National Library of Energy BETA

Sample records for transfer models adopted

  1. CERTS customer adoption model

    SciTech Connect (OSTI)

    Rubio, F. Javier; Siddiqui, Afzal S.; Marnay, Chris; Hamachi,Kristina S.

    2000-03-01

    This effort represents a contribution to the wider distributed energy resources (DER) research of the Consortium for Electric Reliability Technology Solutions (CERTS, http://certs.lbl.gov) that is intended to attack and, hopefully, resolve the technical barriers to DER adoption, particularly those that are unlikely to be of high priority to individual equipment vendors. The longer term goal of the Berkeley Lab effort is to guide the wider technical research towards the key technical problems by forecasting some likely patterns of DER adoption. In sharp contrast to traditional electricity utility planning, this work takes a customer-centric approach and focuses on DER adoption decision making at, what we currently think of as, the customer level. This study reports on Berkeley Lab's second year effort (completed in Federal fiscal year 2000, FY00) of a project aimed to anticipate patterns of customer adoption of distributed energy resources (DER). Marnay, et al., 2000 describes the earlier FY99 Berkeley Lab work. The results presented herein are not intended to represent definitive economic analyses of possible DER projects by any means. The paucity of data available and the importance of excluded factors, such as environmental implications, are simply too important to make such an analysis possible at this time. Rather, the work presented represents a demonstration of the current model and an indicator of the potential to conduct more relevant studies in the future.

  2. Lymphocyte migration in the adoptive transfer of EAU

    SciTech Connect (OSTI)

    Palestine, A.G.; Mc Allister, C.; Carter, C.; Keenan, A.M.; Vistica, B.; Gery, I.; Davey, R.; Nussenblatt, R.

    1986-04-01

    Experimental autoimmune uveoretinitis (EAU) was transferred into naive male Lewis rats using 1 X 10(8) indium-111 labeled lymphocytes from syngeneic donors immunized with S-antigen. The migration of the lymphocytes was monitored by gamma camera imaging and by determining the accumulation of radioactivity in selected organs. The majority of the cells leave the peritoneal cavity within 24 hr and migrate to the liver, spleen, and thymus. Only a small fraction of the labeled cells reach the eye. However, there were significantly more labeled cells present in eyes that developed EAU as compared with controls using lymphocytes sensitized against bovine serum albumin. These results indicate the adoptive transfer of EAU is a complex process in which only a small number of transferred cells actually reach the eye to induce uveoretinitis.

  3. Automotive Deployment Option Projection Tool (ADOPT) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Deployment Option Projection Tool (ADOPT) Model (National Renewable Energy Laboratory) Objectives Estimate the petroleum use impacts of alternative technologies and policies. Estimate future vehicle market share based on infrastructure constraints, consumer preferences, and vehicle attributes. Analyze policy options by considering factors such as vehicle incentives and energy prices. Key Attributes & Strengths The model validates in many relevant dimensions with historical vehicle

  4. Project Profile: An Emergent Model of Technology Adoption for Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Diffusion of Residential Solar PV | Department of Energy Soft Costs » Project Profile: An Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV Project Profile: An Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV Logos of the University of Texas at Austin, Frontier Associates, and Austin Energy. The University of Texas at Austin, along with partners at Frontier Associates and Austin Energy, under the

  5. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  6. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    SciTech Connect (OSTI)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  7. Modeling of customer adoption of distributed energy resources

    SciTech Connect (OSTI)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible

  8. (Validity of environmental transfer models)

    SciTech Connect (OSTI)

    Blaylock, B.G.; Hoffman, F.O.; Gardner, R.H.

    1990-11-07

    BIOMOVS (BIOspheric MOdel Validation Study) is an international cooperative study initiated in 1985 by the Swedish National Institute of Radiation Protection to test models designed to calculate the environmental transfer and bioaccumulation of radionuclides and other trace substances. The objective of the symposium and workshop was to synthesize results obtained during Phase 1 of BIOMOVS (the first five years of the study) and to suggest new directions that might be pursued during Phase 2 of BIOMOVS. The travelers were an instrumental part of the development of BIOMOVS. This symposium allowed the travelers to present a review of past efforts at model validation and a synthesis of current activities and to refine ideas concerning future development of models and data for assessing the fate, effect, and human risks of environmental contaminants. R. H. Gardner also visited the Free University, Amsterdam, and the National Institute of Public Health and Environmental Protection (RIVM) in Bilthoven to confer with scientists about current research in theoretical ecology and the use of models for estimating the transport and effect of environmental contaminants and to learn about the European efforts to map critical loads of acid deposition.

  9. Project Profile: An Emergent Model of Technology Adoption for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study solar energy within a socio-technical context. ...

  10. A transient heat transfer model for high temperature solar thermochemi...

    Office of Scientific and Technical Information (OSTI)

    Search Results Journal Article: A transient heat transfer model for high temperature solar ... Title: A transient heat transfer model for high temperature solar thermochemical reactors ...

  11. RRTM: A rapid radiative transfer model

    SciTech Connect (OSTI)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A.

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  12. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  13. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  14. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    SciTech Connect (OSTI)

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-02-01

    This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health

  15. Distributed energy resources customer adoption modeling with combined heat and power applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-07-01

    In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

  16. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not

  17. Improvements to the SHDOM Radiative Transfer Modeling Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction The spherical harmonic discrete ordinate method (SHDOM) is an algorithm and FORTRAN computer code for three-dimensional (3D) atmospheric radiative transfer modeling (Evans 1998). The optical properties (extinction, single scattering albedo, and phase function)

  18. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  19. Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and

  20. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect (OSTI)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  1. Transfers

    Broader source: Energy.gov [DOE]

    Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. 

  2. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect (OSTI)

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Aln E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts the reorganization shift to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This

  3. A meshless method for modeling convective heat transfer

    SciTech Connect (OSTI)

    Carrington, David B

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  4. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  5. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process

  6. Modeling the Transfer Function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with themore » corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  7. Modeling the transfer function for the Dark Energy Survey

    SciTech Connect (OSTI)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; Peiris, H.; Abbott, T.; Abdalla, F. B.; Balbinot, E.; Banerji, M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carnero, A.; Desai, S.; da Costa, L. N.; Cunha, C. E.; Eifler, T.; Evrard, A. E.; Fausti Neto, A.; Gerdes, D.; Gruen, D.; James, D.; Kuehn, K.; Maia, M. A. G.; Makler, M.; Ogando, R.; Plazas, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Zuntz, J.

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

  8. Modeling the transfer function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; et al

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulationmoreoutput is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.less

  9. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    SciTech Connect (OSTI)

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure of the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.

  10. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore » the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less

  11. Boiler heat transfer modeling using CEMS data with application to fouling analysis

    SciTech Connect (OSTI)

    Zibas, S.J.; Idem, S.A.

    1996-12-31

    A mathematical boiler heat transfer simulation for coal-fired plants is described. Required model input includes boiler geometry, fuel composition, and limited CEMS data that are typically available. Radiation heat transfer in the furnace is calculated using curve-fits to the Hottel charts. The model employs empirical heat transfer coefficient correlations to evaluate convection heat transfer to various boiler component surfaces. Fouling/slagging can be accounted for by including fouling resistance in the calculation of the overall heat transfer coefficient of each component. Model performance predictions are compared to cases available in the literature. Results from parametric studies are presented.

  12. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as

  13. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R.

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  14. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    SciTech Connect (OSTI)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-07-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  15. Mathematical modeling of sulfide flash smelting process. Part 2; Quantitative analysis of radiative heat transfer

    SciTech Connect (OSTI)

    Hahn, Y.B. ); Sohn, H.Y. )

    1990-12-01

    This paper reports on a mathematical model developed to describe the rate processes in an axisymmetric copper flash smelting furnace shaft. A particular feature of the model is the incorporation of the four-flux model to describe the radiative heat transfer by combining the absorbing, emitting, and anisotropic scattering phenomena. The importance of various subprocesses of the radiative heat transfer in a flash smelting furnace has been studied. Model predictions showed that the radiation from the furnace walls and between the particles and the surrounding is the dominant mode of heat transfer in a flash smelting furnace.

  16. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  17. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  19. Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or

  20. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  1. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  2. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmorewell as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.less

  3. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    SciTech Connect (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology as well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.

  4. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmore » well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.« less

  5. New model of calculating the energy transfer efficiency for the spherical theta-pinch device

    SciTech Connect (OSTI)

    Xu, G.; Hock, C.; Loisch, G.; Jacoby, J.; Xiao, G.; Zhao, Y.; Weyrich, K.; Li, Y.

    2015-05-15

    Ion-beam-plasma-interaction plays an important role in the field of warm dense matter and inertial confinement fusion. A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. As the main assumption of a constant reflected plasma resistance is contradictory by the measured data, the traditional two models of energy transfer efficiency will lead to wrong results. From measurements, the parasitic resistance is derived as constant. Based on this key parameter, a new model is proposed. Due to no assumption, the new model is considered as exact. Further, a comparison of these three different models is given at a fixed operation voltage for the full range of working gas pressures. Due to the inappropriate assumptions included in the traditional models, one owns a tendency to overestimate the energy transfer efficiency whereas the other leads to an underestimation. Applying our new model to a wide spread set of operation voltages and gas pressures, an overall picture of the energy transfer efficiency results.

  6. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  7. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    SciTech Connect (OSTI)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  8. This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program.

    Broader source: Energy.gov [DOE]

    This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program.

  9. A mass transfer model of ammonia volatilisation from anaerobic digestate

    SciTech Connect (OSTI)

    Whelan, M.J.; Everitt, T.; Villa, R.

    2010-10-15

    Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

  10. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect (OSTI)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  11. Modeling and validating tritium transfer in a grassland ecosystem in response to {sup 3}H releases

    SciTech Connect (OSTI)

    Le Dizes, S.

    2015-03-15

    In this paper a radioecological model (TOCATTA) for tritium transfer in a grassland ecosystem developed on an hourly time-step basis is proposed and compared with the first data set obtained in the vicinity of the AREVA-NC reprocessing plant of La Hague (France). The TOCATTA model aims at simulating dynamics of tritium transfer in agricultural soil and plant ecosystems exposed to time-varying HTO concentrations in air water vapour and possibly in irrigation and rain water. In the present study, gaseous releases of tritium from the AREVA NC nuclear reprocessing plant in normal operation can be intense and intermittent over a period of less than 24 hours. A first comparison of the model predictions with the field data has shown that TOCATTA should be improved in terms of kinetics of tritium transfer.

  12. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    SciTech Connect (OSTI)

    Zhu, Xuejun; Ye, Shichao; Pan, Xiaoheng

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model is able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)

  13. On the multidimensional modeling of fluid flow and heat transfer in SCWRS

    SciTech Connect (OSTI)

    Gallaway, T.; Antal, S. P.; Podowski, M. Z.

    2012-07-01

    The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

  14. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  15. Three-dimensional modeling of heat transfer from slab floors. Final report

    SciTech Connect (OSTI)

    Bahnfleth, W.P.

    1989-07-01

    Earth-coupled heat-transfer processes have been recognized in recent years as a potential source of significant energy savings in both conventional and earth-sheltered designs, Because of the complexity of the building/soil/atmosphere interaction, however, important aspects of earth-coupled heat transfer are not well understood. There is a particular lack of three-dimensional foundation heat-loss data. In this study, a detailed three-dimensional finite-difference model of a slab floor was used to generate 93 annual simulations in parametric groups focusing on effects of size and shape, soil properties, boundary conditions, climate, insulation, and building shadow. These results indicate that soil thermal conductivity, ground surface conditions, foundation design, and floor shape/size are essential elements of a general change in heat-transfer rate.

  16. RELAP5 Model of the Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-07-01

    This report describes the RELAP5 models that have been developed for the Vacuum Vessel (VV) Primary Heat Transfer System (PHTS). The models are intended to be used to examine the transient performance of the VV PHTS, and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the models and to examine general VV PHTS transient behavior. The models can be used as a starting point to develop transient modeling capability in several directions including control system modeling, safety evaluations, etc, and are not intended to represent the final VV PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, heat exchanger control may not be necessary, and that temperatures within the vacuum vessel during decay heat operation remain low.

  17. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  18. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect (OSTI)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  19. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Revision 1

    SciTech Connect (OSTI)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-05-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  20. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  1. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    SciTech Connect (OSTI)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

    2003-07-20

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

  2. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    SciTech Connect (OSTI)

    Yao, Yi; Berkowitz, Max L. E-mail: ykanai@unc.edu; Kanai, Yosuke E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  3. Improving computer simulations of heat transfer for projecting fenestration products: Using radiation view-factor models

    SciTech Connect (OSTI)

    Griffith, B.; Tuerler, D.; Arasteh, D.K.; Curcija, D.

    1998-10-01

    The window well formed by the concave surface on the warm side of skylights and garden windows can cause surface heat-flow rates to be different for these projecting types of fenestration products than for normal planar windows. Current methods of simulating fenestration thermal conductance (U-factor) use constant boundary condition values for overall surface heat transfer. Simulations that account for local variations in surface heat transfer rates (radiation and convection) may be more accurate for rating and labeling window products whose surfaces project outside a building envelope. This paper, which presents simulation and experimental results for one projecting geometry, is the first step in documenting the importance of these local effects. A generic specimen, called the foam garden window, was used in simulations and experiments to investigate heat transfer of projecting surfaces. Experiments focused on a vertical cross section (measurement plane) located at the middle of the window well on the warm side of the specimen. The specimen was placed between laboratory thermal chambers that were operated at American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter heating design conditions. Infrared thermography was used to map surface temperatures. Air temperature and velocity were mapped throughout the measurement plane using a mechanical traversing system. Finite-element computer simulations that directly modeled element-to-element radiation were better able to match experimental data than simulations that used fixed coefficients for total surface heat transfer. Air conditions observed in the window well suggest that localized convective effects were the reason for the difference between actual and modeled surface temperatures. U-value simulation results were 5% to 10% lower when radiation was modeled directly.

  4. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    SciTech Connect (OSTI)

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We

  5. Improved Scheme for Modeling Mass Transfer between Fracture and Matrix Continua with Particle Tracking Method

    SciTech Connect (OSTI)

    L. Pan; Y. Seol; G. Bodvarsson

    2004-04-29

    The dual-continuum random-walk particle tracking approach is an attractive simulation method for simulating transport in a fractured porous medium. In order to be truly successful for such a model, however, the key issue is to properly simulate the mass transfer between the fracture and matrix continua. In a recent paper, Pan and Bodvarsson (2002) proposed an improved scheme for simulating fracture-matrix mass transfer, by introducing the concept of activity range into the calculation of fracture-matrix particle-transfer probability. By comparing with analytical solutions, they showed that their scheme successfully captured the transient diffusion depth into the matrix without any additional subgrid (matrix) cells. This technical note presents an expansion of their scheme to cases in which significant water flow through the fracture-matrix interface exists. The dual-continuum particle tracker with this new scheme was found to be as accurate as a numerical model using a more detailed grid. The improved scheme can be readily incorporated into the existing particle-tracking code, while still maintaining the advantage of needing no additional matrix cells to capture transient features of particle penetration into the matrix.

  6. CKow -- A More Transparent and Reliable Model for Chemical Transfer to Meat and Milk

    SciTech Connect (OSTI)

    Rosenbaum, Ralph K.; McKone, Thomas E.; Jolliet, Olivier

    2009-03-01

    The objective of this study is to increase the understanding and transparency of chemical biotransfer modeling into meat and milk and explicitly confront the uncertainties in exposure assessments of chemicals that require such estimates. In cumulative exposure assessments that include food pathways, much of the overall uncertainty is attributable to the estimation of transfer into biota and through food webs. Currently, the most commonly used meat and milk-biotransfer models date back two decades and, in spite of their widespread use in multimedia exposure models few attempts have been made to advance or improve the outdated and highly uncertain Kow regressions used in these models. Furthermore, in the range of Kow where meat and milk become the dominant human exposure pathways, these models often provide unrealistic rates and do not reflect properly the transfer dynamics. To address these issues, we developed a dynamic three-compartment cow model (called CKow), distinguishing lactating and non-lactating cows. For chemicals without available overall removal rates in the cow, a correlation is derived from measured values reported in the literature to predict this parameter from Kow. Results on carry over rates (COR) and biotransfer factors (BTF) demonstrate that a steady-state ratio between animal intake and meat concentrations is almost never reached. For meat, empirical data collected on short term experiments need to be adjusted to provide estimates of average longer term behaviors. The performance of the new model in matching measurements is improved relative to existing models--thus reducing uncertainty. The CKow model is straight forward to apply at steady state for milk and dynamically for realistic exposure durations for meat COR.

  7. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    SciTech Connect (OSTI)

    Chen, Y. Y.; Luo, E. C.; Dai, W.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermal regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.

  8. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    SciTech Connect (OSTI)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters. Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.

  9. A simplified model for heat transfer in heat exchangers and stack plates for thermoacoustic devices

    SciTech Connect (OSTI)

    Chen, Y.; Herman, C.

    1999-07-01

    A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic devices was developed. The model took advantage of previous results regarding the thermal behavior of the thermoacoustic core for investigations of the performance of heat exchangers attached to the core. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, the plate, and the working medium were organized into dimensionless groups that allowed to account for their impact on the performance of the heat exchangers. Numerical simulations with the model were carried out. Nonlinear temperature distributions and heat fluxes near the edge of the stack plate were observed. Effects of different parameters on the thermal performance of the heat exchangers were investigated.

  10. Mathematical modeling of mass transfer during centrifugal filtration of polydisperse suspensions

    SciTech Connect (OSTI)

    V.F. Pozhidaev; Y.B. Rubinshtein; G.Y. Golberg; S.A. Osadchii

    2009-07-15

    A mass-transfer equation, the solution of which for given boundary conditions makes it possible to derive in analytical form a relationship between the extraction of the solid phase of a suspension into the centrifuge effluent and the fineness of the particles, is suggested on the basis of a model; this is of particular importance in connection with the development of a new trend in the utilization of filtering centrifuges - concentration of coal slurries by extraction into the centrifuge effluent of the finest particles, the ash content of which is substantially higher than that of particles of the coarser classes. Results are presented for production studies under conditions at an active establishment (the Neryungrinskaya Enrichment Factory); these results confirmed the adequacy of the mathematical model proposed: convergence of computed and experimental data was within the limits of the experimental error (no more than 3%). The model in question can be used to predict results of suspension separation by centrifugal filtration.

  11. adoption | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  12. Picosecond electron transfer in diporphyrin models of Photosystem II of green plants

    SciTech Connect (OSTI)

    Netzel, T L; Fujita, I; Wang, C B; Fajer, J

    1980-01-01

    Green plants and photosynthetic bacteria efficiently transform the energy of an absorbed photon into redox products. Current in vivo and in vitro studies on Photosystem II (PS II) suggest the electron donor is a chlorophyll monomer, ligated to produce the high oxidation potential of P680, and the electron acceptor is pheophytin, a metal-free chlorophyll. This study probes the behavior of this PS II model in solvents of high dielectric constant and tests the sensitivity of its charge transfer reactions to increases in linking chain length as well as to changes in the relative orientation of the porphyrin subunits. (ACR)

  13. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    SciTech Connect (OSTI)

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  14. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    SciTech Connect (OSTI)

    Li, Ben; He, Feng; Ouyang, Jiting; Duan, Xiaoxi

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  15. Glass Furnace Model (GFM) development and technology transfer program final report.

    SciTech Connect (OSTI)

    Lottes, S. A.; Petrick, M.; Energy Systems

    2007-12-04

    the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

  16. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature of the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.

  17. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  18. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  19. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  20. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During...

    Office of Scientific and Technical Information (OSTI)

    transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is ... LIQUIDS; NUCLEAR FUELS; OXIDATION; REACTIVITY; SUBCOOLING; SURFACES; THERMAL ...

  1. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.

  2. Transfer matrix computation of critical polynomials for two-dimensional Potts models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobsen, Jesper Lykke; Scullard, Christian R.

    2013-02-04

    We showed, In our previous work, that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial PB(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = eK — 1 of PB(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasing the size ofmore » B in an appropriate way. In earlier work, PB(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of PB(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible.We present results for the critical polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures vc obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain vc(4, 82) = 3.742 489 (4), vc(kagome) = 1.876 459 7 (2), and vc(3, 122) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.« less

  3. Heat transfer modelling of the saltstone pouring and curing process. Task Number: 93-016-0

    SciTech Connect (OSTI)

    Shadday, M.A. Jr.

    1993-11-01

    A byproduct of the in tank precipitation, ITP, process will be 25 million gallons of low-level salt solution. This salt solution will be mixed with cement and a flyash/slag mixture and solidified in surface vaults in the Z-area Saltstone Facility. The curing process of saltstone involves exothermic reactions, and there is a maximum temperature limit of 90{degree}C for the curing saltstone. If this temperature limit is exceeded, the physical properties of the saltstone can be degraded. A heat transfer model of the saltstone pouring and curing process has been developed that predicts transient temperature distributions in the curing saltstone. The purpose of this model is to predict peak temperatures as functions of the several independent variables in this process: pour temperature, the pour schedule, and seasonal variations in the ambient temperature. The peak temperature of the saltstone is very sensitive to the internal heat generation that accompanies the curing process. Most of the energy is released over a short period of several hours, and the balance is released slowly over a period of time that can be in excess of a month. This long term low level internal heat generation is difficult to measure in laboratory calorimetry tests, and it can significantly influence the peak temperature in the saltstone. Due to the low thermal conductivity of the saltstone, the central region of the poured saltstone will essentially heat up adiabatically. The time dependence of the internal heat generation rate was determined from an analysis of the 1991 pilot pour test. With a pour schedule of eight hours a day and five days a week in the summer, the model predicts that the saltstone will have a peak temperature of 98 C with a pour temperature of 45 C, and a peak temperature of 88 C with a pour temperature of 30 C. With a pour schedule of three days a week, the peak temperature will be 88{degree}C with a pour temperature of 45 C, and 80 C with a pour temperature of 30 C.

  4. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect (OSTI)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  5. Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core

    SciTech Connect (OSTI)

    Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M.

    2012-07-01

    The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

  6. SCDAP/RELAP5 Modeling of Fluid Heat Transfer and Flow Losses Through Porous Debris in a Light Water Reactor

    SciTech Connect (OSTI)

    Harvego, Edwin Allan; Siefken, Larry James

    2000-04-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.

  7. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    SciTech Connect (OSTI)

    E. A. Harvego; L. J. Siefken

    2000-04-02

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.

  8. Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud

  9. Ownership transfer for non-federate object and time management in developing an hla compliant logistics model.

    SciTech Connect (OSTI)

    Li, Z.

    1998-01-12

    A seaport simulation model, PORTSIM, has been developed for the Department of Defense (DOD) at Argonne National Laboratory. PORTSIM simulates the detailed processes of cargo loading and unloading in a seaport and provides throughput capability, resource utilization, and other important information on the bottlenecks in a seaport operation, which are crucial data in determining troop and equipment deployment capability. There are two key problems to solve in developing the HLA-compliant PORTSIM model. The first is the cargo object ownership transfer problem. In PORTSIM, cargo items, e.g. vehicles, containers, and pallets, are objects having asset attributes. Cargo comes to a seaport for loading or unloading. The ownership of a cargo object transfers from its carrier to the port and then from the port to a new carrier. Each owner of the cargo object is responsible for publishing and updating the attributes of the cargo object when it has the ownership. This creates a unique situation in developing the PORTSIM federate object model, that is, the ownership of the object instead of the attributes needs to be changed in handling the cargo object in the PORTSIM federate. The ownership management service provided by the current RTI does not directly address this issue. The second is the time management issue. PORTSIM is an event-driven simulation that models seaport operations over time. To make PORTSIM HLA compliant, time management must be addressed to allow for synchronization with other simulation models. This paper attempts to address these two issues and methodologies developed for solving these two problems.

  10. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  11. Data Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Data Transfer DQ2 is an ATLAS tool for defining and handling datasets and transferring the datasets on the grid. It was developed as part of the ATLAS Distributed...

  12. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data fromto NERSC - scp...

  13. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transferring data - whether over the wide area network ...

  14. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  15. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  16. Overview of heat transfer and fluid flow problem areas encountered in stirling engine modeling

    SciTech Connect (OSTI)

    Tew, R.C. Jr.

    1988-02-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  17. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    SciTech Connect (OSTI)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.

  18. Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon

    SciTech Connect (OSTI)

    David Werner; Upal Ghosh; Richard G. Luthy

    2006-07-01

    The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). The authors extend their evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments. The modeling approach distinguishes between two different sediment particles types: a light-density fraction representing carbonaceous particles such as charcoal, coal, coke, cenospheres, or wood, and a heavy-density fraction representing the mineral phase with coatings of organic matter. A third particle type in the numerical model is AC. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For the AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. After AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after 5 years. 19 refs., 5 figs., 4 tabs.

  19. Calculating the free energy of transfer of small solutes into a model lipid membrane: Comparison between metadynamics and umbrella sampling

    SciTech Connect (OSTI)

    Bochicchio, Davide; Panizon, Emanuele; Ferrando, Riccardo; Rossi, Giulia; Monticelli, Luca

    2015-10-14

    We compare the performance of two well-established computational algorithms for the calculation of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid (phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free energy of transfer. We model our test systems at two different levels of description, united-atom and coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote special attention to the analysis of statistical errors in the two different methods and propose a general procedure for the error estimation in metadynamics simulations. Metadynamics and umbrella sampling yield the same estimates for the water-membrane free energy profile, but metadynamics can be more efficient, providing lower statistical uncertainties within the same simulation time.

  20. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    SciTech Connect (OSTI)

    Grant Hawkes; James E. O'Brien

    2008-10-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  1. Data Transfer Software-SAS MetaData Server & Phoenix Integration Model Center

    Energy Science and Technology Software Center (OSTI)

    2010-04-15

    This software is a plug-in that interfaces between the Phoenix Integration's Model Center and the Base SAS 9.2 applications. The end use of the plug-in is to link input and output data that resides in SAS tables or MS SQL to and from "legacy" software programs without recoding. The potential end users are users who need to run legacy code and want data stored in a SQL database.

  2. Low-order modeling of internal heat transfer in biomass particle pyrolysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.

    2016-05-11

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  3. Building Adoption of Visual Analytics Software

    SciTech Connect (OSTI)

    Chinchor, Nancy; Cook, Kristin A.; Scholtz, Jean

    2012-01-05

    Adoption of technology is always difficult. Issues such as having the infrastructure necessary to support the technology, training for users, integrating the technology into current processes and tools, and having the time, managerial support, and necessary funds need to be addressed. In addition to these issues, the adoption of visual analytics tools presents specific challenges that need to be addressed. This paper discusses technology adoption challenges and approaches for visual analytics technologies.

  4. For Early Adopters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » For Early Adopters For Early Adopters Many people consider hydrogen and fuel cells to be longer-term technologies, but they're beginning to enter the market now in certain applications. Potential "early adopters" can learn more about hydrogen and fuel cells today to better understand near-term opportunities and consider and prepare for using these technologies in the future. Early Markets for Fuel Cell Technology Battelle Memorial Institute conducted a study to identify

  5. Driving Innovation, Speeding Adoption, Scaling Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Innovation, Speeding Adoption, Scaling Savings An Overview of the Building Technologies Office Roland Risser 2016 Building Technologies Office Peer Review April 4, 2016 2 ...

  6. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    SciTech Connect (OSTI)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  7. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  8. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  9. New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes

    SciTech Connect (OSTI)

    Borodovsky, M.

    2013-04-11

    Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

  10. Home Energy Displays: Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, J.; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  11. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect (OSTI)

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  12. A two-dimensional model for the heat transfer on the external circuit of a Stirling engine for a dish/Stirling system

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1998-07-01

    In this paper the {kappa}-{var{underscore}epsilon} turbulent model for the incompressible fluid flow has been used to describe the heat transfer and gas dynamical processes on the external circuit of a Stirling Engine as used on a Solar Dish/Stirling System. The problem considered, in this work for a cavity-type heat receiver of the Stirling Engine, is that of the heat transfer in the body of the shell of the heat exchangers of the engine due to the thermal conductivity, the convective heat transfer between the working fluid and the walls of the engine internal gas circuit and the heat transfer due to the forced convection of the air in the cavity and in the attached air domain. The boundary conditions employed on the engines internal circuit were obtained using the developed one-dimensional second level mathematical model of the engine working cycle. Physical models for the distribution of the solar insolation on the bottom and side walls of the heat receiver have been taken into account and the temperature fields for the heat receiver and the air velocity have been obtained for the case when the heat receiver is affected by wind. The numerical results show that it is in the region of the boundary of the input window of the heat receiver where there is the largest reduction in the temperature in the shell of the heat exchangers and this is due to the convection of the air.

  13. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  14. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect (OSTI)

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel

    2011-07-15

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  15. Computer and graphics modeling of heat transfer and phase change in a wall with randomly imbibed PCM

    SciTech Connect (OSTI)

    Solomon, A.D.

    1989-03-01

    We describe the theoretical basis and computer implementation of a simulation code for heat transfer and phase change in a rectangular 2-dimensional region in which PCM has been randomly placed with a preassigned volume fraction.

  16. SEP Success Story: Mississippi Adopts New Rules to Save Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mississippi Adopts New Rules to Save Energy, Money SEP Success Story: Mississippi Adopts ... courtesy of the University of Kentucky. SEP Success Story: Research Laboratory ...

  17. EIS-0470: EPA Amended Notice of Adoption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70: EPA Amended Notice of Adoption EIS-0470: EPA Amended Notice of Adoption Cape Wind Energy Project in Nantucket Sound, Massachusetts The Environmental Protection Agency's Notice ...

  18. Automatic Deployment Options Projection Tool (ADOPT) | Open Energy...

    Open Energy Info (EERE)

    Options Projection Tool (ADOPT) Jump to: navigation, search Tool Summary Name: Automotive Deployment Options Projection Tool (ADOPT) AgencyCompany Organization: National...

  19. Accelerating Clean Energy Adoption Fact Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating Clean Energy Adoption Fact Sheet Accelerating Clean Energy Adoption Fact Sheet This fact sheet is an overview of the Department of Weatherization and Intergovernmental ...

  20. Unvented Crawlspace Code Adoption - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Crawlspace Code Adoption - Building America Top Innovation Unvented Crawlspace Code Adoption - Building America Top Innovation Photo of an unvented and insulated ...

  1. Successful Adoption of New Technology and Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Adoption of New Technology and Services Track 3 Session 9 Mike Bushey Director, Government, Institutions, Agriculture, and Water Southern California Edison August 13, 2015 Energy Exchange: Federal Sustainability for the Next Decade What Are "New Technologies" * An innovative technology or service that will save our customers money or increase system efficiency * New equipment which is more efficient - Lightning - HVAC - Controls * New services or approaches that leverage

  2. This letter is to inform AHAM that DOE is adopting a new policy...

    Office of Environmental Management (EM)

    This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. This letter...

  3. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect (OSTI)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  4. Estimation of time to rupture in a fire using 6FIRE, a lumped parameter UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R.; Anderson, J.C.

    1995-12-31

    The transportation of UF{sup 6} is subject to regulations requiring the evaluation of packaging under a sequence of hypothetical accident conditions including exposure to a 30-min 800{degree}C (1475{degree}F) fire [10 CFR 71.73(c)(3)]. An issue of continuing interest is whether bare cylinders can withstand such a fire without rupturing. To address this issue, a lumped parameter heat transfer/stress analysis model (6FIRE) has been developed to simulate heating to the point of rupture of a cylinder containing UF{sup 6} when it is exposed to a fire. The model is described, then estimates of time to rupture are presented for various cylinder types, fire temperatures, and fill conditions. An assessment of the quantity of UF{sup 6} released from containment after rupture is also presented. Further documentation of the model is referenced.

  5. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  6. Regulatory Considerations Associated with the Expanded Adoption of Distributed Solar

    SciTech Connect (OSTI)

    Bird, L.; McLaren, J.; Heeter, J.; Linvill, C.; Shenot, J.; Sedano, R.; Migden-Ostrander, J.

    2013-11-01

    Increased adoption of distributed PV, and other forms of distributed generation, have the potential to affect utility-customer interactions, system costs recovery, and utility revenue streams. If a greater number of electricity customers choose to self-generate, demand for system power will decrease and utility fixed costs will have to be recovered over fewer kilowatt hours of sales. As such, regulators will need to determine the value and cost of additional distributed PV and determine the appropriate allocation of the costs and benefits among consumers. The potential for new business models to emerge also has implications for regulation and rate structures that ensure equitable solutions for all electricity grid users. This report examines regulatory tools and rate designs for addressing emerging issues with the expanded adoption of distributed PV and evaluates the potential effectiveness and viability of these options going forward. It offers the groundwork needed in order for regulators to explore mechanisms and ensure that utilities can collect sufficient revenues to provide reliable electric service, cover fixed costs, and balance cost equity among ratepayers -- while creating a value proposition for customers to adopt distributed PV.

  7. Steric Effect for Proton, Hydrogen-Atom, andHydride Transfer Reactions with Geometric Isomers of NADH-Model Ruthenium Complexes

    SciTech Connect (OSTI)

    Fujita E.; Cohen, B.W.; Polyansky, D.E.; Achord, P.; Cabelli, D.; Muckerman, J.T.; Tanaka, K.; Thummel, R.P.; Zong, R.

    2012-01-01

    Two isomers, [Ru(1)]{sup 2+} (Ru = Ru(bpy){sub 2}, bpy = 2,2{prime}-bipyridine, 1 = 2-(pyrid-2{prime}-yl)-1-azaacridine) and [Ru(2)]{sup 2+} (2 = 3-(pyrid-2{prime}-yl)-4-azaacridine), are bio-inspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C{sub 1} complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]{sup 2+} and [Ru(2)]{sup 2+} have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]{sup 2+} and [Ru(2HH)]{sup 2+}, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2{sup {sm_bullet}-})]{sup +} in aprotic and even protic media is slow compared to that of [Ru(1{sup {sm_bullet}-})]{sup +}. The net hydrogen-atom transfer between *[Ru(1)]{sup 2+} and hydroquinone (H{sub 2}Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)]{sup 2+} because the non-coordinated N atom is not easily available for an interaction with H{sub 2}Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)]{sup 2+} to [Ph{sub 3}C]{sup +} is significantly slower than that of [Ru(2HH)]{sup 2+} owing to steric congestion at the donor site.

  8. New York State Code Adoption Analysis: Lighting Requirements

    SciTech Connect (OSTI)

    Richman, Eric E.

    2004-10-20

    The adoption of the IECC 2003 Energy code will include a set of Lighting Power Density (LPD) values that are effectively a subset of the values in Addendum g to the ASHRAE/IESNA/ANSI 90.1-2001 Standard which will soon be printed as part of the 90.1-2004 version. An analysis of the effectiveness of this adoption for New York State can be provided by a direct comparison of these values with existing LPD levels represented in the current IECC 2000 code, which are themselves a subset of the current ASHRAE/IESNA/ANSI 90.1-2001 Standard (without addenda). Because the complete ASHRAE 2001 and 2004 sets of LPDs are supported by a set of detailed models, they are best suited to provide the basis for an analysis comparison of the two code levels of lighting power density stringency. It is important to note that this kind of analysis is a point-to-point comparison where a fixed level of real world activity is assumed. It is understood that buildings are not built precisely to code levels and that actual percentage of compliance above and below codes will vary among individual buildings and building types. However, without specific knowledge of this real world activity for all buildings in existence and in the future (post-code adoption) it is not possible to analyze actual effects of code adoption. However, it is possible to compare code levels and determine the potential effect of changes from one code requirement level to another. This is the comparison and effectiveness assessment

  9. Electron Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example,

  10. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect (OSTI)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  11. Information architecture: Profile of adopted standards

    SciTech Connect (OSTI)

    1997-09-01

    The Department of Energy (DOE), like other Federal agencies, is under increasing pressure to use information technology to improve efficiency in mission accomplishment as well as delivery of services to the public. Because users and systems have become interdependent, DOE has enterprise wide needs for common application architectures, communication networks, databases, security, and management capabilities. Users need open systems that provide interoperability of products and portability of people, data, and applications that are distributed throughout heterogeneous computing environments. The level of interoperability necessary requires the adoption of DOE wide standards, protocols, and best practices. The Department has developed an information architecture and a related standards adoption and retirement process to assist users in developing strategies and plans for acquiring information technology products and services based upon open systems standards that support application software interoperability, portability, and scalability. This set of Departmental Information Architecture standards represents guidance for achieving higher degrees of interoperability within the greater DOE community, business partners, and stakeholders. While these standards are not mandatory, particular and due consideration of their applications in contractual matters and use in technology implementations Department wide are goals of the Chief Information Officer.

  12. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  13. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    SciTech Connect (OSTI)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  14. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    SciTech Connect (OSTI)

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  15. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016...

  16. Home Energy Displays. Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, Janelle; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. The team hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, Fraunhofer conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. In light of these challenges, the team is pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  17. Modeling of coupled heat and mass transfers with phase change in a porous medium: Application to superheated steam drying

    SciTech Connect (OSTI)

    Daurelle, J.V.; Topin, F.; Occelli, R. [IUSTI, Marseille (France)

    1998-01-01

    The physical model is based on balance equations at the representative elementary volume. The considered medium has three phases (liquid, solid, and gas). The gas phase includes two components (air and vapor). The authors use the mass balance equations on air and water (liquid and steam) as well as the heat equation in order to describe the phenomena. The system of equations is closed via classical relations in these media, which leads to a three-equation system with coupled nonlinear partial derivatives. The authors have applied this model to superheated steam drying. A solution model of the coupled nonlinear equation system based on the finite element method in a two-dimensional configuration was developed and validated. This approach allows one to determine all the variables of the problem. It is a complementary tool of analysis that opens access to nonmeasurable variables, such as the phase change rate. This computation model was applied to a configuration studied experimentally. The numerical and experimental results agree in nondimensional time. This double approach has enabled them to point out and evaluate new mechanisms typical of this drying method.

  18. EIS-0490: Adoption Notice for an Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0490: Adoption Notice for an Environmental Impact Statement Boulder CityU.S. 93 Corridor Transportation Improvements, Boulder City, NV Western has adopted the U.S. Department ...

  19. Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Savings for Years to Come Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come to someone by E-mail Share Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google

  20. Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Events Oregon Boosts EV Adoption Through Popular Electric Vehicle Events to someone by E-mail Share Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Facebook Tweet about Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Twitter Bookmark Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Google Bookmark Alternative Fuels Data

  1. Transferring Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all communications * Control - Prevents password "sniffing" * Data - Potential ... (svn) * bbcp SSH ClientServer Model * password - need "keyboard-interactive" method in ...

  2. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    SciTech Connect (OSTI)

    Lin, Zhoumeng; Fisher, Jeffrey W.; Wang, Ran; Ross, Matthew K.; Filipov, Nikolay M.

    2013-11-15

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) at levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: We developed PBPK models for atrazine in rat dams, fetuses, and neonates. We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. Model predictions were in good agreement with experimental rat and mouse PK data. The

  3. Analytical Modeling Linking the FASTSim and ADOPT Software Tools

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer » Data Transfer Nodes Data Transfer Nodes A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:35:12

  5. EIS-0487: Notice of EIS Adoption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of EIS Adoption EIS-0487: Notice of EIS Adoption Freeport LNG Liquefaction Project, Brazoria County, Texas The Environmental Protection Agency issued a notice of DOE adoption of an EIS that the Federal Energy Regulatory Commission prepared, with DOE as a cooperating agency, on a proposal to expand an existing liquefied natural gas (LNG) import terminal and associated facilities in Brazoria County, Texas, to enable the terminal to liquefy and export LNG.

  6. Making a Difference: Solarize Programs Accelerating Solar Adoption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making a Difference: Solarize Programs Accelerating Solar Adoption Making a Difference: Solarize Programs Accelerating Solar Adoption December 29, 2015 - 12:51pm Addthis Making a Difference: Solarize Programs Accelerating Solar Adoption Dr. Elaine Ulrich Dr. Elaine Ulrich Balance of Systems/Soft Costs Program Manager As a part of their Rooftop Solar Challenge II award, the Midwest Renewable Energy Association has organized group solar buys for 92 families in Milwaukee,

  7. California Member Connects Solar Adoption With Upgrades | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Connects Solar Adoption With Upgrades California Member Connects Solar Adoption With Upgrades Photo of a young man working on solar panels. Studies on the connection between solar adoption and energy upgrades by Better Buildings Residential Network member Center for Sustainable Energy (CSE) in California are helping solar companies realize that partnering with local energy efficiency programs can help turn potential competition into an addition to their business. According to CSE,

  8. Early Adoption of Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of Fuel Cell Technologies Early Adoption of Fuel Cell Technologies Many private sector organizations-grocers, banks, tire and hardware companies, logistics providers, and others-have begun to realize the value of using fuel cells to support their operations. And they aren't the only ones. Federal agencies across the country are incorporating advanced energy technologies, such as fuel cells, into their facilities. Federal Deployment and Demonstration Government adoption of early market

  9. DOE Adopts Rules to Improve Energy Efficiency Enforcement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Adopts Rules to Improve Energy Efficiency Enforcement DOE Adopts Rules to Improve Energy Efficiency Enforcement February 7, 2011 - 5:50pm Addthis Today, the Department of Energy adopted final rules to improve the enforcement of DOE's efficiency requirements for appliances, lighting and other products. Overhauling the certification and enforcement process, the new rules are designed to encourage compliance and prevent manufacturers who break the law from gaining a competitive advantage

  10. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  11. Geothermal Heat Pumps: Market Status, Barriers to Adoption, and...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: Geothermal Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers AgencyCompany Organization: Oak Ridge...

  12. Taxes, Permits, and the Adoption of Abatement Technology under...

    Open Energy Info (EERE)

    adoption. However, in terms of welfare, the ranking of the instruments is not so straightforward: taxes may induce lower emissions damages, while TEPs induce lower abatement,...

  13. EIS-0493: Notice of Adoption of Final Environmental Impact Statement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Adoption of Final Environmental Impact Statement EIS-0493: Notice of Adoption of Final Environmental Impact Statement EPA issued a notice of DOE's adoption of a FERC EIS for a liquefied natural gas export and import terminal on the north shore of Corpus Christi Bay in Nueces and San Patricio Counties, Texas. DOE, Office of Fossil Energy, was a cooperating agency. Document Download Notice of Adoption of Final EIS (171.36 KB) More Documents & Publications EIS-0447: EPA

  14. Adopting LED Technology: What Federal Facility Managers Need to Know

    Broader source: Energy.gov [DOE]

    This document describes the presentation slides for the "Adopting LED Technology: What Federal Facility Managers Need to Know" webinar that took place on September 11, 2014.

  15. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  16. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  17. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average. Graphs for the last 8 days. Historical yearly peak days. Daily Storage Concurrency Transfer Activity This graph shows the number of transfers to the storage systems...

  18. Data Transfer Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate ...

  19. Optimizing Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Data Transfer Nodes using Packet Pacing Nathan Hanford University of California ... An important performance problem that we foresee with Data Transfer Nodes (DTNs) in the ...

  20. Fuel price changes and the adoption of cogeneration in the U.K. and Netherlands

    SciTech Connect (OSTI)

    Bonilla, David

    2007-08-15

    Whenever industrial plants consume power and heat, there is a need to consider energy efficiency investment in a cogeneration plant. The author tests an empirical model employing application of cross-sectional time series to analyze the economic incentives influencing the adoption of energy-saving technology in the U.K. and Dutch manufacturing sectors. (author)

  1. Posters Comparison of Stochastic Radiation Transfer Predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models for estimating the effects of broken cloud on radiative transfer in the context of a general circulation model (GCM). These schemes are required to be very fast and...

  2. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Nodes Data Transfer Nodes PDSF has dedicated nodes for grid services and data transfers named pdsfdtn1.nersc.gov and pdsfdtn2.nersc.gov. Both nodes have 10 Gb/s network connections to the NERSC network. Please avoid using the interactive nodes for bulk data transfer. Not only can it be disruptive to other users but the network connection is only 1 Gb/s so it will take longer. For transfers using /project and/or HPSS use the NERSC data transfer nodes - see the NERSC data transfer

  3. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  4. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  5. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  6. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  7. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  8. This letter is to inform AHAM that DOE is adopting a new policy regarding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. | Department of Energy Letter Acknowledging DOE Letter on Verification Program 2015 (00036....pdf (34.17 KB) More Documents & Publications AHAM Letter Acknowledging DOE Letter on Verification Program This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. AHAM DOE Verification Test

  9. This letter is to inform AHAM that DOE is adopting a new policy regarding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. | Department of Energy Signed Letter.pdf (999.38 KB) More Documents & Publications AHAM DOE Verification Test Agreement Letter.pdf This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program.

  10. Distributed PV Adoption - Sensitivity to Market Factors (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed PV Adoption - Sensitivity to Market Factors Pieter Gagnon, Ben Sigrin National Renewable Energy Laboratory February 2016 NREL/PR-6A20-65984 Executive Summary 3 Executive Summary (1/2) * NREL's dSolar model was used to explore sensitivity of distributed PV (DGPV) deployment to three market factors-technology cost, future net metering policy, and a hypothetical carbon fee. * Modeling PV costs at 25% less than the reference scenario from 2020 onward resulted in ~35% more cumulative

  11. AdoptADoc2012_slide.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information AdoptADoc2012

  12. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  13. Policy Memorandum #3 Advanced Leave for Childbirth Adoption and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Memo 3 - Advanced-Leave-for-Childbirth-Adoption-and-Foster-Care.pdf (277.11 KB) Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone ...

  14. EIS-0454: Notice of Adoption of an Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement, a 7,680-Acre Right-of-Way (ROW) on Public Lands to Construct a Concentrated Solar Thermal Power Plant Facility, Nye County, Nevada. PDF icon Notice of Adoption of the...

  15. Unvented Crawlspace Code Adoption - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Unvented Crawlspace Code Adoption - Building America Top Innovation Unvented Crawlspace Code Adoption - Building America Top Innovation Photo of an unvented and insulated crawlspace. This Top Innovation profile describes Building America research by Building Science Corporation that helped to clarify and contribute to code requirements that allow unvented crawlspaces in new home construction. This is critical because unvented crawlspaces save energy while improving

  16. Spurring Market Adoption of Energy Efficient Storm Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Spurring Market Adoption of Energy Efficient Storm Windows Spurring Market Adoption of Energy Efficient Storm Windows June 20, 2016 - 12:53pm Addthis At the Energy Department's Pacific Northwest National Laboratory (PNNL), researchers are using two modular homes to test energy-efficient products and calculate their energy savings. Researchers test new technologies in the Experimental home (pictured above), while the Baseline home (not pictured) serves as a control and doesn’t get

  17. Market Transformation: Fuel Cell Early Adoption (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Transformation: Fuel Cell Early Adoption (Presentation) Market Transformation: Fuel Cell Early Adoption (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. fuelcell_pre-solicitation_wkshop_jan08_devlin.pdf (761.49 KB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Greenpower Trap Mufflerl System

  18. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  19. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  20. NETL: Tech Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing & Technology Transfer Technology transfer is the process of transferring new technologies from the laboratory to the marketplace, transforming research into new products and companies so inventions benefit the greatest number of people as quickly and efficiently as possible. At NETL, researchers work every day to develop technology solutions to difficult problems. NETL Technology Transfer works with entrepreneurs, companies, universities and the public sector to move federally

  1. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    SciTech Connect (OSTI)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  2. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  3. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  4. Adoption and use of e-invoicing in Greece

    SciTech Connect (OSTI)

    Marinagi, C. E-mail: ptrivel@yahoo.com Trivellas, P. E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, C.

    2015-02-09

    This paper investigates the adoption and use of electronic invoices (e-invoices) in Greek organizations. The study attempts to evaluate current practices applied in implementing e-invoicing. A field research has been conducted, which is based on a structured questionnaire. The target sample consisted of 42 Greek enterprises. The main issues of the investigation include the existing invoice processing practices, the barriers that prevent the extended adoption and use of e-invoicing, the observed benefits from e-invoicing implementation, and the strategic drivers for transition to e-invoicing. Currently, the use of e-invoicing in Greece is low. However, the research results testify that the adoption of e-invoicing in Greece is promising. Even though, a number of enterprises state that benefits of e-invoicing are not clear yet, the majority of enterprises agree that there are crucial financial priorities that e-invoicing is expected to support.

  5. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  6. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  7. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  8. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  9. Performance assessment and adoption processes of an information monitoring and diagnostic system prototype

    SciTech Connect (OSTI)

    Piette, Mary Ann

    1999-10-01

    This report addresses the problem that buildings do not perform as well as anticipated during design. We partnered with an innovative building operator to evaluate a prototype Information Monitoring and Diagnostic System (IMDS). The IMDS consists of high-quality measurements archived each minute, a data visualization tool, and a web-based capability. The operators recommend similar technology be adopted in other buildings. The IMDS has been used to identify and correct a series of control problems. It has also allowed the operators to make more effective use of the building control system, freeing up time to take care of other tenant needs. They believe they have significantly improved building comfort, potentially improving tenant health, and productivity. The reduction in hours to operate the building are worth about $20,000 per year, which could pay for the IMDS in about five years. A control system retrofit based on findings from the IMDS is expected to reduce energy use by 20 percent over the next year, worth over $30,000 per year. The main conclusion of the model-based chiller fault detection work is that steady-state models can be used as reference models to monitor chiller operation and detect faults. The ability of the IMDS to measure cooling load and chiller power to one-percent accuracy with a one-minute sampling interval permits detection of additional faults. Evolutionary programming techniques were also evaluated, showing promise in the detection of patterns in building data. We also evaluated two technology adoption processes, radical and routine. In routine adoption, managers enhance features of existing products that are already well understood. In radical adoption, innovative building managers introduce novel technology into their organizations without using the rigorous payback criteria used in routine innovations.

  10. Technology Transfer - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  11. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  12. Guidance for the Design and Adoption of Analytic Tools.

    SciTech Connect (OSTI)

    Bandlow, Alisa

    2015-12-01

    The goal is to make software developers aware of common issues that can impede the adoption of analytic tools. This paper provides a summary of guidelines, lessons learned and existing research to explain what is currently known about what analysts want and how to better understand what tools they do and don't need.

  13. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  14. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Bandwidth and Transfer Activity Data Rate vs. File Size The graph below shows the bandwidth for individual file transfers for one day. The graph also gives a quick overview of the traffic and maximum bandwidth and file size for a given day. Historical yearly peak days. Daily Rate vs. Size Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within each one minute

  15. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Nodes HPSS Data Archive IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file system IO Formats Science Databases Sharing ...

  16. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  17. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect (OSTI)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  18. Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters

    Broader source: Energy.gov [DOE]

    Plenary III: Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Nancy N. Young, Vice President, Environmental Affairs, Airlines for America

  19. Transfer Activity Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Last 8 Days Transfer Activity Last 8 Days These graphs show the transfer activity statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems) Transfers started/in progress (Both Systems)

  20. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    SciTech Connect (OSTI)

    Sim, Alexander; Balman, Mehmet; Williams, Dean N.; Shoshani, Arie; Natarajan, Vijaya

    2010-07-16

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  1. Adoption of waste minimization technology to benefit electroplaters

    SciTech Connect (OSTI)

    Ching, E.M.K.; Li, C.P.H.; Yu, C.M.K.

    1996-12-31

    Because of increasingly stringent environmental legislation and enhanced environmental awareness, electroplaters in Hong Kong are paying more heed to protect the environment. To comply with the array of environmental controls, electroplaters can no longer rely solely on the end-of-pipe approach as a means for abating their pollution problems under the particular local industrial environment. The preferred approach is to adopt waste minimization measures that yield both economic and environmental benefits. This paper gives an overview of electroplating activities in Hong Kong, highlights their characteristics, and describes the pollution problems associated with conventional electroplating operations. The constraints of using pollution control measures to achieve regulatory compliance are also discussed. Examples and case studies are given on some low-cost waste minimization techniques readily available to electroplaters, including dragout minimization and water conservation techniques. Recommendations are given as to how electroplaters can adopt and exercise waste minimization techniques in their operations. 1 tab.

  2. Information architecture: Standards adoption and retirement process service action plan

    SciTech Connect (OSTI)

    1997-03-01

    The purpose of this Service Action Plan is to announce, as well as provide, a high-level outline of a new Departmental process for the adoption and retirement of information technology standards. This process supports the implementation of a Department of Energy (DOE) Information Architecture. This plan was prepared with the Department of Energy information technology standards customers and stakeholders in mind. The process described in this plan will be serviced primarily by staff from the Office of the Deputy Assistant Secretary for Information Management with assistance from designated program and site Information Technology Standards Points of Contact. We welcome any comments regarding this new Departmental process and encourage the proposal of information technology standards for adoption or retirement.

  3. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of Light-Emitting Diodes in Common Lighting Applications Prepared for the U.S. Department of Energy Solid-State Lighting Program July 2015 Prepared by Navigant This page intentionally left blank i | P a g e Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any

  4. Hurdling barriers through market uncertainty: Case studies ininnovative technology adoption

    SciTech Connect (OSTI)

    Payne, Christopher T.; Radspieler Jr., Anthony; Payne, Jack

    2002-08-18

    The crisis atmosphere surrounding electricity availability in California during the summer of 2001 produced two distinct phenomena in commercial energy consumption decision-making: desires to guarantee energy availability while blackouts were still widely anticipated, and desires to avoid or mitigate significant price increases when higher commercial electricity tariffs took effect. The climate of increased consideration of these factors seems to have led, in some cases, to greater willingness on the part of business decision-makers to consider highly innovative technologies. This paper examines three case studies of innovative technology adoption: retrofit of time-and-temperature signs on an office building; installation of fuel cells to supply power, heating, and cooling to the same building; and installation of a gas-fired heat pump at a microbrewery. We examine the decision process that led to adoption of these technologies. In each case, specific constraints had made more conventional energy-efficient technologies inapplicable. We examine how these barriers to technology adoption developed over time, how the California energy decision-making climate combined with the characteristics of these innovative technologies to overcome the barriers, and what the implications of hurdling these barriers are for future energy decisions within the firms.

  5. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect (OSTI)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  6. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  7. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  8. NREL: Technology Transfer - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  9. Technology Transfer Ombudsman Program

    Broader source: Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  10. Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to data transfer of some form or fashion. Examples of intended usage would be running python scripts to download data from a remote source, running client software to load data...

  11. Inverse Energy Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Energy Transfer by Near-Resonant Interactions with a Damped-Wave Spectrum P.W. Terry Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA (Received 12 January 2004; published 1 December 2004) The interaction of long-wavelength anisotropic drift waves with the plasma turbulence of electron density advection is shown to produce the inverse energy transfer that condenses onto

  12. Analysis of the adsorption process and of desiccant cooling systems: a pseudo- steady-state model for coupled heat and mass transfer. [DESSIM, DESSIM2, DESSIM4

    SciTech Connect (OSTI)

    Barlow, R.S.

    1982-12-01

    A computer model to simulate the adiabatic adsorption/desorption process is documented. Developed to predict the performance of desiccant cooling systems, the model has been validated through comparison with experimental data for single-blow adsorption and desorption. A literature review on adsorption analysis, detailed discussions of the adsorption process, and an initial assessment of the potential for performance improvement through advanced component development are included.

  13. Ombuds Services for Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Program Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing...

  14. Transferring Data from Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transferring Data from Batch Jobs Transferring Data from Batch Jobs Examples Once you are set up for automatic authentication (see HPSS Passwords) you can access HPSS within batch...

  15. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  16. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  17. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  18. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  19. Technology Transfer Reporting Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Reporting Form Technology Transfer Reporting Form PDF icon Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

  20. Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp

    SciTech Connect (OSTI)

    Ben Hamida, M. B.; Charrada, K.

    2012-06-15

    This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

  1. VOLUNTARY LEAVE TRANSFER PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM)

  2. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  3. Heat transfer fluids containing nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  4. Effects of a carbon tax on microgrid combined heat and power adoption

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

    2004-11-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

  5. Adiabatic quantum-flux-parametron cell library adopting minimalist design

    SciTech Connect (OSTI)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-05-07

    We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.

  6. Energy transfer models in nitrogen plasmas: Analysis of N{sub 2}(X{sup 1}Σ{sup +}{sub g})–N({sup 4}S{sub u})–e{sup −} interaction

    SciTech Connect (OSTI)

    Heritier, K. L.; Panesi, M.; Jaffe, R. L.; Laporta, V.

    2014-11-14

    The relaxation of N{sub 2}(X{sup 1}Σ{sup +}{sub g}) molecules in a background gas composed of N({sup 4}S{sub u}) atoms and free electrons is studied by using an ideal isochoric and isothermic chemical reactor. A rovibrational state-to-state model is developed to study energy transfer process induced by free electron and atomic collisions. The required cross sections and the corresponding rate coefficients are taken from two well-known kinetic databases: NASA Ames kinetic mechanism for the description of the N{sub 2}(X{sup 1}Σ{sup +}{sub g})–N({sup 4}S{sub u}) processes and the Phys4Entry database for the electron driven processes, N{sub 2}(X{sup 1}Σ{sup +}{sub g})–e{sup −}. The evolution of the population densities of each individual rovibrational level is explicitly determined via the numerical solution of the master equation for temperatures ranging from 10000 to 30 000 K. It was found that the distribution of the rovibrational energy levels of N{sub 2}(X{sup 1}Σ{sup +}{sub g}) is strongly influenced by the electron driven collisional processes, which promote the excitation of the low lying vibrational levels. The macroscopic vibrational energy relaxation is governed by the molecule-atom collisions, when free electrons, initially cold are relaxing to the final heat-bath temperature. Thus, the main role of the free electrons is to ensure the equilibration of vibrational and free electron excitation, thus validating the existence of the local equilibrium T{sup V}–T{sup e}. However, if electrons and heavy particles are assumed to be in equilibrium at the heat bath temperature, electron driven processes dominate the vibrational relaxation. Finally, we have assessed the validity of the Landau-Teller model for the description of the inelastic energy transfer between molecules and free electrons. In the case of free-electron temperatures lower than 10 000 K, Landau-Teller relaxation model gives an accurate description of the vibrational relaxation

  7. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    SciTech Connect (OSTI)

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-07

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

  8. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  9. Decal transfer microfabrication

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  10. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge ...

  11. U.S. Department of the Navy: Driving Alternative Fuels Adoption

    Broader source: Energy.gov [DOE]

    Plenary III: Early Market Adopters U.S. Department of the Navy: Driving Alternative Fuels Adoption Chris Tindal, Director for Operational Energy, Office of the Deputy Assistant Secretary of the Navy for Energy

  12. Mass transfer effects in a gasification riser

    SciTech Connect (OSTI)

    Breault, Ronald W; Li, Tingwen; Nicoletti, Phillip

    2013-01-01

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.

  13. CURRENT TRANSFER SYSTEMS

    DOE Patents [OSTI]

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  14. Swipe transfer assembly

    DOE Patents [OSTI]

    Christiansen, Robert M.; Mills, William C.

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  15. Wireless power transfer system

    DOE Patents [OSTI]

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  16. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  17. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  18. Transfer reactions at ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Services » Transactions, Technology and Contractor Human Relations Transactions, Technology and Contractor Human Relations Transactions, Technology and Contractor Human Relations Offices of the Deputy General Counsel for Transactions, Technology and Contractor Human Resources Office of the Assistant General Counsel for Procurement and Financial Assistance (GC-61) Office of the Assistant General Counsel for Technology Transfer and Intellectual Property (GC-62) Office of the Assistant

  19. Efficient Data Transfer Protocols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Data Transfer Protocols for Big Data Brian Tierney ∗ , Ezra Kissel † , Martin Swany † , Eric Pouyoul ∗ ∗ Lawrence Berkeley National Laboratory, Berkeley, CA 94270 † School of Informatics and Computing, Indiana University, Bloomington, IN 47405 Abstract-Data set sizes are growing exponentially, so it is important to use data movement protocols that are the most efficient available. Most data movement tools today rely on TCP over sockets, which limits flows to around 20Gbps

  20. 2006 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Awards Carrying on the tradition of world-changing innovation Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

  1. 2007 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  2. 2008 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  3. 2009 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  4. QER- Comment of Energy Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  5. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  6. Effects of a carbon tax on combined heat and power adoption by a microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

    2002-10-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

  7. BWR Core Heat Transfer Code System.

    Energy Science and Technology Software Center (OSTI)

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  8. Manipulator mounted transfer platform

    DOE Patents [OSTI]

    Dobbins, James C.; Hoover, Mark A.; May, Kay W.; Ross, Maurice J.

    1990-01-01

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  9. ENERGY-TRANSFER SYSTEMS

    DOE Patents [OSTI]

    Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.

    1963-04-01

    This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)

  10. Modeling Momentum Transfer from Kinetic Impacts: Implications...

    Office of Scientific and Technical Information (OSTI)

    is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is ...