoP) and yes/no forecast over 10 stations during monsoon season is developed. A perfect prog method (PPM) approach is followed for statistical interpretation of numerical weather ...

Ashok Kumar; Parvinder Maini; S. V. Singh

1999-02-01T23:59:59.000Z

334

Exploring the mechanisms critical to the operation of metal face seals through modeling and experiments  

E-Print Network (OSTI)

This thesis aims to explore operation mechanisms of a special type of mechanical face seals: the flexible metal-to-metal face seal (FMMFS). Unique features of the FMMFS include much more flexibility in the circumferential ...

Wang, Yong, Ph. D. Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics

2008-01-01T23:59:59.000Z

335

Non-Markovian Second-Order Quantum Master Equation and Its Markovian Limit: Electronic Energy Transfer in Model Photosynthetic Systems  

E-Print Network (OSTI)

A direct numerical algorithm for solving the time-nonlocal non-Markovian master equation in the second Born approximation is introduced and the range of utility of this approximation, and of the Markov approximation, is analyzed for the traditional dimer system that models excitation energy transfer in photosynthesis. Specifically, the coupled integro-differential equations for the reduced density matrix are solved by an efficient auxiliary function method in both the energy and site representations. In addition to giving exact results to this order, the approach allows us to computationally assess the range of the reorganization energy and decay rates of the phonon auto-correlation function for which the Markovian Redfield theory and the second order approximation is valid. For example, the use of Redfield theory for $\\lambda> 10 \\textrm{cm}^{-1}$ in systems like Fenna-Mathews-Olson (FMO) type systems is shown to be in error. In addition, analytic inequalities are obtained for the regime of validity of the Markov approximation in cases of weak and strong resonance coupling, allowing for a quick determination of the utility of the Markovian dynamics in parameter regions. Finally, results for the evolution of states in a dimer system, with and without initial coherence, are compared in order to assess the role of initial coherences.

Navinder Singh; Paul Brumer

2011-06-29T23:59:59.000Z

336

New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes  

SciTech Connect

Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

Borodovsky, M.

2013-04-11T23:59:59.000Z

337

Final Report for LDRD Project 05-ERD-050: "Developing a Reactive Chemistry Capability for the NARAC Operational Model (LODI)"  

SciTech Connect

In support of the National Security efforts of LLNL, this project addressed the existing imbalance between dispersion and chemical capabilities of LODI (Lagrangian Operational Dispersion Integrator--the NARAC operational dispersion model). We have demonstrated potentially large effects of atmospheric chemistry on the impact of chemical releases (e.g., industrial chemicals and nerve agents). Prior to our work, LODI could only handle chains of first-order losses (exponential decays) that were independent of time and space, limiting NARAC's capability to respond when reactive chemistry is important. We significantly upgraded the chemistry and aerosol capability of LODI to handle (1) arbitrary networks of chemical reactions, (2) mixing and reactions with ambient species, (3) evaporation and condensation of aerosols, and (4) heat liberated from chemical reactions and aerosol condensation (which can cause a cold and dense plume hugging the ground to rise into the atmosphere, then descend to the ground again as droplets). When this is made operational, it will significantly improve NARAC's ability to respond to terrorist attacks and industrial accidents that involve reactive chemistry, including many chemical agents and toxic industrial chemicals (TICS). As a dual-use, the resulting model also has the potential to be a state-of-the-art air-quality model. Chemical releases are the most common type of airborne hazardous release and many operational applications involve such scenarios. The new capability we developed is therefore relevant to the needs of the Department of Energy (DOE), Department of Homeland Security (DHS) and Department of Defense (DoD).

Cameron-Smith, P; Grant, K; Connell, P

2008-02-11T23:59:59.000Z

338

Environmental Impact Statement (EIS) for the Transfer of the Heat Source / Radioisotope Themoelectric Generator Assembly and Test Operations From the Mound Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

031 031 Federal Register / Vol. 63, No. 191 / Friday, October 2, 1998 / Notices SUPPLEMENTARY INFORMATION: The package listing contains the following information: (1) Title of the information collection package; (2) current OMB control number; (3) type of respondents; (4) estimated number of responses annually; (5) estimated total burden hours, annually, including recordkeeping hours required to provide the information; (6) purpose; and (7) number of collections. Package Title: Legal. Current OMB No.: 1910-0800. Type of Respondents: DOE management and operating contractors, and offsite contractors. Estimated Number of Responses: 2,719. Estimated Total Burden Hours: 21,052. Purpose: This information is required by the Department to ensure that legal resources and requirements are

339

Bowing Convective Systems in a Popular Operational Model: Are They for Real?  

Science Conference Proceedings (OSTI)

Bowing, propagating precipitation features that sometimes appear in NCEP's North American Mesoscale model (NAM; formerly called the Eta Model) forecasts are examined. These features are shown to be associated with an unusual convective heating ...

Melissa S. Bukovsky; John S. Kain; Michael E. Baldwin

2006-06-01T23:59:59.000Z

340

Comparison of precipitation derived from the ECMWF operational forecast model and satellite precipitation data sets.  

Science Conference Proceedings (OSTI)

Precipitation is an important component of the climate system and the accurate representation of the diurnal rainfall cycle is a key test of model performance. Although the modelling of precipitation in the cooler mid-latitudes has improved, in ...

Chris Kidd; Erin Dawkins; George Huffman

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Explicit Cloud-Scale Models for Operational Forecasts: A Note of Caution  

Science Conference Proceedings (OSTI)

As computational capacity has increased, cloud-scale numerical models are slowly being modified from pure research tools to forecast tools. Previous studies that used cloud-scale models as explicit forecast tools, in much the same way as a ...

Kimberly L. Elmore; David J. Stensrud; Kenneth C. Crawford

2002-08-01T23:59:59.000Z

342

Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

Clothing Insulation Models on Building Energy Use, HVACinsulation for mechanically conditioned buildings andclothing insulation calculated for each building). Figure 8

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

343

A comparison of the usability of performing ad hoc querying on dimensionally modeled data versus operationally modeled data  

Science Conference Proceedings (OSTI)

To study the usability of dimensionally modeled data (DMD), we conducted an experiment involving 113 participants to analyze their performance in ad hoc querying tasks. The results show that DMD's usability is high according to both objective and subjective ... Keywords: Business intelligence, Data models, Dimensionally modeled data, Learnability, Usability

DušAn VujošEvi?; Ivana Kova?Evi?; Milija Suknovi?; Nenad Lali?

2012-12-01T23:59:59.000Z

344

Optimization of steady-state and hybrid operations in a tokamak fusion reactor by using divertor scaling models  

SciTech Connect

Steady-state and hybrid-mode operation of a tokamak fusion reactor is investigated by power balance calculations, and operation points are optimized with respect to divertor heat load. The dependence of the divertor heat load on a variety of models is also discussed. Several schemes to reduce the heat load are investigated, and the goal of physics research and development is clarified. Hybrid-mode operation appears to be suitable for technology testing, which requires a long burn time and a high neutron wall load. The divertor heat load can be reduced to the ignition-mode level without impurity seeding if the energy confinement is enhanced by 10%. The relation between the divertor heat load and the controllability of the current profile, that is, the fraction of the beam-driven current, is also discussed. 9 refs., 17 figs., 4 tabs.

Murakami, Yoshiki; Sugihara, Masayoshi (Japan Atomic Energy Research Institute, Naka-machi (Japan))

1993-12-01T23:59:59.000Z

345

The Influence of Hydrologic Modeling on the Predicted Local Weather: Two-Way Coupling of a Mesoscale Weather Prediction Model and a Land Surface Hydrologic Model  

Science Conference Proceedings (OSTI)

A two-way coupling of the operational mesoscale weather prediction model known as Lokal Modell (LM; German Weather Service) with the land surface hydrologic “TOPMODEL”-Based Land Surface–Atmosphere Transfer Scheme (TOPLATS; Princeton University) ...

G. Seuffert; P. Gross; C. Simmer; E. F. Wood

2002-10-01T23:59:59.000Z

346

Operations modeling and analysis of open pit copper mining using GPS tracking data  

Science Conference Proceedings (OSTI)

Open pit copper mining plants usually comprise two major components, the open pit mining operation and the copper ore enrichment plant. An open pit copper mine is an excavation or graze made into the surface of the ground for the purpose of extracting ...

Yifei Tan; Kanna Miwa; Undram Chinbat; Soemon Takakuwa

2012-12-01T23:59:59.000Z

347

Enhanced modeling and control of VSIs in microgrids operating in grid-connected mode  

Science Conference Proceedings (OSTI)

This paper focus on the influence of filter dynamics on the performance and stability of current control loops of three-phase, pulse-width modulation (PWM) voltage source inverters (VSIs) in grid-connected operating mode. The analysis considers the application ...

Leonardo Rese; Antonio Simoes Costa; Aguinaldo S. e Silva

2012-01-01T23:59:59.000Z

348

A Multigrid Wave Forecasting Model: A New Paradigm in Operational Wave Forecasting  

Science Conference Proceedings (OSTI)

A new operational wave forecasting system has been implemented at the National Centers for Environmental Prediction (NCEP) using the third public release of WAVEWATCH III. The new system uses a mosaic of grids with two-way nesting in a single ...

Arun Chawla; Hendrik L. Tolman; Vera Gerald; Deanna Spindler; Todd Spindler; Jose-Henrique G. M. Alves; Degui Cao; Jeffrey L. Hanson; Eve-Marie Devaliere

2013-08-01T23:59:59.000Z

349

A multi-sensor based occupancy estimation model for supporting demand driven HVAC operations  

Science Conference Proceedings (OSTI)

Heating, ventilation, and air conditioning (HVAC) is a major energy consumer in buildings, and implementing demand driven HVAC operations is a way to reduce HVAC related energy consumption. This relies on the availability of occupancy information, which ... Keywords: HVAC, building energy consumption, demand driven, non-intrusive sensor, occupancy estimation

Zheng Yang; Nan Li; Burcin Becerik-Gerber; Michael Orosz

2012-03-01T23:59:59.000Z

350

A Survey of Operations Research Models and Applications in Homeland Security  

Science Conference Proceedings (OSTI)

Operations research has had a long and distinguished history of work in emergency preparedness and response, airline security, transportation of hazardous materials, and threat and vulnerability analysis. Since the attacks of September 11, 2001 and the ... Keywords: agencies, government, homeland security, planning

P. Daniel Wright; Matthew J. Liberatore; Robert L. Nydick

2006-11-01T23:59:59.000Z

351

Mathematical Modeling of Current-Interrupt and Pulse Operation of Valve-Regulated Lead Acid Cells  

E-Print Network (OSTI)

are resolved. Of the two candidate battery systems, the low cost and ease of operation of the VRLA battery the last decade, advanced batteries have re- ceived much attention. At present, only the valve-regulated lead acid VRLA and the nickel-metal hydride Ni-MH battery are being actively considered

352

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Forecasting models for operating and maintenance cost of the pilot plant  

Science Conference Proceedings (OSTI)

This study was conducted in cooperation with the Department of Industrial Engineering of King Abdulaziz University. The main objective of this study is to meet some of the goals of the Solar Energy Water Desalination Plant (SEWDP) plan in the area of economic evaluation. The first part of this project focused on describing the existing trend in the operation and maintenance (OandM) cost for the SOLERAS Solar Energy Water Desalination Plant in Yanbu. The second part used the information obtained on existing trends to find suitable forecasting models. These models, which are found here, are sensitive to changes in costs trends. Nevertheless, the study presented here has established the foundation for (OandM) costs estimating in the plant. The methodologies used in this study should continue as more data on operation and maintenance costs become available, because, in the long run, the trend in costs will help determine where cost effectiveness might be improved. 7 refs., 24 figs., 15 tabs.

Al-Idrisi, M.; Hamad, G.

1987-04-01T23:59:59.000Z

353

Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional numerical scattering technique  

E-Print Network (OSTI)

We develop a general numerical method to calculate the nonequilibrium radiative heat transfer between a plate and compact objects of arbitrary shapes, making the first accurate theoretical predictions for the total heat ...

McCauley, Alexander Patrick

354

Retrieval of Sea Surface Temperature from Space, Based on Modeling of Infrared Radiative Transfer: Capabilities and Limitations  

Science Conference Proceedings (OSTI)

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (...

Christopher J. Merchant; Pierre Le Borgne

2004-11-01T23:59:59.000Z

355

Modeling and Analysis of Price-Responsive Loads in the Operation of Smart Grids.  

E-Print Network (OSTI)

??In this thesis, a demand elasticity model is developed and tested for the dispatch of high voltage power systems and microgrids. The price obtained from… (more)

Ramos-Gaete, Felipe

2013-01-01T23:59:59.000Z

356

Modeling and control coordination of power systems with FACTS devices in steady-state operating mode.  

E-Print Network (OSTI)

??This thesis is devoted to the development of new models for a recently-implemented FACTS (flexible alternating current transmission system) device, the unified power flow controller… (more)

Nguyen, Van Liem

2008-01-01T23:59:59.000Z

357

Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

predictive clothing insulation models based on outdoor airrange of the clothing insulation calculated for eachbuilding). Figure 8 Clothing insulation versus dress code [

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

358

Performance of National Weather Service Forecasts Compared to Operational, Consensus, and Weighted Model Output Statistics  

Science Conference Proceedings (OSTI)

Model output statistics (MOS) guidance has been the central model postprocessing approach used by the National Weather Service since the 1970s. A recent advancement in the use of MOS is the application of “consensus” MOS (CMOS), an average of MOS ...

Jeffrey A. Baars; Clifford F. Mass

2005-12-01T23:59:59.000Z

359

Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation  

E-Print Network (OSTI)

approximate the seasonality trend in the futures price data. Meanwhile, the table reveals a strong annual-switching model for the risk adjusted natural gas spot price and study the implications of the model) to solve the gas storage pricing problem, essentially a stochastic control problem, and conduct

Forsyth, Peter A.

360

Thermal and Corona Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

In order to provide electric power to a society that is continuously increasing its power consumption, without having to sustain huge capital expenditures for new infrastructure, the power industry is pushing more power through existing lines. Although this results in conductors operating at higher temperatures, which in turn results in higher thermal and mechanical losses, the industry is finding it to be a cost-effective approach when compared to alternatives. The demand for electric power over transmi...

2008-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers  

E-Print Network (OSTI)

A transient heat and mass transfer model was developed to predict ceiling heat gain/loss through the attic space in residences and to accurately estimate savings in cooling and heating loads produced by the use of radiant barriers. The model accounted for transient conduction, convection and radiation and incorporated moisture and air transport across the attic. Environmental variables such as solar loads on outer attic surfaces and sky temperatures were also estimated. The model was driven by hourly weather data which included: time, outdoor air temperature, horizontal sun and sky radiation, wind speed and direction, relative humidity (dew point), and cloud cover data. The outputs of the model were ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures and attic air temperatures. Transient conduction was modeled using response factors. Response factors were calculated for each attic component based on construction type. Convective heat transfer was modeled using “flat plate” correlations found in the literature and radiative heat transfer was modeled using radiation enclosure theory. Moisture was incorporated via a condensation/evaporation model. A new procedure was developed to account for attic air stratification. Both forced and natural attic ventilation patterns were added to the model for three types of louver combination arrangements. An iterative technique was used to solve a set of simultaneous heat balance equations. The model predictions were compared to experimental data gathered throughout a three year experimental effort of side-by-side testing of attics retrofit with radiant barriers. The model was compared to the experimental data for a variety of situations which included: different attic insulation levels, various attic airflow rates, cooling and heating seasons, and different radiant barrier orientations. The model predicted ceiling heat flows within 10% for most cases. The model was used to run simulations and parametric studies under a diversity of climates, insulation levels and attic airflow patterns. Model predictions and results were presented on the basis of savings produced by the use of radiant barriers. Hourly, daily, and seasonal predictions by the model were in excellent agreement with observed experimental data and with literature.

Medina, M. A.

1992-12-01T23:59:59.000Z

362

Determination of the proper operating range for the CAFCA IIB fuel cycle model  

E-Print Network (OSTI)

The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

Warburton, Jamie (Jamie L.)

2007-01-01T23:59:59.000Z

363

Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model was employed to provide precipitation forecasts during the 2008/09 and 2009/10 winters (wet season) for Israel and the surrounding region where complex terrain dominates. The WRF precipitation ...

Amir Givati; Barry Lynn; Yubao Liu; Alon Rimmer

2012-02-01T23:59:59.000Z

364

Mesoscale Forecasts Generated from Operational Numerical Weather-Prediction Model Output  

Science Conference Proceedings (OSTI)

A technique called Model Output Enhancement (MOE) has been developed for the generation and display of mesoscale weather forecasts. The MOE technique derives mesoscale or high-resolution (order of 1 km) weather forecasts from synoptic-scale ...

John G. W. Kelley; Joseph M. Russo; Toby N. Carlson; J. Ronald Eyton

1988-01-01T23:59:59.000Z

365

Subjective Verification of Numerical Models as a Component of a Broader Interaction between Research and Operations  

Science Conference Proceedings (OSTI)

Systematic subjective verification of precipitation forecasts from two numerical models is presented and discussed. The subjective verification effort was carried out as part of the 2001 Spring Program, a seven-week collaborative experiment ...

John S. Kain; Michael E. Baldwin; Paul R. Janish; Steven J. Weiss; Michael P. Kay; Gregory W. Carbin

2003-10-01T23:59:59.000Z

366

RELIABILITY MODELS OF AGING PASSIVE COMPONENTS INFORMED BY MATERIALS DEGRADATION METRICS TO SUPPORT LONG-TERM REACTOR OPERATIONS  

Science Conference Proceedings (OSTI)

Paper describes a methodology for the synthesis of nuclear power plant service data with expert-elicited materials degradation information to estimate the future failure rates of passive components. This method should be an important resource to long-term plant operations and reactor life extension. Conventional probabilistic risk assessments (PRAs) are not well suited to addressing long-term reactor operations. Since passive structures and components are among those for which replacement can be least practical, they might be expected to contribute increasingly to risk in an aging plant; yet, passives receive limited treatment in PRAs. Furthermore, PRAs produce only snapshots of risk based on the assumption of time-independent component failure rates. This assumption is unlikely to be valid in aging systems. The treatment of aging passive components in PRA presents challenges. Service data to quantify component reliability models are sparse, and this is exacerbated by the greater data demands of age-dependent reliability models. Another factor is that there can be numerous potential degradation mechanisms associated with the materials and operating environment of a given component. This deepens the data problem since risk-informed management of component aging will demand an understanding of the long-term risk significance of individual degradation mechanisms. In this paper we describe a Bayesian methodology that integrates metrics of materials degradation susceptibility with available plant service data to estimate age-dependent passive component reliabilities. Integration of these models into conventional PRA will provide a basis for materials degradation management informed by predicted long-term operational risk.

Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

2012-05-01T23:59:59.000Z

367

Algebraic models of deviant modal operators based on de Morgan and Kleene lattices  

Science Conference Proceedings (OSTI)

An algebraic model of a kind of modal extension of de Morgan logic is described under the name MDS5 algebra. The main properties of this algebra can be summarized as follows: (1) it is based on a de Morgan lattice, rather than a Boolean algebra; (2) ... Keywords: Algebraic semantic of modal logic, Brouwer Zadeh lattices, Fuzzy sets and orthopairs models, Heyting-Wajsberg algebras, Kleene lattices

G. Cattaneo; D. Ciucci; D. Dubois

2011-10-01T23:59:59.000Z

368

Modeling and design of control system for variable speed wind turbine in all operating region  

Science Conference Proceedings (OSTI)

In order to get the maximum power from the wind, the variable-speed wind turbine should run at different speed when wind speed changes. In this paper a control system is introduced to get this purpose base on establishing the three-mass model of the ... Keywords: doubly-fed induction generator (DFIG), feed-forward compensator, loop-shaping, pitch controller, speed controller, three-mass model, wind turbine

Wu Dingguo; Wang Zhixin

2008-05-01T23:59:59.000Z

369

Computational Fluid Dynamics Modeling of the Operation of a Flame Ionization Sensor  

Science Conference Proceedings (OSTI)

The sensors and controls research group at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is continuing to develop the Combustion Control and Diagnostics Sensor (CCADS) for gas turbine applications. CCADS uses the electrical conduction of the charged species generated during the combustion process to detect combustion instabilities and monitor equivalence ratio. As part of this effort, combustion models are being developed which include the interaction between the electric field and the transport of charged species. The primary combustion process is computed using a flame wrinkling model (Weller et. al. 1998) which is a component of the OpenFOAM toolkit (Jasak et. al. 2004). A sub-model for the transport of charged species is attached to this model. The formulation of the charged-species model similar that applied by Penderson and Brown (1993) for the simulation of laminar flames. The sub-model consists of an additional flux due to the electric field (drift flux) added to the equations for the charged species concentrations and the solution the electric potential from the resolved charge density. The subgrid interactions between the electric field and charged species transport have been neglected. Using the above procedure, numerical simulations are performed and the results compared with several recent CCADS experiments.

Huckaby, E.D.; Chorpening, B.T.; Thornton, J.D.

2007-03-01T23:59:59.000Z

370

Summary of the Models and Methods for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code  

DOE Green Energy (OSTI)

The mathematical models and numerical methods employed by the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multi-component flow in porous media, are described. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The component models of FEHM are discussed. The first major component, Flow- and Energy-Transport Equations, deals with heat conduction; heat and mass transfer with pressure- and temperature-dependent properties, relative permeabilities and capillary pressures; isothermal air-water transport; and heat and mass transfer with noncondensible gas. The second component, Dual-Porosity and Double-Porosity/Double-Permeability Formulation, is designed for problems dominated by fracture flow. Another component, The Solute-Transport Models, includes both a reactive-transport model that simulates transport of multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Constitutive Relationships, deals with pressure- and temperature-dependent fluid/air/gas properties, relative permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes. Each of these components is discussed in detail, including purpose, assumptions and limitations, derivation, applications, numerical method type, derivation of numerical model, location in the FEHM code flow, numerical stability and accuracy, and alternative approaches to modeling the component.

George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease

1997-07-01T23:59:59.000Z

371

Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.  

DOE Green Energy (OSTI)

Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

Marotz, Brian; Althen, Craig; Gustafson, Daniel

1996-01-01T23:59:59.000Z

372

Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes  

SciTech Connect

During the last few years the development of a second-generation regional climate modeling system (RegCM2) has been completed at the National Center for Atmospheric Research (NCAR). Based upon the National Center for Atmospheric Research-Pennsylvania State University Mesoscale Model (MM4), RegCM2 includes improved formulations of boundary layer, radiative transfer, surface physics, cumulus convection, and time integration technique, which make it more physically comprehensive and more computationally efficient than the previous regional climate model version. This paper discusses a number of month-long simulations over the European region that were conducted to test the new RegCM2 boundary-layer parameterization (the scheme developed by Holtsag et al.) and radiative transfer formulation [the package developed for the NCAR Community Climate Model 2 (CCM2)]. Both schemes significantly affect the model precipitation, temperature, moisture, and cloudiness climatology, leading to overall more realistic results, while they do not substantially modify the model performance in simulating the aggregated characteristics of synoptic patterns. Description of the convective processes and procedures of boundary condition assimilation included in RegCM2 is presented in companion paper by Giorgi et al. 26 refs., 11 figs., 10 tabs.

Giorgi, F.; Marinucci, M.R.; Bates, G.T. (National Center for Atmospheric Research, Boulder, CO (United States))

1993-10-01T23:59:59.000Z

373

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

374

NETL: Technology Transfer - Available Technologies for Partnership  

Technology Transfer Available Technologies for Partnership Software and Modeling. Month Posted. Partnership Opportunity. Patent Information. 12/2011: ...

375

The two-stage model for order selection and operation sequencing  

Science Conference Proceedings (OSTI)

This article considers the two-stage model of production optimization. At the first stage the optimal subset or orders is chosen from the set of all potential orders; at the second stage the optimal order execution sequence with respect to the penalty ... Keywords: cost, income, optimal sub-set of orders, order, order execution sequence, penalty

Anton Lominadze; Nodar Lominadze

2009-06-01T23:59:59.000Z

376

Simplified wind turbine model for the simulation of frequency support mode of operation  

Science Conference Proceedings (OSTI)

Nowadays, technology evolution and deregulation of the electric utility industry enable Distributed Generation (DG) to play an increasing role in satisfying locally the expanding power demand and generally provide ancillary services to the system. In ... Keywords: control, frequency support, modeling, variable speed wind turbines (VSWT)

F. D. Kanellos; G. J. Tsekouras; C. D. Tsirekis

2011-07-01T23:59:59.000Z

377

Run-time Modeling and Estimation of Operating System Power Consumption  

E-Print Network (OSTI)

software power evaluation, as well as power management (e.g. dynamic thermal control and equal energy of a commercial OS across a wide spectrum of applications to understand OS energy profiles and then proposes to track run- time OS energy profiles, the proposed routine level OS power model offers superior accuracy

John, Lizy Kurian

378

Modeling and Experimental Research on Ground-Source Heat Pump in Operation by Neural Network  

Science Conference Proceedings (OSTI)

Ground source Heat Pump(GSHP) is becoming the more and more focus of the world¡¯s attention as a HVAC technique of energy saving and environment protection. This paper first introduced the experiment for Ground-Source water/water Heat Pump. The heat ... Keywords: Ground-Source Heat Pump(GSHP), Neural Network(NN) Predication modeling

Jianping Chen; Zhiwei Lian; Lizheng Tan; Weifeng Zhu; Weiqiang Zhang

2011-02-01T23:59:59.000Z

379

Tech Transfer  

Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration

380

Operational use of air-pollution models at the space and missile ranges. Final report  

SciTech Connect

The Space Shuttle exhaust ground and cloud results from the exhaust plume from the Space Shuttle Main Engines and the Solid Rocket Boosters initially impinging on the launch complex and flame trench. The initial ground cloud is formed from high-temperature combustion products and vaporized flame trench water. The exhaust cloud rises to an altitude at which buoyant equilibrium with the ambient atmosphere is established. This occurs at an altitude of 1 to 2 km in a period of 5 to 10 min after launch. At this point, the kinematic transport phase commences. At stabilization, the exhaust cloud typically contains approximately 99% ambient air entrained during the cloud rise portion of its transport. The major rocket exhaust constituents are hydrogen chloride (HCL),carbon dioxide (CO/sub 2/), water vapor (H/sub 2/0), and aluminum oxide (Al/sub 2/O/sub 3/). The REEDM (Rocket Exhaust Effluent Diffusion Model) computer code is currently used to provide a real-time dispersion prediction during each launch of the Space Shuttle at the Eastern Test Range (ETR). It has also been used to assess the environmental impact fof future Shuttle launches at the Western Test Range. The REEDM includes basic mathematical expressions for atmospheric dispersion models, and cloud-rise models for calculating the gravitational deposition of acid drops. Inputs are vehicle and other source parameters, meteorological parameters defining the state of the planetary boundary layer including turbulence parameters, and physical properties of the rocket exhaust cloud. This paper describes the model and discusses recent improvements in detail.

Boyd, B.F.; Bowman, C.R.

1986-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Handbook of heat and mass transfer. Volumes 1 and 2  

Science Conference Proceedings (OSTI)

This two-volume series presents advanced topics in industrial heat and mass transfer operations for reactor design technology.

Cheremisinoff, N.P.

1985-01-01T23:59:59.000Z

382

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

Science Conference Proceedings (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

383

Literature survey of heat transfer enhancement techniques in refrigeration applications  

Science Conference Proceedings (OSTI)

A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

1994-05-01T23:59:59.000Z

384

SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS  

SciTech Connect

This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were explored in the SST preliminary modeling. The reviews determined the level of detail necessary to perform the analyses of the SSTs. To guide the Phase II detailed modeling effort, preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. Conclusions were derived from case studies on one of the tank types when no additional runs of similar cases on other types of tanks were found necessary to derive those conclusions. The document reviews provided relatively complete temperature histories for Type IV tanks. The temperature history data for Type I, II, and III tanks was almost nonexistent for years prior to 1975. Document reviews indicate that there might be additional useful data in the US Department of Energy, Richland Operations Office (DOE-RL) records in Seattle, WA, and these records need to be reviewed to extract data that might have been disregarded during previous reviews. Thermal stress analyses were conducted using different temperature distribution scenarios on Type IV tanks. Such studies could not be carried out for other tank types due to lack of temperature history data. The results from Type IV tank analyses indicate that factors such as temperature distribution in the tank waste and rate of rise in waste temperature have a significant impact on the thermal stresses in the tank structures. Overall, the conclusion that can drawn from the thermal stress analyses is that these studies should be carried out for all tank types during the detailed analysis phase with temperature values that are reasonably close to the typical temperature histories of the respective tank types. If and/or when additional waste temperature data

RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

2010-10-22T23:59:59.000Z

385

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

386

Understanding slow BGP routing table transfers  

Science Conference Proceedings (OSTI)

Researchers and network operators often say that BGP table transfers are slow. Despite this common knowledge, the reasons for slow BGP transfers are not well understood. This paper explains BGP table transfer delays by combining BGP messages collected ... Keywords: bgp, route propagation, routing convergence

Zied Ben Houidi; Mickael Meulle; Renata Teixeira

2009-11-01T23:59:59.000Z

387

Experimental assessment and modeling of organic compound interphase mass-transfer rates in multiphase subsurface systems. Progress report  

SciTech Connect

During the initial eight month period of this grant, work has been conducted on all facets of the project. Significant progress has been made in the design, construction and testing of the experimental apparatus. Investigation of methods for characterizing the physical forms of non-aqueous phase liquid (NAPL) residuals (globules or blobs) has led to a narrowing of possible approaches. Development of a numerical simulator that accomodates multiphase transport with mass transfer rate interactions is well underway.

Weber, W.J. Jr.; Abriola, L.M.

1990-03-15T23:59:59.000Z

388

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

grain-specific heat for each model grid layer, are providedand heat flow is simulated using the 3-D TH model grid (

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

389

MODELING TRANSPORT IN THE DOWN GRADIENT PORTION OF THE 200-PO-1 OPERABLE UNIT AT THE HANFORD SITE  

SciTech Connect

Remedial Investigations are underway for the 200-PO-l Operable Unit (OU) at the U.S. Department of Energy's Hanford Site in Washington State. To support the baseline risk assessment and evaluation of remedial alternatives, fate and transport modeling is being conducted to predict the future concentration of contaminants of potential concern in the 200-PO-1 OU. This study focuses on modeling the 'down gradient' transport of those contaminants that migrate beyond the 3-D model domain selected for performing detailed 'source area' modeling within the 200-PO-1 OU. The down gradient portion is defined as that region of the 200-PO-1 OU that is generally outside the 200 Area (considered 'source area') of the Hanford Site. A 1-D transport model is developed for performing down gradient contaminant fate and transport modeling. The 1-D transport model is deemed adequate based on the inferred transport pathway of tritium in the past and the observation that most of the contaminant mass remains at or near the water table within the unconfined aquifer of the Hanford Formation and the Cold-Creek/Pre-Missoula Gravel unit. The Pipe Pathway feature of the GoldSim software is used to perform the calculations. The Pipe Pathway uses a Laplace transform approach to provide analytical solutions to a broad range of advection-dominated mass transport systems involving one-dimensional advection, longitudinal dispersion, retardation, decay and ingrowth, and exchanges with immobile storage zones. Based on the historical concentration distribution data for the extensive tritium plume in this area, three Pipe Pathways are deemed adequate for modeling transport of contaminants. Each of these three Pipe Pathways is discretized into several zones, based on the saturated thickness variation in the unconfined aquifer and the location of monitoring wells used for risk assessment calculation. The mass fluxes of contaminants predicted to exit the source area model domain are used as an input to the down gradient model, while the flow velocities applied are based on the present-day hydraulic gradients and estimation of hydraulic conductivity in the unconfined aquifer. The results of the calculation indicate that the future concentrations of contaminants of potential concern in the down gradient portion of the 200-PO-1 OU declines with time and distance.

MEHTA S; ALY AH; MILLER CW; MAYENNA A

2009-12-03T23:59:59.000Z

390

Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results  

SciTech Connect

We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and compare predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.

Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.; Wang, Shu-Li; Hsieh, Dennis P. H.; Yang, Raymond S. H.

2008-03-01T23:59:59.000Z

391

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 ?m to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

392

Development and Validation of an Operational Search and Rescue Modeling System for the Yellow Sea and the East & South China Seas  

Science Conference Proceedings (OSTI)

An operational search and rescue (SAR) modeling system was developed to forecast the tracks of victims or debris from marine accidents in the marginal seas of the Northwestern Pacific Ocean. The system is directly linked to a real-time operational ...

Kyoung-Ho Cho; Yan Li; Hui Wang; Kwang-Soon Park; Jin-Yong Choi; Kwang-Il Shin; Jae-Il Kwon

393

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

394

Coupling the Town Energy Balance (TEB) Scheme to an Operational Limited-Area NWP Model: Evaluation for a Highly Urbanized Area in Belgium  

Science Conference Proceedings (OSTI)

The Town Energy Balance (TEB) single-layer scheme is implemented in a numerical weather prediction model running operationally at ~4-km resolution. The primary question addressed is the ability of TEB to function at this relatively coarse ...

R. Hamdi; Daan Degrauwe; P. Termonia

2012-04-01T23:59:59.000Z

395

Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models  

E-Print Network (OSTI)

, but their presence in the liquid rather than the ice phase can lead to shortwave flux changes of about 100 W m 2 (NWP). In most operational NWP models, production of rain by collision and coalescence is parameterized

Reading, University of

396

Model Rain and Clouds over Oceans: Comparison with SSM/I Observations  

Science Conference Proceedings (OSTI)

A comparison of global model cloud and rain parameterization output with satellite observed radiances was carried out. Hydrometeor profiles from ECMWF operational short-range forecasts were combined with a microwave radiative transfer model to ...

Frédéric Chevallier; Peter Bauer

2003-07-01T23:59:59.000Z

397

Excitonic Structure and Energy Transfer in Photosynthetic Pigment Protein Complexes and Their Assemblies  

E-Print Network (OSTI)

model by a rate matrix that containing energy transfer ratesmodel by a rate matrix that containing energy transfer ratesof energy transfer included in the domain rate matrix. The

Bennett, Doran I G

2013-01-01T23:59:59.000Z

398

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures  

E-Print Network (OSTI)

Comparison of various heat transfer coefficient models inpool boiling In summary, high heat transfer coefficientin boiling heat transfer can be generally explained by the

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

399

Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation  

DOE Green Energy (OSTI)

This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

Fleming, W.H. Jr.

1999-10-20T23:59:59.000Z

400

A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings  

E-Print Network (OSTI)

Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.

Andrea Bedini; Jesper Lykke Jacobsen

2010-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

402

The Impact of the Land Surface Physics in the Operational NCEP Eta Model on Simulating the Diurnal Cycle: Evaluation and Testing Using Oklahoma Mesonet Data  

Science Conference Proceedings (OSTI)

On 31 January 1996, the National Centers for Environmental Prediction/Environmental Modeling Center (NCEP/EMC) implemented a state-of-the-art land surface parameterization in the operational Eta Model. The purpose of this study is to evaluate and ...

Curtis H. Marshall; Kenneth C. Crawford; Kenneth E. Mitchell; David J. Stensrud

2003-10-01T23:59:59.000Z

403

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

404

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

405

Operational Waste Volume Projection  

SciTech Connect

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

STRODE, J.N.

2000-08-28T23:59:59.000Z

406

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

407

A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part II: CO2 Sensitivity  

Science Conference Proceedings (OSTI)

The sensitivity of the equilibrium climate to doubled atmospheric CO2 is investigated using the GENESIS global climate model version 1.02. The atmospheric general circulation model is a heavily modified version of the NCAR CCM1 and is coupled to ...

Starley L. Thompson; David Pollard

1995-05-01T23:59:59.000Z

408

SRNL - Technology Transfer - Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

409

JGI - Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations The Operations Department sees to it that JGI has the best possible facilities and support, ensuring that its operations are conducted in accordance with the...

410

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

411

Transient Planetary Waves Simulated by GFDL Spectral General Circulation Models. Part II: Effects of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

In order to study how transient planetary waves in the midlatitude troposphere are maintained, a space-time spectral analysis over a 1-year data set is made of a GFDL spectral general circulation model.

V. Hayashi; D. G. Golder

1983-04-01T23:59:59.000Z

412

Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes  

Science Conference Proceedings (OSTI)

Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (...

Ingo Meirold-Mautner; Catherine Prigent; Eric Defer; Juan R. Pardo; Jean-Pierre Chaboureau; Jean-Pierre Pinty; Mario Mech; Susanne Crewell

2007-05-01T23:59:59.000Z

413

A trajectory-based approach to modeling nonlinear infrared spectra : interrogating strong hydrogen bonds and proton transfer  

E-Print Network (OSTI)

This work describes a phenomenological approach for modeling linear and nonlinear infrared spectroscopy of condensed phase chemical systems, focusing on applications to strongly hydrogen bonded complexes. To overcome the ...

Hornng, Andrew D. (Andrew Davis)

2012-01-01T23:59:59.000Z

414

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

for Modeling Fluid and Heat Flow in Fractured Porous Media,with fluid and heat flow in fractured porous media arefluid and heat flow in porous media, heat pipe, reservoir simulation, fractured

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

415

Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp  

Science Conference Proceedings (OSTI)

This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

Ben Hamida, M. B.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

2012-06-15T23:59:59.000Z

416

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics  

E-Print Network (OSTI)

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. This article is an augmented version of Sornette et al. [2007] that appeared in Proceedings of the National Academy of Sciences in 2007 (doi: 10.1073/pnas.0611677104), with an electronic supplement at URL http://www.pnas.org/cgi/content/full/0611677104/DC1. Sornette et al. [2007] is also available in preprint form at physics/0511219.

Didier Sornette; Anthony B. Davis; James R. Kamm; Kayo Ide

2007-10-01T23:59:59.000Z

417

NREL: Technology Transfer - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

418

TVA Tracks Bulk Power Transfers with TagNet to Improve Transmission System Reliability  

Science Conference Proceedings (OSTI)

The bubble diagram is especially useful. In the world of real-time operations, a picture is worth a thousand words. TagNet provides TVA with The ability to identify root causes for real-time system behavior Data for future reliability models for approximation of transfer biases A mechanism to monitor system conditions using a graphical toolset. 8212Armando Rodriguez, TVA.

2006-02-15T23:59:59.000Z

419

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

420

An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere  

Science Conference Proceedings (OSTI)

Roughness height for heat transfer is a crucial parameter in estimation of heat transfer between the land surface and the atmosphere. Although many empirical formulations have been proposed over the past few decades, the uncertainties associated ...

Z. Su; T. Schmugge; W. P. Kustas; W. J. Massman

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Manipulator mounted transfer platform  

Science Conference Proceedings (OSTI)

The patent describes in a manipulator system for use in hazardous environments including a manipulator adapted for reciprocal movement upon a guide device, a transfer platform. It comprises: a bed frame defining a generally horizontal bed projecting outwardly from the manipulator; and frame mounting means securing the bed frame to the manipulator in a generally cantilevered fashion, thereby essentially minimizing the structure necessary to support the platform outwardly of the manipulator while enhancing operator visibility of the platform and the manipulator during use of the manipulator system.

Dobbins, J.C.; Hoover, M.A.; May, K.W.; Ross, M.J.

1990-01-23T23:59:59.000Z

422

Operating Instructions  

Science Conference Proceedings (OSTI)

... ensure the maximum possible flow cross-section in ... thermostat ? external circuit ? flow-through cooler ... Heat transfer tubing and other hot parts ...

2012-02-14T23:59:59.000Z

423

Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada  

SciTech Connect

When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.

Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

2007-01-15T23:59:59.000Z

424

Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada  

SciTech Connect

When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO{sub 2} volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2007-01-15T23:59:59.000Z

425

Vibrational energy transfer in a diesel engine  

Science Conference Proceedings (OSTI)

The paths of vibrational energy transfer in a diesel engine were investigated in order to obtain insight into ways of reducing this transfer to the exterior surfaces and thereby reduce the radiated noise. The engine was tested in a nonrunning condition with simulated internal forces in order to study the different transfer paths separately. Vibration response measurements were made of individual engine components and lumped?parameter models were developed to simulate this response. These models were then used to determine component design changes that would reduce the energy transfer. Two design changes were implemented in the engine and a reduction of the energy transfer was achieved as predicted.

R. G. DeJong; R. H. Lyon

1977-01-01T23:59:59.000Z

426

Transfer function identification in power system applications  

Science Conference Proceedings (OSTI)

This paper presents an introduction to concepts and applications of transfer function identification in power systems. The paper begins with a brief introduction to transfer function identification methods using least-squares approaches and then discusses applications which include SVC's, model validation applications, and software validation. A comparison is also made between eigenvalues obtained from transfer function identification and small signal analysis. Methods for testing the validity of identified transfer functions are also discussed.

Smith, J.R.; Fatehi, F.; Woods, C.S. (Montana State Univ., Bozeman, MT (United States)); Hauer, J.F. (Bonneville Power Administration, Portland, OR (United States)); Trudnowski, D.J. (Battelle Pacific Northwest Labs., Richland, WA (United States))

1993-08-01T23:59:59.000Z

427

Analytic Loss Distributional Approach Model for Operational Risk from the alpha-Stable Doubly Stochastic Compound Processes and Implications for Capital Allocation  

E-Print Network (OSTI)

Under the Basel II standards, the Operational Risk (OpRisk) advanced measurement approach is not prescriptive regarding the class of statistical model utilised to undertake capital estimation. It has however become well accepted to utlise a Loss Distributional Approach (LDA) paradigm to model the individual OpRisk loss process corresponding to the Basel II Business line/event type. In this paper we derive a novel class of doubly stochastic alpha-stable family LDA models. These models provide the ability to capture the heavy tailed loss process typical of OpRisk whilst also providing analytic expressions for the compound process annual loss density and distributions as well as the aggregated compound process annual loss models. In particular we develop models of the annual loss process in two scenarios. The first scenario considers the loss process with a stochastic intensity parameter, resulting in an inhomogeneous compound Poisson processes annually. The resulting arrival process of losses under such a model...

Peters, Gareth W; Young, Mark; Yip, Wendy

2011-01-01T23:59:59.000Z

428

A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels  

E-Print Network (OSTI)

of the UW-LANL [34] agent-based model. The source code forcomparing agent-based and differential equation models.In contrast, agent- based (AB) models track each individual

Prieto, Diana M; Das, Tapas K; Savachkin, Alex A; Uribe, Andres; Izurieta, Ricardo; Malavade, Sharad

2012-01-01T23:59:59.000Z

429

Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky-Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations  

SciTech Connect

Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participating pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.

Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.; Michalsky, Joseph J.; Reda, I.; Stifter, Armin; Wendling, Peter; Wood, Norm; Clough, Shepard A.; Mlawer, Eli J.; Anderson, Gail; Revercomb, Henry E.; Shippert, Timothy R.

2001-06-04T23:59:59.000Z

430

PARALLEL OPERATION OF WELDING GENERATORS  

SciTech Connect

Eight 900-amp, 36-kw direct current welding generators driven by eight 60-hp induction motors were operated in parallel to supply up to 7200 amp to resistance loads for heat transfer studies. A description and circuit designs of this installation, which provides safety interlocks and permits sectionalized operation for separate leads, are given. (auth)

Butler, B.H.

1960-06-01T23:59:59.000Z

431

Canister Transfer System Description Document  

SciTech Connect

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

NONE

2000-10-12T23:59:59.000Z

432

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network (OSTI)

On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers. The methods include calculation of combustion temperature, calculation of the relationship between internal convection coefficient and gas flow rate, and calculation of overall heat transfer assuming a parallel-flow heat exchanger model. The method for estimating savings from changing from on/off to modulation control accounts for purge and drift losses through the boiler and the improved heat transfer within the boiler due to the reduced combustion gas flow rate. The method for estimating savings from reducing excess combustion air accounts for the increased combustion temperature, reduced internal convection coefficient and increased residence time of combustion gasses in the boiler. Measured boiler data are used to demonstrate the accuracy of the methods.

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

433

Engineering directed excitonic energy transfer  

E-Print Network (OSTI)

We provide an intuitive platform for engineering exciton transfer dynamics. We show that careful consideration of the spectral density, which describes the system-bath interaction, leads to opportunities to engineer the transfer of an exciton. Since excitons in nanostructures are proposed for use in quantum information processing and artificial photosynthetic designs, our approach paves the way for engineering a wide range of desired exciton dynamics. We carefully describe the validity of the model and use experimentally relevant material parameters to show counter-intuitive examples of a directed exciton transfer in a linear chain of quantum dots.

Perdomo, Alejandro

2010-01-01T23:59:59.000Z

434

Operations & Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Operations & Maintenance Operations OASIS: WACM (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) wesTTrans Common...

435

Modeling and Conflict Detection of Crude Oil Operations for Refinery Process Based on Controlled Colored Timed Petri Net  

Science Conference Proceedings (OSTI)

Recently, there has been a great interest in the modeling and analysis of process industry, and various models are proposed for different uses. It is meaningful to have a model to serve as an analytical aid tool in short-term scheduling for oil refinery ... Keywords: Hybrid systems, petri net, refinery process, system modeling

Naiqi Wu; Liping Bai; Chengbin Chu

2007-07-01T23:59:59.000Z

436

Study of power transfer capability of dc systems incorporating ac loads and a parallel ac line  

Science Conference Proceedings (OSTI)

Concepts of maximum power transfer of dc systems and associated ac voltage variations, particularly at inverter stations having low short-circuit ratios, have been extended to include various ac load models and an ac line in parallel with the dc line. The operating capabilities are shown to vary from those predicted from either a Thevenin ac source model or the corresponding short-circuit ratio. The study used an ac/dc load flow program.

Reeve, J.; Uzunovic, E. [Univ. of Waterloo, Ontario (Canada)

1997-01-01T23:59:59.000Z

437

Handbook of heat and mass transfer. Volume 1  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 1 emphasizes heat transfer operations. The contents are: Fundamentsls of momentum and heat transfer. Scaling in laminar and turbulent heat and mass transfer. Heat flux in the Benar-Rayleigh problem. Hydrodynamics of free liquid jets and their influence on heat transfer. Natural convection heat transfer to power law fluids. Natural convection in evaporating droplets. Principles of heat and mass transfer with liquid evaporation. Bubble nucleation, growth, and departure in boiling heat transfer. Forced convection boiling in uniformly heated channels. Transient boiling heat transfer under forced convection. Prediction of heat transfer during forced convection subcooled boiling. Liquid metal heat transfer in turbulent pipe flows. Mixed convection in buoyant plumes. Nucleation and growth in the diffusion cloud chamber. Convective and radiative heat transfer of flowing gaseous-solid suspensions. Heat transfer in gas-solid fluidized beds. Gas convection and unsteady conduction in fluid bed heat transfer. Heat transfer between tubes and gas-solid fluid beds. Periodic heat transfer through inhomogeneous layers.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

438

Formal Specification ofOperating System Operations Dan ...  

Science Conference Proceedings (OSTI)

... ffl The process has privilege PV MAC CL (if ... Function setSLFileEnv models the operation of a process ... To model the arguments that are passed to ...

2013-05-07T23:59:59.000Z

439

Copula-Derived Observation Operators for Assimilating TMI and AMSR-E Retrieved Soil Moisture into Land Surface Models  

Science Conference Proceedings (OSTI)

Assimilating soil moisture from satellite remote sensing into land surface models (LSMs) has potential for improving model predictions by providing real-time information at large scales. However, the majority of the research demonstrating this ...

Huilin Gao; Eric F. Wood; Matthias Drusch; Matthew F. McCabe

2007-06-01T23:59:59.000Z

440

Model-based statistical estimation of Sandia RF ohmic switch dynamic operation form stroboscopic, x-ray imaging.  

Science Conference Proceedings (OSTI)

We define a new diagnostic method where computationally-intensive numerical solutions are used as an integral part of making difficult, non-contact, nanometer-scale measurements. The limited scope of this report comprises most of a due diligence investigation into implementing the new diagnostic for measuring dynamic operation of Sandia's RF Ohmic Switch. Our results are all positive, providing insight into how this switch deforms during normal operation. Future work should contribute important measurements on a variety of operating MEMS devices, with insights that are complimentary to those from measurements made using interferometry and laser Doppler methods. More generally, the work opens up a broad front of possibility where exploiting massive high-performance computers enable new measurements.

Diegert, Carl F.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Enhanced heat transfer for thermionic power modules  

DOE Green Energy (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

442

Transferring Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

443

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

444

A Roadmap for NEAMS Capability Transfer  

SciTech Connect

The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

445

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

446

Containment condensing heat transfer. [PWR; BWR  

SciTech Connect

This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained.

Gido, R.G.; Koestel, A.

1983-01-01T23:59:59.000Z

447

Conditional solvation of isoleucine in model extended and helical peptides: context dependence of hydrophobic hydration and the failure of the group-transfer model  

E-Print Network (OSTI)

The hydration thermodynamics of the GXG tripeptide relative to the reference GGG defines the \\textit{conditional} hydration contribution of X. This quantity or the hydration thermodynamics of a small molecule analog of the side-chain or some combination of such estimates, have anchored the interpretation of many of the seminal experiments on protein stability and folding and in the genesis of the current views on dominant interactions stabilizing proteins. We show that such procedures to model protein hydration have significant limitations. We study the conditional hydration thermodynamics of the isoleucine side-chain in an extended pentapeptide and in helical deca-peptides, using as appropriate an extended penta-glycine or appropriate helical deca-peptides as reference. Hydration of butane in the gauche conformation provides a small molecule reference for the side-chain. We use the quasichemical theory to parse the hydration thermodynamics into chemical, packing, and long-range interaction contributions. The...

Tomar, Dheeraj; Pettitt, B M; Asthagiri, D

2013-01-01T23:59:59.000Z

448

Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping  

SciTech Connect

Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase.

HECHT, S.L.

2000-02-15T23:59:59.000Z

449

5.8. Treatment of Extreme Operating Conditions As discussed in Chapter 4, the model may encounter conditions not intended by the  

E-Print Network (OSTI)

of vaporization, kJ/kg hsp Single-phase convective heat transfer coefficient, W/m2 o C htp Flow boiling heat wall heat transfer Nu4 Nusselt number for laminar fully-developed flow for four wall heat transfer Pout be evaluated from Eqs. (4)-(7) with Tc,out replaced by Tsat and hsp by htp, the flow boiling heat transfer

450

OPERATIONS (OPS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPS) OPS) OBJECTIVE OPS.1 The formality and discipline of operations is adequate to conduct work safely and programs are in place to maintain this formality and discipline. (CR 13) Scope: The Conduct of Operations Program was evaluated during the recent KE Basin FTS ORR and was found to be adequately implemented. Based on this result and the subsequent program enhancements, the scope of the review is to be limited to the SWS operating and maintenance evolutions. Criteria * Programmatic elements of conduct of operations are in place for SWS operations. (DOE Order 5480.19) * The SWS operations personnel adequately demonstrate the principles of conduct of operations requirements during the shift performance period. (DOE Order 5480.19)

451

Impact of ASCAT Scatterometer Wind Observations on the High-Resolution Limited-Area Model (HIRLAM) within an Operational Context  

Science Conference Proceedings (OSTI)

Denial experiments, also denoted observing system experiments (OSEs), are used to determine the impact of an observing system on the forecast quality of a numerical weather prediction (NWP) model. When the impact is neutral or positive, new ...

Siebren de Haan; Gert-Jan Marseille; Paul de Valk; John de Vries

2013-04-01T23:59:59.000Z

452

Development of a Limited-Area Model for Operational Weather Forecasting around a Power Plant: The Need for Specialized Forecasts  

Science Conference Proceedings (OSTI)

A hydrostatic meteorological model, “PMETEO,” was developed for short-range forecasts for a high-resolution limited area located in the northwest region of Spain. Initial and lateral boundary conditions are externally provided by a coarse-mesh ...

C. F. Balseiro; M. J. Souto; E. Penabad; J. A. Souto; V. Pérez-Muñuzuri

2002-09-01T23:59:59.000Z

453

An Evaluation of Precipitation Forecasts from Operational Models and Reanalyses Including Precipitation Variations Associated with MJO Activity  

Science Conference Proceedings (OSTI)

In this paper, the results of an examination of precipitation forecasts for 1–30-day leads from global models run at the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) ...

John E. Janowiak; Peter Bauer; Wanqiu Wang; Phillip A. Arkin; Jon Gottschalck

2010-12-01T23:59:59.000Z

454

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

455

Program on Technology Innovation: Modeling the Impact of Climate Policy on Expansion and Operation of the Electric Sector  

Science Conference Proceedings (OSTI)

This report presents interim results of a multiyear effort to better understand how climate policy could impact electric power sector investment and operating decisions. The report presents an analytical methodology and base case representation of the electric sector through the year 2030. This framework is exercised to show how the electric sector would respond to a price on CO2 and how uncertainty in both the ability to deploy large quantities of new low-carbon generation and the cost of building new p...

2008-01-22T23:59:59.000Z

456

Use of influence diagrams in gas transfer system option prioritization  

DOE Green Energy (OSTI)

A formal decision-analysis methodology was applied to aid the Department of Energy (DOE) in deciding which of several gas transfer system (GTS) options should be selected. The decision objectives for this case study, i.e., risk and cost, were directly derived from the DOE guidelines. Influence diagrams were used to define the structure of the decision problem and clearly delineate the flow if information. A set of performance matrices wee used in conjunction with the influence diagrams to assess and evaluate the degree to which the objectives of the case study were met. These performance measures were extracted from technical models, design and operating data, and professional judgments. The results were aggregated to provide an overall evaluation of the different design options of the gas transfer system. Consequently, the results of this analysis were used as an aid to DOE to select a viable GTS option.

Heger, A.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Garcia, M.D. [Los Alamos National Lab., NM (United States)

1995-08-01T23:59:59.000Z

457

Drilling and operating geothermal wells in California  

SciTech Connect

The following procedural points for geothermal well drilling and operation are presented: geothermal operators, definitions, geothermal unit, agent, notice of intention, fees, report on proposed operations, bonds, well name and number, well and property sale on transfer, well records, and other agencies. (MHR)

1979-01-01T23:59:59.000Z

458

Near-field radiative heat transfer for structured surfaces  

E-Print Network (OSTI)

We apply an analytical approach for determining the near-field radiative heat transfer between a metallic nanosphere and a planar semi-infinite medium with some given surface structure. This approach is based on a perturbative expansion, and evaluated to first order in the surface profile. With the help of numerical results obtained for some simple model geometries we discuss typical signatures that should be obtainable with a near-field scanning thermal microscope operated in either constant-height or constant-distance mode.

Svend-Age Biehs; Oliver Huth; Felix Rüting

2011-03-15T23:59:59.000Z

459

An Effective Optimization-Based Algorithm for Job Shop Scheduling with Fixed-Size Transfer Lots  

E-Print Network (OSTI)

Effective scheduling of production lots is of great importance for manufacturing medium to high-volume products that require significant setup times. Compared to traditional entire-lot production, lot splitting techniques divide a production lot into multiple smaller sublots so that each sublot can be "transferred" from one stage of operation to the next as soon as it has been completed. "Transfer lots," therefore, significantly reduce lead times and lower work-in-process (WIP) inventory. The mathematical modeling, analysis, and control of transfer lots, however, is extremely difficult. This paper presents a novel integer programming formulation with separable structure for scheduling job shops with fixed-size transfer lots. A solution methodology based on a synergistic combination of Lagrangian relaxation, backward dynamic programming (BDP), and heuristics is developed. Through explicit modeling of lot dynamics, transfer lots are handled on standard machines, machines with setups, and machines requiring all transfer lots within a production lot to be processed simultaneously. With "substates" and the derivation of DP functional equations considering transfer lot dynamics, the standard BDP is extended to solve the lot-level subproblems. The recently developed "time step reduction technique" is also used for increased efficiency. It implicitly establishes two time scales to reduce computational requirements without much loss of modeling accuracy and scheduling performance, thus enabling resolution of long-horizon problems within controllable computational requirements. The method has been implemented using object-oriented programming language C++, and numerical tests show that high-quality schedules involving transfer lots are efficiently generated to achieve on-time delivery of products with low WIP inventory.

Bin Jin; Peter B. Luh; L.S. Thakur

1999-01-01T23:59:59.000Z

460

Government Operation  

Science Conference Proceedings (OSTI)

Use Cases from NBD(NIST Big Data) Requirements WG V1.0. http://bigdatawg. nist.gov/home.php. Contents. Blank Template. Government Operation ...

2013-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "transfer models operated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Operations Research  

E-Print Network (OSTI)

Mar 1, 2005 ... Operations Research. Report 2005-01. On a closedness theorem. Miklós Ujvári. Marc 2005. Eötvös Loránd University of Sciences. Department ...

462

Operating Instructions  

Science Conference Proceedings (OSTI)

... The system operation is center around 3 areas of the equipment 1) Deposition chamber 2) Vaporizer 3) Chiller/cold finger ...

2013-01-18T23:59:59.000Z

463

Optimization of Phase Change Heat Transfer in Biporous Media  

E-Print Network (OSTI)

transfer analysis of a loop heat pipe with biporous wicks”.Planes”. Frontiers in Heat Pipes Journal 1, 013001 (2010).transfer model of a loop heat pipe with a bidisperse wick

Reilly, Sean

2013-01-01T23:59:59.000Z

464

Operations research  

Science Conference Proceedings (OSTI)

In Evita, Andrew Lloyd Webber and Tim Rice wrote: Politics, the Art of the Possible. To those of us in the operations research community, we postulate: Operations Research, the Science of Better - (i.e. better processes, better systems and better decisions). ...

William P. Pierskalla

2009-01-01T23:59:59.000Z

465

Operation crosscheck  

SciTech Connect

This report consists of three sections covering the three major areas of Lawrence Livermore Laboratory`s participation in Operation Crosscheck. These areas are: Diagnostic Aircraft; Radiochemical Sampling; and Device Assembly and Handling, Barbers Point. The information contained in these sections has been extracted from Crosscheck post-operation reports.

Gilbert, F. C.

1964-11-06T23:59:59.000Z

466

The Effect of Energy Prices on Operation and Investment in OECD Countries: Evidence from the Vintage Capital Model  

E-Print Network (OSTI)

capital stock may reduce future energy (including fossil fuel) input consumption. To illustrate the outcome of such policies we use the vintage capital model predictions to evaluate the e¤ect of a greenhouse emissions tax on energy consumption. Because... (agriculture, commerce, manufacturing, and transport) between 1990 and 2005. Compared to earlier studies, our analysis relies on more accurate energy prices in different sectors and countries based on the end-use fuel prices and sector-specific energy mix...

Steinbuks, J; Meshreky, A; Neuhoff, Karsten

467

Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture  

Science Conference Proceedings (OSTI)

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions, which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H{sub 2}S/SO{sub 2} ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both the H{sub 2}S/SO{sub 2} ratio and the adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO{sub 2} capture. Impact of CO{sub 2} capture on the Claus process has also been discussed.

Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

2011-12-15T23:59:59.000Z

468

Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data  

Science Conference Proceedings (OSTI)

Data from the 1987 summer FIFE experiment for four pairs of days are compared with corresponding 48-h forecasts from two different versions of the Eta Model, both initialized from the NCEP–NCAR (National Centers for Environmental Prediction–...

Alan K. Betts; Fei Chen; Kenneth E. Mitchell; Zaviša I. Janji?

1997-11-01T23:59:59.000Z

469

Analytical and numerical solution of one- and two-dimensional steady heat transfer in a coldplate  

SciTech Connect

We develop analytical models for steady-state, one- and two-dimensional heat transfer in a single-material, flat-plate coldplate. Discrete heat sources are mounted on one side of the plate and heat transfer to a flowing fluid occurs on the other. The models are validated numerically using finite differences. We propose a simple procedure for estimating maximum coldplate temperature at the location of each heat source which includes thermal interaction among the sources. Results from one model are compared with data obtained for a composite coldplate operated in the laboratory. We demonstrate the utility of the models as diagnostic tools to be used for predicting the existence and extent of void volumes and delaminations in the composite material that can occur with coldplates of this type. Based on our findings, recommendations for effective coldplate design are given.

Jones, G.F.; Bennett, G.A.; Bultman, D.H.

1987-01-01T23:59:59.000Z

470

Third Northeast Regional Operational Workshop  

Science Conference Proceedings (OSTI)

The Third Northeast Regional Operational Workshop, focusing on hydrometeorology in the northeastern United States, was held 6-7 November 2001 in Albany, New York. Sessions covered cold season events, warm season events, modeling,and operational ...

Eugene P. Auciello

2002-07-01T23:59:59.000Z

471

Reaction mechanisms of pair transfer  

E-Print Network (OSTI)

The mechanisms of nuclear transfer reactions are described for the transfer of two nucleons from one nucleus to another. Two-nucleon overlap functions are defined in various coordinate systems, and their transformation coefficients given between coordinate systems. Post and prior couplings are defined for sequential transfer mechanisms, and it is demonstrated that the combination of `prior-post' couplings avoids non-orthogonality terms, but does not avoid couplings that do not have good zero-range approximations. The simultaneous and sequential mechanisms are demonstrated for the $^{124}$Sn(p,t)$^{122}$Sn reaction at 25 MeV using shell-model overlap functions. The interference between the various simultaneous and sequential amplitudes is shown.

Ian J. Thompson

2012-04-13T23:59:59.000Z

472

NERSC's Data Transfer Nodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

473

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

474

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

475

Tech Transfer Report 2000  

Science Conference Proceedings (OSTI)

Page 1. Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report ...

2010-07-27T23:59:59.000Z

476

Submersible canned motor transfer pump  

DOE Patents (OSTI)

A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

1997-01-01T23:59:59.000Z

477

Operation Terminology  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conservation Magnets require a large amount of power to control a particle beam. In order to conserve energy and money when a beam line is down, Operations will install a...

478

Direct Simulation of Internal Wave Energy Transfer  

Science Conference Proceedings (OSTI)

A three-dimensional nonhydrostatic numerical model is used to calculate nonlinear energy transfers within decaying Garrett–Munk internal wavefields. Inviscid wave interactions are calculated over horizontal scales from about 1 to 80 km and for ...

Kraig B. Winters; Eric A. D’Asaro

1997-09-01T23:59:59.000Z

479

Training conditions and strategic aspects of skill transfer in a simulated process control task  

Science Conference Proceedings (OSTI)

In carrying out tasks, operators are at liberty to adopt a variety of strategies both at an operational level and at a more private psychological level, according to the affordances provided in the operational situation. Skill transfer between tasks ...

Tom Kontogiannis; Andrew Shepherd

1999-12-01T23:59:59.000Z

480

Fast static available transfer capability determination using radial basis function neural network  

Science Conference Proceedings (OSTI)

In a competitive electricity market, available transfer capability information is required by market participants as well as the system operator for secure operation of the power system. The on-line updating of available transfer capability information ... Keywords: Available transfer capability, Euclidean distance based clustering technique, Radial basis function neural network, Random forest technique

T. Jain; S. N. Singh; S. C. Srivastava

2011-03-01T23:59:59.000Z