National Library of Energy BETA

Sample records for transfer models adopted

  1. Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial)

    E-Print Network [OSTI]

    Xie, Tao

    Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial) Dongmei. There are some common challenges faced when pursuing technology transfer and adoption while particular challenges transfer and adoption. This mini-tutorial presents achievements and challenges of technology transfer

  2. Modeling of Customer Adoption of Distributed Energy Resources

    E-Print Network [OSTI]

    Modeling of Customer Adoption of Distributed Energy Resources CALIFORNIA ENERGY COMMISSION Reliability Technology Solutions Modeling of Customer Adoption of Distributed Energy Resources Prepared the consequences. #12;#12;Modeling of Customer Adoption of Distributed Energy Resources iii Table of Contents

  3. Village adoption scheme : a model for rural development

    E-Print Network [OSTI]

    Nanavati, Shahid Sadruddin, 1961-

    2004-01-01

    The study describes a "Village Adoption Scheme" as a model for energising the rural economy in India and to slow down rural - urban migration which research has shown to be harmful to both; rural and urban people of India ...

  4. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  5. Modeling of customer adoption of distributed energy resources

    E-Print Network [OSTI]

    2001-01-01

    Customer Adoption of Distributed Energy Resources Ozbek, A.Customer Adoption of Distributed Energy Resources Figure 39.Customer Adoption of Distributed Energy Resources REFERENCES

  6. Modeling of customer adoption of distributed energy resources

    E-Print Network [OSTI]

    2001-01-01

    of Dispersed Energy Resources Deployment. Berkeley, LawrenceAdoption of Distributed Energy Resources Ozbek, A. 2001.Adoption of Distributed Energy Resources Figure 39. Figure

  7. Cloud computing adoption model for governments and large enterprises

    E-Print Network [OSTI]

    Trivedi, Hrishikesh

    2013-01-01

    Cloud Computing has held organizations across the globe spell bound with its promise. As it moves from being a buzz word and hype into adoption, organizations are faced with question of how to best adopt cloud. Existing ...

  8. Modeling regional power transfers

    SciTech Connect (OSTI)

    Kavicky, J.A.; Veselka, T.D.

    1994-03-01

    The Spot Market Network (SMN) model was used to estimate spot market transactions and prices between various North American Electric Reliability Council (NERC) regions for summer on-peak situations. A preliminary analysis of new or proposed additions to the transmission network was performed. The effects of alternative exempt wholesale generator (EWG) options on spot market transactions and the transmission system are also studied. This paper presents the SMN regional modelling approach and summarizes simulation results. Although the paper focuses on a regional network representation, a discussion of how the SMN model was used to represent a detailed utility-level network is also presented.

  9. A Model of Marketing Oriented Corporate Culture Influences on Information Technology Adoption

    E-Print Network [OSTI]

    A Model of Marketing Oriented Corporate Culture Influences on Information Technology Adoption Kofi-9792; kofi.poku@kodak.com 2 Richard P. Vlosky, Ph.D, Professor, Forest Products Marketing and Director a model to investigate the influence of corporate orientation (marketing orientation) on Internet adoption

  10. Data-Driven Agent-Based Modeling, with Application to Rooftop Solar Adoption

    E-Print Network [OSTI]

    Vorobeychik, Eugene

    Data-Driven Agent-Based Modeling, with Application to Rooftop Solar Adoption Haifeng Zhang-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar forecasts solar adoption trends and provides a meaningful quantifi- cation of uncertainty about its

  11. Networking technology adoption : system dynamics modeling of fiber-to-the-home

    E-Print Network [OSTI]

    Kelic, Andjelka, 1972-

    2005-01-01

    A system dynamics model is developed and run to study the adoption of fiber-to-the-home as a residential broadband technology. Communities that currently do not have broadband in the United States are modeled. This case ...

  12. WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

  13. ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES

    E-Print Network [OSTI]

    ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

  14. OSS tools in a heterogeneous environment for embedded systems modelling: an analysis of adoptions of XMI

    E-Print Network [OSTI]

    Scacchi, Walt

    39 OSS tools in a heterogeneous environment for embedded systems modelling: an analysis information between tools ­ whether in a tool chain, for legacy reasons or because of the natural of XMI interchange for supporting OSS tool adoption to complement other tools in an embedded systems

  15. Modeling Mass Protest Adoption in Social Network Communities using Geometric Brownian Motion

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    key players of social movements, e.g., protests. Traditionally social movements occur within a subset a consistent way of communicating the reason and motivation of social movements like protests and uprisingsModeling Mass Protest Adoption in Social Network Communities using Geometric Brownian Motion Fang

  16. Testing the Subsistence Model for the Adoption of Ceramic Technology Among Coastal Sambaqui Foragers of Southern Brazil 

    E-Print Network [OSTI]

    Crouch, Maria Shannon Parks

    2013-12-10

    This research tests the subsistence model for the adoption of ceramic technology among coastal fisher-hunter-gatherers of the southern Atlantic coast of Brazil (5000 to 600 BP). The subsistence model correlates the appearance ...

  17. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  18. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    of Microgrid Distributed Energy Resource Potential Usingon Integration of Distributed Energy Resources: The CERTSof Customer Adoption of Distributed Energy Resources. ”

  19. Computational Modeling of theComputational Modeling of the Vacuum Assisted Resin Transfer MoldingVacuum Assisted Resin Transfer Molding

    E-Print Network [OSTI]

    Grujicic, Mica

    Computational Modeling of theComputational Modeling of the Vacuum Assisted Resin Transfer MoldingVacuum Assisted Resin Transfer Molding (VARTM) Process(VARTM) Process April 2004April 2004 DepartmentMS Thesis Advisor: Dr. Grujicic #12;What is VARTM?What is VARTM? Vacuum Assisted Resin Transfer Molding

  20. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  1. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

  2. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    SciTech Connect (OSTI)

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-02-01

    This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health care, airport, and manufacturing facilities.

  3. Distributed energy resources customer adoption modeling with combined heat and power applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-07-01

    In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

  4. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  5. Adoption of New Technology

    E-Print Network [OSTI]

    Hall, Bronwyn H.; Khan, Beethika

    2003-01-01

    Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.affect whether or not new technologies are successful, the

  6. Adoption of New Technology

    E-Print Network [OSTI]

    Hall, Bronwyn H.; Khan, Beethika

    2003-01-01

    Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.the Diffusion of New Technology in the Banking Industry. ”

  7. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    Modeling with Combined Heat and Power Applications SCE, S.Modeling with Combined Heat and Power Applications FigureModeling with Combined Heat and Power Applications Figure

  8. Mechanistic studies of photo-induced proton-coupled electron transfer and oxygen atom transfer reactions in model systems

    E-Print Network [OSTI]

    Hodgkiss, Justin M. (Justin Mark), 1978-

    2007-01-01

    Time-resolved optical spectroscopy has been employed for mechanistic studies in model systems designed to undergo photo-induced proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT) reactions, both of which ...

  9. Alignment-based Transfer Learning for Robot Models

    E-Print Network [OSTI]

    Alignment-based Transfer Learning for Robot Models Botond B´ocsi Lehel Csat´o Jan Peters Abstract-- Robot manipulation tasks require on robot mod- els. When exact physical parameters of the robot are not available, learning robot models from data becomes an ap- pealing alternative. Most learning approaches

  10. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

  11. Modelling proton transfer in water molecule chains

    E-Print Network [OSTI]

    Artem Korzhimanov; Mattias Marklund; Tatiana Shutova; Goran Samuelsson

    2011-08-22

    The process of protons transport in molecular water chains is of fundamental interest for many biological systems. Although many features of such systems can be analyzed using large-scale computational modeling, other features are better understood in terms of simplified model problems. Here we have tested, analytically and numerically, a model describing the classical proton hopping process in molecular water chains. In order to capture the main features of the proton hopping process in such molecular chains, we use a simplified model for our analysis. In particular, our discrete model describes a 1D chain of water molecules situated in an external protein channel structure, and each water molecule is allowed to oscillate around its equilibrium point in this system, while the protons are allowed to move along the line of neighboring oxygen atoms. The occurrence and properties of nonlinear solitary transport structures, allowing for much faster proton transport, are discussed, and the possible implications of these findings for biological systems are emphasized.

  12. Efficiency transfer for regression models with responses missing at random

    E-Print Network [OSTI]

    Mueller, Uschi

    Efficiency transfer for regression models with responses missing at random Ursula U. M that characteristics of the con- ditional distribution of Y given X can be estimated efficiently using complete case analysis. One can simply omit incomplete cases and work with an appro- priate efficient estimator without

  13. MODELLING OF CAVITY RECEIVER HEAT TRANSFER COMPACT LINEAR FRESNEL REFLECTOR

    E-Print Network [OSTI]

    MODELLING OF CAVITY RECEIVER HEAT TRANSFER FOR THE COMPACT LINEAR FRESNEL REFLECTOR John D Pye receiver for the Compact Linear Fresnel Reflector is presented. Response to changes in ambient temperature equations are provided. 1. BACKGROUND The Compact Linear Fresnel Reflector (CLFR), shown in Figure 1

  14. A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH

    E-Print Network [OSTI]

    Quest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 by ProQuest Information and Learning Company. #12;II A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS. Seeing him grow gave me a new level of energy and hope. Without a doubt, my family members have been

  15. Heat transfer model of large shipping containers 1Chemical Engineering Department -Carnegie Mellon University

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Forced convective heat transfer Solar radiation heat transfer Atmospheric radiation Natural convective number #12;Solar radiation heat transfer Heat transfer at the wall of the shipping container Direct solarHeat transfer model of large shipping containers 1Chemical Engineering Department - Carnegie Mellon

  16. Radiative Transfer Models for Gamma-Ray Bursts

    E-Print Network [OSTI]

    Vurm, Indrek

    2015-01-01

    We present global radiative transfer models for heated relativistic jets. The simulations include all relevant radiative processes, starting deep in the opaque zone and following the evolution of radiation to and beyond the photosphere of the jet. The transfer models are compared with three gamma-ray bursts GRB 990123, GRB 090902B, and GRB 130427A, which have well-measured and different spectra. The models provide good fits to the observed spectra in all three cases. The fits give estimates for the jet magnetization parameter $\\varepsilon_{\\rm B}$ and the Lorentz factor $\\Gamma$. In the small sample of three bursts, $\\varepsilon_{\\rm B}$ varies between 0.01 and 0.1, and $\\Gamma$ varies between 340 and 1200.

  17. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect (OSTI)

    Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  18. Modeling of fuel-to-steel heat transfer in core disruptive accidents

    E-Print Network [OSTI]

    Smith, Russell Charles

    1980-01-01

    A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

  19. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect (OSTI)

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Alán E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies’ thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts – the reorganization shift – to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to understand the physical origin of the Stokes shifts in molecular aggregates.

  20. A meshless method for modeling convective heat transfer

    SciTech Connect (OSTI)

    Carrington, David B

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  1. MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY

    E-Print Network [OSTI]

    MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY Michael Wetter, Wangda Zuo describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings the model is de- composed into submodels for the individual heat transfer phenomena. We also discuss

  2. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Institute for Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany)

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  3. Radiative transfer model for contaminated slabs : experimental validations

    E-Print Network [OSTI]

    Andrieu, François; Schmitt, Bernard; Douté, Sylvain; Brissaud, Olivier

    2015-01-01

    This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kind of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of $1.5\\,\\mbox{\\mu m}$, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from $0.8\\,\\mbox{\\mu m}$ to $2.0\\,\\mbox{\\mu m}$. In order to validate the model, we made a qualitative test to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a bayesian inversion method in order to estimate the parameters (e.g. sampl...

  4. PROCESS MODELING IN RESIN TRANSFER MOLDING AS A METHOD TO ENHANCE PRODUCT QUALITY

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    PROCESS MODELING IN RESIN TRANSFER MOLDING AS A METHOD TO ENHANCE PRODUCT QUALITY W.K. Chui, 1 J Transfer Molding (RTM) has drawn interest in recent years as an attractive technique for the manufacture. resin transfer molding (RTM), composite materials, mathematical modeling, porous media flow AMS subject

  5. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations R. Arambakam 2013 Keywords: Radiative heat transfer Dual-scale modeling Insulation media Fibrous media a b s t r a c a fiber diameter for which radiation heat transfer through a fibrous media is min- imal, ranging between 3

  6. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process heat from the tank during operation.

  7. Modeling the transfer function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; et al

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function – a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulationmore »output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.« less

  8. Modeling the Transfer Function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; Peiris, H.; Abbott, T.; Abdalla, F. B.; Balbinot, E.; Banerji, M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carnero, A.; Desai, S.; da Costa, L. N.; Cunha, C. E; Eifler, T.; Evrard, A. E.; Fausti Neto, A.; Gerdes, D.; Gruen, D.; James, D.; Kuehn, K.; Maia, M. A. G.; Makler, M.; Ogando, R.; Plazas, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Zuntz, J.

    2015-03-10

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function -- a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

  9. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore »the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted ?v of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less

  10. MODELING OF RESIN TRANSFER MOLDING W.K. Chui, J. Glimm, F.M. Tangerman

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    MODELING OF RESIN TRANSFER MOLDING W.K. Chui, J. Glimm, F.M. Tangerman Department of Applied Transfer Molding (RTM), as a method for the manufacture of advanced fiber rein­ forced composite materials con­ tent of the finished product. 1 Introduction Resin Transfer Molding (RTM) is a process

  11. Modeling the role of microstructural parameters in radiative heat transfer through disordered fibrous media

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Modeling the role of microstructural parameters in radiative heat transfer through disordered high-tempera- tures. Traditional studies of radiative heat transfer in fibrous materials have been the performance of fibrous materials used as radiative heat transfer insulation media. Although effective

  12. Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda

    E-Print Network [OSTI]

    Schmeiser, Christian

    Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda A. Klar y C. Schmeiser z Abstract Radiative heat transfer equations including heat conduction are consid­ ered situations are presented. Keywords. radiative heat transfer, asymptotic analysis, nonlinear diffusion limit

  13. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

  14. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial with heat transfer along the stator, which corresponds to the experiment of Djaoui et al. [2]. Our results

  15. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  16. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  17. A vectorized heat transfer model for solid reactor cores

    SciTech Connect (OSTI)

    Rider, W.J.; Cappiello, M.W.; Liles, D.R.

    1990-01-01

    The new generation of nuclear reactors includes designs that are significantly different from light water reactors. Among these new reactor designs is the Modular High-Temperature Gas-Cooled Reactor (MHTGR). In addition, nuclear thermal rockets share a number of similarities with terrestrial HTGRs and would be amenable to similar types of analyses. In these reactors, the heat transfer in the solid core mass is of primary interest in design and safety assessment. One significant safety feature of these reactors is the capability to withstand a loss of pressure and forced cooling in the primary system and still maintain peak fuel temperatures below the safe threshold for retaining the fission products. To accurately assess the performance of gas-cooled reactors during these types of transients, a Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions. Also, HERA has been used to analyze a depressurized loss of forced cooling transient in a HTGR with a very detailed three-dimensional input model. The results compare favorably with other means of analysis and provide further validation of the models and methods. 18 refs., 11 figs.

  18. Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions for model systems

    E-Print Network [OSTI]

    Hammes-Schiffer, Sharon

    Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions A general minimal model for proton-coupled electron transfer PCET reactions in solution is presented. This model consists of three coupled degrees of freedom that represent an electron, a proton, and a solvent

  19. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model

    E-Print Network [OSTI]

    Liou, K. N.

    Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model of California, Los Angeles, Los Angeles, California B. H. KAHN Jet Propulsion Laboratory, California Institute radiative transfer model has been developed for application to cloudy satellite data assimilation

  20. Charge-transfer electrostatic model of compositional order in perovskite alloys Zhigang Wu and Henry Krakauer

    E-Print Network [OSTI]

    Wu, Zhigang

    Charge-transfer electrostatic model of compositional order in perovskite alloys Zhigang Wu transfer that is shown to account for the observed B-site ordering in Pb-based perovskite alloys. The model the long-range compositional order of both Pb- and Ba-based complex A(BB B )O3 perovskite alloys

  1. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  2. Global oceanic rainfall estimation from AMSR-E data based on a radiative transfer model 

    E-Print Network [OSTI]

    Jin, Kyoung-Wook

    2006-04-12

    An improved physically-based rainfall algorithm was developed using AMSR-E data based on a radiative transfer model. In addition, error models were designed and embedded in the algorithm to assess retrieval errors ...

  3. Numerical modelling of current transfer in nonlinear anisotropic conductive media

    E-Print Network [OSTI]

    Baranowski, Robert Paul

    on the nature of current transport. The main motivation for this work was the desire for a better understanding of the conceptually difficult behaviour of current transport in superconducting bodies and examines current transfer quantitatively for a number...

  4. Modeling and Numerical Simulation of Bioheat Transfer and Biomechanics in Soft Tissue

    E-Print Network [OSTI]

    Zhang, Jun

    Modeling and Numerical Simulation of Bioheat Transfer and Biomechanics in Soft Tissue #3; Wensheng techniques are eÆcient. Key words: Bioheat transfer, biomechanics, discretization, iterative solver. 1 do in engineering area by solving constitutive equations. One of the major diÆculties in biomechanics

  5. Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves

    E-Print Network [OSTI]

    Tabak, Esteban G.

    Nonequilibrium Statistics of a Reduced Model for Energy Transfer in Waves R. E. LEE DEVILLE Courant, with the subsequent dynamics transferring the energy to longer scales. The main dissipation mechanism is wave breaking, which usually acts on much longer (gravity) waves that intermittently remove energy from the wave system

  6. On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    Ren, Kui

    On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar-performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling

  7. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC choice model was estimated from the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms. Among those that were familiar with cogeneration, its high

  8. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  9. Numerical and analytical modeling of heat transfer between fluid and fractured rocks

    E-Print Network [OSTI]

    Li, Wei, S.M. Massachusetts Institute of Technology

    2014-01-01

    Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

  10. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01

    infrared radia- tion and solar radiation. Figure 1 shows theconvective and infrared and solar radiation heat transfer inIn the window model, a solar radiation balance is solved for

  11. Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe

    E-Print Network [OSTI]

    Zhang, Qi, S.M. Massachusetts Institute of Technology

    2008-01-01

    While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

  12. This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program.

    Office of Energy Efficiency and Renewable Energy (EERE)

    This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program.

  13. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  14. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  15. LED Market Adoption

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORT LED ADOPTION REPORT PDFLEDLED MR16LED

  16. A new predictive dynamic model describing the effect of1 the ambient temperature and the convective heat transfer2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the convective heat transfer2 coefficient on bacterial growth3 4 H. Ben Yaghlenea,b* , I. Leguerinela , M. Hamdib Ratkowsky "square root" model and a simplified two-parameter20 heat transfer model regarding an infinite air temperature, the convective heat transfer22 coefficient and the growth parameters of the micro

  17. Measurement and modeling of transfer functions for lightning coupling into the Sago mine.

    SciTech Connect (OSTI)

    Morris, Marvin E.; Higgins, Matthew B.

    2007-04-01

    This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

  18. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  19. Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts

    E-Print Network [OSTI]

    Tennessee, University of

    for oxidation catalyts with typical diesel exhaust feed. Such devices have been used for many years to oxidize or selective catalytic NOx reduction reactors). Hence, accurate models for the oxidation cata- lysts (in02FCC-140 Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts Kalyana

  20. Use of Physical Models to Facilitate Transfer of Physics Learning to Understand Positron Emission Tomography*

    E-Print Network [OSTI]

    Zollman, Dean

    in order to understand the image construction process in PET. For this purpose we conduct teaching of learning from the models of the activities to the PET image construction process. #12;METHODOLOGY Sixteen of the physical models in transferring physics ideas to understanding positron emission tomography technology

  1. Spectroscopic investigation of photo-induced proton-coupled electron transfer and Dexter energy transfer in model systems

    E-Print Network [OSTI]

    Young, Elizabeth R. (Elizabeth Renee), 1980-

    2009-01-01

    Spectroscopic investigations of systems designed to advance the mechanistic interrogation of photo-induced proton coupled electron transfer (PCET) and proton-coupled (through-bond) energy transfer (PCEnT) are presented. ...

  2. Energy transfers in shell models for MHD turbulence

    E-Print Network [OSTI]

    T. Lessinnes; M. K. Verma; D. Carati

    2008-07-31

    A systematic procedure to derive shell models for MHD turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross-helicity and the magnetic helicity as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest neighbour shells, this procedure reproduces well known models but suggests a reinterpretation of the energy fluxes.

  3. Model Proton-Coupled Electron Transfer Reactions in Solution: Predictions of Rates, Mechanisms, and Kinetic Isotope Effects

    E-Print Network [OSTI]

    Hammes-Schiffer, Sharon

    Model Proton-Coupled Electron Transfer Reactions in Solution: Predictions of Rates, Mechanisms isotope effects for proton-coupled electron transfer (PCET) reactions. These studies are based, the solvent is represented as a dielectric continuum, and the active electrons and transferring protons

  4. Downward transference of mice and universality of local core models

    E-Print Network [OSTI]

    Caicedo, Andres

    2012-01-01

    If M is an inner model and omega_2^M=omega_2, then every sound mouse projecting to omega and not past 0-pistol belongs to M. In fact, under the assumption that 0-pistol does not belong to M, K^M \\| omega_2 is universal for all countable mice in V}. Similarly, if delta>omega_1 is regular, (delta^+)^M = delta^+, and in V there is no proper class inner model with a Woodin cardinal, then K^M \\| delta is universal for all mice in V of cardinality less than delta.

  5. Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    E-Print Network [OSTI]

    Kyle C. Smith; Timothy S. Fisher

    2012-05-04

    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

  6. A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion in the

    E-Print Network [OSTI]

    of interlobular arteries in kidney cortex (1/cm2) n(r) number of blood vessels in a shell of tissue at radius r P) r radial distance from the center of the thermistor (cm) S kidney cortex cross sectional area (cm2A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion

  7. Development of Property-Transfer Models for Estimating the Hydraulic Properties of Deep

    E-Print Network [OSTI]

    Development of Property-Transfer Models for Estimating the Hydraulic Properties of Deep Sediments at the Idaho National Engineering and Environmental Laboratory, Idaho Scientific Investigations Report 2005 Survey DOE/ID-22196 #12;Cover: Graph showing example of water-retention (q(y)) curve showing components

  8. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  9. An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models

    E-Print Network [OSTI]

    Boyer, Edmond

    An Efficient Instantiation Algorithm for Simulating Radiant Energy Transfer in Plant Models Cyril CIRAD/INRIA We describe a complete lighting simulation system tailored for the difficult case growth simulation. Other applications of our system range from landscape simulation to agronomical

  10. Modeling the free energy surfaces of electron transfer in condensed phases

    E-Print Network [OSTI]

    Matyushov, Dmitry

    PROOF COPY 509037JCP Modeling the free energy surfaces of electron transfer in condensed phases analytical solution for the ET free energy surfaces demonstrates the following features: i the range of ET reaction coordinates is limited by a one-sided fluctuation band, ii the ET free energies are infinite

  11. On exact and perturbation solutions to nonlinear equations for heat transfer models

    E-Print Network [OSTI]

    Francisco M. Fernández

    2009-11-03

    We analyze some exact and approximate solutions to nonlinear equations for heat transfer models. We prove that recent results derived from a method based on Lie algebras are either trivial or wrong. We test a simple analytical expression based on the hypervirial theorem and also discuss earlier perturbation results.

  12. CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL

    E-Print Network [OSTI]

    Heinemann, Detlev

    between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind ­ 048°31'42"W / 10m) 2. BASIC DESCRIPTION OF SOLAR RADIATION SITES The two sites were chosen because they provide high quality radiation data and represent different climatic/environmental regions and different

  13. A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows 

    E-Print Network [OSTI]

    Greendyke, Robert Brian

    1988-01-01

    will examine the radiance model and various step models in order to determine their appropriateness to the flight regime of the AOTV. The final area to be investigated will be the effect of nonequilibrium corrections on the radiative heat transfer models... of T and e T will be valid as long as there is a reasonable amount vNs of nitrogen molecules in the flow. Radiative Heat Transfer Models For this study, four radiative heat transfer models were examined. One of these models is an optically thin radiance...

  14. New model of calculating the energy transfer efficiency for the spherical theta-pinch device

    E-Print Network [OSTI]

    Xu, G; Loisch, G; Xiao, G; Jacoby, J; Weyrich, K; Li, Y; Zhao, Y

    2015-01-01

    Ion-beam-plasma-interaction plays an important role in the field of Warm Dense Matter (WDM) and Inertial Confinement Fusion (ICF). A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by C. Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. The traditional two models of energy transfer efficiency are based on assumptions which comprise the risk of systematical errors. To obtain precise results, this paper proposes a new model without the necessity of any assumption to calculate the energy transfer efficiency for an inductively coupled plasma device. Further, a comparison of these three different models is given at a fixed operation voltage for the full ...

  15. Boson-conserving one-nucleon transfer operator in the interacting boson model

    E-Print Network [OSTI]

    J. Barea; C. E. Alonso; J. M. Arias

    2002-01-23

    The boson-conserving one-nucleon transfer operator in the interacting boson model (IBA) is reanalyzed. Extra terms are added to the usual form used for that operator. These new terms change generalized seniority by one unit, as the ones considered up to now. The results obtained using the new form for the transfer operator are compared with those obtained with the traditional form in a simple case involving the pseudo-spin Bose-Fermi symmetry $U^{B}(6) \\otimes U^F(12)$ in its $U^{BF}(5) \\otimes U^F(2)$ limit. Sizeable differences are found. These results are of relevance in the study of transfer reactions to check nuclear supersymmetry and in the description of (\\beta)-decay within IBA.

  16. Three-dimensional modeling of heat transfer from slab floors. Final report

    SciTech Connect (OSTI)

    Bahnfleth, W.P.

    1989-07-01

    Earth-coupled heat-transfer processes have been recognized in recent years as a potential source of significant energy savings in both conventional and earth-sheltered designs, Because of the complexity of the building/soil/atmosphere interaction, however, important aspects of earth-coupled heat transfer are not well understood. There is a particular lack of three-dimensional foundation heat-loss data. In this study, a detailed three-dimensional finite-difference model of a slab floor was used to generate 93 annual simulations in parametric groups focusing on effects of size and shape, soil properties, boundary conditions, climate, insulation, and building shadow. These results indicate that soil thermal conductivity, ground surface conditions, foundation design, and floor shape/size are essential elements of a general change in heat-transfer rate.

  17. Effects of a carbon tax on microgrid combined heat and power adoption

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

    2004-01-01

    Modeling with Combined Heat and Power Applications. ”Tax on Microgrid Combined Heat and Power Adoption Afzal S.Tax on Microgrid Combined Heat and Power Adoption Afzal S.

  18. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  19. Application of an EASM model for turbulent convective heat transfer in ribbed duct

    SciTech Connect (OSTI)

    Saidi, A.; Sunden, B.

    1999-07-01

    A numerical investigation is performed to predict local and mean thermal-hydraulic characteristics in rib-roughened ducts. The Navier-Stokes and energy equations, and a low-Re number {kappa}-{epsilon} turbulence model are solved with two methods for determination of the Reynolds stresses, eddy viscosity model (EVM) and explicit algebraic stress model (EASM). The numerical solution procedure uses a collocated grid, and the pressure-velocity coupling is handled by the SIMPLEC algorithm. The assumption of fully developed periodic conditions is applied. The calculated mean and local heat transfer enhancement values are compared with experimental data and fairly good agreement on mean Nu numbers is achieved. The prediction capabilities of the two turbulence models (EVM and EASM) are discussed. Both models have similar ability to predict the mean Nusselt numbers but the EASM model is superior in description of the flow field structure.

  20. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    SciTech Connect (OSTI)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.; Krupka, Kenneth M.; Sasser, Lyle B.

    2003-07-20

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants, including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.

  1. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    SciTech Connect (OSTI)

    Dalgicdir, Cahit; Sensoy, Ozge; Sayar, Mehmet, E-mail: msayar@ku.edu.tr [College of Engineering, Koç University, 34450 Istanbul (Turkey)] [College of Engineering, Koç University, 34450 Istanbul (Turkey); Peter, Christine [Max Planck Institute for Polymer Research, 55128 Mainz (Germany) [Max Planck Institute for Polymer Research, 55128 Mainz (Germany); Department of Chemistry, University of Konstanz, 78547 Konstanz (Germany)

    2013-12-21

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  2. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    SciTech Connect (OSTI)

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We further discover a novel growth condition which enables the characterization of autotrophic (i.e., carbon-fixing) metabolism in Geobacter. Importantly, our systems-level modeling approach helped elucidate the key metabolic pathways and the energetic cost associated with extracellular electron transfer. This model can be applied to characterize and engineer the metabolism and electron transfer capabilities of Geobacter for biotechnological applications.

  3. On the modeling and simulation of of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    On the modeling and simulation of of reaction-transfer dynamics in semiconductor-electrolyte solar-performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling

  4. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    SciTech Connect (OSTI)

    Chen, Y. Y.; Luo, E. C.; Dai, W.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermal regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.

  5. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    SciTech Connect (OSTI)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters. Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.

  6. Of Bulk and Boundaries: Generalized Transfer Matrices for Tight-Binding Models

    E-Print Network [OSTI]

    Vatsal Dwivedi; Victor Chua

    2015-10-14

    We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is non-invertible. Following Hatsugai [PRL 71, 3697 (1993)], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems like Chern insulator, Dirac semimetal and graphene. The edge states can then be interpreted as non-contractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on $Sp(2, \\mathbb{R})$ and interpret the corresponding winding number as a Maslov index.

  7. Of Bulk and Boundaries: Generalized Transfer Matrices for Tight-Binding Models

    E-Print Network [OSTI]

    Vatsal Dwivedi; Victor Chua

    2015-10-26

    We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is non-invertible. Following Hatsugai [PRL 71, 3697 (1993)], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems like Chern insulator, Dirac semimetal and graphene. The edge states can then be interpreted as non-contractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on $Sp(2, \\mathbb{R})$ and interpret the corresponding winding number as a Maslov index.

  8. A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media

    E-Print Network [OSTI]

    Liu, Q; Li, Q

    2013-01-01

    In this paper, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is developed for simulating convection heat transfer in porous media at the representative elementary volume scale. In the model, a MRT-LB equation is used to simulate the flow field, while another MRT-LB equation is employed to simulate the temperature field. The effect of the porous media is considered by introducing the porosity into the equilibrium moments, and adding a forcing term to the MRT-LB equation of the flow field in the moment space. The proposed MRT-LB model is validated by numerical simulations of several two-dimensional convection problems in porous media. The numerical results predicted by the present MRT-LB model agree well with those reported in the literature.

  9. A modified lattice Bhatnagar-Gross-Krook model for convection heat transfer in porous media

    E-Print Network [OSTI]

    Wang, Liang; Guo, Zhaoli

    2015-01-01

    The lattice Bhatnagar-Gross-Krook (LBGK) model has become the most popular one in the lattice Boltzmann method for simulating the convection heat transfer in porous media. However, the LBGK model generally suffers from numerical instability at low fluid viscosities and effective thermal diffusivities. In this paper, a modified LBGK model is developed for incompressible thermal flows in porous media at the representative elementary volume scale, in which the shear rate and temperature gradient are incorporated into the equilibrium distribution functions. With two additional parameters, the relaxation times in the collision process can be fixed at a proper value invariable to the viscosity and the effective thermal diffusivity. In addition, by constructing a modified equilibrium distribution function and a source term in the evolution equation of temperature field, the present model can recover the macroscopic equations correctly through the Chapman-Enskog analysis, which is another key point different from pre...

  10. 1D Transient Model for Frost Heave in PEFCs III. Heat Transfer, Microporous Layer, and Cycling Effects

    E-Print Network [OSTI]

    Mench, Matthew M.

    1D Transient Model for Frost Heave in PEFCs III. Heat Transfer, Microporous Layer, and Cycling of a polymer electric fuel cell PEFC have become a hot topic.1-16 The freeze/thaw induced damage observed

  11. A simplified model for heat transfer in heat exchangers and stack plates for thermoacoustic devices

    SciTech Connect (OSTI)

    Chen, Y.; Herman, C.

    1999-07-01

    A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic devices was developed. The model took advantage of previous results regarding the thermal behavior of the thermoacoustic core for investigations of the performance of heat exchangers attached to the core. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, the plate, and the working medium were organized into dimensionless groups that allowed to account for their impact on the performance of the heat exchangers. Numerical simulations with the model were carried out. Nonlinear temperature distributions and heat fluxes near the edge of the stack plate were observed. Effects of different parameters on the thermal performance of the heat exchangers were investigated.

  12. Mathematical modeling of mass transfer during centrifugal filtration of polydisperse suspensions

    SciTech Connect (OSTI)

    V.F. Pozhidaev; Y.B. Rubinshtein; G.Y. Golberg; S.A. Osadchii

    2009-07-15

    A mass-transfer equation, the solution of which for given boundary conditions makes it possible to derive in analytical form a relationship between the extraction of the solid phase of a suspension into the centrifuge effluent and the fineness of the particles, is suggested on the basis of a model; this is of particular importance in connection with the development of a new trend in the utilization of filtering centrifuges - concentration of coal slurries by extraction into the centrifuge effluent of the finest particles, the ash content of which is substantially higher than that of particles of the coarser classes. Results are presented for production studies under conditions at an active establishment (the Neryungrinskaya Enrichment Factory); these results confirmed the adequacy of the mathematical model proposed: convergence of computed and experimental data was within the limits of the experimental error (no more than 3%). The model in question can be used to predict results of suspension separation by centrifugal filtration.

  13. Modeling the heat transfer in geometrically complex media with a volume source

    SciTech Connect (OSTI)

    Gurevich, M. I., E-mail: gur.m@mail.ru; Tel’kovskaya, O. V.; Chukbar, B. K.; Shkarovskiy, D. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15

    Fuel elements produced from spent fuel are porous media with spatially varying characteristics. A hierarchical discrete structure for the numerical modeling of heat-transfer processes in media with an anisotropic geometry that is characterized by both the microscopic voids and macroscopic changes in the parameters is proposed. The basic unit of the structure at its lower level is a cell that represents the local properties of the medium. The cells have a standard interface that allows one to form three-dimensional networks of such cells. Different types of cells in the network represent macroscopic changes. The potential for parallel processing is analyzed.

  14. Electrostatic models of electron-driven proton transfer across a lipid membrane

    E-Print Network [OSTI]

    Anatoly Yu. Smirnov; Lev G. Mourokh; Franco Nori

    2010-11-29

    We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase complex in the inner mitochondria membranes, the electrostatic coupling to the site occupied by an electron lowers the energy level of the proton-binding site, making the proton transfer possible. In the second model, roughly describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a proton from the negative side of the membrane to a shuttle, which subsequently diffuses across the membrane and unloads the proton to its positive side. We show that both models can be described by the same approach, which can be significantly simplified if the system is separated into several clusters, with strong Coulomb interaction inside each cluster and weak transfer couplings between them. We derive and solve the equations of motion for the electron and proton creation/annihilation operators, taking into account the appropriate Coulomb terms, tunnel couplings, and the interaction with the environment. For the second model, these equations of motion are solved jointly with a Langevin-type equation for the shuttle position. We obtain expressions for the electron and proton currents and determine their dependence on the electron and proton voltage build-ups, on-site charging energies, reorganization energies, temperature, and other system parameters. We show that the quantum yield in our models can be up to 100% and the power-conversion efficiency can reach 35%.

  15. DEVELOPMENT IMPACT FEE ADOPTION AND ITS EFFECTS IN TEXAS 

    E-Print Network [OSTI]

    Ambs, Jonathan G.

    2010-01-20

    The purpose of my thesis is to study what factors affect the adoption of impact fees in Texas and what effects impact fees have on city budgets. This research was done using two models. The first model looked at the adoption of impact fees...

  16. Entanglement Entropy from Corner Transfer Matrix in Forrester Baxter non-unitary RSOS models

    E-Print Network [OSTI]

    Bianchini, Davide

    2015-01-01

    Using a Corner Transfer Matrix approach, we compute the bipartite entanglement R\\'enyi entropy in the off-critical perturbations of non-unitary conformal minimal models realised by lattice spin chains Hamiltonians related to the Forrester Baxter RSOS models in regime III. This allows to show on a set of explicit examples that the R\\'enyi entropies for non-unitary theories rescale near criticality as the logarithm of the correlation length with a coefficient proportional to the effective central charge. This complements a similar result, recently established for the size rescaling at the critical point, showing the expected agreement of the two behaviours. We also compute the first subleading unusual correction to the scaling behaviour, showing that it is expressible in terms of expansions of various fractional powers of the correlation length, related to the differences $\\Delta-\\Delta_{\\min}$ between the conformal dimensions of fields in the theory and the minimal conformal dimension. Finally, a few observati...

  17. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore »heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  18. Thesis proposal CSF Brazil 2014 Modeling of water transfer and suspended sediments in the Amazons river continuum

    E-Print Network [OSTI]

    Bordenave, Charles

    Thesis proposal CSF Brazil 2014 Title: Modeling of water transfer and suspended sediments is to modeling water and sediment transport at the Amazon catchment scale. Investigations will consist storage and sediment deposition on scenario in a context of global changes. Subject description: spended

  19. ON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING AND EXPERIMENT

    E-Print Network [OSTI]

    ON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING theoretical/experimentalstudy of the heat transferin thermoelectricShape Memory Alloy (SMA) actuators is undertaken in this paper. A one-dimensional model of a thermoelectric unit cell with a SMA junction

  20. Time-dependent Radiation Transfer in the Internal Shock Model Scenario for Blazar Jets

    E-Print Network [OSTI]

    Manasvita Joshi; Markus Boettcher

    2010-11-13

    We describe the time-dependent radiation transfer in blazar jets, within the internal shock model. We assume that the central engine, which consists of a black hole and an accretion disk, spews out relativistic shells of plasma with different velocity, mass, and energy. We consider a single inelastic collision between a faster (inner) and a slower (outer) moving shell. We study the dynamics of the collision and evaluate the subsequent emission of radiation via the synchrotron and synchrotron self Compton (SSC) processes after the interaction between the two shells has begun. The collision results in the formation of a forward shock (FS) and a reverse shock (RS) that convert the ordered bulk kinetic energy of the shells into magnetic field energy and accelerate the particles, which then radiate. We assume a cylindrical geometry for the emission region of the jet. We treat the self-consistent radiative transfer by taking into account the inhomogeneity in the photon density throughout the region. In this paper, we focus on understanding the effects of varying relevant input parameters on the simulated spectral energy distribution (SED) and spectral variability patterns.

  1. Crisis of the Chaotic Attractor of a Climate Model: A Transfer Operator Approach

    E-Print Network [OSTI]

    Alexis Tantet; Valerio Lucarini; Frank Lunkeit; Henk A. Dijkstra

    2015-07-08

    The destruction of a chaotic attractor leading to a rough change in the dynamics of a system as a control parameter is smoothly varied is studied. While bifurcations involving non-chaotic invariant sets, such as fixed points or periodic orbits, can be characterised by a Lyapunov exponent crossing the imaginary axis, little is known about the changes in a chaotic attractor during a crisis. The statistical physics framework, is particularly well suited for the study of global properties of chaotic systems. In particular, the semigroup of transfer operators governing the finite time evolution of probability distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum (between the leading eigenvalue and the secondary ones) of the semigroup is expected to shrink. Here we use a high-dimensional, chaotic climate model system in which a transition from today's warm climate state to a snow-covered state occurs. This transition is associated with the destruction of a chaotic attractor as the solar constant is decreased. We show that critical slowing down develops in this model before the destruction of the chaotic attractor and that it can be observed from trajectories along the attractor. In addition, we demonstrate that the critical slowing down can be traced back to the shrinkage of the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the fundamental features of the attractor crisis.

  2. The third RAdiation transfer Model Intercomparison (RAMI)1 exercise: Documenting progress in canopy reflectance models2

    E-Print Network [OSTI]

    Jones, Peter JS

    . The second phase expanded the scope to include structurally com-9 plex 3-D plant architectures agreement since RAMI-2, and the capability of/need for RT models to15 accurately reproduce local estimates and opportunities of the RAMI project in the future.22 1. Introduction Space-borne observations constitute a highly

  3. A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer

    E-Print Network [OSTI]

    Frauenfelder, Hans; Fenimore, Paul W

    2015-01-01

    We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long. The interaction between the neutron and a proton in the protein takes place during the transit of the wave packet. The wave packet exerts the force $F(t) = dQ(t)/dt$ on the protein moiety, a part of the protein surrounding the struck proton. $Q(t)$ is the wave vector (momentum) transferred by the neutron wave packet to the proton during the transit. The ensuing energy is stored in the energy landscape and returned to the neutron as the wave packet exits. Kinetic energy thus is changed into potential energy and back. The ...

  4. Radiative-transfer models for supernovae IIb/Ib/Ic from binary-star progenitors

    E-Print Network [OSTI]

    Dessart, Luc; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert

    2015-01-01

    We present 1-D non-Local-Thermodynamic-Equilibrium time-dependent radiative-transfer simulations for supernovae (SNe) of type IIb, Ib, and Ic that result from the terminal explosion of the mass donor in a close-binary system. Here, we select three ejecta with a total kinetic energy of ~1.2e51erg, but characterised by different ejecta masses (2-5Msun), composition, and chemical mixing. The type IIb/Ib models correspond to the progenitors that have retained their He-rich shell at the time of explosion. The type Ic model arises from a progenitor that has lost its helium shell, but retains 0.32Msun of helium in a CO-rich core of 5.11Msun. We discuss their photometric and spectroscopic properties during the first 2-3 months after explosion, and connect these to their progenitor and ejecta properties including chemical stratification. For these three models, Arnett's rule overestimates the 56Ni mass by ~50% while the procedure of Katz et al., based on an energy argument, yields a more reliable estimate. The presenc...

  5. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  6. California Energy Commission ADOPTED REGULATIONS

    E-Print Network [OSTI]

    and Energy Division 2. State Energy Resources Conservation and Development Commission Chapter 4. Energy Resources Code Section 25402.10, for disclosing energy use data and ENERGY STAR® Energy Performance ScoresCalifornia Energy Commission ADOPTED REGULATIONS FEBRUARY 2013 CEC-400-2010-004-CMF

  7. Modeling the Effects of Mutations on the Free Energy of the First Electron Transfer to QB in Photosynthetic Reaction Centers

    E-Print Network [OSTI]

    Gunner, Marilyn

    Modeling the Effects of Mutations on the Free Energy of the First Electron Transfer from QA - to QB, 1999; ReVised Manuscript ReceiVed February 14, 2000 ABSTRACT: Numerical calculations of the free energy changes in nearby residues. This reduces the effect of mutation and makes the changes in state free energy

  8. RELAP5-3D Modeling of Heat Transfer Components (Intermediate...

    Office of Scientific and Technical Information (OSTI)

    reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an...

  9. A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer

    E-Print Network [OSTI]

    Hans Frauenfelder; Robert D. Young; Paul W. Fenimore

    2015-08-20

    We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long. The interaction between the neutron and a proton in the protein takes place during the transit of the wave packet. The wave packet exerts the force $F(t) = dQ(t)/dt$ on the protein moiety, a part of the protein surrounding the struck proton. $Q(t)$ is the wave vector (momentum) transferred by the neutron wave packet to the proton during the transit. The ensuing energy is stored in the energy landscape and returned to the neutron as the wave packet exits. Kinetic energy thus is changed into potential energy and back. The interaction energy is proportional to $Q$, not to $Q^2$. To develop and check the ELM, we use published work on dehydrated proteins after reversing improper normalizations. In such proteins only vibrations are active and the effects caused by the neutron momentum can be studied undisturbed by external fluctuations. ELM has predictive power. For example it quantitatively predicts the observed inelastic incoherent fraction $S(Q, T)$ over a broad range of temperature and momentum $Q$ with one coefficient if $S(0, T)$ is known.

  10. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    SciTech Connect (OSTI)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

  11. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    SciTech Connect (OSTI)

    Prodan, Camelia [NJIT

    2013-06-14

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

  12. Design and Testing of a Heat Transfer Model of a Raccon (Procyon Lotor) in a Closed Tree Den Author(s): Jeffrey Thorkelson and Robert K. Maxwell

    E-Print Network [OSTI]

    Minnesota, University of

    Design and Testing of a Heat Transfer Model of a Raccon (Procyon Lotor) in a Closed Tree Den Author. http://www.jstor.org #12;Ecology (1974) 55: pp. 29-39 DESIGN AND TESTING OF A HEAT TRANSFER MODEL of Ecology and Behavioral Biology, Universityof Minnesota, St. Paul, Minnesota 55101 Aabstract. A heat

  13. An Overview of Cloud Services Adoption Challenges in Higher Education Institutions

    E-Print Network [OSTI]

    An Overview of Cloud Services Adoption Challenges in Higher Education Institutions Abdulrahman Services Adoption, Challenges, Cloud Computing, Higher Education, Integrated TAM model Abstract: Information Technology (IT) plays an important role in enabling education services be delivered to users. Most

  14. Analytical Models of Exoplanetary Atmospheres. II. Radiative Transfer via the Two-Stream Approximation

    E-Print Network [OSTI]

    Heng, Kevin; Lee, Jaemin

    2014-01-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We further demonstrate that traditional non-isothermal treatments of each atmospheric layer lead to unphysical contributions to the ...

  15. RUNNING HEAD: RADIOSTRONTIUM IN DAIRY GOATS A Model of Radiostrontium Transfer in Dairy Goats

    E-Print Network [OSTI]

    Crout, Neil

    , United Kingdom Institute of Terrestrial Ecology, Merlewood Research Station Grange-over-Sands, Cumbria-order kinetics21 to drive the transfer of radiostrontium between compartments and does not22 consider the effect

  16. Heat transfer modelling of the saltstone pouring and curing process. Task Number: 93-016-0

    SciTech Connect (OSTI)

    Shadday, M.A. Jr.

    1993-11-01

    A byproduct of the in tank precipitation, ITP, process will be 25 million gallons of low-level salt solution. This salt solution will be mixed with cement and a flyash/slag mixture and solidified in surface vaults in the Z-area Saltstone Facility. The curing process of saltstone involves exothermic reactions, and there is a maximum temperature limit of 90{degree}C for the curing saltstone. If this temperature limit is exceeded, the physical properties of the saltstone can be degraded. A heat transfer model of the saltstone pouring and curing process has been developed that predicts transient temperature distributions in the curing saltstone. The purpose of this model is to predict peak temperatures as functions of the several independent variables in this process: pour temperature, the pour schedule, and seasonal variations in the ambient temperature. The peak temperature of the saltstone is very sensitive to the internal heat generation that accompanies the curing process. Most of the energy is released over a short period of several hours, and the balance is released slowly over a period of time that can be in excess of a month. This long term low level internal heat generation is difficult to measure in laboratory calorimetry tests, and it can significantly influence the peak temperature in the saltstone. Due to the low thermal conductivity of the saltstone, the central region of the poured saltstone will essentially heat up adiabatically. The time dependence of the internal heat generation rate was determined from an analysis of the 1991 pilot pour test. With a pour schedule of eight hours a day and five days a week in the summer, the model predicts that the saltstone will have a peak temperature of 98 C with a pour temperature of 45 C, and a peak temperature of 88 C with a pour temperature of 30 C. With a pour schedule of three days a week, the peak temperature will be 88{degree}C with a pour temperature of 45 C, and 80 C with a pour temperature of 30 C.

  17. Technology adoption: who is likely to adopt and how does the timing affect the benefits? 

    E-Print Network [OSTI]

    Rubas, Debra Joyce

    2004-11-15

    Figure 4.2. Assumed adoption paths, where dt is the logistic function ) ) bt bt t e ed + + += ...............................................................................................74 Figure 4.3. Producer surplus over time when U.S. starts... adopting first, Canada starts adoption second, and Australia starts adoption third (figure 4.2, panel a) ....77 Figure 4.4. Producer surplus over time when the U.S. adopts fastest, Canada adopts second fastest, and Australia adopts slowest (figure 4...

  18. An Agent Based Simulation of Smart Metering Technology Adoption

    E-Print Network [OSTI]

    Zhang, Tao; Nuttall, William J.

    simultaneously), micro-hydro, micro-wind and photovoltaics. The benefits of wind, solar and hydro micro-generation are the zero fuel cost and that the technologies are carbon free. The development of micro-generation can potentially produce a third of a... /behavioural theory. The paper is comprised of six sections. The second section describes smart metering technology and its current situation of adoption. The third section describes our agent-based simulation model of smart metering technology adoption...

  19. Automotive Deployment Option Projection Tool (ADOPT) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer20Insulated Cladding Systems

  20. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    E-Print Network [OSTI]

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  1. Modelling for post-dryout heat transfer and droplet sizes at low pressure and low flow conditions

    SciTech Connect (OSTI)

    Jeong, H.Y.; No, H.C. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering] [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

    1996-10-01

    A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is valid only in the churn-turbulent flow regime (j*{sub g} = 0.5 {approximately} 4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 15%, respectively.

  2. Numerical study on transient heat transfer under soil with plastic mulch in agriculture applications using a nonlinear finite element model

    E-Print Network [OSTI]

    De Castro, Carlos Armando

    2011-01-01

    In this paper is developed a simple mathematical model of transient heat transfer under soil with plastic mulch in order to determine with numerical studies the influence of different plastic mulches on the soil temperature and the evolutions of temperatures at different depths with time. The governing differential equations are solved by a Galerkin Finite Element Model, taking into account the nonlinearities due to radiative heat exchange between the soil surface, the plastic mulch and the atmosphere. The model was validated experimentally giving good approximation of the model to the measured data. Simulations were run with the validated model in order to determine the optimal combination of mulch optical properties to maximize the soil temperature with a Taguchi's analysis, proving that the material most used nowadays in Colombia is not the optimal and giving quantitative results of the properties the optimal mulch must possess.

  3. HTDVol.335, Proceedings of hte ASME Heat Transfer Division THERMOACOUSTIC WAVE PROPAGATION MODELING USING

    E-Print Network [OSTI]

    Vasilyev, Oleg V.

    HTD­Vol.335, Proceedings of hte ASME Heat Transfer Division Volume 4 ASME 1996 THERMOACOUSTIC WAVE ABSTRACT Thermoacoustic wave propagation in a two­dimensional rectan­ gular cavity is studied numerically. The thermoacoustic waves are generated by raising the temperature locally at the walls. The waves, which decay

  4. Modeling the efficiency of Frster resonant energy transfer from energy relay dyes in dye-

    E-Print Network [OSTI]

    McGehee, Michael

    of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons: (260.2160) Energy Transfer; (350.6050) Solar Energy; (160.2540) Fluorescent and luminescent materials in dye-sensitized solar cells with energy relay dyes," Nat. Photonics 3(7), 406­411 (2009). 4. P. R. F

  5. Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model

    E-Print Network [OSTI]

    Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J.

    2011-01-01

    Vortex structure and heat transfer in turbulent flow over asurface, Proc. 5 th Int. Heat Transfer Conf. 3 (1974) 129-a vertical plate, J. Heat Transfer 109(1) [13] K. Patel,

  6. Building model systems to understand Proton-Coupled Electron Transfer in heme : spectroscopic investigation of charge transfer to axially bound diimide acceptors

    E-Print Network [OSTI]

    Hanson, Christina J

    2013-01-01

    Proton-Coupled Electron Transfer (PCET) is an important mechanistic motif in chemistry, which allows for efficient charge transport in many biological systems. We seek to understand how the proton and electron motions are ...

  7. A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground Insulated Piping

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministrationTechnicalTechnicalScience.govWSRC-MS-g8-00318 Heat Transfer Model of

  8. Ownership transfer for non-federate object and time management in developing an hla compliant logistics model.

    SciTech Connect (OSTI)

    Li, Z.

    1998-01-12

    A seaport simulation model, PORTSIM, has been developed for the Department of Defense (DOD) at Argonne National Laboratory. PORTSIM simulates the detailed processes of cargo loading and unloading in a seaport and provides throughput capability, resource utilization, and other important information on the bottlenecks in a seaport operation, which are crucial data in determining troop and equipment deployment capability. There are two key problems to solve in developing the HLA-compliant PORTSIM model. The first is the cargo object ownership transfer problem. In PORTSIM, cargo items, e.g. vehicles, containers, and pallets, are objects having asset attributes. Cargo comes to a seaport for loading or unloading. The ownership of a cargo object transfers from its carrier to the port and then from the port to a new carrier. Each owner of the cargo object is responsible for publishing and updating the attributes of the cargo object when it has the ownership. This creates a unique situation in developing the PORTSIM federate object model, that is, the ownership of the object instead of the attributes needs to be changed in handling the cargo object in the PORTSIM federate. The ownership management service provided by the current RTI does not directly address this issue. The second is the time management issue. PORTSIM is an event-driven simulation that models seaport operations over time. To make PORTSIM HLA compliant, time management must be addressed to allow for synchronization with other simulation models. This paper attempts to address these two issues and methodologies developed for solving these two problems.

  9. 3D hydrodynamical and radiative transfer modeling of Eta Carinae's colliding winds

    E-Print Network [OSTI]

    Madura, Thomas I; Gull, Theodore R; Kruip, Chael J H; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-01-01

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on Eta Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty 'pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulatio...

  10. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    SciTech Connect (OSTI)

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)] [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-09-15

    Correlations between the external discharge parameters (the driving frequency ? and the chamber dimension R) and plasma characteristics (the skin depth ? and the electron-neutral collision frequency ?{sub m}) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when ??0.38R for the discharge condition at which ?{sub m}/??1, while it occurs when ???(2)?(?/?{sub m})R for the discharge condition at which ?{sub m}/??1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.

  11. Biotechnology Adoption in Sub-Saharan Africa

    E-Print Network [OSTI]

    Midling, Michael B

    2011-01-01

    Nigeria lacks Berkeley Undergraduate Journal: Volume 24, Issue 3 Biotechnology Adoption in Sub-Saharan Africa Michael Baihua Midling regular energy,

  12. Analysis and behavioral modeling of the Finite State Machines of the Xpress Transfer Protocol 

    E-Print Network [OSTI]

    Madduri, Venkateswara Rao

    1994-01-01

    . This research focuses on the analysis and behavioral modeling of the Finite State Machines of the XTP. The simulation language used is the Verilog Hardware Description Language. We have modeled XTP Finite State Machines as a set of communicating, concurrent...

  13. Three-Dimensional Modeling of Shape Memory Polymers Considering Finite Deformations and Heat Transfer 

    E-Print Network [OSTI]

    Volk, Brent Louis 1985-

    2012-10-16

    of applied strain. Using the uniaxial experimental data, the model is then calibrated and compared to the 1-D experimental results. The validated finite element analysis tool is then used to model biomedical devices, including cardiovascular tubes...

  14. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    expenditure on energy. PV adoption differs conceptually fromeffect around residential PV adoption, and if so what arein consumption changes after PV adoption. Figure 5.5 shows

  15. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Solar Adoption and Energy Consumption in the ResidentialFall 2012 Solar Adoption and Energy Consumption in theAbstract Solar Adoption and Energy Consumption in the

  16. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    and improve the potential solar adopter’s perceived value inother impacts of their potential solar choices, as a grouphand, some potential adopters may perceive solar as complex

  17. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  18. Hydrodynamic and radiative transfer modeling of X-ray emission from colliding WR winds: WR 140 & the Galactic center

    E-Print Network [OSTI]

    Russell, Christopher M P; Cuadra, Jorge; Owocki, Stanley P; Wang, Q Daniel; Hamaguchi, Kenji; Sugawara, Yasuharu; Pollock, Andrew M T; Kallman, Timothy R

    2015-01-01

    Colliding Wolf-Rayet (WR) winds produce thermal X-ray emission widely observed by X-ray telescopes. In wide WR+O binaries, such as WR 140, the X-ray flux is tied to the orbital phase, and is a direct probe of the winds' properties. In the Galactic center, $\\sim$30 WRs orbit the super massive black hole (SMBH) within $\\sim$10", leading to a smorgasbord of wind-wind collisions. To model the X-ray emission of WR 140 and the Galactic center, we perform 3D hydrodynamic simulations to trace the complex gaseous flows, and then carry out 3D radiative transfer calculations to compute the variable X-ray spectra. The model WR 140 RXTE light curve matches the data well for all phases except the X-ray minimum associated with periastron, while the model spectra agree with the RXTE hardness ratio and the shape of the Suzaku observations throughout the orbit. The Galactic center model of the Chandra flux and spectral shape match well in the region r$<$3", but the model flux falls off too rapidly beyond this radius.

  19. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    E-Print Network [OSTI]

    Bern, CR; Thompson, A; Chadwick, OA

    2015-01-01

    1987) Constitutive mass balance relations between chemicalprocesses using mass balance princi- ples. Econ. Geol. 80,and Chorover J. (2011) A mass-balance model to separate and

  20. CKow -- A More Transparent and Reliable Model for Chemical Transfer to Meat and Milk

    E-Print Network [OSTI]

    Rosenbaum, Ralph K.

    2010-01-01

    JRC) Ispra: Italy, 2003. RTI Methodology for predictingbiotransfer factors; RTI Project Number 08860.002.015,regression (hereafter called RTI model) which is recommended

  1. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01

    Multizone Air- flow Model in Modelica. ” Edited by ChristianRecent developments of the Modelica buildings library forof the 8-th International Modelica Conference. Modelica

  2. Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling

    E-Print Network [OSTI]

    Klaus M. Pontoppidan; Cornelis P. Dullemond; Ewine F. van Dishoeck; Geoffrey A. Blake; Adwin C. A. Boogert; Neal J. Evans II; Jacqueline E. Kessler-Silacci; Fred Lahuis

    2004-11-13

    We present 5.2-37.2 micron spectroscopy of the edge-on circumstellar disk CRBR 2422.8-3423 obtained using the InfraRed Spectrograph (IRS) of the Spitzer Space Telescope. The IRS spectrum is combined with ground-based 3-5 micron spectroscopy to obtain a complete inventory of solid state material present along the line of sight toward the source. We model the object with a 2D axisymmetric (effectively 3D) Monte Carlo radiative transfer code. It is found that the model disk, assuming a standard flaring structure, is too warm to contain the very large observed column density of pure CO ice, but is possibly responsible for up to 50% of the water, CO2 and minor ice species. In particular the 6.85 micron band, tentatively due to NH4+, exhibits a prominent red wing, indicating a significant contribution from warm ice in the disk. It is argued that the pure CO ice is located in the dense core Oph-F in front of the source seen in the submillimeter imaging, with the CO gas in the core highly depleted. The model is used to predict which circumstances are most favourable for direct observations of ices in edge-on circumstellar disks. Ice bands will in general be deepest for inclinations similar to the disk opening angle, i.e. ~70 degrees. Due to the high optical depths of typical disk mid-planes, ice absorption bands will often probe warmer ice located in the upper layers of nearly edge-on disks. The ratios between different ice bands are found to vary by up to an order of magnitude depending on disk inclination due to radiative transfer effects caused by the 2D structure of the disk. Ratios between ice bands of the same species can therefore be used to constrain the location of the ices in a circumstellar disk. [Abstract abridged

  3. Radiative transfer modeling of the enigmatic scattering polarization in the solar NaI D1 line

    E-Print Network [OSTI]

    Belluzzi, Luca; Degl'Innocenti, Egidio Landi

    2015-01-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of NaI, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polariza...

  4. Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer

    E-Print Network [OSTI]

    Zhao, Tianshou

    Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat The extremely small length scale of the electric double layer (EDL) of electro-osmotic flows (EOF and temperature as the velocity-slip and temperature-jump boundary conditions, form a simple model for the electro-osmotic

  5. Heat Transfer Modeling and Use of Distributed Temperature Measurements to Predict Rate 

    E-Print Network [OSTI]

    Hashmi, Gibran Mushtaq

    2014-07-08

    in the literature. The steady-state model is used where the fluid flow is essentially steady and any change in rate is followed by a sufficiently long steady schedule. The transient model is used where the well is still flowing in the initial stages or fluctuations...

  6. Order Reduction of the Radiative Heat Transfer Model for the Simulation of Plasma Arcs

    E-Print Network [OSTI]

    Fagiano, Lorenzo

    2015-01-01

    An approach to derive low-complexity models describing thermal radiation for the sake of simulating the behavior of electric arcs in switchgear systems is presented. The idea is to approximate the (high dimensional) full-order equations, modeling the propagation of the radiated intensity in space, with a model of much lower dimension, whose parameters are identified by means of nonlinear system identification techniques. The low-order model preserves the main structural aspects of the full-order one, and its parameters can be straightforwardly used in arc simulation tools based on computational fluid dynamics. In particular, the model parameters can be used together with the common approaches to resolve radiation in magnetohydrodynamic simulations, including the discrete-ordinate method, the P-N methods and photohydrodynamics. The proposed order reduction approach is able to systematically compute the partitioning of the electromagnetic spectrum in frequency bands, and the related absorption coefficients, tha...

  7. A covariant model for the gamma N -> N(1535) transition at high momentum transfer

    SciTech Connect (OSTI)

    G. Ramalho, M.T. Pena

    2011-08-01

    A relativistic constituent quark model is applied to the gamma N -> N(1535) transition. The N(1535) wave function is determined by extending the covariant spectator quark model, previously developed for the nucleon, to the S11 resonance. The model allows us to calculate the valence quark contributions to the gamma N -> N(1535) transition form factors. Because of the nucleon and N(1535) structure the model is valid only for Q^2> 2.3 GeV^2. The results are compared with the experimental data for the electromagnetic form factors F1* and F2* and the helicity amplitudes A_1/2 and S_1/2, at high Q^2.

  8. Kinetic Modeling of the Effect of MAO/Zr Ratio and Chain Transfer to Aluminum in Zirconocene Catalyzed Propylene Polymerization

    E-Print Network [OSTI]

    ,*, and Michael A. Henson*, Department of Chemical Engineering and Department of Polymer Science and Engineering, the occurrence of chain transfer to trimethylaluminum (TMA), and -hydride chain transfer to both monomer produced with I/MAO decreased at low pressures due to the high rate of monomolecular -hydride transfer

  9. Overview of heat transfer and fluid flow problem areas encountered in stirling engine modeling

    SciTech Connect (OSTI)

    Tew, R.C. Jr.

    1988-02-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  10. Home Energy Displays: Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, J.; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  11. New Mass-Transfer Model for Simulating Industrial Nylon-6 Production Trains

    E-Print Network [OSTI]

    Liu, Y. A.

    for simulating industrial nylon-6 polymerization trains. In this model, both diffusion and boiling (bubble viscosity (FAV), polymer end-group concentration, and water extractables. The prediction errors for the direct-melt process are 2.81%, -3.13%, and -3.06% for FAV, water extractables, and amine end groups

  12. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance

    E-Print Network [OSTI]

    Jones, Peter JS

    the scope to include structurally complex 3-D plant architectures with and without background topography/need for RT models to accurately reproduce local estimates of radiative quantities under conditions) to a reassessment of the role, scope, and opportunities of the RAMI project in the future. Citation: Widlowski, J

  13. RADIATIVE TRANSFER MODELING FOR RADIATION-CHEMISTRY COUPLING ANALYSIS A. de Guilhem de Lataillade

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    an accurate Monte Carlo algorithm with a simple Taylor expansion of radiative exchanges as function is a subject of renewed interest, with the acceptance of the fact that reacting flow models are not complete walls. It is known, for example, that substantial fractions of flame energy can be converted

  14. Office of Technology Transfer Material Transfer Agreements

    E-Print Network [OSTI]

    Tullos, Desiree

    Office of Technology Transfer · Material Transfer Agreements · Confidentiality Agreements · Copyright / Patent Licensing The Office of Technology Transfer facilitates the transfer of innovations out of the university for public benefit TOOLS #12;Office of Technology Transfer Facilitating transfer of innovations

  15. Biotechnology Adoption in Sub-Saharan Africa

    E-Print Network [OSTI]

    Midling, Michael B

    2011-01-01

    bioforti?ed crops in South Africa. ” AgBioForum, 10(3), 184–blog/ 2010/jun/21/agriculture-africa. [6] Borlaug, Norman. “Adoption in Sub-Saharan Africa Michael Baihua Midling [11

  16. LED ADOPTION REPORT | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORT LED ADOPTION REPORT PDF icon Report:

  17. LED Market Adoption: Status and Trends

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORT LED ADOPTION REPORT PDFLEDLED

  18. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore »the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  19. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect (OSTI)

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  20. A two-dimensional model for the heat transfer on the external circuit of a Stirling engine for a dish/Stirling system

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1998-07-01

    In this paper the {kappa}-{var{underscore}epsilon} turbulent model for the incompressible fluid flow has been used to describe the heat transfer and gas dynamical processes on the external circuit of a Stirling Engine as used on a Solar Dish/Stirling System. The problem considered, in this work for a cavity-type heat receiver of the Stirling Engine, is that of the heat transfer in the body of the shell of the heat exchangers of the engine due to the thermal conductivity, the convective heat transfer between the working fluid and the walls of the engine internal gas circuit and the heat transfer due to the forced convection of the air in the cavity and in the attached air domain. The boundary conditions employed on the engines internal circuit were obtained using the developed one-dimensional second level mathematical model of the engine working cycle. Physical models for the distribution of the solar insolation on the bottom and side walls of the heat receiver have been taken into account and the temperature fields for the heat receiver and the air velocity have been obtained for the case when the heat receiver is affected by wind. The numerical results show that it is in the region of the boundary of the input window of the heat receiver where there is the largest reduction in the temperature in the shell of the heat exchangers and this is due to the convection of the air.

  1. 6 Year Graduation Model for Full-time Freshmen (Non-SEEK) Students * Students labeled `Not Enrolled' in the charts are either stop outs (may return to QC after a semester off) or drop outs or transfers in this study.

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    6 Year Graduation Model for Full-time Freshmen (Non-SEEK) Students * Students labeled `Not Enrolled' in the charts are either stop outs (may return to QC after a semester off) or drop outs or transfers Graduation Model for Full-time Transfer Students * Students labeled `Not Enrolled' in the charts are either

  2. 2010 Texas Jurisdiction Energy Code Adoption Survey 

    E-Print Network [OSTI]

    2010-01-01

    Deer Park 2006 Del Rio 2003 Denton 2006 Desoto 2003 Devine 2003 Duncanville 2006 Eagle Pass 2009 Edinburg 2006 El Paso 2009 Euless 2003 ESL-TR-10-06-01 2010 Texas Jurisdiction Energy Code Adoption Survey 2 ESL Survey of Texas Building Codes... Lubbock 2000 Lufkin None New Braunfels 2006 Mansfield 2006 McAllen 2006 McKinney 2006 Mesquite 2006 Midland 2009 Mission None ESL-TR-10-06-01 2010 Texas Jurisdiction Energy Code Adoption Survey 3 ESL Survey of Texas Building Codes ? Completed...

  3. New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes

    SciTech Connect (OSTI)

    Borodovsky, M.

    2013-04-11

    Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

  4. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more »We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  5. A new class ${\\hat o}_N$ of statistical models: Transfer matrix eigenstates, chain Hamiltonians, factorizable $S$-matrix

    E-Print Network [OSTI]

    B. Abdesselam; A. Chakrabarti

    2006-07-20

    Statistical models corresponding to a new class of braid matrices ($\\hat{o}_N; N\\geq 3$) presented in a previous paper are studied. Indices labeling states spanning the $N^r$ dimensional base space of $T^{(r)}(\\theta)$, the $r$-th order transfer matrix are so chosen that the operators $W$ (the sum of the state labels) and (CP) (the circular permutation of state labels) commute with $T^{(r)}(\\theta)$. This drastically simplifies the construction of eigenstates, reducing it to solutions of relatively small number of simultaneous linear equations. Roots of unity play a crucial role. Thus for diagonalizing the 81 dimensional space for N=3, $r=4$, one has to solve a maximal set of 5 linear equations. A supplementary symmetry relates invariant subspaces pairwise ($W=(r,Nr)$ and so on) so that only one of each pair needs study. The case N=3 is studied fully for $r=(1,2,3,4)$. Basic aspects for all $(N,r)$ are discussed. Full exploitation of such symmetries lead to a formalism quite different from, possibly generalized, algebraic Bethe ansatz. Chain Hamiltonians are studied. The specific types of spin flips they induce and propagate are pointed out. The inverse Cayley transform of the YB matrix giving the potential leading to factorizable $S$-matrix is constructed explicitly for N=3 as also the full set of $\\hat{R}tt$ relations. Perspectives are discussed in a final section.

  6. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    SciTech Connect (OSTI)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.

  7. Accidental Burning of a Fuel Layer on a Waterbed: A Scale Analysis Study of the Heat Transfer Models Predicting the pre-Boilover Time and Scaling to Published Data 

    E-Print Network [OSTI]

    Hristov, J; Planas, E; Arnaldos, J; Casal, J

    The paper concerns the heat transfer models of liquid fuel bed burning on water sublayer. The main efforts are stressed on the qualitative assessment of models available and their adequacy as well as on the prediction of ...

  8. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect (OSTI)

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel

    2011-07-15

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  9. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  10. ADOPTED VERSION 1 STATE OF MONTANA

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    comprehensive energy plans for buildings that implement energy efficiency, passive design, utilization of localADOPTED VERSION 1 1 STATE OF MONTANA HIGH PERFORMANCE BUILDING STANDARDS GOALS Based on the 61st of Administration (through its Architecture & Engineering Division) establishes High-Performance Building Standards

  11. Pamplin Standing Committees Adopted July 17, 2014

    E-Print Network [OSTI]

    Pamplin Standing Committees Adopted July 17, 2014 Updated September 1, 2014 Updated February 2 to committees. This document describes the membership, scope and other aspects of standing Pamplin Committees standing committee will include one faculty member from each department. The dean's office will request one

  12. Unvented Crawlspace Code Adoption - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Crawlspace Code Adoption - Building America Top Innovation Unvented Crawlspace Code Adoption - Building America Top Innovation Photo of an unvented and insulated...

  13. Policy Memorandum #3 Advanced Leave for Childbirth Adoption and...

    Office of Environmental Management (EM)

    3 Advanced Leave for Childbirth Adoption and Foster Care Policy Memorandum 3 Advanced Leave for Childbirth Adoption and Foster Care Policy Memo 3 - Advanced-Leave-for-Childbirth-...

  14. Accurate quantum-mechanical rate constants for a linear response Azzouz-Borgis proton transfer model employing the multilayer

    E-Print Network [OSTI]

    -principles study of hydrogen permeation in palladium-gold alloys Appl. Phys. Lett. 99, 181901 (2011) Proton transfer following irradiation of the hydrogen-bonded single water complex of 7-azaindole with UV light J

  15. Regulatory Considerations Associated with the Expanded Adoption of Distributed Solar

    SciTech Connect (OSTI)

    Bird, L.; McLaren, J.; Heeter, J.; Linvill, C.; Shenot, J.; Sedano, R.; Migden-Ostrander, J.

    2013-11-01

    Increased adoption of distributed PV, and other forms of distributed generation, have the potential to affect utility-customer interactions, system costs recovery, and utility revenue streams. If a greater number of electricity customers choose to self-generate, demand for system power will decrease and utility fixed costs will have to be recovered over fewer kilowatt hours of sales. As such, regulators will need to determine the value and cost of additional distributed PV and determine the appropriate allocation of the costs and benefits among consumers. The potential for new business models to emerge also has implications for regulation and rate structures that ensure equitable solutions for all electricity grid users. This report examines regulatory tools and rate designs for addressing emerging issues with the expanded adoption of distributed PV and evaluates the potential effectiveness and viability of these options going forward. It offers the groundwork needed in order for regulators to explore mechanisms and ensure that utilities can collect sufficient revenues to provide reliable electric service, cover fixed costs, and balance cost equity among ratepayers -- while creating a value proposition for customers to adopt distributed PV.

  16. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  17. Visuohaptic Borescope Inspection Simulation Training: Modeling Multi-Point Collision Detection/Response and Evaluating Skills Transfer

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    /Response and Evaluating Skills Transfer Deepak Vembar, Andrew Duchowski School of Computing Clemson University Melissa to provide the training. Index Terms: I.3.6 [Computer Graphics]: Methodology and Techniques--Ergonomics; J.4 the quickest and most economical way of obtaining a preliminary evaluation of the condition of an aircraft [6

  18. Valence-bond charge-transfer solvation model for nonlinear optical properties of organic molecules in polar solvents

    E-Print Network [OSTI]

    Goddard III, William A.

    in polar solvents Guanhua Chen,a) Daqi Lu, and William A. Goddard Illb) Materials and Molecular Simulation on the valence-bond charge-transfer (VB-CT) framework, using a continuum description of the solvent), the polarizability (cu), the hyperpolarizabilities (&y,s), and the bond length alternation with only one solvent

  19. Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation

    SciTech Connect (OSTI)

    Fleming, W.H. Jr.

    1999-10-20

    This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

  20. Modified Method of Characteristics for Transient Radiative Transfer

    E-Print Network [OSTI]

    Katika, Kamal M.; Pilon, Laurent

    2006-01-01

    dimensional transient radiation heat transfer modeling usingradiation transport and laser applications”, Advances in Heat Transfer,Radiation element method for transient hyperbolic radiative transfer in plane parallel inhomogenous media”, Numerical Heat

  1. Successful Adoption of CNG and Energing CNG-Hydrogen Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Presentation given by Narendra Kumar Pal...

  2. Infanticide Versus Adoption: An Intergenerational Conflict

    E-Print Network [OSTI]

    Pierotti, Raymond

    1991-11-01

    Vol. 138, No. 5 The American Naturalist November 1991 I N F A N T I C I D E V E R S U S A D O P T I O N : A N I N T E R G E N E R A T I O N A L C O N F L I C T RAYMOND PIEROTTI* Department of Biology, University of New Mexico, Albuquerque, New... reported (tables 1 and 2). The re- T A B L E 1 SPECIES OF MAMMALS FROM WHICH BOTH ADOPTION AND INFANTICIDE ATTRIBUTED TO COMPETITION FOR RESOURCES OR SOCIAL PATHOLOGY HAVE BEEN DESCRIBED, AND THE CHARACTERISTICS OF THESE SPECIES THAT RELATE TO PREDICTIONS...

  3. Home Energy Displays. Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, Janelle; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. The team hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, Fraunhofer conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. In light of these challenges, the team is pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  4. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    E-Print Network [OSTI]

    Jun Ye; Kewei Sun; Yang Zhao; Yunjin Yu; Chee Kong Lee; Jianshu Cao

    2012-07-10

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting systems in purple bacteria. It is found that inclusion of long-range dipolar interactions in the two methods results in significant increases in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal interesting role of dipolar interaction in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (~4ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, dipole-induced symmetry breaking leads to global minima and local minima of the average trapping time when there is a finite value of non-zero dephasing rate, suggesting that environment plays a role in preserving quantum coherent energy transfer. In contrast, dephasing comes into play only when the perfect cylindrical symmetry in the hypothetic system is broken. This study has revealed that dipolar interaction between chromophores may play an important part in the high energy transfer efficiency in the LH2 system and many other natural photosynthetic systems.

  5. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect (OSTI)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  6. Global heat transfer analysis in Czochralski silicon furnace with radiation on curved specular surfaces

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Global heat transfer analysis in Czochralski silicon furnace with radiation on curved specular method are adopted to solve the global heat transfer and the radiative heat exchange, respectively rate QJ diffuse radiation heat transfer rate QX net rate of radiative heat loss QT heat generation rate

  7. The initial conditions of high-mass star formation: radiative transfer models of IRDCs seen in the Herschel Hi-GAL survey

    E-Print Network [OSTI]

    Wilcock, L A; Stamatellos, D; Ward-Thompson, D; Whitworth, A; Battersby, C; Brunt, C; Fuller, G A; Griffin, M; Molinari, S; Martin, P; Mottram, J C; Peretto, N; Plume, R; Smith, H A; Thompson, M A; 10.1051/0004-6361/201015488

    2011-01-01

    The densest infrared dark clouds (IRDCs) may represent the earliest observable stage of high-mass star formation. These clouds are very cold, hence they emit mainly at far-infrared and sub-mm wavelengths. For the first time, Herschel has provided multi-wavelength, spatially resolved observations of cores within IRDCs, which, when combined with radiative transfer modelling, can constrain their properties, such as mass, density profile and dust temperature. We use a 3D, multi-wavelength Monte Carlo radiative transfer code to model in detail the emission from six cores in three typical IRDCs seen in the Hi-GAL survey (G030.50+00.95, G031.03+00.26 and G031.03+00.76), and thereby to determine the properties of these cores and compare them with their low-mass equivalents. We found masses ranging from 90 to 290 solar masses with temperatures from 8 to 11K at the centre of each core and 18 to 28K at the surface. The maximum luminosity of an embedded star within each core was calculated, and we rule out the possibilit...

  8. The `Multifractal Model' of Turbulence and {\\em A Priori} Estimates in Large-Eddy Simulation, I. Subgrid Flux and Locality of Energy Transfer

    E-Print Network [OSTI]

    Gregory L. Eyink

    1996-02-19

    We establish and discuss {\\em a priori} estimates on subgrid stress and subgrid flux for filtering schemes used in the turbulence modelling method of Large-Eddy Simulation (LES). Our estimates are derived as rigorous consequences of the exact subgrid stress formulae from Navier-Stokes equations under realistic conditions for inertial-range velocity fields, those conjectured in the Parisi-Frisch ``multifractal model.'' The estimates are shown to be an expression of ``local energy cascade,'' i.e. the dominance of local wavevector triads in the energy transfer. We prove that for nearly any reasonable filter function the LES method defines an energy flux in which local triads dominate in individual realizations, due to cancellation of distant triadic contributions by detailed conservation. A somewhat similar observation of Leslie and Quarini on graded filters in the EDQNM closure is shown to be unrelated to the cancellation we establish in Navier-Stokes solutions. The sharp Fourier cutoff filter is one example which does not satisfy the modest conditions of our proof and, in fact, we show that with that filter the energy transfer in individual realizations at arbitrarily high Reynolds number will be dominated by nonlocal, convective sweeping.

  9. Using radiative transfer models to study the atmospheric water vapor content and to eliminate telluric lines from high-resolution optical spectra

    E-Print Network [OSTI]

    Gardini, A; Pérez, E; Quesada, J A; Funke, B

    2012-01-01

    The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400-24 000 {\\AA} range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000-10 000 {\\AA} range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.

  10. Transferable Utility Planning Games Ronen I. Brafman

    E-Print Network [OSTI]

    Engel, Yagil

    Transferable Utility Planning Games Ronen I. Brafman Computer Science Dept. Ben-Gurion Univ between standard AI planning constructs and a clas- sical cooperative model of transferable-utility coalition games, we introduce the notion of transferable-utility (TU) planning games. The key

  11. A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

    2005-01-01

    Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

  12. Simulating Electron Transfer Attachment to a Positively Charged Model Peptide Iwona Anusiewicz, Joanna Berdys-Kochanska, Piotr Skurski,, and Jack Simons*,

    E-Print Network [OSTI]

    Simons, Jack

    's findings. I. Introduction In electron capture dissociation1 (ECD) or electron-transfer dissociation2 (ETD subsequently transfer an H atom to either the carbonyl oxygen or a sulfur atom to produce the radical species

  13. Modeling of customer adoption of distributed energy resources

    E-Print Network [OSTI]

    2001-01-01

    manufacturer manufacturer manufacturer Bergey WindpowerBergey Windpower Jeff Oldman, Real Goods Jeff Oldman, Realmanufacturer Bergey Windpower Bergey Windpower Jeff Oldman,

  14. Project Profile: An Emergent Model of Technology Adoption for...

    Energy Savers [EERE]

    the solar strategies of electric utility companies to achieve maximum impact. Motivation The diffusion of solar energy technologies is affected as much by policy and...

  15. Analytical Modeling Linking the FASTSim and ADOPT Software Tools

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Modeling of customer adoption of distributed energy resources

    E-Print Network [OSTI]

    2001-01-01

    a commercial fuel cell, small wind and photovoltaic (PV)a commercial FC, small wind and PV systems, and a wide range

  17. Project Profile: An Emergent Model of Technology Adoption for Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders Project DevelopsProjectADVANCEDthe

  18. Top Management Involvement in the Adoption of Energy Efficiency Projects

    E-Print Network [OSTI]

    Blass, Vered; Corbett, Charles J.; Delmas, Magali A; Muthulingam, Suresh

    2011-01-01

    Adoption: The Case of Energy- Efficiency Audits. Resource695. Expert Group on Energy Efficiency. 2007. Realizing theDiscount Rates and Energy Efficiency. Contemporary Economic

  19. Geothermal Heat Pumps: Market Status, Barriers to Adoption, and...

    Open Energy Info (EERE)

    Geothermal Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Heat Pumps:...

  20. California Member Connects Solar Adoption With Upgrades | Department...

    Energy Savers [EERE]

    adoption and energy upgrades by Better Buildings Residential Network member Center for Sustainable Energy (CSE) in California are helping solar companies realize that partnering...

  1. Top Management Involvement in the Adoption of Energy Efficiency Projects

    E-Print Network [OSTI]

    Blass, Vered; Corbett, Charles J.; Delmas, Magali A; Muthulingam, Suresh

    2011-01-01

    within Firms to Energy-Efficient Investments. Energy PolicyAdoption: The Case of Energy- Efficiency Audits. Resource695. Expert Group on Energy Efficiency. 2007. Realizing the

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    in the Race Toward a Clean Energy Future. Sacramento,of a continued effort towards clean energy practices moreunder which they also adopt clean energy technologies and

  3. Adopting LED Technology: What Federal Facility Managers Need to Know

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document describes the presentation slides for the "Adopting LED Technology: What Federal Facility Managers Need to Know" webinar that took place on September 11, 2014.

  4. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

  5. Multiparameter statistical models from $N^2\\times N^2$ braid matrices: Explicit eigenvalues of transfer matrices ${\\bf T}^{(r)}$, spin chains, factorizable scatterings for all $N$

    E-Print Network [OSTI]

    B. Abdesselam; A. Chakrabarti

    2008-07-02

    For a class of multiparameter statistical models based on $N^2\\times N^2$ braid matrices the eigenvalues of the transfer matrix ${\\bf T}^{(r)}$ are obtained explicitly for all $(r,N)$. Our formalism yields them as solutions of sets of linear equations with simple constant coefficients. The role of zero-sum multiplets constituted in terms of roots of unity is pointed out and their origin is traced to circular permutations of the indices in the tensor products of basis states induced by our class of ${\\bf T}^{(r)}$ matrices. The role of free parameters, increasing as $N^2$ with $N$, is emphasized throughout. Spin chain Hamiltonians are constructed and studied for all $N$. Inverse Cayley transforms of Yang-Baxter matrices corresponding to our braid matrices are obtained for all $N$. They provide potentials for factorizable $S$-matrices. Main results are summarized and perspectives are indicated in the concluding remarks.

  6. A mixed quantum-classical Liouville study of the population dynamics in a model photo-induced condensed phase electron transfer reaction

    SciTech Connect (OSTI)

    Rekik, Najeh; Freedman, Holly; Hanna, Gabriel [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Hsieh, Chang-Yu [Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2013-04-14

    We apply two approximate solutions of the quantum-classical Liouville equation (QCLE) in the mapping representation to the simulation of the laser-induced response of a quantum subsystem coupled to a classical environment. These solutions, known as the Poisson Bracket Mapping Equation (PBME) and the Forward-Backward (FB) trajectory solutions, involve simple algorithms in which the dynamics of both the quantum and classical degrees of freedom are described in terms of continuous variables, as opposed to standard surface-hopping solutions in which the classical degrees of freedom hop between potential energy surfaces dictated by the discrete adiabatic state of the quantum subsystem. The validity of these QCLE-based solutions is tested on a non-trivial electron transfer model involving more than two quantum states, a time-dependent Hamiltonian, strong subsystem-bath coupling, and an initial energy shift between the donor and acceptor states that depends on the strength of the subsystem-bath coupling. In particular, we calculate the time-dependent population of the photoexcited donor state in response to an ultrafast, on-resonance pump pulse in a three-state model of an electron transfer complex that is coupled asymmetrically to a bath of harmonic oscillators through the optically dark acceptor state. Within this approach, the three-state electron transfer complex is treated quantum mechanically, while the bath oscillators are treated classically. When compared to the more accurate QCLE-based surface-hopping solution and to the numerically exact quantum results, we find that the PBME solution is not capable of qualitatively capturing the population dynamics, whereas the FB solution is. However, when the subsystem-bath coupling is decreased (which also decreases the initial energy shift between the donor and acceptor states) or the initial shift is removed altogether, both the PBME and FB results agree better with the QCLE-based surface-hopping results. These findings highlight the challenges posed by various conditions such as a time-dependent external field, the strength of the subsystem-bath coupling, and the degree of asymmetry on the accuracy of the PBME and FB algorithms.

  7. Economic and Environmental Impacts of Adoption of Genetically Modified Rice in California

    E-Print Network [OSTI]

    Bond, Craig A.; Carter, C A; Farzin, Y. Hossein

    2005-01-01

    Economic and Environmental Impacts of Adoption ofgrowers. Economic and Environmental Impacts of Adoption of43–50. Economic and Environmental Impacts of Adoption of

  8. Predictors of the likelihood of adoption among U.S. women by race and ethnicity 

    E-Print Network [OSTI]

    Klucsarits, Christine Elizabeth

    2009-05-15

    This thesis utilizes a series of seven logistic regression models to examine the predictors of the likelihood of adoption among U.S. women based on the National Survey of Family Growth, Cycle 6. The individual characteristics that have been found...

  9. Fuel price changes and the adoption of cogeneration in the U.K. and Netherlands

    SciTech Connect (OSTI)

    Bonilla, David

    2007-08-15

    Whenever industrial plants consume power and heat, there is a need to consider energy efficiency investment in a cogeneration plant. The author tests an empirical model employing application of cross-sectional time series to analyze the economic incentives influencing the adoption of energy-saving technology in the U.K. and Dutch manufacturing sectors. (author)

  10. technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic

    E-Print Network [OSTI]

    Szmolyan, Peter

    are identical to the existing technology. Benefits Cost reduction during production of master alloy Rawtechnology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic production without adoption of the common technology. By reduction of melting temperatures the production

  11. technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser

    E-Print Network [OSTI]

    Szmolyan, Peter

    are identical to the existing technology. Benefits Cost reduction during production of master alloy Rawtechnology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic production without adoption of the common technology. By reduction of melting temperatures the production

  12. Economic, Hydrologic and Environmental Appraisal of Texas Inter-basin Water Transfers: Model Development and Initial Appraisal 

    E-Print Network [OSTI]

    Cai, Yongxia; McCarl, Bruce A.

    2007-01-01

    ). Models with economic considerations tend to cover only restricted areas, for example, the Edwards aquifer and Nueces, Frio and Guadalupe-Blanco basin regions (Gillig et al, 2001; Watkins Jr & McKinney, 2000). Much of the research has been localized...

  13. Modeling of coupled heat and mass transfers with phase change in a porous medium: Application to superheated steam drying

    SciTech Connect (OSTI)

    Daurelle, J.V.; Topin, F.; Occelli, R. [IUSTI, Marseille (France)

    1998-01-01

    The physical model is based on balance equations at the representative elementary volume. The considered medium has three phases (liquid, solid, and gas). The gas phase includes two components (air and vapor). The authors use the mass balance equations on air and water (liquid and steam) as well as the heat equation in order to describe the phenomena. The system of equations is closed via classical relations in these media, which leads to a three-equation system with coupled nonlinear partial derivatives. The authors have applied this model to superheated steam drying. A solution model of the coupled nonlinear equation system based on the finite element method in a two-dimensional configuration was developed and validated. This approach allows one to determine all the variables of the problem. It is a complementary tool of analysis that opens access to nonmeasurable variables, such as the phase change rate. This computation model was applied to a configuration studied experimentally. The numerical and experimental results agree in nondimensional time. This double approach has enabled them to point out and evaluate new mechanisms typical of this drying method.

  14. Impact of surface inhomogeneity on solar radiative transfer under overcast conditions

    E-Print Network [OSTI]

    Zeng, Ning

    by radiative transfer models founded on the classical electromagnetic and quantum mechanics theories. While the fundamentals of radiative transfer theories are well-established, radiative transfer models used to describe

  15. Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-15

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.

  16. NSTX Disruption Simulations of Detailed Divertor and Passive Plate Models by Vector Potential Transfer from OPERA Global Analysis Results

    SciTech Connect (OSTI)

    P. H. Titus, S. Avasaralla, A.Brooks, R. Hatcher

    2010-09-22

    The National Spherical Torus Experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the center-stack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic (EM) and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses.

  17. New model of angular momentum transfer from the rotating central body of a two-body system into the orbital motion of this system (with application to the earth-moon system)

    E-Print Network [OSTI]

    E. Schmutzer

    2005-05-11

    In a previous paper we treated within the framework of our Projective Unified Field Theory (Schmutzer 2004, Schmutzer 2005a) the 2-body system (e.g. earth-moon system) with a rotating central body in a rather abstract manner. Here a concrete model of the transfer of angular momentum from the rotating central body to the orbital motion of the whole 2-body system is presented, where particularly the transfer is caused by the inhomogeneous gravitational force of the moon acting on the oceanic waters of the earth, being modeled by a spherical shell around the solid earth. The theory is numerically tested. Key words: transfer of angular momentum from earth to moon, action of the gravitational force of the moon on the waters of the earth.

  18. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  19. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  20. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  1. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  2. Bioheat Transfer Valvano, page 1 Bioheat Transfer

    E-Print Network [OSTI]

    a technically challenging task. First, tissue heat transfer includes conduction, convection, radiation and by heat transfer due to blood flow near the probe. In vivo, the instrument measures effective thermal properties that are the combination of conductive and convective heat transfer. Thermal properties

  3. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore »the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  4. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  5. INTER-ORGANIZATIONAL INFORMATION AND COMMUNICATION TECHNOLOGY ADOPTION IN THE

    E-Print Network [OSTI]

    , the ability to sense changes in the technology environment, development of managerial IT knowledgeINTER-ORGANIZATIONAL INFORMATION AND COMMUNICATION TECHNOLOGY ADOPTION IN THE BUSINESS successful firm performance in the context of Inter-organizational Information and Communication Technology

  6. Textbook Adoption Application Guide Entering the Application ..................................................................................... 2

    E-Print Network [OSTI]

    Sura, Philip

    allows you to search for your assigned course(s) by: Term, Location, Academic Department, Course NumberTextbook Adoption Application Guide Entering the Application ............................................................................................................ 3 Search with Academic Criteria

  7. Middletown Springs Town Plan Adopted September 10, 2002

    E-Print Network [OSTI]

    Brown, Gregory G.

    Middletown Springs Town Plan Adopted September 10, 2002 Select Board: Fred Bradley, Chair Robin Chesnut-Tangerman John Colvin Shirley Moyer, Secretary William Reed Planning Commission: Robert Moran.............................................................................. 11 Utilities, Facilities, and Services

  8. Teachers' Concerns Regarding the Adoption of the New Mathematics Textbook 

    E-Print Network [OSTI]

    El-Saleh, Ilham Kamel

    2011-10-21

    The goal of this study is to identify and examine teachers' concerns regarding their use of the new adopted mathematics textbook. In Texas, middle school mathematics teachers are often given a great deal of flexibility in the decision to use...

  9. Electronic Discovery and the Adoption of Information Technology

    E-Print Network [OSTI]

    Tucker, Catherine Elizabeth

    After firms adopt electronic information and communication technologies, their decision-making leaves a trail of electronic information that may be more extensive and accessible than a paper trail. We ask how the expected ...

  10. Energy prices and the adoption of energy-saving technology

    E-Print Network [OSTI]

    Linn, Joshua

    2006-01-01

    This paper investigates the link between factor prices, technology and factor demands. I estimate the effect of price-induced technology adoption on energy demand in the U.S. manufacturing sector, using plant data from the ...

  11. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    SciTech Connect (OSTI)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  12. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A., E-mail: rangelov@phys.uni-sofia.bg [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria); Suchowski, H.; Silberberg, Y. [Department of Physics of Complex System, Weizmann Institute of Science, Rehovot 76100 (Israel); Vitanov, N.V. [Department of Physics, Sofia University, James Bourchier 5 blvd., 1164 Sofia (Bulgaria)

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  13. Airâ??sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    E-Print Network [OSTI]

    Bell, T. G; De Bruyn, W.; Miller, S. D; Ward, B.; Christensen, K.; Saltzman, E. S

    2013-01-01

    Soloviev, A. V. : Coupled renewal model of ocean viscoussurface renewal and energy dissipation gas transfer models (

  14. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  15. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  16. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  17. Enabling Broad Adoption of Distributed PV-storage systems Via Supervisory Planning & Control

    E-Print Network [OSTI]

    DeForest, Nicholas

    2014-01-01

    impact of wide-spread PV adoption for utilities, by creatingEnabling broad adoption of distributed PV-storage systemsEnabling broad adoption of distributed PV-storage systems

  18. ADOPT: Practical Add-On MIMO Receiver for Concurrent Transmissions

    E-Print Network [OSTI]

    Young, R. Michael

    efficiency. We implement ADOPT with 8 USRP2s and test in two of the most common CSMA networks, ZigBee and Wi gain becomes up to 231% in WiFi and 319% in ZigBee. Index Terms--MIMO, Multipacket Reception, Receive

  19. Third Year Review of Tenure Track Faculty Adopted July 2003

    E-Print Network [OSTI]

    Selmic, Sandra

    Third Year Review of Tenure Track Faculty Adopted July 2003 Revised April 2010 Page 1 of 2 THIRD with the tenure and promotion considerations for the College, the faculty member in his/her third year of service or receive a terminal contract for the following academic year. #12;Third Year Review of Tenure Track Faculty

  20. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  1. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  2. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository...

  3. RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

  4. Radiative heat transfer in inhomogeneous, nongray, and anisotropically scattering media

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Radiative heat transfer in inhomogeneous, nongray, and anisotropically scattering media Zhixiong Radiative heat transfer in three-dimensional inhomogeneous, nongray and anisotropically scattering of an application of engineering interest, radiative heat transfer in a boiler model with non-isothermal, nongray

  5. Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    , USA HT2009-88261 SIMULATION OF FOCUSED RADIATION PROPAGATION AND TRANSIENT HEAT TRANSFER IN TURBID-dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical dissipation and the heat-affected zone. Two characteristics in ultrafast radiation heat transfer are worth

  6. RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

  7. Treatment of soil, vegetation and snow in land surface models: a test of the BiosphereAtmosphere Transfer Scheme with the

    E-Print Network [OSTI]

    Yang, Zong-Liang

    surface consists of soil, vegetation, snow, glaciers, inland waters, mountains, animals, human beings to study the complicated transfer or diffusion of energy, water and trace gases within each study object of Arizona, Tucson, AZ 85721, USA b Department of Hydrology and Water Resources, University of Arizona

  8. Modeling of the Phase behavior of light (C2 & C3) olefins in liquid phase epoxidation systems and experimental determination of gas/liquid mass transfer coefficients

    E-Print Network [OSTI]

    Ghanta, Madhav

    2008-01-01

    to estimate the gas/liquid mass transfer coefficient which was determined to be 0.14 sec-1 at 1000 rpm which ensured operation outside the diffusion limited region. Inerts such as N2 and CO2 can be used to mitigate the flammability envelope of these highly...

  9. Incoherent Energy Transfer within Light-harvesting Complexes

    E-Print Network [OSTI]

    Juhi-Lian Julian Ting

    1999-04-27

    Rate equations are used to model spectroscopic observation of incoherent energy transfer in light-harvesting antenna systems based upon known structures. A two-parameter two-dimensional model is proposed. The transfer rates obtained, by matching the fluorescent decay, are self-consistent within our model.

  10. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  11. Single Cells Spreading on a Protein Lattice Adopt an Energy Minimizing Shape Benoit Vianay,1,* Jos Kafer,2,

    E-Print Network [OSTI]

    Single Cells Spreading on a Protein Lattice Adopt an Energy Minimizing Shape Benoit Vianay,1,* Jos diagram obtained numerically suggest that the observed shapes correspond to metastable states in an energy landscape. Our results justify in fine the purely mechanical approach used in alternative models [17

  12. Adoption of waste minimization technology to benefit electroplaters

    SciTech Connect (OSTI)

    Ching, E.M.K.; Li, C.P.H.; Yu, C.M.K. [Hong Kong Productivity Council, Kowloon (Hong Kong)

    1996-12-31

    Because of increasingly stringent environmental legislation and enhanced environmental awareness, electroplaters in Hong Kong are paying more heed to protect the environment. To comply with the array of environmental controls, electroplaters can no longer rely solely on the end-of-pipe approach as a means for abating their pollution problems under the particular local industrial environment. The preferred approach is to adopt waste minimization measures that yield both economic and environmental benefits. This paper gives an overview of electroplating activities in Hong Kong, highlights their characteristics, and describes the pollution problems associated with conventional electroplating operations. The constraints of using pollution control measures to achieve regulatory compliance are also discussed. Examples and case studies are given on some low-cost waste minimization techniques readily available to electroplaters, including dragout minimization and water conservation techniques. Recommendations are given as to how electroplaters can adopt and exercise waste minimization techniques in their operations. 1 tab.

  13. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  14. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  15. Building Contracts Programme for 1955 and Reports on the Procedure Adopted for Tenders and Adjudications

    E-Print Network [OSTI]

    1955-01-01

    Building Contracts Programme for 1955 and Reports on the Procedure Adopted for Tenders and Adjudications

  16. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  17. Simulation of the vacuum assisted resin transfer molding (VARTM) process and the development of light-weight composite bridging

    E-Print Network [OSTI]

    Robinson, Marc J.

    2008-01-01

    Assisted Resin Transfer Molding (VARTM). Polymer CompositesAssisted Resin Transfer Molding (VARTM): Model Verification.in the Reaction Injection Molding Process. AICheE Journal

  18. Wireless adiabatic power transfer

    E-Print Network [OSTI]

    A. A. Rangelov; H. Suchowski; Y. Silberberg; N. V. Vitanov

    2010-10-30

    We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  19. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  20. U.S. Department of Energy Adoption of Environmental Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two Electron HolesVZCOMML © Version Search patent Adoption

  1. ADOPTION OF ENVIRONMENTAL ASSESSMENT and FINDING OF NO SIGNIFICANT IMPACT;

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 ofDensifiedDepartment ofDepartmentofADOPTION

  2. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  3. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  4. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  5. Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers 

    E-Print Network [OSTI]

    Medina, M. A.

    1992-01-01

    : different attic insulation levels, various attic airflow rates, cooling and heating seasons, and different radiant barrier orientations. The model predicted ceiling heat flows within 10% for most cases. The model was used to run simulations and parametric...

  6. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  7. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  8. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  9. O Star X-ray Line Profiles Explained by Radiation Transfer in Inhomogeneous Stellar Wind

    E-Print Network [OSTI]

    L. M. Oskinova; A. Feldmeier; W. -R. Hamann

    2005-11-01

    It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of X-ray production. It turned out that none of the existing models was able to reproduce the observations consistently. The major caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the various observational evidence that the stellar winds are in fact structured, we present a 2-D model of a stochastic, inhomogeneous wind. The X-ray radiative transfer is derived for such media. It is shown that profiles from a clumped wind differ drastically from those predicted by conventional homogeneous models. We review the up-to-date observations of X-ray line profiles from stellar winds and present line fits obtained from the inhomogeneous wind model. The necessity to account for inhomogeneities in calculating the X-ray transport in massive star winds, including for HMXB is highlighted.

  10. Dynamics of heat transfer between nano systems

    E-Print Network [OSTI]

    Svend-Age Biehs; Girish S. Agarwal

    2012-10-18

    We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

  11. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    Portfolio Standard System Advisor Model Single-familyhave used. NREL’s System Advisor Model (SAM) is the optimalLab’s (NREL) System Advisor Model (SAM), for PV production

  12. Multiscale photosynthetic exciton transfer

    E-Print Network [OSTI]

    A. K. Ringsmuth; G. J. Milburn; T. M. Stace

    2012-06-14

    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.

  13. Effects of a carbon tax on combined heat and power adoption by a microgrid

    E-Print Network [OSTI]

    Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

    2002-01-01

    of a Carbon Tax on Combined Heat and Power Adoption by aof a Carbon Tax on Combined Heat and Power Adoption by ainvolving combined heat and power (CHP). The expectation

  14. U.S. Department of the Navy: Driving Alternative Fuels Adoption

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary III: Early Market Adopters U.S. Department of the Navy: Driving Alternative Fuels Adoption Chris Tindal, Director for Operational Energy, Office of the Deputy Assistant Secretary of the Navy for Energy

  15. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Energy Savers [EERE]

    DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar...

  16. Policy on Cost Transfer Policy on Cost Transfer

    E-Print Network [OSTI]

    Sridhar, Srinivas

    Policy on Cost Transfer 12/22/2014 Policy on Cost Transfer I. Purpose and Scope The University has posting of a cost to the general ledger, initiated by payroll charges, purchase orders or check requests (and the purchasing card). Cost Transfer means any subsequent transfer of the original charge

  17. Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Kandlikar, Satish

    Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

  18. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating the transfer in

  19. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a

    E-Print Network [OSTI]

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2008-01-01

    Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

  20. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2008-01-01

    Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andFractured Rocks at Yucca Mountain: Model Validation UsingFractured Rocks at Yucca Mountain, In: Faybishenko B,

  1. TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS

    E-Print Network [OSTI]

    TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS Jesse w. Fussell Department of Defense 9800 Savage Road of technology transfer in this technical area in the past, to forecast prospects for technology transfer in the future, and to suggest some ideas for stimulating the process. 2. TECHNOLOGY TRANSFER PROBLEMS Many

  2. Microgrid modeling using the stochastic Distributed Energy Resources Customer Adoption Model DER-CAM

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    turbines, gas turbines, fuel cells, heat exchangers, PV,turbines / gas turbines, fuel cells, heat exchanger / CHP,

  3. Microgrid modeling using the stochastic Distributed Energy Resources Customer Adoption Model DER-CAM

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    fuel cells, heat exchangers, PV, solar thermal, absorption chillers, stationary electric storage, and electric vehicles Cost optimization

  4. Microgrid modeling using the stochastic Distributed Energy Resources Customer Adoption Model DER-CAM

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    using the stochastic Distributed Energy Resources CustomerEnergy Reliability, Distributed Energy Program of the U.S.Lab • Motivation • The Distributed Energy Resources Customer

  5. E-Portfolios for Developing Transferable Skills in a Freshman Engineering Course

    E-Print Network [OSTI]

    Calvo, Rafael A.

    are essential for engineers in the knowledge economy. This paper describes an approach to develop workers in the knowledge-based economy [4]. Engineering programs are frontrunners in the adoption of ICT1 E-Portfolios for Developing Transferable Skills in a Freshman Engineering Course Lina

  6. Post-Adoption Contact Reform: Compounding the State-Ordered Termination of Parenthood?

    E-Print Network [OSTI]

    Sloan, Brian

    2014-05-23

    in providing a clear answer to the compatibility question. II. ADOPTION LAW & POLICY IN ENGLAND & WALES Adoption policy in England and Wales is dominated by the notion that the stability provided by swift adoption is generally beneficial for children... such contact, and Marshall has sought to defend a mother’s right to privacy and anonymity in relation to adoption following a concealed birth.128 That said, it would be odd if birth parents were to be given the near-veto on post-adoption contact that I have...

  7. Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Numerical study of high heat ¯ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b , Shigeo simulation model of boiling heat transfer is proposed based on a numerical macrolayer model [S. Maruyama, M. Shoji, S. Shimizu, A numerical simulation of transition boiling heat transfer, in: Proceedings

  8. Technology transfer issue

    SciTech Connect (OSTI)

    Jacobson, C.

    1982-05-31

    Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

  9. Mass transfer effects in a gasification riser

    SciTech Connect (OSTI)

    Breault, Ronald W [U.S. DOE; Li, Tingwen [URS; Nicoletti, Phillip [URS

    2013-01-01

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) riser reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.

  10. A literature Review on Radioactivity Transfer to

    E-Print Network [OSTI]

    , resuspension, and translocation are the transfer processes dis- cussed. Theory and experimental data; IODINE 131; MATHEMAT- ICAL MODELS; PARTICLE RESUSPENSION; PLANTS; PRECIPITATION SCAV- ENGING 53 6.2. Retention during initial phase 53 6.3. Weathering 55 7. RESUSPENSION 60 7.1. Introduction 60

  11. Transferable Utility Planning Games Ronen I. Brafman

    E-Print Network [OSTI]

    Engel, Yagil

    Transferable Utility Planning Games Ronen I. Brafman Computer Science Dept. Ben-Gurion Univ is that each agent in planning games can in prin- ciple influence the utility of each other agent, resulting utilities (TU), connecting between the idea of planning games and the classical model of TU coali- tion

  12. Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures

    E-Print Network [OSTI]

    Lu, Ming-Chang

    2010-01-01

    transfer coefficient models in pool boiling In summary, highlength effect on nucleate pool boiling heat transfer AnnalsTheory of The Peak and Minimum Pool Boiling Heat Fluxes, CR-

  13. Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line

    E-Print Network [OSTI]

    Diaz, Richard A

    2007-01-01

    When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

  14. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  15. Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01

    ENCOURAGING PV ADOPTION IN NEW MARKET-RATE RESIDENTIALAs a market segment for PV adoption, new homes have a numberPV as an option is that PV adoption then becomes contingent

  16. User experiences and adoption plans from Universities of

    E-Print Network [OSTI]

    Mitchell, John E.

    the different synchronous machine Simulink models üthe manual to accompany class lectures on machine modeling]. üIt consists of detailed blocks (Figure B.1.) üThey represent synchronous machines, turbine with the ULg Simulink tool and will obtain PST. The lab will support the Electric Machines course: üusing

  17. An Experimental Study of Enhanced Thermal Conductivity Utilizing Columnated Silicon Microevaporators for Convective Boiling Heat Transfer at the Microscale

    E-Print Network [OSTI]

    Hogue, Christopher William

    2011-01-01

    topic, and researchers all over the world began reworking classical convection correlations to better model heat transfer

  18. Cost Transfer Procedures How And When To Make Cost Transfers

    E-Print Network [OSTI]

    Hammack, Richard

    Cost Transfer Procedures How And When To Make Cost Transfers Effective February 9, 2003, cost elsewhere. Federal regulations require additional documentation to support cost transfers to sponsored program indexes. Costs may not be shifted to other research projects or from one budget period to the next

  19. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  20. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  1. Swipe transfer assembly

    DOE Patents [OSTI]

    Christiansen, Robert M. (Blackfoot, ID); Mills, William C. (McKeesport, PA)

    1992-01-01

    The swipe transfer assembly is a mechanical assembly which is used in conjunction with glove boxes and other sealed containments. It is used to pass small samples into or out of glove boxes without an open breach of the containment, and includes a rotational cylinder inside a fixed cylinder, the inside cylinder being rotatable through an arc of approximately 240.degree. relative to the outer cylinder. An offset of 120.degree. from end to end allows only one port to be opened at a time. The assembly is made of stainless steel or aluminum and clear acrylic plastic to enable visual observation. The assembly allows transfer of swipes and smears from radiological and other specially controlled environments.

  2. QER- Comment of Energy Transfer

    Broader source: Energy.gov [DOE]

    From: Lee Hanse Executive Vice President Interstate Energy Transfer Mobile - 210 464 2929 Office - 210 403 6455

  3. HIGEE Mass Transfer 

    E-Print Network [OSTI]

    Mohr, R. J.; Fowler, R.

    1986-01-01

    compared with other more conventional mass transfer equipment, will show up to advantage at reasonably large capacity but compare poorly for low capacity duties. (3) Capacity and separation capability (i.e. number of stages) in a HIGEE... are not independent variables, because diameter features in both. If the casing dimensions, OD and axial length, are arbitrarily fixed; then for a duty requiring a large number of stages the packing thickness will be greater and the ID correspondingly smaller...

  4. Plastic container bagless transfer

    DOE Patents [OSTI]

    Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.

    2003-11-18

    A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.

  5. EIS-0470: EPA Notice of Adoption of the Final Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    Cape Wind Energy Project in Nantucket Sound, Massachusetts The Environmental Protection Agency's Notice, dated December 26, 2012, of DOE's adoption of the U.S. Department of the...

  6. Technology Transfer, Entrepreneurship and Innovation

    E-Print Network [OSTI]

    Reed, Nancy E.

    Technology Transfer, Entrepreneurship and Innovation The College of Engineering at UH Ma¯noa has a strong tradition of technology transfer and entrepreneurship that supports the University of Hawai`i's innovation and technology transfer initiative. Principal units are mechanical engineering, electrical

  7. 5. Heat transfer Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: BÖ88 Åbo Akademi University1/120 5. Heat transfer Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer Åbo Akademi

  8. Technology Transfer Ombudsman Program | Department of Energy

    Office of Environmental Management (EM)

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

  9. Abstract--The use of structured porous media is a proposed technique to achieve higher heat transfer coefficients by

    E-Print Network [OSTI]

    Pulsifer, John

    transfer coefficients by increasing the specific surface area for heat transfer while aiming to maintain pressure drop for a given heat transfer performance. A comprehensive thermo-fluid model called MERLOT [1] was used to assess the use of porous heat transfer media for fusion plasma facing component applications

  10. Simulation of naturally fractured reservoirs using empirical transfer function 

    E-Print Network [OSTI]

    Tellapaneni, Prasanna Kumar

    2004-09-30

    This research utilizes the imbibition experiments and X-ray tomography results for modeling fluid flow in naturally fractured reservoirs. Conventional dual porosity simulation requires large number of runs to quantify transfer function parameters...

  11. 2.51 Intermediate Heat and Mass Transfer, Fall 2001

    E-Print Network [OSTI]

    Lienhard, John H., 1961-

    Analysis, modeling, and design of heat and mass transfer processes with application to common technologies. Unsteady heat conduction in one or more dimensions, steady conduction in multidimensional configurations, numerical ...

  12. A Grey Radiative Transfer Procedure For Gamma-ray Transfer in Supernovae

    E-Print Network [OSTI]

    David J. Jeffery

    1998-11-23

    The gamma-ray transfer in supernovae for the purposes of energy deposition in the ejecta can be approximated fairly accurately as frequency-integrated (grey) radiative transfer using a mean opacity as shown by Swartz, Sutherland, & Harkness (SSH). In SSH's grey radiative transfer procedure (unoptimized) the mean opacity is a pure absorption opacity and it is a constant aside from a usually weak composition dependence. In this paper, we present a variation on the SSH procedure which uses multiple mean opacities which have both absorption and scattering components. There is a mean opacity for each order of Compton scattering. A local-state (LS) approximation permits an analytic solution for the gamma-ray transfer of scattered gamma-ray fields. The LS approximation is admittedly crude, but the scattered fields are always of lesser importance to the energy deposition. We call our procedure the LS grey radiative transfer procedure or LS procedure for short. For a standard Type Ia supernova (SN Ia) model the uncertainty in gamma-ray energy deposition is estimated to be of order 10 % or less. The LS procedure code used for this paper can be obtained by request from the author. For completeness and easy reference, we include in this paper a review of the gamma-ray opacities important in supernovae, a discussion of the appropriate mean opacity prescription, and a discussion of the errors arising from neglecting time-dependent and non-static radiative transfer effects.

  13. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  14. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

  15. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams. In addition, the new results on simulation of combined conduction and radiation heat transfer in glass foams

  16. CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER

    E-Print Network [OSTI]

    Kandlikar, Satish

    1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

  17. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  18. Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stphane Lefvre

    E-Print Network [OSTI]

    Boyer, Edmond

    Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stéphane Lefèvre Laboratoire d three heat transfer modes with experimental data and modeling. We conclude that the three modes in "International Journal of Heat and Mass Transfer 49, 1-2 (2006) 251-258" DOI : 10.1016/j.ijheatmasstransfer.2005

  19. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    on the total window heat transfer rates may be much larger. This effect is even greater in low on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities

  20. Electricity Markets: Should the Rest of the World Adopt the UK Reforms?

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-069 Electricity Markets: Should the Rest of the World Adopt the UK Reforms? Catherine D;1 Electricity Markets: Should the Rest of the World Adopt the UK Reforms?1 By Catherine D. Wolfram2 Britain was one of the first countries to liberalize its electricity industry when it restructured and privatized

  1. RESOLUTION NO. 13-125 APPROVING AND ADOPTING A RENEWABLE ENERGY RESOURCES PROCUREMENT

    E-Print Network [OSTI]

    RESOLUTION NO. 13-125 APPROVING AND ADOPTING A RENEWABLE ENERGY RESOURCES PROCUREMENT PLAN Resources Act (SBXI 2), which requires all energy service providers, including publicly owned utilities regulations require the adoption of a Renewable Energy Resources Procurement Plan that complies with the CEC

  2. THE ADOPTION OF STATE ELECTRICITY REGULATION: THE ROLE OF INTEREST GROUPS

    E-Print Network [OSTI]

    Rothman, Daniel

    residential electricity penetration rates. These results suggest that state regulation responded to regulatoryTHE ADOPTION OF STATE ELECTRICITY REGULATION: THE ROLE OF INTEREST GROUPSÃ Christopher R. Knittelw This paper examines the adoption of state electricity regulation around the beginning of the 20th century. I

  3. An Investigation of Factors Influencing an Organisation's Intention to Adopt Cloud Computing

    E-Print Network [OSTI]

    An Investigation of Factors Influencing an Organisation's Intention to Adopt Cloud Computing Nouf University of Southampton Southampton, United Kingdom gbw@ecs.soton.ac.uk Abstract-- Cloud computing the factors that may influence an organisation's intention to adopt cloud computing in Saudi Arabia. We

  4. Factors Influencing an Organisation's Intention to Adopt Cloud Computing in Saudi Arabia

    E-Print Network [OSTI]

    Factors Influencing an Organisation's Intention to Adopt Cloud Computing in Saudi Arabia Nouf University of Southampton Southampton, United Kingdom rjw1@ecs.soton.ac.uk Abstract--Cloud computing. In developing countries, particularly Saudi Arabia, cloud computing is still not widely adopted. As a result

  5. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

  6. eBirding: Technology Adoption and the Transformation of Leisure into Science

    E-Print Network [OSTI]

    Crowston, Kevin

    to discuss how technology adoption in a citizen science project influences participation and thereby. Keywords: citizen science, eBird, technology adoption, cy- berinfrastructure, birding. 1. INTRODUCTION Public participation in scientific research can take many forms, including citizen science, a type

  7. CLIMATE CHANGE AND THE ADOPTION OF AGRICULTURE IN NORTH-WEST EUROPE

    E-Print Network [OSTI]

    CLIMATE CHANGE AND THE ADOPTION OF AGRICULTURE IN NORTH-WEST EUROPE Clive Bonsall Department. The reasons for the delay in the adoption of agriculture on the north-west fringe of Europe have been debated the timing of the expansion of farming into some upland areas of southern and mid-latitude Europe. Keywords

  8. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture for SolarTechnology Transfer

  9. Assessing Software Engineering Technology Transfer

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    , and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

  10. Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer applications are finally discussed. One concerns the modeling of a flat plate air collector and the second focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows

  11. Energy Transfer via Solar Wind Driven Ultra Low Frequency Waves in the Earth's Magnetosphere

    E-Print Network [OSTI]

    Hartinger, Michael David

    2012-01-01

    Modeling energy transfer via solar wind driven ULFthrough which solar wind energy can drive wave activity. Inthrough which solar wind energy can drive wave activity. In

  12. Resonant vibrational energy transfer in ice Ih

    SciTech Connect (OSTI)

    Shi, L.; Li, F.; Skinner, J. L.

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  13. Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model

    E-Print Network [OSTI]

    Tian Chen; Xiang-Bin Wang; Jie Ren

    2013-04-24

    We study the quantum geometric heat flux in the nonequilibrium spin-boson model. By adopting the noninteracting-blip approximation that is able to accommodate the strong system-bath coupling, we show that there exists a nonzero geometric heat flux only when the two-level system is nondegenerate. Moreover, the pumping, no pumping, and dynamic control of geometric heat flux are discussed in detail, compared to the results with Redfield weak-coupling approximation. In particular, the geometric energy transfer induced by modulation of two system-bath couplings is identified, which is exclusive to quantum transport in the strong system-bath coupling regime.

  14. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  15. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  16. An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions

    SciTech Connect (OSTI)

    Cort, Katherine A.; Butner, Ryan S.

    2012-12-31

    The purpose of this study is to generally inform the U.S. Department of Energy’s Building Energy Codes Program of the local, effective energy code adoption rate for a sample set of 21 states, some which have adopted statewide codes and some that have not. Information related to the residential energy code adoption process and status at the local jurisdiction was examined for each of the states. Energy code status information was gathered for approximately 2,800 jurisdictions, which effectively covered approximately 80 percent of the new residential building construction in the 21 states included in the study.

  17. Customer adoption of small-scale on-site power generation

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  18. Modelling of Radiative Transfer in Light Sources

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    . . . . . . . . . . . . . . . 30 2.5.3 Temperature distribution . . . . . . . . . . . . . . . . . . . . . . . . . 32 2-X radiative transition that is responsible for the sulfur lamp's bright sun-like spectrum #12;Contents 1

  19. S-102 Transfer Pump Restriction Modeling Results

    SciTech Connect (OSTI)

    Wells, Beric E.; Johnson, Kenneth I.; Rector, David R.; Trent, Donald S.

    2008-03-27

    It was determined that a radioactive waste leak in the Hanford S Farm in the vicinity of the S-102 retrieval pump discharge occurred because of over-pressurization and failure of the S-102 dilution water supply hose while operating the retrieval pump in reverse with an obstructed suction cavity and an unobstructed flow path to the dilution water supply hose. This report describes efforts to identify plausible scenarios for the waste leak to occur.

  20. Multiple-spin coherence transfer in linear Ising spin chains and beyond: Numerically optimized pulses and experiments

    E-Print Network [OSTI]

    Nimbalka, Manoj

    We study multiple-spin coherence transfers in linear Ising spin chains with nearest-neighbor couplings. These constitute a model for efficient information transfers in future quantum computing devices and for many ...

  1. on technology transfer, industry research +

    E-Print Network [OSTI]

    Cafarella, Michael J.

    on technology transfer, industry research + economic development annual report U N I V E R S I T Y and resources available at the University of Michigan as showcased in this year's Annual Report on Technology Transfer, Industry Research, and Economic Development. At the heart of the University's contributions

  2. 4065 (RP-664) Heat Transfer

    E-Print Network [OSTI]

    of roomsurface-to-air heat transmission is dependentonan accurateestimateof the filmcoefficient. Forty- eight4065 (RP-664) Convective Energy and Heat Transfer Thermal Load in Building Calculations Daniel E convection film coefficients significantly underpredict the rate of surface convective heat 'transfer

  3. Disease-associated polyglutamine stretches in monomeric huntingtin adopt a compact structure

    E-Print Network [OSTI]

    2012-01-01

    Adopts A Compact Structure data from fusion proteins withsimilar compact polyQ hairpin for all htt fusion proteins (compact conformation of mutant polyQ that we found for htt fusion

  4. Weatherization and Intergovernmental Program - Accelerating Adoption of Energy Efficiency and Renewable Energy

    SciTech Connect (OSTI)

    2010-06-01

    The DOE/EERE Weatherization and Intergovernmental Program (WIP) increases awareness and accelerates adoption of practices and technologies that cost-effectively increase energy efficiency, the use of renewable energy, and oil displacement.

  5. The global landscape of gender quotas on corporate boards : contexts for adoption and opposition in 2014

    E-Print Network [OSTI]

    Park, Jacqueline, S.M. Massachusetts Institute of Technology

    2014-01-01

    There has been an acceleration in the adoption of gender quotas on boards since Norway pioneered legislation in 2003. Countries that have made parallel reforms have primarily been in the western European bloc, while other ...

  6. The adoption of a decentralized energy technology: The case of UK engine cogeneration

    SciTech Connect (OSTI)

    Strachan, N.D.; Dowlatabadi, H.

    1999-07-01

    Adoption of decentralized energy technologies will be crucial in the evolving structure of energy markets and the magnitude of future greenhouse gas emissions. This detailed analysis of the adoption of engine cogeneration gives insights into organizational decision making regarding the diffusion of a cost effective decentralized energy technology. Detailed site information on over 600 UK cogeneration installations was collected and analyzed for the six year period during which UK energy markets were in the process of deregulation. A detailed examination using standard investment criteria of the cogeneration schemes indicated that over 70% of investments were of questionable economic value to adopters. This was because these installations were below the calculated minimum economic size threshold. A key determinant of this size threshold was found to be the fixed costs of maintenance. Analysis of the financing of installations revealed that the largest fraction of poor investments occurred in energy services agreements between suppliers and adopters. The policy implications for decentralized energy technologies of a minimum size threshold and poor investment decisions by early adopters are discussed. Further research aims to explore postulated explanations for the observed decline in early adoption of UK engine cogeneration.

  7. Reaction coordinates for electron transfer reactions

    SciTech Connect (OSTI)

    Rasaiah, Jayendran C.; Zhu Jianjun

    2008-12-07

    The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in Marcus' theory of electron transfer. The quadratic dependence of the free energies of the reactant and product intermediates on m and m+1, respectively, leads to similar dependence of the free energies on the reaction coordinates and to the same dependence of the activation energy on the reorganization energy and the standard reaction free energy. Within the approximations of a continuum model of the solvent and linear response of the longitudinal polarization to the electric field in Marcus' theory, both formulations of the reaction coordinate are expected to lead to the same results.

  8. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01

    analysis of above flow resistance and energy cost, we know that the economy flux ratio of transfer heat-transfer means is between 0.54 and 0.85, namely sewage flux is smaller, and minC Cr min wwCVc?= . It is necessary to point out that though depending... efficiency of contranatant two pass thimble: ()213 1 11 21wwNn wz tt Cr tt 1n? ?? ?==?+ ? (1) Fig.1 Reverse-flow heat efficiency of TDHTS Contranatant single pass heat-transfer efficiency: ( ) ()1 1exp (1 ) 1exp (1)n Cr NTU Cr? = ?? ? ? Put...

  9. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    E-Print Network [OSTI]

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-01-01

    small gas turbines, internal combustion engines, usingsmall gas turbines, and internal combustion engines, thesmall gas turbines, wind turbines, and internal combustion

  10. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    E-Print Network [OSTI]

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-01-01

    Pharmingen Distributed Energy Resources in Practice Tablemany regions. Distributed Energy Resources in Practice 10.of µGrid Distributed Energy Resource Potential Using DER-CAM

  11. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    Alex Farrell of the Energy and Resources Group, UniversityMicrogrid Distributed Energy Resource Potential Using DER-of Distributed Energy Resources: The CERTS MicroGrid

  12. Vehicle Technologies Office Merit Review 2015: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unified...

  13. A Model of the Impact of Corporate Culture on Information Technology Adoption

    E-Print Network [OSTI]

    the pulp and paper sector ranked 14th with regard to percent of transactions conducted using the Internet Paper #57 Louisiana Forest Products Laboratory School of Renewable Natural Resources Louisiana State industry is often characterized as being reactive rather than proactive when it comes to implementing inter

  14. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    System Operator California Power Exchange California Energyand reliability photovoltaic power exchange Public Utilitiesaverage California Power Exchange (CalPX) prices for those

  15. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    Carbon emissions rate from burning natural gas to meet heating and cooling loads (kg/kWh) Natural gas price

  16. Vehicle Technologies Office Merit Review 2014: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  17. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    E-Print Network [OSTI]

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-01-01

    BD Biosciences Pharmingen Distributed Energy Resources inin many regions. Distributed Energy Resources in PracticeAssessment of µGrid Distributed Energy Resource Potential

  18. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    E-Print Network [OSTI]

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-01-01

    California rebate increases optimal yearly energy costs fromCalifornia. http://www.powerlight.com Distributed Energy Resources in Practice CostCalifornia. 93 Figure 33: Cumulative Energy Expense Projections from BD Biosciences Pharmingen. 96 Figure 34: Aggregated Yearly Energy Cost

  19. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    E-Print Network [OSTI]

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-01-01

    biogas system converted 130 kW engine 60 kW Capstone microturbine, CHP for space heating &biogas system converted 130 kW engine 60 kW Capstone microturbine, CHP for space heating &biogas system converted 130 kW engine 60 kW Capstone microturbine, CHP for space heating &

  20. Principals' adoption of abstinence-only-until-marriage education as an innovation in Texas public middle schools 

    E-Print Network [OSTI]

    Wilson, Kelly Lynn

    2005-08-29

    This study assessed indicators of adoption of abstinence-only-until-marriage education as an innovation by middle school principals in the state of Texas. It also assessed school principals?? likelihood of adopting such programs. This study...

  1. The rotation and fracture history of Europa from modeling of tidal-tectonic processes

    E-Print Network [OSTI]

    Rhoden, Alyssa Rose

    2011-01-01

    the tidal stresses. They adopted a power-law viscoelasticpower of the model. However, the mechanics of tidal walking

  2. Heat transfer in a pulsating heat pipe with open end Yuwen Zhang 1

    E-Print Network [OSTI]

    Zhang, Yuwen

    Heat transfer in a pulsating heat pipe with open end Yuwen Zhang 1 , Amir Faghri * Department and condenser sections of a pulsating heat pipe (PHP) with open end is modeled by analyzing thin ®lm evaporation and condensation. The heat transfer solutions are applied to the thermal model of the pulsating heat pipe

  3. Study of Reasons for the Adoption of Lean Production in the Automobile Industry: Questions for the AEC Industries

    E-Print Network [OSTI]

    Tommelein, Iris D.

    , are the forces that led car manufacturers to adopt lean production, and whether these same pressures existStudy of Reasons for the Adoption of Lean Production in the Automobile Industry: Questions for the AEC Industries Proceedings IGLC-7 11 STUDY OF REASONS FOR THE ADOPTION OF LEAN PRODUCTION

  4. Vrije Universiteit Brussel Technology Transfer Interface

    E-Print Network [OSTI]

    Goelzer, Heiko

    Vrije Universiteit Brussel Technology Transfer Interface -connecting science and society- [for Prof. Hugo Thienpont More Information Technology Transfer Interface (TTI) Vrije Universiteit Brussel.interface@vub.ac.be - www.vubtechtransfer.be Vrije Universiteit Brussel Technology Transfer Interface -connecting science

  5. Proton transfer in nucleobases is mediated by water

    SciTech Connect (OSTI)

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-04-29

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  6. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  7. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  8. The blue stragglers formed via mass transfer in old open clusters

    E-Print Network [OSTI]

    B. Tian; L. Deng; Z. Han; X. B. Zhang

    2006-05-09

    In this paper, we present the simulations for the primordial blue stragglers in the old open cluster M67 based on detailed modelling of the evolutionary processes. The principal aim is to discuss the contribution of mass transfer between the components of close binaries to the blue straggler population in M67. First, we followed the evolution of a binary of 1.4M$_\\odot$+0.9M$_\\odot$. The synthetic evolutionary track of the binary system revealed that a primordial blue straggler had a long lifetime in the observed blue straggler region of color-magnitude diagram. Second, a grid of models for close binary systems experiencing mass exchange were computed from 1Gyr to 6Gyr in order to account for primordial blue-straggler formation in a time sequence. Based on such a grid, Monte-Carlo simulations were applied for the old open cluster M67. Adopting appropriate orbital parameters, 4 primordial blue stragglers were predicted by our simulations. This was consistent with the observational fact that only a few blue stragglers in M67 were binaries with short orbital periods. An upper boundary of the primordial blue stragglers in the color-magnitude diagram (CMD) was defined and could be used to distinguish blue stragglers that were not formed via mass exchange. Using the grid of binary models, the orbital periods of the primordial BSs could be predicted. Compared with the observations, it is clear that the mechanism discussed in this work alone cannot fully predict the blue straggler population in M67. There must be several other processes also involved in the formation of the observed blue stragglers in M67.

  9. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    E-Print Network [OSTI]

    Cannizzo, John K

    2015-01-01

    Recent work by Levitan et al has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well-correlated with orbital period, and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period P. We infer a rate ~5 x 10^{-9} Msun/yr (P/1000 s)^{-5.2}. We show the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al using a simple theory for the recurrence time. Also, we predict their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  10. Technology Transfer Overview | Department of Energy

    Office of Environmental Management (EM)

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

  11. MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER

    E-Print Network [OSTI]

    Lahey, Richard T.

    MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

  12. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Preparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering Information Science, Systems, & Technology Materials Science & Engineering Mechanical Engineering Operations

  13. Preparing for Transfer Biological Engineering

    E-Print Network [OSTI]

    Walter, M.Todd

    Preparing for Transfer Majors: Biological Engineering Biomedical Engineering* Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering Information Science, Systems, & Technology Materials Science & Engineering Mechanical Engineering

  14. Knowledge Capture and Transfer Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE senior leaders and subject-matter-experts to capture and transfer the knowledge and experiences...

  15. Electrohydrodynamically enhanced condensation heat transfer 

    E-Print Network [OSTI]

    Wawzyniak, Markus

    1993-01-01

    In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

  16. Wireless transfer of electric power

    E-Print Network [OSTI]

    Moffatt, Robert Alexander

    2009-01-01

    In this dissertation, I describe the design and construction of a system which can transfer electric power wirelessly. This is accomplished using inductive, near-field, non-radiative coupling between self-resonant copper ...

  17. Computing the energetic component of the charge-transfer symmetry factor

    E-Print Network [OSTI]

    Drechsel-Grau, Christof

    The oxidation half-reaction of the aqueous ferrous ion serves as a model to investigate electron-transfer dynamics. The present classical model consists of two empirical valence bond states and a control parameter that effectively determines...

  18. Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals

    E-Print Network [OSTI]

    Deane, Charles William

    1969-01-01

    A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

  19. Optimal control of population transfer in Markovian open quantum systems

    E-Print Network [OSTI]

    Wei Cui; Zairong Xi; Yu Pan

    2010-04-27

    There has long been interest to control the transfer of population between specified quantum states. Recent work has optimized the control law for closed system population transfer by using a gradient ascent pulse engineer- ing algorithm [1]. Here, a spin-boson model consisting of two-level atoms which interact with the dissipative environment, is investigated. With opti- mal control, the quantum system can invert the populations of the quantum logic states. The temperature plays an important role in controlling popula- tion transfer. At low temperatures the control has active performance, while at high temperatures it has less erect. We also analyze the decoherence be- havior of open quantum systems with optimal population transfer control, and we find that these controls can prolong the coherence time. We hope that active optimal control can help quantum solid-state-based engineering.

  20. Automatic computation of transfer functions

    DOE Patents [OSTI]

    Atcitty, Stanley; Watson, Luke Dale

    2015-04-14

    Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.

  1. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  2. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  3. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  4. A Roadmap for NEAMS Capability Transfer

    SciTech Connect (OSTI)

    Bernholdt, David E [ORNL

    2011-11-01

    The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

  5. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated. It has been applied to measure heat transfer coefficients of water flowing in a round tube and in a multiport-flat tube. Models were developed to deduce heat transfer coefficient from wall temperature

  6. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

  7. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  8. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The rate of adoption of new vehicle technologies and related reductions in petroleum use and greenhouse gas emissions rely on how rapidly technology innovations enter the fleet through new vehicle purchases. New technologies often increase vehicle price, which creates a barrier to consumer purchase, but other barriers to adoption are not due to increased purchase prices. For example, plug-in vehicles, dedicated alternative fuel vehicles, and other new technologies face non-cost barriers such as consumer unfamiliarity or requirements for drivers to adjust behavior. This report reviews recent research to help classify these non-cost barriers and determine federal government programs and actions with the greatest potential to overcome them.

  9. Transfer Factors for Contaminant Uptake by Fruit and Nut Trees

    SciTech Connect (OSTI)

    Napier, Bruce A.; Fellows, Robert J.; Minc, Leah D.

    2013-11-20

    Transfer of radionuclides from soils into plants is one of the key mechanisms for long-term contamination of the human food chain. Nearly all computer models that address soil-to-plant uptake of radionuclides use empirically-derived transfer factors to address this process. Essentially all available soil-to-plant transfer factors are based on measurements in annual crops. Because very few measurements are available for tree fruits, samples were taken of alfalfa and oats and the stems, leaves, and fruits and nuts of almond, apple, apricot, carob, fig, grape, nectarine, pecan, pistachio (natural and grafted), and pomegranate, along with local surface soil. The samples were dried, ground, weighed, and analyzed for trace constituents through a combination of induction-coupled plasma mass spectrometry and instrumental neutron activation analysis for a wide range of naturally-occurring elements. Analysis results are presented and converted to soil-to-plant transfer factors. These are compared to commonly used and internationally recommended values. Those determined for annual crops are very similar to commonly-used values; those determined for tree fruits show interesting differences. Most macro- and micronutrients are slightly reduced in fruits; non-essential elements are reduced further. These findings may be used in existing computer models and may allow development of tree-fruit-specific transfer models.

  10. Nanoscale heat transfer - from computation to experiment

    E-Print Network [OSTI]

    Luo, Tengfei

    2013-04-09

    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

  11. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

  12. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect (OSTI)

    David Hamilton

    2004-12-31

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  13. Heat and Mass Transfer manuscript No. (will be inserted by the editor)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat and Mass Transfer manuscript No. (will be inserted by the editor) On the modeling of aiding to the onset of recirculation cells in the entry re- gion while the heat transfer is slightly increased under acceleration [m s-2 ] GrH Grashof number based on H, GrH = g0TH3 /2 0 h heat transfer coefficient [W m-2 K-1

  14. Adoption of Brush Busters and other brush management technologies by Texas landowners 

    E-Print Network [OSTI]

    Amestoy, Heidi Elizabeth

    2002-01-01

    methods is critical to achieving rangeland management objectives. However, in the past, landowners have often been reluctant to adopt new rangeland management practices. In April 2000, a survey was developed and mailed to the 1,058 respondents of a 1997...

  15. adopted 14 September 2010 Guidelines for Linguistics 4Y06: Honours Thesis

    E-Print Network [OSTI]

    Thompson, Michael

    adopted 14 September 2010 Guidelines for Linguistics 4Y06: Honours Thesis Students and advisors should meet early in the academic year to plan the student's progress through the thesis project at the Undergraduate Student Research Conference. Thesis end of Term II 30% The full thesis includes the Literature

  16. Climate Action Plan 2010 2020 -adopted by the University Court of the

    E-Print Network [OSTI]

    Schnaufer, Achim

    Climate Action Plan 2010 ­ 2020 - adopted by the University Court of the University of Edinburgh 24 time? This Climate Action Plan is a work in progress. This version of the Plan takes the text Court to be implementation from January 2011. #12;The University of Edinburgh Climate Action Plan 2010 - 2020 Page 2 of 20

  17. Project Information Form Project Title White Paper on Performance Based Approaches to Incentivize Local Adoption of

    E-Print Network [OSTI]

    California at Davis, University of

    policies supporting sustainable mobility. Local land use policy has a significant, long-term role to play that instead supports sustainable mobility, considering the most promising strategies for enhancing local land Local Adoption of Sustainable Land-Use Policies University UC Davis Principal Investigator Gian

  18. adopt our eco-driving top tips to reduce fuel costs

    E-Print Network [OSTI]

    Harman, Neal.A.

    adopt our eco-driving top tips to reduce fuel costs and accident risk Drive smoothly · Anticipate this will activate the fuel cut-off switch, reducing fuel flow to virtually zero. Shift up early · When accelerating, when appropriate. Avoid excessive speed High speeds greatly increase fuel consumption. Keep tyres

  19. Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates

    E-Print Network [OSTI]

    Holsinger, Kent

    Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter with either flat or variable electricity rates. Michigan's Detroit Edison Energy (DTE) early experience recharging units, free parking commensurate with lower emissions, and offpeak or flat electricity rates

  20. ETSU College of Pharmacy Personal Appearance Standards Adopted by Executive Committee September 15, 2006

    E-Print Network [OSTI]

    Karsai, Istvan

    ETSU College of Pharmacy Personal Appearance Standards Adopted by Executive Committee September 15, 2006 In order to prepare pharmacy students to enter the profession, the ETSU College of Pharmacy setting (all experiential settings), students are required to wear an approved white lab jacket with ETSU

  1. AN ECONOMIC ANALYSIS OF SHELLFISH PRODUCTION ASSOCIATED WITH THE ADOPTION OF INTEGRATED

    E-Print Network [OSTI]

    market implications of IMTA adoption on the west coast for the BC oyster industry? The study considers to be found to increase demand. New market opportunities could be developed in Asian countries, which require with Duncan on this project and his energy, commitment, and interest in the subject matter are a major reason

  2. The Hepatitis C Virus Internal Ribosome Entry Site Adopts an Ion-dependent Tertiary Fold

    E-Print Network [OSTI]

    Doudna, Jennifer A.

    The Hepatitis C Virus Internal Ribosome Entry Site Adopts an Ion-dependent Tertiary Fold Jeffrey S-0539, USA Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5H entry site (IRES); hepatitis C virus (HCV); chemical and enzymatic probing*Corresponding author

  3. Comparison of Information Technology Adoption Rates across Laggards, Innovators and Others

    E-Print Network [OSTI]

    Hexmoor, Henry

    Comparison of Information Technology Adoption Rates across Laggards, Innovators and Others Rukmini@uark.edu Abstract It is important to predict and analyze user acceptance of information technology in order for two decades in empirical studies to predict user acceptance of information technology. Agent

  4. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2007-10-01

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  5. Adopting Web 2.0 for Instruction: The Effects of Faculty Rank and Employment Status

    E-Print Network [OSTI]

    Yu, Alex

    (employment rank and %FTE) on their interest in learning about Web 2.0 technologies (blogs and podcasts Learning Technologies Institute Arizona State University 2009, April Paper presented at the Annual meeting of the American Educational Research Association, San Diego, CA. RUNNING HEAD: Technology adoption and employment

  6. Adopting iterative development: the perceived business Caryna Pinheiro, Frank Maurer, Jonathan Sillito

    E-Print Network [OSTI]

    Sillito, Jonathan

    processes that have been successfully implemented by others, to reduce the risk of failure [1]. The company under study is a large Oil & Gas government agency that lacked the initial management support to adopt an iterative development approach as well as the degree of formality and traceability desired by the top

  7. Innovative practices in early childhood classrooms: what makes a teacher an early adopter

    E-Print Network [OSTI]

    Marshall, Ellen

    2004-09-30

    it into their teaching. The participants were all women who work in a variety of classroom settings with two-through-six-year-olds in San Antonio, Texas. They were identified as teachers who are in the forefront in adopting new ideas in comparison to other early...

  8. Energy-saving technology adoption under uncertainty in the residential sector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier, Alejandro Mosiño and Aude Pommeret October 5, 2009 Abstract Home renovation is generally asserted to be a highly effective means for households to lower expenditures on energy. In this sense, home renova- tion

  9. Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector

    E-Print Network [OSTI]

    Boyer, Edmond

    Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power; renewables; energy efficient technologies. *Corresponding author: nhan@centre-cired.fr. Tel: +33 01 43 94 73 Développement, CNRS, France. b Institute of Energy, Vietnam. c The Royal Institute of Technology, Sweden d Asian

  10. Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies

    E-Print Network [OSTI]

    Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies, Technology and Policy Program #12;2 #12;Pathways to Carbon Capture and Sequestration in India: Technologies to control India's emissions will have to be a global priority. Carbon capture and sequestration (CCS) can

  11. Journal of Heat Transfer1999 JHT Heat Transfer Gallery Department of Mechanical 8. Aerospace Engineering

    E-Print Network [OSTI]

    Kihm, IconKenneth David

    Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju

  12. Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development

    E-Print Network [OSTI]

    Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

    2005-01-01

    Assessment of Distributed Energy Adoption in Commercialand Renewable Energy, Distributed Energy Program of the U.S.Assessment of Distributed Energy Adoption in Commercial

  13. Radiative transfer in decomposed domains

    E-Print Network [OSTI]

    T. Heinemann; W. Dobler; A. Nordlund; A. Brandenburg

    2005-11-09

    An efficient algorithm for calculating radiative transfer on massively parallel computers using domain decomposition is presented. The integral formulation of the transfer equation is used to divide the problem into a local but compute-intensive part for calculating the intensity and optical depth integrals, and a nonlocal part for communicating the intensity between adjacent processors. The waiting time of idle processors during the nonlocal communication part does not have a severe impact on the scaling. The wall clock time thus scales nearly linearly with the inverse number of processors.

  14. TEMPORAL AND SPATIAL PREDICTION OF RADIOCAESIUM TRANSFER TO FOOD PRODUCTS

    E-Print Network [OSTI]

    Crout, Neil

    1 TEMPORAL AND SPATIAL PREDICTION OF RADIOCAESIUM TRANSFER TO FOOD PRODUCTS A.G. GILLETT1 , N #12;2 ABSTRACT A recently developed semi-mechanistic temporal model to is used predict food product (exchangeable K, pH, % clay and % organic matter content). A raster database of soil characteristics

  15. An Oblivious Transfer Protocol with Log-Squared Communication

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    An Oblivious Transfer Protocol with Log-Squared Communication Helger Lipmaa 1 Cybernetica AS, Lai 6-computation and communication (k · log2 n + · log n), where k is a possibly non-constant security parameter. The new proto- col communication and is private in the standard complexity-theoretic model. Keywords. Computationally

  16. An Oblivious Transfer Protocol with LogSquared Communication

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    An Oblivious Transfer Protocol with Log­Squared Communication Helger Lipmaa 1 Cybernetica AS, Lai 6­computation and communication #(k · log 2 n + # · log n), where k is a possibly non­constant security parameter. The new proto the same asymptotic communication and is private in the standard complexity­theoretic model. Keywords

  17. Saving Your Data (Data Transfer) Transfer Raw Data to Another Computer

    E-Print Network [OSTI]

    California at San Diego, University of

    Saving Your Data (Data Transfer) Transfer Raw Data to Another Computer 1. Open a terminal 2 the Data Manager window 2. Right click the scan you want to save or the whole study and select "Transfer

  18. Transfer Factors for Contaminant Uptake

    E-Print Network [OSTI]

    of supply, upon written request as follows: Address: U.S. Nuclear Regulatory Commission OfficeTransfer Factors for Contaminant Uptake by Fruit and Nut Trees Office of Nuclear Regulatory; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series

  19. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

  20. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  1. Single Cells Spreading on a Protein Lattice Adopt an Energy Minimizing Shape Benoit Vianay,1 Jos Kfer,2, Emmanuelle Planus,3 Marc Block,3 Franois Graner,2,4 and Herv Guillou1,

    E-Print Network [OSTI]

    Boyer, Edmond

    Single Cells Spreading on a Protein Lattice Adopt an Energy Minimizing Shape Benoit Vianay,1 Jos suggest that the observed shapes correspond to metastable states in an energy landscape. Our results justify in fine the purely mechanical approach used in alternative models [17­19]. Each pattern is made

  2. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

  3. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick David; Singha, Kamini; Johnson, Timothy C.; Haggerty, Roy; Binley, Andrew; Lane, John W.

    2014-11-25

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita.

  4. Chemistry Transfer Evaluations Before requesting a transfer evaluation, please look up your courses on the UO Transfer Credit

    E-Print Network [OSTI]

    Cina, Jeff

    Chemistry Transfer Evaluations Before requesting a transfer evaluation, please look up your courses://registrar.uoregon.edu/current_students/transfer-articulation If your Chemistry courses have not been evaluated, or if you feel the evaluation is not correct, then fill out this form and bring it and the associated documents to a Chemistry advisor. Name

  5. Adoption, implementation and enforcement of commercial building energy codes in New Mexico and Arizona

    SciTech Connect (OSTI)

    Callaway, J W; Thurman, A G; Shankle, D L

    1991-07-01

    The US Department of Energy (DOE) is considering ways to encourage states to adopt energy efficiency standards for residential and commercial buildings in the private sector. Such standards are now mandatory for federal buildings, and for private buildings in 34 states; in the remaining 16 states, the standards serve as guidelines for voluntary compliance. In this study for DOE, Pacific Northwest Laboratory (PNL) assessed the process by which energy codes for commercial buildings were adopted and implemented in Arizona and New Mexico. Information was gathered primarily through a series of interviews with state officials, city building officials, architects and engineers, builders, and staff from utilities in the two states. Until other state processes are studied, the extent of the similarities and dissimilarities to the situation in New Mexico and Arizona are unknown. A more extensive study may show that at least some elements of the two state's experience have been paralleled in other parts of the country. General strategies to encourage the adoption of energy codes, assist implementation, and support enforcement were developed based on the research from Arizona and New Mexico and are presented in this report. 6 refs., 4 figs.

  6. Energy Transfer from Individual Semiconductor Nanocrystals to Graphene

    E-Print Network [OSTI]

    Chen, Zheyuan; Nuckolls, Colin; Heinz, Tony F; Brus, Louis E

    2010-01-01

    Energy transfer from photoexcited zero-dimensional systems to metallic systems plays a prominent role in modern day materials science. A situation of particular interest concerns the interaction between a photoexcited dipole and an atomically thin metal. The recent discovery of graphene layers permits investigation of this phenomenon. Here we report a study of fluorescence from individual CdSe/ZnS nanocrystals in contact with single- and few-layer graphene sheets. The rate of energy transfer is determined from the strong quenching of the nanocrystal fluorescence. For single-layer graphene, we find a rate of ~ 4ns-1, in agreement with a model based on the dipole approximation and a tight-binding description of graphene. This rate increases significantly with the number of graphene layers, before approaching the bulk limit. Our study quantifies energy transfer to and fluorescence quenching by graphene, critical properties for novel applications in photovoltaic devices and as a molecular ruler.

  7. Direct transfer of graphene onto flexible substrates

    E-Print Network [OSTI]

    Araujo, Paulo Antonio Trinidade

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate ...

  8. NERSC HPSS Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within...

  9. Engineering nanocarbon interfaces for electron transfer

    E-Print Network [OSTI]

    Hilmer, Andrew J. (Andrew Joseph)

    2013-01-01

    Electron-transfer reactions at nanometer-scale interfaces, such as those presented by single-walled carbon nanotubes (SWCNTs), are important for emerging optoelectronic and photovoltaic technologies. Electron transfer also ...

  10. Power transfer through strongly coupled resonances

    E-Print Network [OSTI]

    Kurs, André

    2007-01-01

    Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate efficient non-radiative power transfer over distances of up to eight times the radius of the coils. We use this system to transfer 60W ...

  11. Local, instantaneous heat transfer in pulse-stabilized fluidization

    SciTech Connect (OSTI)

    Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics; Beasley, D.E. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering

    1996-12-31

    The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines the effect of an opposing oscillatory flow on the local, instantaneous heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor. Spectral and contact time analyses of local, instantaneous heat flux measurements from a heated, submerged horizontal cylinder clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. These heat flux measurements were accomplished by employing an isothermal platinum film heat flux gage. For the present investigation, data were acquired for a monodisperse distribution of particles with a mean diameter of 345 {micro}m and total fluidization ratios ranging from 1.1 through 2.7. Heat transfer observed under conditions of secondary flows with a superimposed waveform exhibit characteristics of globally dominated, as opposed to locally dominated, hydrodynamics. For low primary and secondary flow rates and a forcing frequency of 5 Hz, a substantial enhancement in heat transfer was observed. Increases in the bubble phase and emulsion phase heat transfer coefficients were identified as the primary contributors to the observed increases in time-averaged local heat transfer coefficients.

  12. Academic Knowledge Transfer in Social Networks

    E-Print Network [OSTI]

    Slater, Mark David

    2013-01-01

    4.3 Digital Library Requirements . . . . . . . . . . . 4.43.1.1 Digital Libraries . . . . . . . . . . . .A Prototype Personal Digital Library Knowledge Transfer

  13. Waste Feed Delivery Transfer System Analysis

    SciTech Connect (OSTI)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  14. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  15. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  16. Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface

    SciTech Connect (OSTI)

    Greene, G.A.; Irvine, T.F. Jr.

    1988-01-01

    The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

  17. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2009 ­ 2011 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  18. Transferring to The University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    Transferring to The University of New Mexico From Central New Mexico College A Transfer Articulation Guide based on Central New Mexico Community College Catalog Year 2007 ­ 2009 Apply to UNM on-line at www.unm.edu #12;Transferring to The University of New Mexico from Central New Mexico Community College

  19. Technology Transfer at Penn State University

    E-Print Network [OSTI]

    Lee, Dongwon

    Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

  20. Page 1 of 2 Technology Transfer &

    E-Print Network [OSTI]

    Chapman, Michael S.

    Page 1 of 2 Technology Transfer & Business Development Incoming Material Transfer Request Form & Academic Collaborations Team (iACT) Technology Transfer & Business Development MTA@ohsu.edu (503) 494 the provider? No Yes If yes, please attach a copy to your MTA submission email. #12;Page 2 of 2 Technology

  1. Requirements Engineering Technology Transfer: An Experience Report

    E-Print Network [OSTI]

    Leite, Julio Cesar Sampaio do Prado

    Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

  2. Data Transfer Policy Version 1.1

    E-Print Network [OSTI]

    Aickelin, Uwe

    Data Transfer Policy Version 1.1 Last amended: 18 September 2014 Policy Owner: Governance Team The University of Nottingham ("the University") Tri-Campus Data Transfer Policy Background and Statement of Intention The University is required at times to transfer personal data between its campuses in Nottingham

  3. Code Number :.............. HEAT TRANSFER QUALIFYING EXAM

    E-Print Network [OSTI]

    Feeny, Brian

    is at 40 °C, estimate the heat transfer per unit length by radiation and convection between the twoCode Number :.............. HEAT TRANSFER QUALIFYING EXAM January 2010 OPEN BOOK (only one book) The heat transfer coefficient c) The length of pipe needed for a 35 °C increase in mean temperature d

  4. Alterna(ve Roadmap For Transfer Students

    E-Print Network [OSTI]

    Ravikumar, B.

    Alterna(ve Roadmap For Transfer Students 8/11/14 EE Program #12;Transfer with the roadmap · NEXT STEP: ­ Share this with all other transfer students and make 1 (LACKING ES220) SEE THE ROADMAP: h`p://www.sonoma.edu/engineering/bsee/bsee_roadmap

  5. ME 519: THEORY OF HEAT TRANSFER Instructor

    E-Print Network [OSTI]

    Lin, Xi

    ME 519: THEORY OF HEAT TRANSFER Fall 2014 Instructor: Class time: Classroom: Office Hours: Prof Tuesday 4­5pm or by appointment Class description This course will cover the fundamentals of heat transfer. An introductory course in heat transfer (ME 419 or equivalent) is pre-requisite. Grading 20% Homework 25% Exam 1

  6. Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals

    E-Print Network [OSTI]

    Kanwar, Sunil

    2007-01-01

    International Technology Transfer? Empirical Evidence FromEffects on Investment, Technology Transfer, and Innovation’r&d as a mode of technology transfer The median levels of

  7. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    and J.R. Howell, Thermal radiation heat transfer, Hemispheremade: 1. The heat, mass, and radiation transfer are treatedOne- dimensional heat, mass, and radiation transfers were

  8. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  9. Heat transfer via dropwise condensation on hydrophobic microstructured surfaces

    E-Print Network [OSTI]

    Ruleman, Karlen E. (Karlen Elizabeth)

    2009-01-01

    Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

  10. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL; Cremaschi, Prof. Lorenzo [Oklahoma State University

    2015-01-01

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  11. Heat and mass transfer in bubble column dehumidifiers for HDH desalination

    E-Print Network [OSTI]

    Tow, Emily W

    2014-01-01

    Heat and mass transfer processes governing the performance of bubble dehumidifier trays are studied in order to develop a predictive model and design rules for efficient and economical design of bubble column dehumidifiers ...

  12. Charge-Transfer Induced Magnetic Field Effects of Nano-Carbon Heterojunctions

    E-Print Network [OSTI]

    Qin, Wei; Gong, Maogang; Shastry, Tejas; Hersam, Mark C.; Ren, Shenqiang

    2014-08-22

    modeling. By controlling SWCNT concentrations and interfacial interactions, nano-carbon heterojunctions exhibit tunability of charge-transfer density and room temperature magnetoconductance of 2.8% under 100?mT external magnetic field. External stimuli...

  13. A steady state thermal duct model derived by fin-theory approach and applied on an unglazed solar collector

    SciTech Connect (OSTI)

    Stojanovic, B.; Hallberg, D.; Akander, J.

    2010-10-15

    This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer course of events adopts a 1D heat flow that reassembles the conditions of the 1D simple model (for the assessed USC duct geometry); 1D heat flow through the top and bottom fins/sheets as the duct wall reassembles a state of adiabatic condition. (author)

  14. Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies

    E-Print Network [OSTI]

    Camci, Cengiz

    AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine

  15. Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act

    E-Print Network [OSTI]

    Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

  16. Cutting Edge: Delay and Reversal of T Cell Tolerance by Intratumoral Injection of Antigen-Loaded Dendritic Cells in an Autochthonous Tumor Model

    E-Print Network [OSTI]

    Higham, Eileen M.

    The tumor environment exerts a powerful suppressive influence on infiltrating tumor-reactive T cells. It induces tolerance of adoptively transferred effector T cells as they enter tumors and maintains the tolerance of ...

  17. A PC simulation of heat transfer and temperature distribution in a circulating wellbore 

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01

    -Wold (Chair of Committee) James E. Russell (Member) Earl R. Hoskins (Member) D, Von Gonton (H ad of Department) December 1987 ABSTRACT A PC Simulation of Heat Transfer and Temperature Distribution in a Circulating Wellbore (December 1987) Robert... SUPPLEMENTAL SOURCES CONSULTED APPENDIX A: MATHEMATICAL MODEL AND TREATMENT 103 108 APPENDIX B: DERIVATION OF RAMEY'SS WELLBORE HEAT TRANSMISSION SOLUTION 112 APPENDIX C: RHEOLOGICAL PRESSURE LOSS MODEL CALCULATIONS APPENDIX D: OVER-ALL HEAT TRANSFER...

  18. Recent Heat Transfer Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Riemke, Richard A; Davis, Cliff B; Oh, Chang

    2007-05-01

    The heat transfer section of the RELAP5-3D computer program has been recently improved. The improvements are as follows: (1) the general cladding rupture model was modified (more than one heat structure segment connected to the hydrodynamic volume and heat structure geometry’s internal gap pressure), (2) the cladding rupture model was modified for reflood, and (3) the heat transfer minor edits/plots were extended to include radiation/enclosure heat flux and generation (internal heat source).

  19. Modifications to a two-control-volume, frequency dependent, transfer-function analysis of hole-pattern gas annular seals 

    E-Print Network [OSTI]

    Shin, Yoon Shik

    2007-04-25

    A rotordynamic analysis of hole-pattern gas annular seals using a two-control-volume model, Ha and Childs and frequency dependent transfer-function model, Kleynhans and Childs is modified with four features. The energy ...

  20. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  1. A technology transfer plan for the US Department of Energy's Electric Energy Systems Program

    SciTech Connect (OSTI)

    Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

    1986-11-01

    The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

  2. On the fast track: Collaboration expedites adoption of efficient irrigation technologies in the High Plains 

    E-Print Network [OSTI]

    Lee, Leslie

    2013-01-01

    the most of their available resources, Texas A&M AgriLife Research scientists and Texas A&M AgriLife Extension Service professionals are ge?ing new irrigation technologies into growers? hands in record time. Irrigation is incredibly valuable in the High... said. ?Part of that is due to the fact that we?ve got very harsh environmental ON THE FAST TRACK Collaboration expedites adoption of e?cient irrigation technologies in the High Plains 1 Texas Water Resources Institute EM-115, 2012. Summer 2013 tx...

  3. Flexible profile approach to the conjugate heat transfer problem

    E-Print Network [OSTI]

    M. -N. Sabry

    2008-01-07

    The flexible profile approach proposed earlier to create CTM (compact or reduced order thermal models) is extended to cover the area of conjugate heat transfer. The flexible profile approach is a methodology that allows building a highly boundary conditions independent CTM, with any desired degree of accuracy, that may adequately replace detailed 3D models for the whole spectrum of applications in which the modeled object may be used. The extension to conjugate problems radically solves the problem of interfacing two different domains. Each domain, fluid or solid, can be "compacted" independently creating two CTM that can be joined together to produce reliable results for any arbitrary set of external boundary conditions.

  4. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgenda Agenda NERSC User GroupTransfers Historical

  5. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgenda Agenda NERSC User GroupTransfers

  6. Concurrent Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefault ChangesORNL's Jaguar beingConcreteTransfers

  7. Transfer Service (contracts/rd)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories81TowardsTrackingCarbon2 - Summer2Transfer

  8. NREL: Technology Transfer Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologies AvailableTransfer Photo

  9. The heat and mass transfer phenomena in micro-scale for drug diffusion to brain tissue, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas

    E-Print Network [OSTI]

    modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion agreement. Finally, a chemical kinetic mechanism of gas turbine combustion for Jet Propellant-10 has been

  10. Instantaneous pressure and heat transfer in pulse-stabilized fluidization

    SciTech Connect (OSTI)

    Beasley, D.E.; Postle, M.C. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering; Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    1996-12-31

    A hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed was developed by Manufacturing Technology Conversion International, Inc. (MTCI, Inc.) and licensed to Thermo-Chem, Inc. This Pulsed Atmospheric Fluidized Bed technology has technical advantages in energy efficiency and emissions and is currently in pilot scale demonstration on the campus of Clemson University. The present study examines the effect of an opposing oscillatory flow on the pressure and overall heat transfer in a bubbling gas-fluidized bed. This opposing flow models the flow in the tailpipe of a pulsed combustor. Pressure measurements at the wall and on a submerged horizontal cylinder clearly indicate that the bed hydrodynamics are significantly altered by the opposing secondary flow. Under operating conditions of low secondary flow rates and pulse frequencies, the dominant frequency of the pressure fluctuations measured in the bed shifts from the natural, unforced response of the bed to the imposed frequency. For higher fluidization and secondary flow rates both the natural and forced response of the bed are present. Overall and time-averaged local heat transfer measurements from a submerged horizontal cylinder clearly indicate that the heat transfer rates are significantly altered by the opposing secondary flow. The most dramatic increases in heat transfer, on the order of 12%, were identified with operating conditions with low primary and secondary flow rates and pulse frequencies near the natural frequency of the bed. The local heat transfer was most significantly altered at the stagnation point. A modified form of the Strouhal number is shown to effectively describe the effect of pulse stabilization on overall heat transfer.

  11. Time-dependent Multi-group Multidimensional Relativistic Radiative Transfer Code Based On Spherical Harmonic Discrete Ordinate Method

    E-Print Network [OSTI]

    Tominaga, Nozomu; Blinnikov, Sergei I

    2015-01-01

    We develop a time-dependent multi-group multidimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) that evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with a ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed frame approach; the source function is evaluated in the comoving frame whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated with various test problems and comparisons with results of a relativistic Monte Carlo code. These validations confirm that the code ...

  12. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    SciTech Connect (OSTI)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  13. INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE The Technology Transfer Office directly contributes to the three-pronged mission of Dartmouth

    E-Print Network [OSTI]

    INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE 1. Mission The Technology Transfer Office directly. The Technology Transfer Office contributes to the research mission of the College by commercializing inventions sources, and ensuring compliance with Government technology transfer regulations. The teaching mission

  14. COST TRANSFER REQUEST FORM This form is required for final approval of any expense transfer (ET) or labor distribution

    E-Print Network [OSTI]

    Capogna, Luca

    COST TRANSFER REQUEST FORM This form is required for final approval of any expense transfer (ET) or labor distribution (LD) transfers to sponsored program and required cost share cost centers: ____________________ Department: ________________ Phone: _______ Cost Transfer Document Number to be Approved

  15. Transfer Across the Air-Sea Interface Christoph S. Garbe, Anna Rutgersson, Jacqueline Boutin,

    E-Print Network [OSTI]

    Garbe, Christoph S.

    ): k ¼ F C0 À Cbulk : (2.1) For the transport of CO2, the water-sided transfer velocity kw is often related to the partial pressure difference pCO2 bet, several models have been devel- oped, ranging from conceptual models to numerical models. Most frequently

  16. Cost Transfer Review Criteria Revised: 01/28/2011

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    Cost Transfer Review Criteria Revised: 01/28/2011 Cost transfers should contain sufficient. The cost transfer narrative should include enough detail to determine who or what the cost transfer relates to, the type of cost transferred, where the cost is transferred from and to, when the cost

  17. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    SciTech Connect (OSTI)

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

  18. Nuclear Effects in Neutrino Interactions at Low Momentum Transfer

    SciTech Connect (OSTI)

    Miltenberger, Ethan Ryan

    2015-05-01

    This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.

  19. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    E-Print Network [OSTI]

    , Stephen Meyers

    2014-01-01

    Use and Water Heating Energy Use in the U.S. : A Detailedand Projected Impacts of U.S. Energy and Economic Impacts ofU.S. Federal Energy and Water Conservation Standards Adopted

  20. Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage

    E-Print Network [OSTI]

    Otto, Vincent M.

    This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...