Sample records for transcontinental gas pipe

  1. Method for route selection of transcontinental natural gas pipelines

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

  2. Natural gas transport by plastic pipes. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  3. Natural Gas Pipe Line Companies (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records,...

  4. Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  5. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  6. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  7. Crofutt's Transcontinental Tourist's Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp HoldingsCrofutt's Transcontinental Tourist's

  8. Cryogenic & Gas System Piping Pressure Tests (A Collection of PT Permits)

    SciTech Connect (OSTI)

    Rucinski, Russell A.; /Fermilab

    2002-08-22T23:59:59.000Z

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note 3740.214-EN-268, John Urbin 11120/90; (5) Pressure test procedure; (6) Schematic for pressure test; and (7) List of component pressure ratings. The goal of this independent review is to: (1) Reviewer makes recommendation to the Division/Section Safety Officer to approve the testing permit; and (2) Reviewer is satisfied the FESHM 5031 is met, and recommends to the division head that approval to operate be granted.

  9. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    SciTech Connect (OSTI)

    David Cist; Alan Schutz

    2005-03-30T23:59:59.000Z

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  10. A Gas-Fired Heat Pipe Zone Heater 

    E-Print Network [OSTI]

    Winn, C. B.; Burns, P.; Guire, J.

    1984-01-01T23:59:59.000Z

    A gas-fired vented zone heater has recently been developed by the Altar Corporation for Colorado State University (CSU) under a Gas Research Institute (GRI) contract. The unit war developed for auxiliary heating applications in passive solar...

  11. A Gas-Fired Heat Pipe Zone Heater

    E-Print Network [OSTI]

    Winn, C. B.; Burns, P.; Guire, J.

    1984-01-01T23:59:59.000Z

    A gas-fired vented zone heater has recently been developed by the Altar Corporation for Colorado State University (CSU) under a Gas Research Institute (GRI) contract. The unit war developed for auxiliary heating applications in passive solar...

  12. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect (OSTI)

    Mahrle, P.

    1990-12-01T23:59:59.000Z

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  13. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01T23:59:59.000Z

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  14. Further Rationalization for Piping Natural Gas to the Avalon to Meet Domestic Energy Needs

    E-Print Network [OSTI]

    Bruneau, Steve

    of that talk were: · Assessment of options for Island's non-hydro electric power. · Rationalization of natural gas as the optimal choice. · The source of this gas was identified in broad terms. · The means ·· Power generationPower generation = 400,= 400, Operating = 15 + FuelOperating = 15 + Fuel From Previous

  15. Influence of Transcontinental arch on Cretaceous listric-normal faulting, west flank, Denver basin

    SciTech Connect (OSTI)

    Davis, T.L.

    1983-08-01T23:59:59.000Z

    Seismic studies along the west flank of the Denver basin near Boulder and Greeley, Colorado illustrate the interrelationship between shallow listric-normal faulting in the Cretaceous and deeper basement-controlled faulting. Deeper fault systems, primarily associated with the Transcontinental arch, control the styles and causative mechanisms of listric-normal faulting that developed in the Cretaceous. Three major stratigraphic levels of listric-normal faulting occur in the Boulder-Greeley area. These tectonic sensitive intervals are present in the following Cretaceous formations: Laramie-Fox Hills-upper Pierre, middle Pierre Hygiene zone, and the Niobrara-Carlile-Greenhorn. Documentation of the listric-normal fault style reveals a Wattenberg high, a horst block or positive feature of the greater Transcontinental arch, was active in the east Boulder-Greeley area during Cretaceous time. Paleotectonic events associated with the Wattenberg high are traced through analysis of the listric-normal fault systems that occur in the area. These styles are important to recognize because of their stratigraphic and structural influence on Cretaceous petroleum reservoir systems in the Denver basin. Similar styles of listric-normal faulting occur in the Cretaceous in many Rocky Mountain foreland basins.

  16. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect (OSTI)

    Wu, Hao; Dong, Feng [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China)

    2014-04-11T23:59:59.000Z

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  17. Development of 230-kV high-pressure, gas-filled, pipe-type cable system: Model test program phase

    SciTech Connect (OSTI)

    Silver, D.A. (Pirelli Cable Corp., Florham Park, NJ (USA))

    1990-09-01T23:59:59.000Z

    The objective of this project was the development of a 230 kV high-pressure gas-filled (HPGF) pipe-type cable employing paper or laminate of paper-polypropylene-paper (PPP) insulation pressurized with N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas. Heretofore, HPGF pipe-type cables have been restricted to 138 kV ratings due to technical difficulties in achieving higher voltage ratings. In view of the high cost of manufacturing and testing a large number of full size cables, cable models with 2 mm (80 mils) and 2.5 mm (100 mils) wall thicknesses of insulation enclosed in a test fixture capable of withstanding a test pressure of 2070 kPa (300 psig) and high electrical stresses were employed for dissipation factor versus voltage measurements and for ac and impulse breakdown tests at rated and emergency operating temperatures. In addition, a 36 cm (14 in) full wall cable model enclosed in a pressure vessel was utilized for transient pressure response tests. The results of this investigation attest tot he technical feasibility of the design and manufacture of a 230 kV HPGF pipe-type cable employing paper or PPP insulation pressurized with 100% N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas for operation under normal and 100 hour emergency conditions at conductor temperatures of 85{degree} and 105{degree}C, respectively. The manufacture of a full size PPP insulated cable pressurized with a blend of 15% SF{sub 6}/85% N{sub 2} gas employing pre-impregnated PPP insulating tapes and an annular conductor based on the design stresses defined in this report is recommended for laboratory evaluation and extended life tests. 11 refs., 45 figs., 11 tabs.

  18. Trans-Sahara pipe line would deliver Nigeria gas to Europe

    SciTech Connect (OSTI)

    Muenzler, M.H.

    1983-11-01T23:59:59.000Z

    Bechtel has made an in-house study of a natural gas transmission line extending from Nigeria to the Mediterranean and then on into Europe. Based upon the analysis, the pipeline project appears sufficiently viable to warrant further study. Perhaps the single most important element in design of pipelines crossing international borders is the political aspects involved in constructing, owning, and operating the line. These considerations not only effect the location of the pipeline, the manner of financing and ownership, but also whether the line will be constructed. The line crosses several international boundaries, depending upon the route selected. Each route crosses Niger. Case A crosses Algeria and into Tunisia where it ultimately would cross the Strait of Sicily into Italy. Case B crosses the Niger- Algerian border and then traverses Algeria to the Mediterranean where it is planned to connect to the Segamo pipeline and to link with the pipeline network in Spain. Case C crosses the countries of Niger, Mali, Mauritania, and into Morocco, and ultimately crosses the Mediterranean Sea close to the Strait of Gibraltar. Nigeria has proven natural gas reserves estimated to range from 2.5 to 4 trillion cu m (38 to 140 tcf).

  19. Transcontinental Rates

    E-Print Network [OSTI]

    Danskin, Floyd Brown

    1913-01-01T23:59:59.000Z

    the Pacif ic Mail was left to continue its subsidized co - etition for through traffic. 3 It was in the year 1883 also that the North rn Pao! fio was opened for traffic to the Pacifio Northwest,and in the following year by the comp~tion of the Oregon B... 184. The N. P. owns and operates a line of railway from Ash­ land, Wis. to Portland, Oregon and Wallula, Wash. a distanc e of 2 , 137 miles. Its principal eastern termini are st. Pau1, Minneapolis and Duluth in Minnesota, and its 'rincipal wes~ ern...

  20. Gas-solid transport in a 0. 0508 m pipe at various inclinations with and without electrostatics

    SciTech Connect (OSTI)

    Myler, C.A.; Zaltash, A.; Klinzing, G.E.

    1985-01-01T23:59:59.000Z

    The transport of solid particles by air through a 0.0508 m pipe was studied in vertical, horizontal, and 45/sup 0/ orientations. Through control of the air humidity, the effects of electrostatic charging was observed. Pressure drop and particle velocities were measured. Particles used included 79 ..mu..m, 125 ..mu..m, and 450 ..mu..m glass beads and 128 ..mu..m Plexiglas beads. Analysis of particle velocity, pressure drop fluctuation, electrostatic pressure drop, choking and saltation was performed. Visual observations of the flow patterns and behavior were made. A linear stability analysis for the three orientations was performed.

  1. Pipe line activity expected to maintain current levels throughout 1990s. [Global construction trends in natural gas and oil pipelines

    SciTech Connect (OSTI)

    Ives, G. Jr.

    1993-11-01T23:59:59.000Z

    This article consists of several smaller papers which discuss the construction projections for new oil and gas pipelines on a global basis, excluding the US and Canada. The paper provides numerous tables showing the projected types and mileages for proposed pipelines and the types of products to be shipped in each pipeline. The article features activities of individual countries and regions which have any significant oil or gas production. The individual papers are broken into continental regions including Europe, the North Sea, Africa, the Middle East, Indonesia, the Far East, Australia, Central America, and South America.

  2. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23T23:59:59.000Z

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  3. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01T23:59:59.000Z

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  4. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  5. Pipe-to-pipe impact program

    SciTech Connect (OSTI)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01T23:59:59.000Z

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984.

  6. Reliability Estimation for Double Containment Piping

    SciTech Connect (OSTI)

    L. Cadwallader; T. Pinna

    2012-08-01T23:59:59.000Z

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  7. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  8. Towards a Visual Perception System for Pipe Inspection: Monocular Visual Odometry

    E-Print Network [OSTI]

    , pipe crawler, visual odometry #12;Abstract Liquid Natural Gas (LNG) processing facilities contain large in LNG pipes include Magnetic Flux Leakage (MFL), radiography (X-rays), and ultrasound among others wall thickness over time the rate of corrosion can be estimated. For LNG pipes, unlike large mainstream

  9. Design of a Novel In-Pipe Reliable Leak Detector

    E-Print Network [OSTI]

    Chatzigeorgiou, Dimitris

    Leakage is the major factor for unaccounted losses in every pipe network around the world (oil, gas, or water). In most cases, the deleterious effects associated with the occurrence of leaks may present serious economical ...

  10. Piping inspection instrument carriage

    SciTech Connect (OSTI)

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20T23:59:59.000Z

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  11. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  12. Pipe viscometry of foams C. Enzendorfer

    E-Print Network [OSTI]

    Valkó, Peter

    of foams is usually characterized by the quality, r, defined as the ratio of the gas volume to the total,and quality was determined in pipes of five diameters. The flow curves showed a marked dependenceon foam volume. High-quality foams, above 93%-97% have the tendency to invert into mist. In a mist

  13. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13T23:59:59.000Z

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  14. CRAD, Nuclear Facility Construction - Piping and Pipe Supports...

    Broader source: Energy.gov (indexed) [DOE]

    March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) This Criteria Review and...

  15. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, C.F.; Howard, B.D.

    1994-01-01T23:59:59.000Z

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  16. Pipe Insulation Economies

    E-Print Network [OSTI]

    Schilling, R. E.

    PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many... ECONOMIES" 30 LOCATE 10,29:PRINT"ROBERT E. SCHILLING,P.E." 40 LOCATE l2,3l:PRINT"EATON CORPORATION" 50 LOCATE l3,26:PRINT"119 Q SOUTH CHILLICOTHE ROAD" 598 ESL-IE-86-06-97 Proceedings from the Eighth Annual Industrial Energy Technology Conference...

  17. 3 , LNG (Liquefied Natural Gas) -165oC

    E-Print Network [OSTI]

    Hong, Deog Ki

    , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20oC / . LNG > Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage

  18. Miniature pipe crawler tractor

    DOE Patents [OSTI]

    McKay, Mark D. (Idaho Falls, ID); Anderson, Matthew O. (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH); Willis, W. David (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  19. PIPES: A Portable Integrated Piping Engineering Interface System

    SciTech Connect (OSTI)

    Lee, N.L.; Kanga, D. [Bechtel Corp., Gaithersburg, MD (United States)

    1995-12-01T23:59:59.000Z

    This paper describes software developed by the authors to integrate and automate several piping engineering applications for high-volume production use in the power and petrochemical industries. The system utilizes piping component geometry from a CAD model together with associated engineering and material data. It produces input for an industry-standard piping isometric drawing program, Electronic Data Interchange information for pipe spool fabrication, and input for several,common pipe stress analysis codes. The piping isometric drawings feature stress analysis data points and material tabulations. The software is based on an open architecture and incorporates rule-driven Expert System technology to provide flexibility and ease of customization.

  20. Gas compressor with side branch absorber for pulsation control

    DOE Patents [OSTI]

    Harris, Ralph E. (San Antonio, TX); Scrivner, Christine M. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX)

    2011-05-24T23:59:59.000Z

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  1. Remotely operated pipe connector

    DOE Patents [OSTI]

    Josefiak, Leonard J. (Scotia, NY); Cramer, Charles E. (Guilderford, NY)

    1988-01-01T23:59:59.000Z

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  2. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  3. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  4. Apparatus for inspecting piping

    DOE Patents [OSTI]

    Zollingger, W. Thor (Martinez, GA); Appel, D. Keith (Aiken, SC); Park, Larry R. (Raleigh, NC)

    1995-01-01T23:59:59.000Z

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  5. Apparatus for inspecting piping

    DOE Patents [OSTI]

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21T23:59:59.000Z

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  6. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Laing, D.; Reusch, M. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    1997-12-31T23:59:59.000Z

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  7. Hydrogen Piping Experience in Chevron

    E-Print Network [OSTI]

    Hydrogen Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 #12;Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few

  8. Using Flexible Pipe (poly-pipe) with Surface Irrigation

    E-Print Network [OSTI]

    Peries, Xavier; Enciso, Juan

    2005-10-05T23:59:59.000Z

    include ? Tractor with furrower tool and unspooling bracket ? Poly-pipe rolls ? Pump or valve for connection ? Clamps, rubber straps, or duct tape ? Shovel ? PVC connectors (if more than one roll is used) ? Hole puncher with plugs Prior to poly.... Placing dirt on poly-pipe at 10-foot intervals. 5. Use clamps, rubber straps, string, or even duct tape (Figs. 4a and 4b) to connect the poly-pipe tightly to valves or supply-pipe fittings. Discharge-pipe diam- eter does not have to match...

  9. Pipe inspection using the pipe crawler. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  10. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    SciTech Connect (OSTI)

    Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2006-07-01T23:59:59.000Z

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  11. Large-bore pipe decontamination

    SciTech Connect (OSTI)

    Ebadian, M.A.

    1998-01-01T23:59:59.000Z

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  12. Aerogel Impregnated Polyurethane Piping and Duct Insulation ...

    Energy Savers [EERE]

    Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building...

  13. Review: The Great Lead Water Pipe Disaster

    E-Print Network [OSTI]

    Karalus, Daniel E

    2010-01-01T23:59:59.000Z

    Review: The Great Lead Water Pipe Disaster By WernerUSA Troesken, Werner. The Great Lead Water Pipe Disaster.paper. Alkaline paper. Lead poisoning usually conjures

  14. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, Charles F. (Aiken, SC); Howard, Boyd D. (Augusta, GA)

    1998-01-01T23:59:59.000Z

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  15. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect (OSTI)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01T23:59:59.000Z

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  16. Drill pipe corrosion control using an inert drilling fluid

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1981-01-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  17. HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal

    E-Print Network [OSTI]

    HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal pressure within a given tolerance p. The pipes connecting the external gas hut with the third floor of the electronics trailer are listed on page

  18. Page 1 of 1 Pipe School

    E-Print Network [OSTI]

    Huang, Haiying

    ­ Rigid and Flexible Pipes: A comparison of rigid (concrete, clay, etc.) and flexible (steel, HDPE, PVC own) 1:00 PM Design and Construction Considerations for PVC Pipe: Everything you need to know about PVC pipe and its applications. John Houle, P.E., Uni-Bell PVC Pipe Association 1:45 Design

  19. Controlling two-phase flow through pipe junctions

    E-Print Network [OSTI]

    Thonsgaard, Jonathan Eric

    1989-01-01T23:59:59.000Z

    industry with a study of gas networks that contain liquid condensate. His study was based on horizontal tees and gas flows with only a small liquid flow, which is considered a high quality mixture. He showed that when only a small fraction of gas enters... consisted of the same size pipe, so a direct comparison of this study's results to those of Hong was possible. Since the tee shown in Figure 6 was not constructed with a perfect fit, the three-way valve, shown in Figure 10, was used for some...

  20. Heat Pipes: An Industrial Application

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  1. Heat Pipes: An Industrial Application 

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  2. Jamaican red clay tobacco pipes

    E-Print Network [OSTI]

    Heidtke, Kenan Paul

    1992-01-01T23:59:59.000Z

    JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS December 1992 Major Subject...: Anthropology JAMAICAN RED CLAY TOBACCO PIPES A Thesis by KENAN PAUL HEIDTKE Approved as to style and content by: Dorm L. Hamilton (Chair of Committee) Frederick H. van Doorninck, J (Member) enry C. Schmidt (Member) Vaughn M. Bryant (Head...

  3. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05T23:59:59.000Z

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  4. Simultaneous fog formation and thermophoretic droplet deposition in a turbulent pipe flow

    SciTech Connect (OSTI)

    Epstein, M.; Hauser, G.M. (Fauske and Associates, Inc., Burr Ridge, IL (USA))

    1991-02-01T23:59:59.000Z

    Simultaneous aerosol formation by equilibrium condensation and the migration of the resulting droplets to the cold surface by thermophoresis is studied theoretically for a turbulent pipe flow. The problem is one in which a mixture of a vapor and noncondensable gas flows into a section of pipe where the pipe wall is cooled to below the dew point of the vapor. Because the temperature gradient at the pipe wall decays to zero once the gas travels far enough into the pipe, only some fraction of the droplets formed will deposit on the pipe wall. The equations of energy and diffusion suggest that turbulence leads to a discontinuity in the aerosol (fog) concentration at the boundary between the fog and clear regions. Numerical solutions are obtained for CsOH fog formation and deposition in steam flow, a particular case of current practical interest in water reactor safety. The axial and radial variations of the aerosol and vapor concentrations are displayed graphically, as are the location of the fog boundary as a function of axial distance and the efficiency of deposition as a function of the pipe wall temperature.

  5. The effect of cyclic and dynamic loads on carbon steel pipe

    SciTech Connect (OSTI)

    Rudland, D.L.; Scott, P.M.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

    1996-02-01T23:59:59.000Z

    This report presents the results of four 152-mm (6-inch) diameter, unpressurized, circumferential through-wall-cracked, dynamic pipe experiments fabricated from STS410 carbon steel pipe manufactured in Japan. For three of these experiments, the through-wall crack was in the base metal. The displacement histories applied to these experiments were a quasi-static monotonic, dynamic monotonic, and dynamic, cyclic (R = {minus}1) history. The through-wall crack for the third experiment was in a tungsten-inert-gas weld, fabricated in Japan, joining two lengths of STS410 pipe. The displacement history for this experiment was the same history applied to the dynamic, cyclic base metal experiment. The test temperature for each experiment was 300 C (572 F). The objective of these experiments was to compare a Japanese carbon steel pipe material with US pipe material, to ascertain whether this Japanese steel was as sensitive to dynamic and cyclic effects as US carbon steel pipe. In support of these pipe experiments, quasi-static and dynamic, tensile and fracture toughness tests were conducted. An analysis effort was performed that involved comparing experimental crack initiation and maximum moments with predictions based on available fracture prediction models, and calculating J-R curves for the pipe experiments using the {eta}-factor method.

  6. Program sizes flange or pipe-tap orifice plates

    SciTech Connect (OSTI)

    Hogsett, J.E.

    1984-03-12T23:59:59.000Z

    A program has been developed for the HP-41CV programmable calculator that is designed to compute differential pressure across an orifice, gas flow through an orifice, or the orifice-plate bore for orifice plates with flange or pipe taps. It is designed to save time in extracting values from charts, tables, and graphs which are required to perform the calculations. It is based on equations and data from Spink. The program is run by inputing appropriate data via execution of a program entitled ''DATA IN,'' calculating differential pressure via program ''dH20,'' gas flow via program ''FLOW,'' and via program ''BORE.'' Flange-tap calculations are performed with FLAG 01 not set, while pipe-tap calculations are selected by setting FLAG 01.

  7. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect (OSTI)

    Rawls, G.

    2012-10-10T23:59:59.000Z

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  8. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31T23:59:59.000Z

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  9. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  10. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  11. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, W.T.

    1992-06-16T23:59:59.000Z

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  12. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, William T. (3927 Almon Dr., Martinez, GA 30907)

    1992-01-01T23:59:59.000Z

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  13. Geographic Resource Map of Frozen Pipe Probabilities

    Broader source: Energy.gov [DOE]

    Presentation slide details a resource map showing the probability of frozen pipes in the geographic United States.

  14. Page 1 of 1 Pipe School

    E-Print Network [OSTI]

    Texas at Arlington, University of

    :15 Principles of Pipeline Design and Construction ­ Rigid and Flexible Pipes, Shah Rahman, Northwest Pipe, Texas 7:30 AM Registration 8:15 Welcome, Robert Carpenter, Underground Construction 8:30 Pipeline Route Company 11:15 Design and Construction Considerations for Ductile Iron Pipe, Ralph Carpenter, American Cast

  15. Enduring use of city gas keeps N. H. utility reminiscent of a simpler age

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This article reports on a gas distribution company which produces and pipes a propane/air mixture. The distribution of this mixture is detailed.

  16. Design and analysis of megawatt-class heat-pipe reactor concepts

    SciTech Connect (OSTI)

    Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

  17. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  18. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  19. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  20. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    SciTech Connect (OSTI)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01T23:59:59.000Z

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  1. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

    2009-07-07T23:59:59.000Z

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  2. Pipe and hose decontamination apparatus

    SciTech Connect (OSTI)

    Fowler, D.E.

    1985-03-12T23:59:59.000Z

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit.

  3. Alkali Metal Heat Pipe Life Issues

    SciTech Connect (OSTI)

    Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2004-07-01T23:59:59.000Z

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  4. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, D.S.

    1995-12-19T23:59:59.000Z

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  5. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect (OSTI)

    Gamble, R.M.; Wichman, K.R.

    1997-04-01T23:59:59.000Z

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  6. How to reduce sigma in offshore pipe fabrications

    SciTech Connect (OSTI)

    Still, J.

    1999-11-01T23:59:59.000Z

    The use of stainless steel for offshore oil and gas applications has increased dramatically over the last 20 years. Stainless steels fall into a number of categories depending on the composition and microstructure formed after heat treatment. Selection of pipe materials for offshore applications is dependent on the product to be carried. Austenitic and ferritic/austenitic (duplex) stainless steels are commonly used for process and utility piping systems offshore, whereas martensitic and ferritic are restricted to specific applications. Reference to sigma in offshore welding specifications has been mixed. Previously, the identification of sigma was wither not quoted or stated as being not permitted. However, achieving zero sigma content in duplex stainless steel welds and HAZs is questionable, particularly in steels and weld metals having a high chromium and molybdenum content. In the real world, how does one ensure that production welds performed offshore are free of sigma--or have a limited volume fraction of it--without having to constantly monitor welder performance? This review examines the difficulties and controls required to limit the presence of sigma in austenitic and duplex weld metals and HAZs associated with offshore piping and pipeline systems. Materials described here are those manufactured using contemporary steel making processes.

  7. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Tulsa Fluid Flow

    2008-08-31T23:59:59.000Z

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and closure relation development for different flow conditions. Modeling studies were performed in two parts, Technology Assessment and Model Development and Enhancement. The results of the Technology assessment study indicated that the performance of the current state of the art two-phase flow models was poor especially for three-phase pipeline flow when compared with the existing data. As part of the model development and enhancement study, a new unified model for gas-oil-water three-phase pipe flow was developed. The new model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. An experimental program including three-phase gas-oil-water horizontal flow and two-phase horizontal and inclined oil-water flow testing was conducted utilizing a Tulsa University Fluid Flow Projects Three-phase Flow Facility. The experimental results were incorporated into the unified model as they became available, and model results were used to better focus and tailor the experimental study. Finally, during the Period 2, a new three-phase databank has been developed using the data generated during this project and additional data available in the literature. The unified model to predict the gas-oil-water three phase flow characteristics was tested by comparing the prediction results with the data. The results showed good agreements.

  8. Four-port gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P. (Redwood City, CA); Fulton, Donald A. (Fairfield, CA); Lokhandwala, Kaaeid A. (Fremont, CA); Kaschemekat, Jurgen (Campbell, CA)

    2010-07-20T23:59:59.000Z

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  9. Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...

    Broader source: Energy.gov (indexed) [DOE]

    Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

  10. An Analytical Approach for Tail-Pipe Emissions Estimation with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Analytical Approach for Tail-Pipe Emissions Estimation with Coupled Engine and Aftertreatment System An Analytical Approach for Tail-Pipe Emissions Estimation with Coupled...

  11. Geothermal drill pipe corrosion test plan

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1980-12-01T23:59:59.000Z

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  12. Measuring overall emittance of concentrator receiver pipes

    SciTech Connect (OSTI)

    Gerich, J.W.; Reitter, T.A.; Merriam, M.F.

    1980-03-01T23:59:59.000Z

    A simple and accurate method for measuring the overall emittance of receiver pipes used with cylindrical concentrators is described. Experimental measurements obtained for steel pipes with a black chrome over nickel selective surface are presented. The observed strong temperature dependence of emittance indicates that the use of room temperature emittance data will substantially overestimate collector efficiency. (SPH)

  13. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01T23:59:59.000Z

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  14. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1998-01-01T23:59:59.000Z

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  15. Task force reduces stuck-pipe costs

    SciTech Connect (OSTI)

    Bradley, W.B. (BP Research, Houston, TX (US)); Jarman, D. (BP Exploration Operation Co., Aberdeen (GB)); Auflick, R.A.; Plott, R.S. (BP Exploration Operating Co., Houston, TX (US)); Wood, R.D. (BP Exploration Operating Co., London (GB)); Schofield, T.R. (BP Exploration Operating Co., Beijing (CN)); Cocking, D. (BP Exploration Operating Co., Ho Chi Minh City (CN))

    1991-05-27T23:59:59.000Z

    A task-force approach to stuck pipe has produced more than a 70% reduction in BP Exploration Operating Co.'s worldwide stuck-pipe costs during 1989 and 1990. We believe that these results have been primarily due to focusing our attention on improving personnel performance rather than to the introduction of new technology. Key elements in this paper of the efforts involved: Recognizing the importance of the drilling contractor and the service company staff's role in helping control stuck pipe; Promoting a rig-team approach to tackling the problem; Providing training on rig-team, stuck-pipe problem solving; and raising awareness of stuck pipe through a coordinated worldwide communications program among BP, contractors, and service companies.

  16. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01T23:59:59.000Z

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  17. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  18. Use of an inert drilling fluid to control geothermal drill pipe corrosion

    SciTech Connect (OSTI)

    Caskey, B.C.

    1981-04-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  19. An Analytical Study of Thermophoretic Particulate Deposition in Turbulent Pipe Flows

    SciTech Connect (OSTI)

    Abarham, Mehdi [University of Michigan; Hoard, John W. [University of Michigan; Assanis, Dennis [University of Michigan; Styles, Dan [Ford Motor Company; Sluder, Scott [ORNL; Storey, John Morse [ORNL

    2010-01-01T23:59:59.000Z

    The presence of a cold surface in non-isothermal pipe flows conveying submicron particles causes thermophoretic particulate deposition. In this study, an analytical method is developed to estimate thermophoretic particulate deposition efficiency and its effect on overall heat transfer coefficient of pipe flows in transition and turbulent flow regimes. The proposed analytical solution has been validated against experiments conducted at Oak Ridge National Laboratory. Exhaust gas carrying submicron soot particles was passed through pipes with a constant wall temperature and various designed boundary conditions to correlate transition and turbulent flow regimes. Prediction of the reduction in heat transfer coefficient and particulate mass deposited has been compared with experiments. The results of the analytical method are in a reasonably good agreement with experiments.

  20. Design Development Analyses in Support of a Heat pipe-Brayton Cycle Heat Exchanger

    SciTech Connect (OSTI)

    Steeve, Brian E. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-07-01T23:59:59.000Z

    One of the power systems under consideration for future space exploration applications, including nuclear electric propulsion or as a planetary surface power source, is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration. (authors)

  1. Pipe crawlers: Versatile adaptations for real applications

    SciTech Connect (OSTI)

    Hapstack, M.; Talarek, T.R.

    1990-01-01T23:59:59.000Z

    A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

  2. Guided wave radiation from a point source in the proximity of a pipe bend

    SciTech Connect (OSTI)

    Brath, A. J.; Nagy, P. B. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221 (United States); Simonetti, F. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221,USA and Cincinnati NDE, Cincinnati, OH 45244 (United States); Instanes, G. [ClampOn AS, 5162 Laksevaag, Bergen, Norway and Cincinnati NDE, Cincinnati, OH 45244 (United States)

    2014-02-18T23:59:59.000Z

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.

  3. Heat pipe dehumidification for supermarket energy savings

    E-Print Network [OSTI]

    Oliver, Eric M. (Eric Michael)

    1994-01-01T23:59:59.000Z

    This thesis examines the possibility of using a heat pipe installed in the air conditioning unit of a supermarket to increase the level of dehumidification of the inside air. This dehumidification is expected to reduce the ...

  4. Hydraulic fracturing slurry transport in horizontal pipes

    SciTech Connect (OSTI)

    Shah, S.N.; Lord, D.L. (Halliburton Services (US))

    1990-09-01T23:59:59.000Z

    Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

  5. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  6. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect (OSTI)

    Jacobsen, Stefan, E-mail: stefan.jacobsen@ntnu.n [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway); Haugan, Lars; Hammer, Tor Arne [SINTEF Byggforsk AS Building and Infrastructure, Trondheim (Norway); Kalogiannidis, Evangelos [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway)

    2009-11-15T23:59:59.000Z

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  7. Thermionic generator module with heat pipes

    SciTech Connect (OSTI)

    Horner-Richardson, K.; Ernst, D.M.

    1993-06-15T23:59:59.000Z

    A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

  8. Analysis of a piping system for requalification

    SciTech Connect (OSTI)

    Hsieh, B.J.; Tang, Yu.

    1992-01-01T23:59:59.000Z

    This paper discusses the global stress analysis required for the seismic/structural requalification of a reactor secondary piping system in which minor defects (flaws) were discovered during a detailed inspection. The flaws in question consisted of weld imperfections. Specifically, it was necessary to establish that the stresses at the flawed sections did not exceed the allowables and that the fatigue life remained within acceptable limits. At the same time the piping system had to be qualified for higher earthquake loads than those used in the original design. To accomplish these objectives the nominal stress distributions in the piping system under the various loads (dead load, thermal load, wind load and seismic load) were determined. First a best estimate finite element model was developed and calculations were performed using the piping analysis modules of the ANSYS Computer Code. Parameter studies were then performed to assess the effect of physically reasonable variations in material, structural, and boundary condition characteristics. The nominal stresses and forces so determined, provided input for more detailed analyses of the flawed sections. Based on the reevaluation, the piping flaws were judged to be benign, i.e., the piping safety margins were acceptable inspite of the increased seismic demand. 13 refs.

  9. Analysis of a piping system for requalification

    SciTech Connect (OSTI)

    Hsieh, B.J.; Tang, Yu

    1992-05-01T23:59:59.000Z

    This paper discusses the global stress analysis required for the seismic/structural requalification of a reactor secondary piping system in which minor defects (flaws) were discovered during a detailed inspection. The flaws in question consisted of weld imperfections. Specifically, it was necessary to establish that the stresses at the flawed sections did not exceed the allowables and that the fatigue life remained within acceptable limits. At the same time the piping system had to be qualified for higher earthquake loads than those used in the original design. To accomplish these objectives the nominal stress distributions in the piping system under the various loads (dead load, thermal load, wind load and seismic load) were determined. First a best estimate finite element model was developed and calculations were performed using the piping analysis modules of the ANSYS Computer Code. Parameter studies were then performed to assess the effect of physically reasonable variations in material, structural, and boundary condition characteristics. The nominal stresses and forces so determined, provided input for more detailed analyses of the flawed sections. Based on the reevaluation, the piping flaws were judged to be benign, i.e., the piping safety margins were acceptable inspite of the increased seismic demand. 13 refs.

  10. Innovative Porous Media Approach in Modeling Biofilm Applications, Human Eye and Nanofluid Based Heat Pipes

    E-Print Network [OSTI]

    Shafahi, Maryam

    2010-01-01T23:59:59.000Z

    and C. Yu, Effect of nanofluid on flat heat pipe thermalheat pipe using CuO nanofluid, Journal of Micromechanics andtransport capability in a nanofluid oscillating heat pipe,

  11. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01T23:59:59.000Z

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  12. Gas Viscosity at High Pressure and High Temperature

    E-Print Network [OSTI]

    Ling, Kegang

    2012-02-14T23:59:59.000Z

    Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes...

  13. Determination of leakage and unaccounted-for gas-distribution

    SciTech Connect (OSTI)

    Wallace, J.

    1984-04-01T23:59:59.000Z

    It was leakage from ill fitting pipes and the resultant danger of explosions, fires, and asphxiation that delayed for a long time the use of gas in private homes. The industry has solved the problem of ill fitting pipes but safety, profits, and the conservation of a natural resource still demands a keen concern over leakage and unaccounted-for gas. The generally accepted definition of unaccountedfor gas is simple. It is the difference between the amount of gas supplied to and taken out of a piping system. By this definition, leakage is only a part of unaccounted-for gas, although the terms are sometimes used synonymously. It is the need to determine the ''tightness'' or freedom from leaks of the distribution system that requires an operator to evaluate all other components of unaccounted-for gas.

  14. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, Donald J. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  15. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, D.J.

    1994-12-27T23:59:59.000Z

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  16. State-of-the-art report on piping fracture mechanics

    SciTech Connect (OSTI)

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M. [Battelle, Columbus, OH (United States)

    1998-01-01T23:59:59.000Z

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.

  17. DETECTION OF SUBSURFACE FACILITIES INCLUDING NON-METALLIC PIPE

    SciTech Connect (OSTI)

    Mr. Herb Duvoisin

    2003-05-26T23:59:59.000Z

    CyTerra has leveraged our unique, shallow buried plastic target detection technology developed under US Army contracts into deeper buried subsurface facilities and including nonmetallic pipe detection. This Final Report describes a portable, low-cost, real-time, and user-friendly subsurface plastic pipe detector (LULU- Low Cost Utility Location Unit) that relates to the goal of maintaining the integrity and reliability of the nation's natural gas transmission and distribution network by preventing third party damage, by detecting potential infringements. Except for frequency band and antenna size, the LULU unit is almost identical to those developed for the US Army. CyTerra designed, fabricated, and tested two frequency stepped GPR systems, spanning the frequencies of importance (200 to 1600 MHz), one low and one high frequency system. Data collection and testing was done at a variety of locations (selected for soil type variations) on both targets of opportunity and selected buried targets. We developed algorithms and signal processing techniques that provide for the automatic detection of the buried utility lines. The real time output produces a sound as the radar passes over the utility line alerting the operator to the presence of a buried object. Our unique, low noise/high performance RF hardware, combined with our field tested detection algorithms, represents an important advancement toward achieving the DOE potential infringement goal.

  18. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, R.W.; Hoffman, M.A.

    1983-07-19T23:59:59.000Z

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  19. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01T23:59:59.000Z

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  20. Modeling of pulsating heat pipes.

    SciTech Connect (OSTI)

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01T23:59:59.000Z

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  1. Specified pipe fittings susceptible to sulfide stress cracking

    SciTech Connect (OSTI)

    McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-01-01T23:59:59.000Z

    The NACE Standard MR0175 limit of HRC 22 is too high for cold-forged and stress-relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G 39 and NACE TM0177 Method B are presented to support this contention. More stringent inspection and a hardness limit of HB 197 (for cold-forged and stress-relieved fittings only) are recommended. The paper describes a case in which fittings were welded in place in wet sour service flow lines and gas-oil separating plants which were ready to start. The failure of a welded fitting shortly after start-up led to extensive field hardness testing on all fittings from this manufacturer.

  2. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Cem Sarica; Holden Zhang

    2006-05-31T23:59:59.000Z

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.

  3. Corrugated Pipe as a Beam Dechirper

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-04-20T23:59:59.000Z

    We have studied the use of a metallic pipe with small corrugations for the purpose of passively dechirping, through its wakefield, a short, intense electron bunch. The corrugated pipe is attractive for this purpose because its wake: (i) has near maximal possible amplitude for a given aperture and (ii) has a relatively large oscillation wave length, even when the aperture is small. We showed how the corrugated structure can satisfy dechirping requirements encountered in the NGLS project at LBNL. We found that a linear chirp of -40 MeV/mm can be induced by an NGLS-like beam, by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full depth 450 {mu}m and period 1000 {mu}m. This structure is about 15 times as effective in the role of dechirper as an S-band accelerator structure used passively.

  4. Heat Pipe Technology for Energy Conservation in the Process Industry 

    E-Print Network [OSTI]

    Price, B. L. Jr.

    1985-01-01T23:59:59.000Z

    Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems...

  5. Smoothing of pipe system completion processes in a shipyard environment/

    E-Print Network [OSTI]

    Zojwalla, Shaheen J. (Shaheen Joyab), 1977-

    2004-01-01T23:59:59.000Z

    Due to a number of different production issues, the manufacture of template pipes is often delayed. These delays hold up pipe system completion on board the ships in production and can delay payments from the Ministry of ...

  6. axonometric piping diagrams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  7. alloy seamless pipe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  8. aggregated internet pipe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  9. austenitic pipe welds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  10. aluminum alloy pipe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  11. austenitic pipe weldings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  12. austenitic piping components: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  13. austenitic circumferential pipe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  14. aluminum drill pipes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  15. The Advantages of HDPE Piping & Vaults in the

    E-Print Network [OSTI]

    First in the world to produce 1600mm PE pipes Production of district heating pipes starts 1984 & telecom · Waste water treatment · House drainage · Under ground ventilation · Renovation · District heating & cooling · Special constructions · Marine intakes and outfalls · Welding, extrusion and blown

  16. On-Site Wastewater Treatment Systems: Gravel-less Pipe

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-04-10T23:59:59.000Z

    Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

  17. High performance phenolic piping for oilfield applications

    SciTech Connect (OSTI)

    Folkers, J.L. [Ameron International, Burkburnett, TX (United States); Friedrich, R.S.; Fortune, M. [Ameron International, South Gate, CA (United States)

    1997-08-01T23:59:59.000Z

    The performance advantages of phenolic resins have been enticing for composites manufacturers and users for many years. The use of these materials has been limited, however, by the process, handling and assembly difficulties they present. This paper introduces an innovative modification which has allowed the development of a filament wound piping system for oilfield applications which previously had been beyond the performance envelope of fiberglass pipe. Improvement in temperature resistance and response to steam exposure, as compared to conventional epoxy products, are of particular benefit. Fabrication innovations are also included which can be used where impact resistance or fire performance are needed.

  18. Heat Pipe Technology for Energy Conservation in the Process Industry

    E-Print Network [OSTI]

    Price, B. L. Jr.

    HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been... and utility industries. The heat pipe offers a unique. efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our...

  19. GLOBAL OPTIMIZATION OF PIPE NETWORKS BY THE INTERVAL ...

    E-Print Network [OSTI]

    2011-11-20T23:59:59.000Z

    GLOBAL OPTIMIZATION OF PIPE NETWORKS. BY THE INTERVAL ANALYSIS APPROACH: THE BELGIUM NETWORK CASE. J. FRÉDÉRIC BONNANS ...

  20. DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE

    E-Print Network [OSTI]

    Byrne, Byron

    DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA #12;Driven Pipe Piles in Dense Sand Byron Byrne Geomechanics Group The University of Western Australia #12;Driven Pipe Piles in Dense Sand Byron Byrne Geomechanics Group The University of Western Australia

  1. Thermally Enhanced Pipe for Geothermal Applications Stphane Gonthier

    E-Print Network [OSTI]

    in St-Lazare, QC, Canada · Leaders in Pipe and Tubing in Niche Markets · Over 30 years of experienceThermally Enhanced Pipe for Geothermal Applications Stéphane Gonthier Président ­ Versaprofiles Inc pipe and profile extrusion · Markets ­ Geothermal ­ Potable Water Distribution ­ Maple Sap Collection

  2. Predicting instabilities in gas-lifted wells simulation Laure Sin`egre, Nicolas Petit

    E-Print Network [OSTI]

    of instabilities occurring in practical applications of gas-lifted oil wells. The model underlying our analysis the drilling pipe (casing, point B) and the production pipe (tubing, point D) where it enters. Oil produced explained. The best identified instability is the "casing-heading". It consists of a succession of pressure

  3. Design of a diesel exhaust-gas purification system for inert-gas drilling

    SciTech Connect (OSTI)

    Caskey, B.C.

    1982-01-01T23:59:59.000Z

    To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

  4. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect (OSTI)

    Unknown

    2000-09-15T23:59:59.000Z

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  5. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL)

    1982-01-01T23:59:59.000Z

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  6. Pipe break frequency estimation for Nuclear Power Plants

    SciTech Connect (OSTI)

    Wright, R.E.; Steverson, J.A.; Zuroff, W.F.

    1987-05-01T23:59:59.000Z

    This study empirically develops frequencies of safety-significant pipe failures in commercial nuclear power plants (NPPs). Its primary purpose is to update the pipe break frequencies reported in the Reactor Safety Study, WASH-1400, which are used in many risk analyses. The study involved reviewing various data sources for actual piping failure events of significant magnitude. When extant in the documentation reviewed, information was extracted concerning conditional factors such as the system in which the failure occurred, operational mode of the plant, and size of the pipe involved to estimate conditional pipe break frequencies useful to risk analysts. Because of the high quality piping used in NPPs, there have been few significant pipe failures. An attempt was made to augment the analysis with synthetic data from a Delphi approach, but the wide uncertainty bounds on the resulting estimates rendered the results unsuitable for combining data.

  7. Modeling and analysis of water-hammer in coaxial pipes

    E-Print Network [OSTI]

    Cesana, Pierluigi

    2015-01-01T23:59:59.000Z

    The fluid-structure interaction is studied for a system composed of two coaxial pipes in an annular geometry, for both homogeneous isotropic metal pipes and fiber-reinforced (anisotropic) pipes. Multiple waves, traveling at different speeds and amplitudes, result when a projectile impacts on the water filling the annular space between the pipes. In the case of carbon fiber-reinforced plastic thin pipes we compute the wavespeeds, the fluid pressure and mechanical strains as functions of the fiber winding angle. This generalizes the single-pipe analysis of J. H. You, and K. Inaba, Fluid-structure interaction in water-filled pipes of anisotropic composite materials, J. Fl. Str. 36 (2013). Comparison with a set of experimental measurements seems to validate our models and predictions.

  8. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M [ORNL; Jubin, Robert Thomas [ORNL; Patton, Bradley D [ORNL; Sullivan, Nicholas M [ORNL; Bugbee, Kathy P [ORNL

    2009-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

  9. Acoustic cross-correlation flowmeter for solid-gas flow

    DOE Patents [OSTI]

    Sheen, S.H.; Raptis, A.C.

    1984-05-14T23:59:59.000Z

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.

  10. Measurement function paces move to real-time pipe line

    SciTech Connect (OSTI)

    Leitschuh, R.C. Jr. (Tenneco Gas, Houston, TX (United States))

    1994-05-01T23:59:59.000Z

    As progressive companies confront today's demanding competitive environment, trends are developing in the quest for the ideal pipe line operating system. Common among strategies is the concept of real time'' operations. Real time must be built and it will be defined by its weakest link. Ideally, real time should be a condition where any authorized person can access the system and obtain information that is current at any time. Real time necessitates that data are not just generated or collected on a continuous basis but are given added value and processed continuously and instantaneously. Ultimately, real time implies that queried information is accurate and can be used without correction or alteration. Generally, measurement hardware can be divided into three groups: Transmitters to acquire the dynamic variables of pressures and temperatures; Gas property determination equipment such as chromatographs, calorimeters and gravitometers for gas composition variables; Flow computers for processing and adding value to data. This paper discusses these components along with software systems, measurement methods, correction methods and cost benefit.

  11. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  12. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  13. Application of LBB to a nozzle-pipe interface

    SciTech Connect (OSTI)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01T23:59:59.000Z

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  14. Corrosion failures of austenitic stainless steel piping

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1993-10-01T23:59:59.000Z

    The safe and efficient operation of many chemical/industrial systems requires the continued integrity of the process piping; this is achieved through a complex series of interactions influenced by design, fabrication, construction, operation, inspection and lay-up requirements. Potential material-enviroment interactions are frequently, if evaluated at all, relegated to secondary considerations. This tendency virtually assures corrosion induced degradation of the process piping systems. Pitting, crevice attack, stress cracking, microbiologically influenced corrosion, intergranular attack and corrosion fatigue have caused leaks, cracks, failures and shutdown of numerous process systems. This paper uses the lessons learned from failure analysis to emphasize the importance of an integrated material program to system success. The necessity of continuing evaluation if also emphasized through examples of failures which were associated with materials-environment interactions caused by slight alterations of processes and/or systems.

  15. Calculator programs for pipe stress engineering

    SciTech Connect (OSTI)

    Morgan, K.S.

    1985-01-01T23:59:59.000Z

    This book contains a collection of programs for solving a wide variety of stress problems using both the TI-59 and HP-41CV calculators. Each program is prefaced with a description of the problem to be solved, nomenclature, code restrictions and program limitations. Solutions are explained analytically and then followed by the complete program listing, documentation and checklists. Topics include calculations for pipewall thickness, pressure vessel analysis, reinforcement pads, allowable span, vibration, stress, and two-anchor piping systems.

  16. Heat pipe wick with structural enhancement

    DOE Patents [OSTI]

    Andraka, Charles E.; Adkins, Douglas R.; Moreno, James B.; Rawlinson, K. Scott; Showalter, Steven K.; Moss, Timothy A.

    2003-11-18T23:59:59.000Z

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  17. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E. [Siemens/KWU, Erlangen (Germany)

    1997-04-01T23:59:59.000Z

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  18. Pipe overpack container for trasuranic waste storage and shipment

    DOE Patents [OSTI]

    Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

    1999-01-01T23:59:59.000Z

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  19. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01T23:59:59.000Z

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  20. A Data Fusion System for the Nondestructive Evaluation of Non-Piggable Pipes

    SciTech Connect (OSTI)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2006-02-01T23:59:59.000Z

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall; and (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. This final report summarizes all research activities conducted by Rowan University during the project period. This includes the design and development of experimental validation test platforms, the design and development of data fusion algorithms for defect identification and sizing, and finally, the design and development of advanced visualization algorithms for the effective management of data resulting from multi-sensor interrogation of gas transmission pipelines.

  1. Heat-treatment with induction heating of pipes within the pipe welding mill

    SciTech Connect (OSTI)

    Zgura, A.A.; Krichevskii, E.M.; Rudenko, V.A.; Lysyak, A.V.; Kumanev, V.A.

    1988-01-01T23:59:59.000Z

    The parameters of induction heat-treatment were determined for pipes from steels 10Kh18N10T and 12Kh18N10T. Mechanical properties of the base metal and the weld were determined by metallography. Induction heat treatment of corrosion-resistant steel pipes in the line of an argon-arc welding mill was found to produce a fine-grain structure of the base metal and weld, ensured that the mechanical properties satisfied all specifications, reduced time and consumption of the etching solution during chemical processing, required no additional personnel, reduced oxidation of the metal and saved energy.

  2. International Piping Integrity Research Group (IPIRG) Program. Final report

    SciTech Connect (OSTI)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01T23:59:59.000Z

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  3. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  4. New technologies used in development of sour Fairway gas

    SciTech Connect (OSTI)

    Gallaher, D.M. (Shell Offshore Inc., New Orleans, LA (United States)); Mahoney, M.J. (Paragon Engineering Services Inc., Houston, TX (United States))

    1993-02-22T23:59:59.000Z

    Shell Offshore Inc.'s Fairway field project offshore Alabama served as a proving ground for many developmental materials and techniques to cope with the field's hot, sour gas. This is the first of two articles on the project's first-ever field use of bimetallic corrosion-resistant alloy (CRA) pipe as well as the project's extensive use of corrosion inhibition. Among the new technologies employed by Shell Offshore to develop the Norphlet sour-gas trend were: Use of CRA-clad subsea flow lines; Development of a corrosion-inhibitor program for subsea pipeline transport of high-temperature, wet Norphlet sour gas; Cathodic protection of subsea pipelines at elevated temperature; Use of coiled tubing for subsea utility pipelines; Induction bending of high-strength, CRA-clad pipe; Welding of CRA-clad and weld overlaid materials; and Manufacture of bimetallic CRA pipe by coextrusion, thermal-hydraulic, and explosive forming processes.

  5. Analysis of cracking in small-diameter BWR piping. Final report

    SciTech Connect (OSTI)

    Eason, E.D.; Shusto, L.M.

    1986-01-01T23:59:59.000Z

    In BWRs, the failure rate from intergranular stress corrosion cracking is lower for small piping than for piping of more than 4-in. diameter. Moreover, for the small piping, repair costs are considerably lower, and leakage has much less impact.

  6. Fracture mechanics models developed for piping reliability assessment in light water reactors: piping reliability project

    SciTech Connect (OSTI)

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.; Woo, H.H.; Chou, C.K.

    1982-06-01T23:59:59.000Z

    The efforts concentrated on modifications of the stratified Monte Carlo code called PRAISE (Piping Reliability Analysis Including Seismic Events) to make it more widely applicable to probabilistic fracture mechanics analysis of nuclear reactor piping. Pipe failures are considered to occur as the result of crack-like defects introduced during fabrication, that escape detection during inspections. The code modifications allow the following factors in addition to those considered in earlier work to be treated: other materials, failure criteria and subcritical crack growth characteristic; welding residual and vibratory stresses; and longitudinal welds (the original version considered only circumferential welds). The fracture mechanics background for the code modifications is included, and details of the modifications themselves provided. Additionally, an updated version of the PRAISE user's manual is included. The revised code, known as PRAISE-B was then applied to a variety of piping problems, including various size lines subject to stress corrosion cracking and vibratory stresses. Analyses including residual stresses and longitudinal welds were also performed.

  7. Heat pipe transient measurements incorporating visual methods

    E-Print Network [OSTI]

    DeHart, Mark David

    1986-01-01T23:59:59.000Z

    liftoff on January 28, 1 9B6. These five men and two women gave their lives while att mpting to lead mankind into space and open the door for the future of our race. Their noble sacr ifice should r. ever be . orgotten. ACKNOWLEDGEMENTS I wish...!!CE December 1986 Major Subject: 1'uclear Eng nearing HEAT PIPE TRANSIENT MEASUREMENTS INCORPORATING VISUAL METHODS A Thesis by MARK DAVID DeHART Approved as to style and content by: Frederick R. Best (Chairman of Committee) Carl A. Erdman (Member...

  8. Heat pipe with improved wick structures

    DOE Patents [OSTI]

    Benson, David A. (Albuquerque, NM); Robino, Charles V. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Kravitz, Stanley H. (Placitas, NM)

    2000-01-01T23:59:59.000Z

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  9. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  10. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  11. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace...

  12. Computational model of miniature pulsating heat pipes.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01T23:59:59.000Z

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  13. Response margins of the dynamic analysis of piping systems

    SciTech Connect (OSTI)

    Johnson, J.J.; Benda, B.J.; Chuang, T.Y.; Smith, P.D.

    1984-04-01T23:59:59.000Z

    This report is organized as follows: Section 2 describes the three piping systems of the Zion nuclear power plant which formed the basis of the present study. The auxiliary feedwater (AFW) piping from steam generator to containment, the residual heat removal (RHR) and safety injection piping in the auxiliary building, and the reactor coolant loops (RCL) including a portion of the branch lines were analyzed. Section 3 describes the analysis methods and the analyses performed. Section 4 presents the numerical results; the principal results presented as comparisons of response calculated by best estimate time history analysis methods vs. the SRP response spectrum technique. Section 5 draws conclusions from the results. Appendix A contains a brief description of the mathematical models that defined the structures containing the three piping systems. Response from these models provided input to the piping models. Appendix B provides a detailed derivation of the pseudostatic mode approach to the multisupport time history analysis method used in this study.

  14. Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications

    SciTech Connect (OSTI)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.

    1997-04-01T23:59:59.000Z

    During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.

  15. Determination of leakage and unaccounted-for gas distribution

    SciTech Connect (OSTI)

    Spriggs, C.M. [Oklahoma Natural Gas Co., Tulsa, OK (United States)

    1995-12-01T23:59:59.000Z

    All gas systems leak. Gas escapes every system in one way or another. This is true because gas is permeable to every system. For instance, with PE2306 pipe, the volume of methane lost through permeation in one mile of two-inch pipe operated at 60 psi is about 0.26 cubic feet per day. So, if every system leaks, then how much do we lose? Hence, we have unaccounted-for gas. Unaccounted-for gas is truly accounted-for gas--but it is missing! It is the difference between the amount of gas accounted into a system and the amount of gas accounted out. Many factors cause unaccounted-for gas. Each should be examined before the missing gas is all attributed to leakage--a single cause of unaccounted-for gas. Factors I would suggest evaluating are the following: (1) Measured conditions; (2) Accounting methods; (3) Meter errors; (4) Gas used for construction and operations; (5) Major damage and relief valve trips; (6) Meter reading errors, stolen gas, etc.; and (7) Leakage.

  16. Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump

    E-Print Network [OSTI]

    Song, Y.; Yao, Y.; Na, W.

    2006-01-01T23:59:59.000Z

    In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground-source...

  17. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20T23:59:59.000Z

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  18. Am. Midl. Nat. 144:168177 Use of PVC Pipe Refugia as a Sampling Technique for

    E-Print Network [OSTI]

    Johnson, Matthew

    168 Am. Midl. Nat. 144:168­177 Use of PVC Pipe Refugia as a Sampling Technique for Hylid Treefrogs.--We used retreats made from white polyvinyl chloride (PVC) pipes to capture hylids and determined how pipe- ficial refugia such as polyvinyl chloride (PVC) pipe, bamboo, tin cans and wood nest boxes (Goin, 1958

  19. Flow Rate Measurements Using Flow-Induced Pipe Vibration

    SciTech Connect (OSTI)

    R. P. Evans; Jonathan D. Blotter; Alan G. Stephens

    2004-03-01T23:59:59.000Z

    This paper focuses on the possibility of a non-intrusive, low cost, flow rate measurement technique. The technique is based on signal noise from an accelerometer attached to the surface of the pipe. The signal noise is defined as the standard deviation of the frequency averaged time series signal. Experimental results are presented that indicate a nearly quadratic relationship between the signal noise and mass flow rate in the pipe. It is also shown that the signal noise - flow rate relationship is dependant on the pipe material and diameter.

  20. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31T23:59:59.000Z

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  1. Piping support system for liquid-metal fast-breeder reactor

    DOE Patents [OSTI]

    Brussalis, Jr., William G. (Forward Township, Washington County, PA)

    1984-01-01T23:59:59.000Z

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  2. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01T23:59:59.000Z

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  3. Composite drill pipe and method for forming same

    DOE Patents [OSTI]

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16T23:59:59.000Z

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  4. 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA

    E-Print Network [OSTI]

    Özer, Mutlu

    1 DRAFT 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA July 17-21, 2005 subjected to lateral earthquake loads. The results are verified with different codes (e.g. Eurocode8, API

  5. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect (OSTI)

    Ehud Greenspan

    2008-09-30T23:59:59.000Z

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  6. Robot design for leak detection in water-pipe systems

    E-Print Network [OSTI]

    Choi, Changrak

    2012-01-01T23:59:59.000Z

    Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

  7. Determination of petroleum pipe scale solubility in simulated lung fluid 

    E-Print Network [OSTI]

    Cezeaux, Jason Roderick

    2005-08-29T23:59:59.000Z

    method known as rattling. The rattling process generates dust. This research investigated the chemical composition of that aerosol and measured the solubility of pipe scale from three oilfield formations. Using standard in-vitro dissolution...

  8. Steam bubble collapse, water hammer and piping network response

    E-Print Network [OSTI]

    Gruel, R.

    Work on steam bubble collapse, water hammer and piping network response was carried out in two closely related but distinct sections. Volume I of ,,is report details the experiments and analyses carried out in conjunction ...

  9. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the...

  10. Exhaust gas purification system for lean burn engine

    DOE Patents [OSTI]

    Haines, Leland Milburn (Northville, MI)

    2002-02-19T23:59:59.000Z

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  11. Fiber glass pipe effective for offshore water handling

    SciTech Connect (OSTI)

    Turnipseed, S.P. [Chevron Research and Technology Co., Richmond, CA (United States)

    1995-07-03T23:59:59.000Z

    Excellent corrosion resistance, weight savings, ease of construction, and reduced maintenance make fiber glass pipe attractive for water-handling service on offshore platforms. This article covers guidelines for fiber glass pipe installations and presents a number of case histories from the industry and Chevron Corp. Applications include seawater treatment, water injection, sewage and drains, deluge fire water systems, hose reel fire water, seawater cooling, produced water, and potable water. The paper gives usage guidelines.

  12. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

    2006-09-29T23:59:59.000Z

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

  13. Prioritizing Water Pipe Replacement and Rehabilitation by Evaluating Failure Risk

    E-Print Network [OSTI]

    Lee, Sang Hyun

    2012-02-14T23:59:59.000Z

    PRIORITIZING WATER PIPE REPLACEMENT AND REHABILITATION BY EVALUATING FAILURE RISK A Thesis by SANG HYUN LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... 2011 Sang Hyun Lee PRIORITIZING WATER PIPE REPLACEMENT AND REHABILITATION BY EVALUATING FAILURE RISK A Thesis by SANG HYUN LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  14. Commercial high efficiency dehumidification systems using heat pipes

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  15. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect (OSTI)

    Richard Schultz

    2010-08-01T23:59:59.000Z

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  16. Fracture behavior of short circumferentially surface-cracked pipe

    SciTech Connect (OSTI)

    Krishnaswamy, P.; Scott, P.; Mohan, R. [Battelle, Columbus, OH (United States)] [and others

    1995-11-01T23:59:59.000Z

    This topical report summarizes the work performed for the Nuclear Regulatory Comniission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC`s PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria.

  17. Flexible pipe crawling device having articulated two axis coupling

    DOE Patents [OSTI]

    Zollinger, W.T.

    1994-05-10T23:59:59.000Z

    An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

  18. Flexible pipe crawling device having articulated two axis coupling

    DOE Patents [OSTI]

    Zollinger, William T. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  19. Deployment, release and recovery of ocean riser pipes

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA); Wetmore, Sherman B. (Westminster, CA); McNary, James F. (Santa Ana, CA)

    1980-11-18T23:59:59.000Z

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  20. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 4. Leakage

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Bruni, J.; Crebs, S.; Law, E.

    1993-04-01T23:59:59.000Z

    As part of a study of unaccounted-for gas (UAF) at the Southern California Gas Company (SoCalGas), volume IV of the six-volume set reports on the UAF leakage volumes associated with the transmission and distribution piping systems, each analyzed separately. Unplanned gas releases in SoCalGas distribution and transmission operations contributed approximately 871,900 thousand cubic feet to the 1991 UAF volume. The study indicated that SoCalGas' current leak detection program has been successful in reducing the number of leaks throughout the distribution system, with the sensitive detection equipment finding leaks earlier in their development and reducing the average leakage rate.

  1. Enhanced Algorithm for Traceability Measurements in UF6 Flow Pipe

    SciTech Connect (OSTI)

    Copinger, Thomas E [ORNL; March-Leuba, Jose A [ORNL; Upadhyaya, Belle R [ORNL

    2007-01-01T23:59:59.000Z

    The Blend Down Monitoring System (BDMS) is used to continually assess the mixing and downblending of highly enriched uranium (HEU) with low-enriched uranium (LEU). This is accomplished by measuring the enrichment and the fissile mass flow rate of the UF{sub 6} gas located in each process pipe of the system by inducing the fission of the {sup 235}U contained in the gas. Measurements are taken along this process route to trace the HEU content all the way to the product stream, ensuring that HEU was down blended. A problem associated with the current traceability measuring algorithm is that it does not account for the time-varying background that is introduced to the system by the movement of the shutter located at the HEU leg of the process. The current way of dealing with that problem is to discard the data for periods when the HEU shutter is open (50% of overall data) because it correlates with the same timeframe in which the direct contribution to background from the HEU shutter was seen. The advanced algorithm presented in this paper allows for continuous measurement of traceability (100%) by accurately accounting for the varying background during the shutter-movement cycle. This algorithm utilizes advanced processing techniques that identify and discriminate the different sources of background radiation, instead of grouping them into one background group for the whole measurement cycle. By using this additional information, the traceability measurement statistics can achieve a greater number of values, thus improving the overall usefulness of these measurements in the BDMS. The effectiveness of the new algorithm was determined by modeling it in a simulation and ensuring that it retained its integrity through a large number of runs, including various shutter-failure conditions. Each run was performed with varying amounts of background radiation from each individual source and with varying traceability counts. The simulations documented in this paper prove that the algorithm can stand up to various transients introduced into the system, such as failure of shutter movement.

  2. Seismic margins and calibration of piping systems

    SciTech Connect (OSTI)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

  3. Decontamination Process of Internal Part Pipes - 13442

    SciTech Connect (OSTI)

    Ladet, X.; Sozet, O.; Cabanillas, P.; Macia, G. [STMI, Site de MARCOULE - Batiment 423 - 30204 Bagnols-sur-Ceze (France)] [STMI, Site de MARCOULE - Batiment 423 - 30204 Bagnols-sur-Ceze (France); Moggia, F.; Damerval, F. [STMI, 1 route de la Noue 91196 - Gif-sur-Yvette (France)] [STMI, 1 route de la Noue 91196 - Gif-sur-Yvette (France)

    2013-07-01T23:59:59.000Z

    The Marcoule Site, created in 1955 is one of the first nuclear sites in France. It combines the activities of the Research Centre of the French Atomic Energy Commission (CEA) and AREVA industrial operations. Today, a large part of the operations on this site consists of the cleaning and the dismantling of nuclear Installations, once the end of their life cycle has been reached. An example can be the reprocessing plant UP1. This unit, started in 1958 has been stopped in 1997 and its dismantling started quickly thereafter. Technical challenges of the UP1 dismantling are mainly linked to a very high risk of exposure due to a large variety of contaminated equipments and residuals of fission products, potential sources of irradiation. The dismantling of Hall 71 is a typical example of such challenge. This paper will present a solution developed by AREVA Clean-Up business unit, in collaboration with COFIM Industry, to remove contamination incrusted inside the pipes before starting the cutting operations, thus reducing irradiation risk. (authors)

  4. Testing of Stirling engine solar reflux heat-pipe receivers

    SciTech Connect (OSTI)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01T23:59:59.000Z

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  5. Results of Performance Tests Performed on the John Watts Casing Connection on 7" Pipe

    SciTech Connect (OSTI)

    John D. Watts

    1999-08-01T23:59:59.000Z

    Stress Engineering Services (SES) was contracted by Mr. John Watts to test his threaded connection developed for oilfield oil and gas service. This particular test required the application of a variety of loads including axial tension and compression, internal pressure (gas), external pressure (water), bending and both low and elevated temperature. These loads were used to determine the sealing and structural limits of the connection. The connection design tested had tapered threads with 10 threads per inch. A square thread form and a round thread form were tested. The square thread form had a 2{sup o} load flank and 15{sup o} stab flank. The round thread had a 0{sup o} load flank and 20{sup o} stab flank. Most of the testing was performed on the round thread form. Both a coupled connection design and an integral connection design were tested. The coupling was a pin by pin (male) thread, with the pipe having a box (female) thread. Both designs have outside and inside diameters that are flush with the pipe body. Both designs also contain a small external shoulder. The test procedure selected for this evaluation was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test was performed with four coupled samples and included most of these loads. Two integral samples were also included for limit load testing ISO makeup/breakout tests are divided into three types--initial makeup, IML1, repeated makeup within the same sample, MBL, and repeated makeup using several samples called round robin, RR. IMU and MBL were performed in this project. The ISO sealing and structural procedure is divided into four primary tests and identified as Series A, B, C and Limit Load (failure). Series A and B test to 95% actual yield of the pipe and Series C uses 90% of actual yield. Samples 1 and 3 were tested to Series A and the loads are shown in Figure 1. For these samples, the axial compression was limited to 75% pipe body yield, which was set by Mr. Watts at the beginning of the test. Samples 2 and 4 were tested to Series B with loads shown in Figure 2. This series included 20 degrees per 100 feet bending but no external pressure. Due to premature leaks, no samples were subjected to Series C which included mechanical and thermal cycles. Samples 5 and 6 were tested to failure. The project started with the selection and purchase of a popular size of oilfield pipe, which was 7-inch OD, 32 pound per foot, P-110 casing. While the connections were being threaded, material tensile tests were performed to get the actual strength of the 7-inch pipe. The first samples contained a square thread form. Excessive galling was experienced during the first series of makeup/breakout tests and Mr. Watts decided to change the thread form and remachine the samples. The second samples had a round thread form and performed very well in the makeup/breakout tests. Basically no galling occurred of any consequence. Samples 1 and 3 were to be tested with external water (ISO Series A) while samples 2 and 4 were to be tested with bending (ISO Series B, no external pressure). Testing of all four samples started with tension and internal gas pressure. During this initial pressure testing, samples 1, 3 and 4 developed leaks and the test was stopped before any external pressure or bending was applied. Sample 2 successfully tested to ISO Load Point 5 which included bending before developing a leak. Figure 3 shows the loads at which the samples leaked and the relative pipe body performance capability. Sample 1 and end A of sample 2 held a high pressure while samples 3, 4 and end B of sample 2 leaked at relatively low pressures. All of these leaks were with nitrogen gas pressure. After reviewing the results, it was believed that several conditions may have contributed to the prema

  6. Understanding the dynamics of a two-phase flow (liquid and gas) has been studied quite extensively over the past. This problem is indeed of direct relevance for many areas such

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be trapped on the ground because of the presence of an obstacle. The studied products were propane, butane set-up, and pressure storage. 1 INTRODUCTION In many chemical and process plants, gas are stored for the understanding of the flow inside the pipe. The net of pipes linking the storage and the nozzle are composed

  7. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOE Patents [OSTI]

    Von Drasek, William A. (Oak Forest, IL); Mulderink, Kenneth A. (Countryside, IL); Marin, Ovidiu (Lisle, IL)

    2005-09-13T23:59:59.000Z

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  8. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    SciTech Connect (OSTI)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-02-01T23:59:59.000Z

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  9. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01T23:59:59.000Z

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  10. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect (OSTI)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P. [Department of Physics and Astronomy, University of California, Irvine 92697 (United States); Toimil-Molares, M. E. [Department of Materials Science, GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-07-21T23:59:59.000Z

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10??m to 31?nm. The flow of gaseous and liquid nitrogen was studied near 77?K, while the flow of helium was studied from the lambda point (2.18?K) to above the critical point (5.2?K). Flow rates were controlled by changing the pressure drop across the pipe in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  11. Biased insert for installing data transmission components in downhole drilling pipe

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Briscoe, Michael A. (Lehi, UT); Garner, Kory K. (Payson, UT); Wilde, Tyson J. (Spanish Fork, UT)

    2007-04-10T23:59:59.000Z

    An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

  12. Internal cathodic protection of seawater piping system by the use of the RCP method

    SciTech Connect (OSTI)

    Johnsen, R.; Gartland, P.O.; Valen, S. [CorrOcean as, Trondheim (Norway); Drugli, J.M. [SINTEF Corrosion Centre, Trondheim (Norway)

    1996-10-01T23:59:59.000Z

    Since the early eighties high alloyed stainless steels like austenitic steels with about 6% molybdenum (called 6Mo-steel) and duplex stainless steels with 25% Cr (called super duplex) have been widely used in seawater systems in connection with oil- and gas production. During the last ten years high alloyed stainless steels with 6% molybdenum (6Mo) or 25%Cr (super duplex) have been the most popular materials for seawater systems on offshore installations in the North Sea. The basis for this material selection was to obtain maintenance free systems with long lifetime. However, practical experience has shown that corrosion failures can occur. This paper presents a simple and economical method to avoid corrosion problems internally in piping systems transporting chlorinated seawater. The method is called RCP--Resistor controlled Cathodic Protection. Principles of the method including protection potential, current density requirements and anode design in addition to different practical applications are described.

  13. Fracture properties evaluation of stainless steel piping for LBB applications

    SciTech Connect (OSTI)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S. [Sung Kyun Kwan Univ., Suwon (Korea, Republic of)

    1997-04-01T23:59:59.000Z

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  14. Seismic fragility test of a 6-inch diameter pipe system

    SciTech Connect (OSTI)

    Chen, W. P.; Onesto, A. T.; DeVita, V.

    1987-02-01T23:59:59.000Z

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis.

  15. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26T23:59:59.000Z

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  16. Heat pipe effects in nuclear waste isolation: a review

    SciTech Connect (OSTI)

    Doughty, C.; Pruess, K.

    1985-12-01T23:59:59.000Z

    The existence of fractures favors heat pipe development in a geologic repository as does a partially saturated medium. A number of geologic media are being considered as potential repository sites. Tuff is partially saturated and fractured, basalt and granite are saturated and fractured, salt is unfractured and saturated. Thus the most likely conditions for heat pipe formation occur in tuff while the least likely occur in salt. The relative permeability and capillary pressure dependences on saturation are of critical importance for predicting thermohydraulic behavior around a repository. Mineral redistribution in heat pipe systems near high-level waste packages emplaced in partially saturated formations may significantly affect fluid flow and heat transfer processes, and the chemical environment of the packages. We believe that a combined laboratory, field, and theoretical effort will be needed to identify the relevant physical and chemical processes, and the specific parameters applicable to a particular site. 25 refs., 1 fig.

  17. asbestos pipe-insulation removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  18. african-style kimberlite pipes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  19. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect (OSTI)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-02-18T23:59:59.000Z

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  20. Assessing Equivalent Viscous Damping Using Piping System test Results

    SciTech Connect (OSTI)

    Nie, J.; Morante, R.

    2010-07-18T23:59:59.000Z

    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.

  1. Enchancement of heat pipes with ion-drag pumps 

    E-Print Network [OSTI]

    Babin, Bruce Russell

    1991-01-01T23:59:59.000Z

    ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

  2. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

    2005-03-18T23:59:59.000Z

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

  3. Enchancement of heat pipes with ion-drag pumps

    E-Print Network [OSTI]

    Babin, Bruce Russell

    1991-01-01T23:59:59.000Z

    ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

  4. A study of contact angles in porous solids using heat pipes

    E-Print Network [OSTI]

    Collins, Richard Clark

    1971-01-01T23:59:59.000Z

    Aviation and Space Conference, 1968, 655-658. 25 Brosens, P. , "Thermionic Converters with Heat Pipe Radiators, " Advances in Energy Conversion Engineering, 1967, 181-187. 33 26 Werner, R. W. , and G. A. Carlson, "Heat Pipe Radiator for Space Power... heat from a nuclear source to a thermionic generator (~29 , since thermionic generators are sensitive to high levels of radiation. Heat pipes have been suggested for controlling cryogenic boiloff in space (~30 . An investigation of using heat pipes...

  5. Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes

    DOE Patents [OSTI]

    Burnham, Alan K. (Livermore, CA); Cooper, John F. (Oakland, CA)

    2006-02-21T23:59:59.000Z

    A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.

  6. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings 

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01T23:59:59.000Z

    HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT....WORTH, TEXAS ABSTRACT Heat pipe impact on our ability to dehumidify, protect, and improve our indoor air quality and save energy in our building systems is tremendous. Projects all over the world in hot and humid climates are using heat pipes in both...

  7. SOUTHEASTERN NATURALIST2003 2(4):575590 USING GROUND-PLACED PVC PIPES TO

    E-Print Network [OSTI]

    Johnson, Matthew

    SOUTHEASTERN NATURALIST2003 2(4):575­590 USING GROUND-PLACED PVC PIPES TO MONITOR HYLID TREEFROGS sampled a population of two species of hylid treefrogs using 90 vertical ground-placed PVC pipes of 3 a combination of the effects of these variables, acting either cumulatively or synergistically. PVC pipes

  8. Flow of fractal fluid in pipes: Non-integer dimensional space Vasily E. Tarasov

    E-Print Network [OSTI]

    Tarasov, Vasily E.

    Flow of fractal fluid in pipes: Non-integer dimensional space approach Vasily E. Tarasov of an incompressible viscous fractal fluid in the pipe. Fractal fluid is described as a continuum in non solution for steady flow of fractal fluid in a pipe and corresponding fractal fluid discharge are suggested

  9. Seismic design technology for breeder reactor structures. Volume 4. Special topics in piping and equipment

    SciTech Connect (OSTI)

    Reddy, D.P.

    1983-04-01T23:59:59.000Z

    This volume is divided into five chapters: experimental verification of piping systems, analytical verification of piping restraint systems, seismic analysis techniques for piping systems with multisupport input, development of floor spectra from input response spectra, and seismic analysis procedures for in-core components. (DLC)

  10. Investigation on Wave Propagation Characteristics in Plates and Pipes for Identification of Structural Defect Locations

    E-Print Network [OSTI]

    Han, Je Heon

    2013-07-31T23:59:59.000Z

    . When a pipe system is used to transport a fluid, the dispersion curves obtained from a “hollow” pipe model can mislead non-destructive evaluation (NDE) results of the pipe system. In this study, the HAFEM procedure with solid elements is extended...

  11. Identification of significant problems related to light water reactor piping systems

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems.

  12. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    E-Print Network [OSTI]

    Vuik, Kees

    Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe through a horizontal pipe. Since the densities of the two liq- uids are almost always different, gravity

  13. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  14. MNHMT2009-18484 INVESTIGATION OF NANOPILLAR WICKING CAPABILITIES FOR HEAT PIPES

    E-Print Network [OSTI]

    Hidrovo, Carlos H.

    that increases the system's complexity and ultimately power consumption. Heat pipes are passive fluidic systems in heat pipes, experimental data was collected to show the capillary limits of various nanowicksMNHMT2009-18484 INVESTIGATION OF NANOPILLAR WICKING CAPABILITIES FOR HEAT PIPES APPLICATIONS Conan

  15. 16th International Heat Pipe Conference (16th IHPC) Lyon, France, May 20-24, 2012

    E-Print Network [OSTI]

    Khandekar, Sameer

    , conventional heat sinks and copper-water wicked mini-heat pipes. Microelectronic equipment inside the enclosure enclosure volume. Keywords: Microelectronic thermal management, numerical modeling, heat pipes and heat heat transfer mechanisms. Efficient heat transfer by passive heat pipe technology is much superior

  16. Superconducting pipes and levitating magnets Yan Levin* and Felipe B. Rizzato

    E-Print Network [OSTI]

    Levin, Yan

    Superconducting pipes and levitating magnets Yan Levin* and Felipe B. Rizzato Instituto de Física consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome

  17. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier 

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  18. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.; Mutschler, E. [and others

    1995-12-31T23:59:59.000Z

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

  19. Passive ice freezing-releasing heat pipe. [Patent application

    DOE Patents [OSTI]

    Gorski, A.J.; Schertz, W.W.

    1980-09-29T23:59:59.000Z

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  20. Sensitivity of piping seismic responses to input factors

    SciTech Connect (OSTI)

    O'Connell, W.J.

    1985-05-01T23:59:59.000Z

    This report summarizes the sensitivity of peak dynamic seismic responses to input parameters. The responses have been modeled and calculated for the Zion Unit 1 plant as part of a seismic probabilistic risk assessment (PRA) performed by the US NRC Seismic Safety Margins Research Program (SSMRP). The SSMRP was supported by the US NRC Office of Nuclear Regulatory Research. Two sensitivity topics motivated the study. The first is the sensitivity of piping response to the mean value of piping damping. The second is the sensitivity of all the responses to the earthquake and model input parameters including soil, structure and piping parameters; this information is required for another study, the sensitivity of the plant system response (in terms of risk) to these dynamic input parameters and to other input factors. We evaluate the response sensitivities by performing a linear regression analysis (LRA) of the computer code SMACS. With SMACS we have a detailed model of the Zion plant and of the important dynamic processes in the soil, structures and piping systems. The qualitative results change with the location of the individual response. Different responses are in locations where the many potential influences have different effectiveness. The results give an overview of the complexity of the seismic dyanmic response of a plant. Within the diversity trends are evident in the influences of the input variables on the responses.

  1. Upgrading the ampacity of HPFF pipe-type cable circuits

    SciTech Connect (OSTI)

    Aabo, T.; Lawson, W.G. [Power Technologies, Inc., Schenectady, NY (United States)] [Power Technologies, Inc., Schenectady, NY (United States); Pancholi, S.V. [Potomac Electric Power Co., Washington, DC (United States)] [Potomac Electric Power Co., Washington, DC (United States)

    1995-01-01T23:59:59.000Z

    The upgrading of several 69 kV pipe-type cable feeders on the Potomac Electric Power Company (PEPCO) ion cable system is The methods used for the ampacity calculation are described. The fluid circulation approach required to meet the feeder emergency load requirements are For the feeders that were in service for approximately 40 years, a system life evaluation was performed.

  2. PiPe dreams? Jobs Gained, Jobs Lost

    E-Print Network [OSTI]

    Danforth, Bryan Nicholas

    PiPe dreams? Jobs Gained, Jobs Lost by the ConstruCtion of Keystone XL a rePort by Corne, and Induced) Jobs from Keystone XL 26 KXL Will Have Minor Impact on Unemployment Levels 27 Four Ways Keystone to the Keystone XL budget and expenditures, steel sourcing, and the costs of environmental damage. #12;Corne

  3. Assessment of suspended dust from pipe rattling operations

    E-Print Network [OSTI]

    Park, Ju-Myon

    2006-10-30T23:59:59.000Z

    Gaussian plume model is applicable to the data of pipe rattling operations for finding an attainment area. It is estimated that workers who remain within 1 m of the machine centerline and directly downwind have an 8-hour TWA exposure opportunity of (13.3 Ã...

  4. ACCIDENT PREVENTION SIGNS, TAGS, LABELS, SIGNALS, PIPING SYSTEM IDENTIFICATION AND

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 8 ACCIDENT PREVENTION SIGNS, TAGS, LABELS, SIGNALS, PIPING SYSTEM............................................................8-13 Tables: 8-1 Accident Prevention Sign Requirements..........................8-17 8-2 Accident.......................................8-24 8-9 Accident Prevention Tags.............................................8-25 #12;EM 385-1-1 XX

  5. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01T23:59:59.000Z

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  6. Off-axis cooling of rotating devices using a crank-shaped heat pipe

    DOE Patents [OSTI]

    Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.

    2007-01-30T23:59:59.000Z

    The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.

  7. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    SciTech Connect (OSTI)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15T23:59:59.000Z

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  8. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08T23:59:59.000Z

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  9. Long term performance of boilers using landfill gas

    SciTech Connect (OSTI)

    Gulledge, J.; Cosulich, J.; Ahmed, S.L.

    1996-11-01T23:59:59.000Z

    The US EPA estimates that approximately 600 to 700 landfills produce sufficient gas for profitable energy production in the United States. The gas from these landfills could provide enough electricity for about 3 million homes. Yet, there are only about 120 operating landfill gas to energy facilities. A lack of information on successful projects may cause part of this shortfall. This paper provides information on 4 successful projects using landfill gas fired boilers, some of which have operated over a decade. Natural gas fired boilers can be easily converted to bum landfill gas. Several modifications to Districts` boilers, described in this paper, have resulted in many years of safe and corrosion free operation. Most of the modifications are minor. Conversion can be accomplished for under $100,000 in many cases. Information on the reliability and longevity of landfill gas supplies is also provided. Gas from a given landfill is generally available over 99.5% of the time with about 5 brief flow interruptions annually. Actual data from 3 landfills document the high availability of landfill gas. To show the longevity of landfill gas flows, data from the Palos Verdes Landfill are provided. The Palos Verdes Landfill closed in 1980. The Palos Verdes. Landfill Gas to Energy Facility is currently producing over 8 megawatts. Landfill gas pretreatment is not required for boilers. In cases where the landfill gas is being piped offsite, it is usually cost effective to dehydrate the landfill gas. Landfill gas bums cleaner than natural gas. NO{sub x} emissions from landfill gas fired boilers are lower because of the carbon dioxide in the landfill gas. Trace organic destruction efficiency is usually over 99% in landfill gas fired boilers. In addition, flare emissions are eliminated when landfill gas is used to displace fossil fuels in boilers.

  10. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    SciTech Connect (OSTI)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01T23:59:59.000Z

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  11. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    Outdoor Temperature for District Heating Systems. ” ASHRAEAssessment of Buried District Heating Piping. ” ASHRAE

  12. Gas Main Sensor and Communications Network System

    SciTech Connect (OSTI)

    Hagen Schempf

    2006-05-31T23:59:59.000Z

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  13. Parallel Tracks: American Transcontinentalism and the Specter of Canada

    E-Print Network [OSTI]

    Eigen, Kathryn

    2010-01-01T23:59:59.000Z

    printing office, 1876. Canada. Department of Public Works.Ottawa: I.B. Taylor, 1972. Canada. Dept. of Railways andHunt Jackson declared that "Canada has had no Indian wars"

  14. Modernity in question : retrieving imaginaries of the transcontinental Mediterranean

    E-Print Network [OSTI]

    Tamalet, Edwige

    2009-01-01T23:59:59.000Z

    Cendres. Paris: L’Harmattan, 1983. -------------------.Yacine. Paris: L’Harmattan, 1988. -------------------.du Roi Errant. Paris: L’Harmattan, 1985. ---------------.

  15. Parallel Tracks: American Transcontinentalism and the Specter of Canada

    E-Print Network [OSTI]

    Eigen, Kathryn

    2010-01-01T23:59:59.000Z

    man, have great cause to grieve over the loss of Pu-pu- mox-mox." 19 In other words, for enthusiastic Far Western

  16. DOE - Office of Legacy Management -- Transcontinental Machine and Tool Co -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown SiteTracerlab Inc - MAUS

  17. ACTIVE CONTROL STRATEGY FOR DENSITY-WAVE IN GAS-LIFTED WELLS

    E-Print Network [OSTI]

    (point A), then goes down into the annular space between the drilling pipe (casing, point B with possible facilities dam- ages. The best identified instability is the "casing- heading". It consists in the tubing at a given set-point. In practice, under the assumption of a constant well #12;head gas (in

  18. High-temperature corrosion control of lagged piping system components

    SciTech Connect (OSTI)

    Parks, R. (Dept. of the Navy, Naval Sea Systems Command, Code 05M11, Washington, DC (US)); Kogler, R.A. (Advanced Technology Inc., Arlington, VA (US))

    1990-07-01T23:59:59.000Z

    Over the past several years, the U.S. Navy has stepped up efforts to eliminate corrosion aboard its ships. One of the most effective techniques the Navy has employed is the application of sprayed aluminum for high-temperature corrosion protection. This sacrificial coating has performed well in the corrosion protection of high-temperature lagged steam valves and associated piping systems. Because of the superiority of the sprayed aluminum system over the conventional methods of protection for these piping systems, the Navy has realized considerable cost savings. These savings are the direct result of major reductions in routine maintenance associated with the application of sprayed aluminum coatings for corrosion protection purposes. This article discusses specific U.S. Navy experience with the use of sprayed aluminum coatings for high-temperature applications as well as current Navy practice regarding the use of this corrosion control coating.

  19. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01T23:59:59.000Z

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  20. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    SciTech Connect (OSTI)

    GRAVES, C.E.

    2000-03-22T23:59:59.000Z

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  1. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-02-01T23:59:59.000Z

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  2. Reactor Materials Program process water piping indirect failure frequency

    SciTech Connect (OSTI)

    Daugherty, W.L.

    1989-10-30T23:59:59.000Z

    Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments.

  3. Method of manufacturing a heat pipe wick with structural enhancement

    DOE Patents [OSTI]

    Andraka, Charles E. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM); Showalter, Steven K. (Albuquerque, NM); Moss, Timothy A. (Albuquerque, NM)

    2006-10-24T23:59:59.000Z

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  4. Upgrading the ampacity of HPFF pipe-type cable circuits

    SciTech Connect (OSTI)

    Aabo, T.; Lawson, W.G. [Power Technologies, Inc., Schenectady, NY (United States); Pancholi, S.V. [Potomac Electric Power Co., Washington, DC (United States)

    1994-12-31T23:59:59.000Z

    The upgrading of several 69 kV pipe-type cable feeders on the Potomac Electric Power Company (PEPCo) transmission cable system is discussed. The methods used for the ampacity calculation are described. The fluid circulation approach required to meet the feeder emergency load requirements are discussed. For the feeders that were in service for approximately 40 years, a system life evaluation was performed.

  5. Residual stresses and stress corrosion cracking in pipe fittings

    SciTech Connect (OSTI)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01T23:59:59.000Z

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

  6. Heat flow during the autogenous GTA welding of pipes

    SciTech Connect (OSTI)

    Kou, S.; Le, Y.

    1984-06-01T23:59:59.000Z

    A theoretical and experimental study of heat flow during the welding of pipes was carried out. The theoretical part of the study involves the development of two finite difference computer models: one for describing steady state, 3-dimensional heat flow during seam welding, the other for describing unsteady state, 3-dimensional heat flow during girth welding. The experimental part of the study, on the other hand, includes: measurement of the thermal response of the pipe with a high speed data acquisition system, determination of the arc efficiency with a calorimeter, and examination of the fusion boundary of the resultant weld. The experimental results were compared with the calculated ones, and the agreement was excellent in the case of seam welding and reasonably good in the case of girth welding. Both the computer models and experiments confirmed that, under a constant heat input and welding speed, the size of the fusion zone remains unchanged in seam welding but continues to increase in girth welding of pipes of small diameters. It is expected that the unsteady state model developed can be used to provide optimum conditions for girth welding, so that uniform weld beads can be obtained and weld defects such as lack of fusion and sagging can be avoided.

  7. Criticality Safety Study of UF6and UO2F2in 8-in. Inner Diameter Piping

    SciTech Connect (OSTI)

    Elam, K.R.

    2003-10-07T23:59:59.000Z

    The purpose of this report is to provide an evaluation of the criticality safety aspects of using up to 8-in.-inner-diameter (ID) piping as part of a system to monitor the {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) gas both before and after an enrichment down-blending operation. The evaluated operation does not include the blending stage but includes only the monitors and the piping directly associated with the monitors, which are in a separate room from the blending operation. There are active controls in place to limit the enrichment of the blended UF{sub 6} to a maximum of 5 weight percent (wt%) {sup 235}U. Under normal operating conditions of temperature and pressure, the UF{sub 6} will stay in the gas phase and criticality will not be credible. The two accidents of concern are solidification of the UF{sub 6} along with some hydrofluoric acid (HF) and water or moisture ingress, which would cause the UF{sub 6} gas to react and form a hydrated uranyl fluoride (UO{sub 2}F{sub 2}) solid or solution. Of these two types of accidents, the addition of water and formation of UO{sub 2}F{sub 2} is the most reactive scenario and thus limits related to UO{sub 2}F{sub 2} will bound the limits related to UF{sub 6}. Two types of systems are included in the monitoring process. The first measures the enrichment of the approximately 90 wt% enriched UF{sub 6} before it is blended. This system uses a maximum 4-in.-(10.16-cm-) ID pipe, which is smaller than the 13.7-cm-cylinder-diameter subcritical limit for UO{sub 2}F{sub 2} solution of any enrichment as given in Table 1 of American National Standard ANSI/ANS-8.1.1 Therefore, this system poses no criticality concerns for either accident scenario. The second type of system includes two enrichment monitors for lower-enriched UF{sub 6}. One monitors the approximately 1.5 wt% enriched UF{sub 6} entering the blending process, and the second monitors the approximately 5 wt% enriched UF{sub 6} coming out of the blending process. Both use a maximum 8-in.-(20.32-cm-) ID piping, where the length of the larger ID piping is approximately 9.5 m. This diameter of piping is below the 26.6-cm-cylinder-diameter subcritical limit for 5 wt% enriched UO{sub 2}F{sub 2} solutions as given in Table 6 of ANSI/ANS-8.1. Therefore, for up to 5 wt% enriched UF{sub 6}, this piping does not present a criticality concern for either accident scenario. Calculations were performed to determine the enrichment level at which criticality could become a concern in these 8-in.-ID piping sections. Both unreflected and fully water-reflected conditions were considered.

  8. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    SciTech Connect (OSTI)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-07-12T23:59:59.000Z

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar{reg_sign} L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring.

  9. Specialist meeting on leak before break in reactor piping and vessels

    SciTech Connect (OSTI)

    Bartholome, G.; Bazant, E.; Wellein, R. [Siemens KWU, Stuttgart (Germany)] [and others

    1997-04-01T23:59:59.000Z

    A series of research projects sponsored by the Federal Minister for Education, Science, Research and Technology, Bonn are summarized and compared to utility, manufacturer, and vendor tests. The purpose of the evaluation was to experimentally verify Leak-before-Break behavior, confirm the postulation of fracture preclusion for piping (straight pipe, bends and branches), and quantify the safety margin against massive failure. The results are applicable to safety assessment of ferritic and austenitic piping in primary and secondary nuclear power plant circuits. Moreover, because of the wide range of the test parameters, they are also important for the design and assessment of piping in other technical plant. The test results provide justification for ruling out catastrophic fractures, even on pipes of dimensions corresponding to those of a main coolant pipe of a pressurized water reactor plant on the basis of a mechanical deterministic safety analysis in correspondence with the Basis Safety Concept (Principle of Fracture Exclusion).

  10. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    SciTech Connect (OSTI)

    Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2004-07-01T23:59:59.000Z

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100-kWt from the core to an energy conversion system at 700 deg. C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested. (authors)

  11. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-24T23:59:59.000Z

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

  12. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

    2012-07-01T23:59:59.000Z

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  13. Synchronization of organ pipes by means of air flow coupling: experimental observations and modeling

    E-Print Network [OSTI]

    Abel, M; Gerhard-Multhaupt, R

    2005-01-01T23:59:59.000Z

    We report measurements on two organ pipes positioned side by side. We investigate two different questions. First, the mutual influence of two pipes with different pitch. In analogy to the coupling of two nonlinear oscillators with feedback, one observes a frequency locking, which can be explained by synchronization theory. Second, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad ``hump'' structure, not found for coupled oscillators. This indicates a complicated hydrodynamical coupling of the two jets creating the acoustic field when exiting from the pipe mouth. We interpret our acoustic measurements with a model for the flow which exits from the flues of the pipes.

  14. Thirty years of fiberglass pipe in oilfield applications: A historical perspective

    SciTech Connect (OSTI)

    Oswald, K.J. [Smith Fiberglass Products Inc., Little Rock, AR (United States)

    1996-05-01T23:59:59.000Z

    A 30-year history of the use of fiberglass piping (FRP) systems for oil production piping is presented. Speculation about future uses of FRP in the oilfields is discussed. Problems encountered during the introduction of this type of pipe to the oilfields, and the evolution of early oilfield FRP systems is described. Improvements in FRP during the period of recent oilfield growth are reported. A representative list of significant uses of FRP in oilfield applications today is presented.

  15. Pipe inspection using the BTX-II. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  16. Performance predictions and measurements for space-power-system heat pipes

    SciTech Connect (OSTI)

    Prenger, F.C. Jr.

    1981-01-01T23:59:59.000Z

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000.

  17. Parabolic Trough Solar System Piping Model: Final Report, 13 May 2002 ? 31 December 2004

    SciTech Connect (OSTI)

    Kelly, B.; Kearney, D.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., and Kearny and Associates regarding a study of a piping model for a solar parabolic trough system.

  18. The measurement of rheological characteristics of cross-linked fracturing fluids using a pipe viscometer

    E-Print Network [OSTI]

    Tiainen, Ari Lauri

    1986-01-01T23:59:59.000Z

    APPENDIX H ? S~CATZGNS CF PIPE VISCCM?TI?R EQUIPMENT APPENDZIC I ? REX' CF ALL TEST RUNS 114 115 119 123 127 APPE2KZX J ? S~CATIGNS CF PIPE VZSQQMETER (PV) TESZ RUNS . . . 130 131 APPENCUX L ? ~ PRQCEIXRE FCR RQTATZGNAL VISQQMLTER TESTS . . 135... LIST OF TABLES 1 The Detailed Ezplamtion of the TestinS Code 2 An ~ of the Pipe ViscGtaeter Test Code; PV 4101 Tbe Detailed DescriPtion of the Pipe V5. scoaeter 4 Changes in Pressure Gradients Due to the longer Mixing 8 The TAMU PV Testing Ranges...

  19. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect (OSTI)

    Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01T23:59:59.000Z

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  20. Thirty years of fiberglass pipe in oilfield applications: A historical perspective

    SciTech Connect (OSTI)

    Oswald, K.J. [Smith Fiberglass Products Inc., Little Rock, AR (United States)

    1995-10-01T23:59:59.000Z

    Oilfield piping must handle mixtures containing many fluids which are highly corrosive to metals. Salt water, sour crude, hydrogen sulfide and carbon dioxide are only a few of the corrosives which are handled continuously on a large scale in oilfields throughout the world. This paper presents a 30 year history of the use of fiberglass piping systems to manage corrosion problems in oil production piping, and speculates about future uses of fiberglass piping in the oilfields. A description of the problems encountered during the introduction of this type of pipe to the oilfields is given, and the evolution of early oilfield fiberglass piping systems is described. Improvements in fiberglass piping during the period of recent oilfield growth are reported, and the contributions of fiberglass pipe in the field of corrosion control during this period of growth are discussed. A representative list of significant uses of fiberglass pipe in oilfield applications today is presented, predictions about the future of fiberglass tubular products in oilfield corrosion applications are made.

  1. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    DOE Patents [OSTI]

    Allais, Arnaud (D-30625 Hannover, DE); Hoffmann, Ernst (D-30855 Langenhagen, DE)

    2008-02-05T23:59:59.000Z

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  2. O.A.R. 734-055 - Pole Lines, Buried Cables, Pipe lines, Signs...

    Open Energy Info (EERE)

    buried cables, pipe lines, signs miscellaneous operations upon state highway right-of-way and properties under the jurisdiction of the department of transportation. Published N...

  3. Innovative Porous Media Approach in Modeling Biofilm Applications, Human Eye and Nanofluid Based Heat Pipes

    E-Print Network [OSTI]

    Shafahi, Maryam

    2010-01-01T23:59:59.000Z

    a heat pipe under various heat input for different particleresistance for various heat inputs; a) ? =1 %; b) ? =2%;resistance for various heat inputs; a) ? =1 %; b) ? =2%;

  4. Mitigating performance limitations of single beam-pipe circular e+e- colliders

    E-Print Network [OSTI]

    Koratzinos, M

    2015-01-01T23:59:59.000Z

    Renewed interest in circular e+e- colliders has spurred designs of single beam-pipe machines, like the CEPC in China, and double beam pipe ones, such as the FCC-ee effort at CERN. Single beam-pipe designs profit from lower costs but are limited by the number of bunches that can be accommodated in the machine. We analyse these performance limitations and propose a solution that can accommodate O(1000) bunches while keeping more than 90% of the ring with a single beam pipe.

  5. IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995

    SciTech Connect (OSTI)

    Scott, P.; Olson, R.; Marschall, C.; Rudland, D. [and others

    1997-02-01T23:59:59.000Z

    This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.

  6. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    SciTech Connect (OSTI)

    Not Available

    1985-04-01T23:59:59.000Z

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  7. The effect of squeeze clamping on the performance of polyethylene gas piping materials

    E-Print Network [OSTI]

    Jones, Robert Ernest

    1986-01-01T23:59:59.000Z

    of the crack tip and where loads are less than the yield strength as "brittle" fracture. This is the same type of behavior described by Chan and Williams as slow stable crack growth. 2. 2. ~22 * C~l An extensive literature search which included computer.... @here subsurface damage was found, the resulting crack dimensions were measured from photomicrographs taken in the SEM. ln addition, twelve unclamped c-shaped sections were prepared from the three materials and broken in liquid nitrogen as a control...

  8. INTERNAL FORCED iquid or gas flow through pipes or ducts is commonly used in heating and

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    to flow by a fan or pump through a flow section that is sufficiently long to accomplish the desired heat. Then the logarithmic mean temperature difference and the rate of heat loss from the air become Tln 15.2°C Q · hAs Tln (13.5 W/m2 °C)(6.4 m2 )( 15.2°C) 1313 W Therefore, air will lose heat at a rate of 1313 W as it flows

  9. GAS-PARTICLE FLOW IN THE ENTRY REGION OF A CURVED PIPE

    E-Print Network [OSTI]

    Yeung, Woon-Shing

    2011-01-01T23:59:59.000Z

    the development of large coal gasification plants under thepiping systems of a coal gasification plant is the elbow of

  10. Recycled Natural Gas Pipes Shore Up Green Building - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011RecoveryRecoveryRecycled

  11. Low-frequency fluid waves in fractures and pipes

    SciTech Connect (OSTI)

    Korneev, Valeri

    2010-09-01T23:59:59.000Z

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  12. The Economics of Steam Vs. Electric Pipe Heating

    E-Print Network [OSTI]

    Schilling, R. E.

    : ? Steam tracer ? Valves I ? Strainer ? Traps ? O1eck valves I I The heat generated by steam tracing d Ipends on the design capacity of the tracer. The racer is usually 3/8 or 112 inch copper or sta nless pipe or tUbing. Because it is not practic 1... its capacity requir ments before its heat output can be calculated. Valves, which are rated for steam s rvice used, need to be installed so that trap and strainers can be isolated for maintenance. Strainers should be provided with bl wdown...

  13. ADAPTION OF NONSTANDARD PIPING COMPONENTS INTO PRESENT DAY SEISMIC CODES

    SciTech Connect (OSTI)

    D. T. Clark; M. J. Russell; R. E. Spears; S. R. Jensen

    2009-07-01T23:59:59.000Z

    With spiraling energy demand and flat energy supply, there is a need to extend the life of older nuclear reactors. This sometimes requires that existing systems be evaluated to present day seismic codes. Older reactors built in the 1960s and early 1970s often used fabricated piping components that were code compliant during their initial construction time period, but are outside the standard parameters of present-day piping codes. There are several approaches available to the analyst in evaluating these non-standard components to modern codes. The simplest approach is to use the flexibility factors and stress indices for similar standard components with the assumption that the non-standard component’s flexibility factors and stress indices will be very similar. This approach can require significant engineering judgment. A more rational approach available in Section III of the ASME Boiler and Pressure Vessel Code, which is the subject of this paper, involves calculation of flexibility factors using finite element analysis of the non-standard component. Such analysis allows modeling of geometric and material nonlinearities. Flexibility factors based on these analyses are sensitive to the load magnitudes used in their calculation, load magnitudes that need to be consistent with those produced by the linear system analyses where the flexibility factors are applied. This can lead to iteration, since the magnitude of the loads produced by the linear system analysis depend on the magnitude of the flexibility factors. After the loading applied to the nonstandard component finite element model has been matched to loads produced by the associated linear system model, the component finite element model can then be used to evaluate the performance of the component under the loads with the nonlinear analysis provisions of the Code, should the load levels lead to calculated stresses in excess of Allowable stresses. This paper details the application of component-level finite element modeling to account for geometric and material nonlinear component behavior in a linear elastic piping system model. Note that this technique can be applied to the analysis of B31 piping systems.

  14. Effects of Reinsulating Underground Steam Pipes- A Case Study

    E-Print Network [OSTI]

    Mentzer, T.

    -13, 1999 Figure 5. The pumping process on the street. FINDINGS Line Losses The following table shows the monthly average steam flow rates in pounds per hour for each of the meters since January 1997. For September and October 1998, electric power... of the 12" and 8" diameter piping. There are six steam vaults between the two-meter 167 ESL-IE-99-05-24 Proceedings from the Twenty-first National Industrial Energy Technology Conference, Houston, TX, May 12-13, 1999 -- ------ locations. These vaults...

  15. Stability analysis of buried flexible pipes: a biaxial buckling equation

    E-Print Network [OSTI]

    Chau, Melissa Tuyet-Mai

    1990-01-01T23:59:59.000Z

    loading are (see Appendix B for derivations) 29 rN. . +Ne~e+rp, = 0 rNes, e + Ne, a+ rpa = 0 r M*, *, +?M*a, *e + Me, ee +?e ? (?*P*, * +?N*eP*, e + - NaPe, e) 2 +r p. Ps+r pePa+r p. = o 2 2 2 (27) Introduction of Eqs. (20) and (25) into Eqs. (27...STABILITY ANALYSIS OF BURIED FLEXIBLE PIPES: A BIAXIAL BUCKLING EQUATION A Thesis by MELISSA TUYET-MAI CHAU Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree...

  16. D0 Silicon Upgrade: Upgrade Piping Loads on Cleanroom Roof

    SciTech Connect (OSTI)

    Sakla, Steve; /Fermilab

    1995-08-28T23:59:59.000Z

    The proposed piping layout for the DO upgrade will run along the south wall of DAB. The cryogenic service pipe runs above the upper and lower cleanroom roofs and will need to be supported by the roofs beams. Calculations were done to determine the stresses in the I-beams created by the existing and additional loads due to the upgrade. Refer to drawing no. 3823.115-ME-317283 for drawings of the piping layout. Figure 1 shows the 'plan view' portion of this drawing. The weight of the individual lines were calculated in figure 2 assuming a pipe density of O.28 lbm/in{sup 3} for stainless steel (0.12% C) and a fluid density (assuming LN2 at 1 atm) of 0.03 lbm/in{sup 3}. The weights of the corrugated steel flooring, assembly hall feed cans, support beams, and roof hatch were also included in the analysis. These loads are calculated on pgs. 5-6. A floor load of 50 lbf/ft{sup 2} was also added in order to maintain the existing floor load limit in addition to the added piping loads. Measurements of the dimensions of the I-beams determined that the nominal sizes of the beams were W8 x 21 for the lower roof and W14 x 26 for the upper roof. Pipe lengths were determined from the drawing for each of the lines on pgs. 1-2 of the calculations (refer to all piping by line numbers according to figure 2). A total weight was calculated for lines 3-9 along the south wall and lines 1-2 running along the north wall of the lower cleanroom roof. To simplify the calculations these weights were assumed to be evenly distributed on the 5 I-beam supports of the lower cleanroom roof 2.5 feet in from the south wall. The stress analysis was done using FrameMac, a 2-D finite element program for the Macintosh. Beam 3 was not included in the analysis because it is structurally equivalent to beam 1. The program outputted maximum values for shear stress, bending stress, shear force, and moments in each of the beams analyzed. These values were then compared to the allowable stresses as per the specifications and codes stated in the AISC: Manual of Steel Construction. The stresses on the roof beams needed to be determined in a number of different places. The first was in the beam itself which included the flange and web sections. The second place was at the ends of the beams where the flanges were removed to make the perpendicular connections to the other beams on the lower roof. The final point was the framed beam connection which included the bolt analysis. FrameMac calculated stresses only for the beams which included the sections where the flanges were removed to make the end connections. To analyze the connections, the allowable bending and shear stresses were solved for allowable shear and moments. This was done because FrameMac does not have the capability to analyze the dimensions for the bolts and angles used in the connections were known and the program outputted values for reaction forces and moments at the ends of the beams. Multiplying the allowable shear stress for the bolts and angle connections by their respective areas gave the allowable shear force. The allowable moment for the angle connection was calculated by multiplying the section modulus of the angle by the allowable bending stress. These allowable loads are calculated on pgs. 7-8. The allowable and maximum calculated stresses by FrameMac are summarized in a table. In conclusion, the cleanroom roofs will be able to safely support the weight of the upgrade cryogenic piping, feed cans, corrugated flooring and a 50 lbf/ft{sup 2} floor load with the addition of diagonal braces at the ends of beams 1,2,3,4, and 8. The location and size of these diagonal braces are shown in fig. 4. Also, the piping supports and feed cans will all need to be placed directly above the I-beam supports. These supports will consist of unistrut structures that will be detailed and specified separate to this analysis. The output and input data from FrameMac and the drawings used in the analysis follow the calculation pages.

  17. The effect of pipe spacing on marine pipeline scour

    E-Print Network [OSTI]

    Westerhorstmann, Joseph Henry

    1988-01-01T23:59:59.000Z

    . The stability of these subsea pipelines is threatened by loss of bed support resulting from scour. This thesis reviews pipeline scour and presents results of model testing on single and multiple pipes in contact with a sand bed. Few theoretical models exist... and clamp attachment. The maximum recommended cable and circuit resistance is 1. 0 ohm and frequency range in autocompensation mode is 0. 2 to above 10. 0 Hz. Scour profiles were measured with a point gauge profiler. The profiler was manually operated...

  18. Hydrogen Piping Experience in Chevron Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e&FundingDiscussion HydrogenPiping

  19. Modern Compressed Air Piping Selection and Design Can Have a Great Impact on Your Compressed Air Energy Dollars

    E-Print Network [OSTI]

    Van Ormer, H.

    2005-01-01T23:59:59.000Z

    on the pressure losses and piping performance. Case studies are used to show how conventional piping design and sizing keep “extra compressors on line” - preclude proper control operation - waste energy - shorten filter life - and have a negative impact on dryer...

  20. How is Order 636 affecting the gas marketing industry; Part 6

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    With virtually all interstate pipe lines now operating under restructuring plans mandated by Order 636 and approved by the Federal Energy Regulatory Commission (FERC), what does the new US gas industry look like Seeking a variety of perspectives on the shape that is emerging, Pipe Line Industry is interviewing representatives from production, transmission, distribution, storage and marketing firms to learn what they see as near and long-term effects on their industry segments resulting from the interstate pipe line restructuring order. Their views are being presented in a six-part series. This part discusses how Tenneco Energy Resources adjusted to Order 636 and subsequent clarifications, and what functional and philosophical changes have been made.

  1. Note and Record A note on polyvinyl chloride (PVC) pipe traps for

    E-Print Network [OSTI]

    Pretoria, University of

    Note and Record A note on polyvinyl chloride (PVC) pipe traps for sampling vegetation of traditional traps, and many are furtive (Myers et al., 2007; Pittman et al., 2008). PVC pipe traps, which and Hyperolius (see Channing, 2001; du Preez & Carruthers, 2009), may be attracted to artificial refugia of PVC

  2. Slinky VIII Oct. 2011 The original Slinky vertical seismometer was encased in 3" ABS plumbing pipe.

    E-Print Network [OSTI]

    Barrash, Warren

    .75" in overall length. It is made of PVC plumbing fittings, cut to fit. Note: Use any 1" pvc fitting, like a coupler for the rings. Use the thinner wall pvc pipe, 200 psi, and not the thicker pipe, for the body. #12 be even with the top of the PVC. This places one magnetic pole inside the coil and one magnetic pole

  3. A Power-Law Formulation of Laminar Flow in Short Pipes Max Sherman

    E-Print Network [OSTI]

    A Power-Law Formulation of Laminar Flow in Short Pipes Max Sherman Indoor Environment Program ABSTRACT This report develops a theoretical description of the hydrodynamic relationship based on a power pipes can be described with a simple power law dependence on pressure, but that the exponent

  4. Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping

    SciTech Connect (OSTI)

    HECHT, S.L.

    2000-02-15T23:59:59.000Z

    Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase.

  5. Thermal Analysis of a Lorentz Force Accelerator with an Open Lithium Heat Pipe

    E-Print Network [OSTI]

    Choueiri, Edgar

    -channel hollow cathode and lithium for pro- pellant promises to solve the cathode erosion prob- lem whileThermal Analysis of a Lorentz Force Accelerator with an Open Lithium Heat Pipe G. Emsellem , A. D pipe, was such that the cathode tip stayed at a tem- perature well below the vapor point of lithium

  6. Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning...

  7. Aging of HDPE Pipes Exposed to Diesel Lubricant Amelia H. U. Torres1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Aging of HDPE Pipes Exposed to Diesel Lubricant Amelia H. U. Torres1 , José R. M. d'Almeida1 behavior of high-density polyethylene pipes by exposure to a diesel lubricant were investigated that diesel, which can be regarded as a model fluid to analyze the effects caused by aromatic unities present

  8. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L. [Magplane Technology Inc., Littleton, MA (United States)

    2009-11-15T23:59:59.000Z

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  9. Method of prevention of deposits in the pipes of waste heat boilers

    SciTech Connect (OSTI)

    Gettert, H.; Kaempfer, K.

    1983-12-13T23:59:59.000Z

    A process is disclosed for preventing deposits in the pipes of waste heat boilers employed for cooling gases in the partial autothermal oxidation of fossil fuels to prepare hydrogen or synthesis gases, wherein the pipes are flushed, at the operating temperature, with hydrogen-containing gases which contain little or no H/sub 2/S.

  10. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01T23:59:59.000Z

    . If a heat-pipe is used to transfer heat from the warm fresh air intake to the cold supply, not only is the reheat obtained free, but the fresh air gets substantial pre-cooling effect from the heat-pipe saving on the cooling energy required...

  11. Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning...

  12. Cascading of Fluctuations in Interdependent Energy Infrastructures: Gas-Grid Coupling

    E-Print Network [OSTI]

    Chertkov, Michael; Backhaus, Scott

    2014-01-01T23:59:59.000Z

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipeli...

  13. Correctly specify insulation for process equipment and piping

    SciTech Connect (OSTI)

    Allen, C. [Raytheon Engineers and Constructors, Birmingham, AL (United States)

    1997-05-01T23:59:59.000Z

    Insulation serves as a thermal barrier to resist the flow of heat. When insulation is installed over piping or equipment to minimize heat losses, the insulation is categorized as heat conservation. Software programs for determining heat losses are based on ASTM C 680. If heat conservation insulation is calculated to determine the most cost-effective thickness for piping or equipment, then the insulation is categorized as economic insulation. Methods for manually determining economic thicknesses using various graphs and precalculated charts are given in Turner and Malloy. However, modern software programs available from industrial associations calculate economic thicknesses based on after-tax annual costs. Costs associated with owning insulation are expressed on an equivalent uniform annual cost basis. The thickness with the lowest annual cost is reported as the economic thickness. Some of the economic data needed to calculate economic thicknesses are fuel cost, depreciation period, annual fuel inflation rate, annual hours of operation, return on investment, effective income tax rate, annual insulation maintenance costs, and installed costs. To obtain accurate economical thicknesses, it is best to solicit installed costs from a local contractor likely to bid on the work. This paper covers the most suitable insulation materials for certain applications, the most economic material and thickness to use, and how the total insulation system should be designed.

  14. Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems

    SciTech Connect (OSTI)

    Johnson, Rolland; Neubauer, Michael

    2014-10-29T23:59:59.000Z

    This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

  15. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung [Sunchon National University, 255 Jungang-ro, Sucheon, Jeonnam (Korea, Republic of); Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae [KEPCO E and C, Co., Ltd., 188, Kumi-ro, Seongnam, Kyounggi (Korea, Republic of)

    2014-10-06T23:59:59.000Z

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  16. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01T23:59:59.000Z

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  17. Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests and quantifying the failure time

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (earth-dams, dykes, levees) result from overtopping and piping. The breach due to failure generates, the statistics of failure of embankment dams indicates that improvement in the understanding of piping is presented by Richards and Reddy [17]. Piping accounts for 43% of all embankment dam failures, 54% for dams

  18. Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow and Inclined Wellbore Conditions

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 30975 Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow, 163245 SPEUT. Abstract Pressure drop prediction in pipes is an old petroleum engineering problem. There is a long history of attempts to develop empirical correlations to predict the pressure drop in pipes. Some

  19. Path Search Algorithm for Connections with Pumps in Crude Oil Pipe Networks Jorge L. Rojas-D'Onofrio*. Jack Mrquez**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Path Search Algorithm for Connections with Pumps in Crude Oil Pipe Networks Jorge L. Rojas of connections in pipe networks for crude oil transportation, using pumps to overcome negative differences SCADA. We tested the algorithms using data from real pipe networks located in Venezuela. Keywords: Crude

  20. Introduction to Critical Strain and a New Method for the Assessment of Mechanical Damage in Steel Line Pipe

    E-Print Network [OSTI]

    Milligan, Ryan

    2013-08-06T23:59:59.000Z

    scanner could be used to scan the inside of the pipe despite its design for external scanning. The results also showed that the scans should be 1 mm in length along the axis of the pipe at a resolution of 0.5 mm and 360 degrees around the pipe. The final...

  1. Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors

    SciTech Connect (OSTI)

    WRIGHT,STEVEN A.; HOUTS,MICHAEL

    2000-11-22T23:59:59.000Z

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

  2. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    SciTech Connect (OSTI)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01T23:59:59.000Z

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  3. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  4. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    SciTech Connect (OSTI)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01T23:59:59.000Z

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  5. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES

    SciTech Connect (OSTI)

    Gupta, N

    2007-03-06T23:59:59.000Z

    This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

  6. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-05-01T23:59:59.000Z

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  7. Composite drill pipe and method for forming same

    DOE Patents [OSTI]

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

    2014-04-15T23:59:59.000Z

    Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

  8. Development of crack shape: LBB methodology for cracked pipes

    SciTech Connect (OSTI)

    Moulin, D.; Chapuliot, S.; Drubay, B. [Commissariat a l Energie Atomique, Gif sur Yvette (France)

    1997-04-01T23:59:59.000Z

    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  9. Pipe-type cable ampacities in the presence of harmonics

    SciTech Connect (OSTI)

    Palmer, J.A.; Degeneff, R.C. (Rensselaer Polytechnic Inst., Troy, NY (United States)); McKernan, T.M.; Halleran, T.M. (Consolidated Edison Co. of NY, Inc., New York, NY (United States))

    1993-10-01T23:59:59.000Z

    This paper explores the effect of harmonics on HPFF pipe-type transmission cable ampacity. Industry currently calculates the current carrying capacity of underground cable based on the assumption of a purely sinusoidal 60k Hz. current. However, increasing levels of harmonics on power systems have raised concern about their effect on cable ampacities. The issue has already been addressed for distribution cables. This paper begins with a discussion of Neher and McGrath's classic equations and some recent revisions, and develops a closed form composite equations accurately reflecting the effect of harmonics. The effect of frequency on the loss ratio is shown and supported by comparison with measured data at 60 Hz. and a finite element analysis at a number of harmonic frequencies. The effect of specific harmonic scenarios is shown in light of the IEEE standard on harmonics. The results are used to develop a derating factor to compensate for current harmonics on transmission systems.

  10. Seismic fragility evaluation of a piping system in a nuclear power plant by shaking table test and numerical analysis

    SciTech Connect (OSTI)

    Kim, M. K.; Kim, J. H.; Choi, I. K. [Korea Atomic Energy Research Inst., Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    In this study, a seismic fragility evaluation of the piping system in a nuclear power plant was performed. For the evaluation of seismic fragility of the piping system, this research was progressed as three steps. At first, several piping element capacity tests were performed. The monotonic and cyclic loading tests were conducted under the same internal pressure level of actual nuclear power plants to evaluate the performance. The cracks and wall thinning were considered as degradation factors of the piping system. Second, a shaking tale test was performed for an evaluation of seismic capacity of a selected piping system. The multi-support seismic excitation was performed for the considering a difference of an elevation of support. Finally, a numerical analysis was performed for the assessment of seismic fragility of piping system. As a result, a seismic fragility for piping system of NPP in Korea by using a shaking table test and numerical analysis. (authors)

  11. Off gas film cooler cleaner

    DOE Patents [OSTI]

    Dhingra, H.S.; Koch, W.C.; Burns, D.C.

    1997-08-26T23:59:59.000Z

    An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. 5 figs.

  12. Off gas film cooler cleaner

    DOE Patents [OSTI]

    Dhingra, Hardip S. (Williamsville, NY); Koch, William C. (Gowanda, NY); Burns, David C. (Trafford, PA)

    1997-01-01T23:59:59.000Z

    An apparatus for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter.

  13. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  14. Application of micro-heat pipes for the thermal control of semiconductor devices

    E-Print Network [OSTI]

    Corbett, Brian Patrick

    2013-02-22T23:59:59.000Z

    to 0. 0135in and then counter drilled to 0. 0355in in diameter to fit the fill tube. A stainless steel hypodermic tube was needed to fit the thin profile of the LHP plate. The second channel was covered with epoxy. Leak tests performed on the LHP... make the charging process difficult. To ensure that the heat pipe is properly sealed before charging, the heat pipe is pressurized to test for leaks. To perform the leak test, a heat pipe is connected to a compressed air source and submerged under...

  15. 241-U-701 new compressor building and instrument air piping analyses

    SciTech Connect (OSTI)

    Huang, F.H.

    1994-08-25T23:59:59.000Z

    Building anchorage analysis is performed to qualify the design of the new compressor building foundation given in the ECN ``241-U-701 New Compressor Building.`` Recommendations for some changes in the ECN are made accordingly. Calculations show that the 6-in.-slab is capable of supporting the pipe supports, and that the building foundation, air compressor and dryer anchorage, and electric rack are adequate structurally. Analysis also shows that the instrument air piping and pipe supports for the compressed air system meet the applicable code requirements and are acceptable. The building is for the U-Farm instrument air systems.

  16. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    SciTech Connect (OSTI)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki [and others

    1997-04-01T23:59:59.000Z

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  17. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  18. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-06-01T23:59:59.000Z

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  19. Analysis of a flexible polymeric film with imbedded micro heat pipes for spacecraft radiators

    E-Print Network [OSTI]

    McDaniels, Deborah Marie

    2001-01-01T23:59:59.000Z

    radiators are being developed to accommodate deployment mechanisms. An analytical model suggests that a lightweight polymeric material with imbedded micro heat pipe arrays can meet heat dissipation requirements while contributing less mass than competing...

  20. Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids

    SciTech Connect (OSTI)

    Wang, Guo-Shan; Song, Bin; Liu, Zhen-Hua [School of Mechanical Engineering, Shanghai Jiaotong University, 200240 Shanghai (China)

    2010-11-15T23:59:59.000Z

    An experimental study was performed to investigate the operation characteristics of a cylindrical miniature grooved heat pipe using aqueous CuO nanofluid as the working fluid at some steady cooling conditions. The experiments were carried out under both the steady operation process and the unsteady startup process. The experiment results show that substituting the nanofluid for water as the working fluid can apparently improve the thermal performance of the heat pipe for steady operation. The total heat resistance and the maximum heat removal capacity of the heat pipe using nanofluids can maximally reduce by 50% and increase by 40% compared with that of the heat pipe using water, respectively. For unsteady startup process, substituting the nanofluid for water as the working fluid, cannot only improve the thermal performance, but also reduce significantly the startup time. (author)

  1. Design, fabrication, and characterization of a multi-condenser loop heat pipe

    E-Print Network [OSTI]

    Hanks, Daniel Frank

    2012-01-01T23:59:59.000Z

    A condenser design was characterized for a multi-condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP was designed for integration into a high performance aircooled heat sink to address thermal management ...

  2. Design and fabrication of a maneuverable robot for in-pipe leak detection

    E-Print Network [OSTI]

    Wu, You, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Leaks in pipelines have been causing a significant amount of financial losses and serious damages to the community and the environment. The recent development of in-pipe leak detection technologies at Massachusetts Institute ...

  3. Design and analysis of a flexible tendon-driven joint for in-pipe inspection robots

    E-Print Network [OSTI]

    Al Hasan, Hisham H

    2013-01-01T23:59:59.000Z

    Leaks in water distribution pipelines result in potentially significant losses of water resources and energy. The detection of such leaks is crucial for effective water resource management. In-pipe robots equipped with ...

  4. Finite element analysis of conjugate heat transfer in axisymmetric pipe flows

    E-Print Network [OSTI]

    Fithen, Robert Miller

    1987-01-01T23:59:59.000Z

    Temperature Page 43 se NOMENCLATURE specific heat of fluid at constant pressure variational operator test function dimensionless pipe thickness (t/R) non ? dimensional axial coordinate surface traction matrix Ky M?. nr Pe Sue!i wall...

  5. An evaluation of the thermal characteristics of a flat plate heat pipe spreader

    E-Print Network [OSTI]

    Chesser, Jason Blake

    2000-01-01T23:59:59.000Z

    An evaluation of the thermal characteristics of a flat plate heat pipe spreader was performed through an analytical, numerical, and experimental analysis. The physical system considered was comprised of a high heat flux heat source attached...

  6. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2010-06-01T23:59:59.000Z

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  7. Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators

    E-Print Network [OSTI]

    Luckyanova, Maria N. (Maria Nickolayevna)

    2008-01-01T23:59:59.000Z

    This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

  8. Development of a compensation chamber for use in a multiple condenser loop heat pipe

    E-Print Network [OSTI]

    Roche, Nicholas Albert

    2013-01-01T23:59:59.000Z

    The performance of many electronic devices is presently limited by heat dissipation rates. One potential solution lies in high-performance air-cooled heat exchangers like PHUMP, the multiple condenser loop heat pipe presented ...

  9. An overview of environmental degradation of materials in nuclear power plant piping systems

    SciTech Connect (OSTI)

    Shack, W.J.

    1987-08-01T23:59:59.000Z

    Piping in light water reactor (LWR) power systems is affected by several types of environmental degradation: intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping in boiling water reactors (BWRs) has required research, inspection, and mitigation programs that will ultimately cost several billion dollars; erosion-corrosion of carbon steel piping has been observed frequently in the secondary systems of both BWRs and pressurized water reactors (PWRs); the effect of the BWR environment can greatly diminish the design margin inherent in the ASME Section III fatigue design curves for carbon steel piping; and cast stainless steels are subject to embrittlement after extended thermal aging at reactor operating temperatures. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions.

  10. Microwave determination of location and speed of an object inside a pipe

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2010-12-14T23:59:59.000Z

    Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.

  11. Development of an air-cooled, loop-type heat pipe with multiple condensers

    E-Print Network [OSTI]

    Kariya, H. Arthur (Harumichi Arthur)

    2012-01-01T23:59:59.000Z

    Thermal management challenges are prevalent in various applications ranging from consumer electronics to high performance computing systems. Heat pipes are capillary-pumped devices that take advantage of the latent heat ...

  12. A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations Kara Silver Abstract Ocean Thermal Energy Conversion (OTEC) is a baseload renewable technology for tropical countries and islands. In order

  13. RF transmission line and drill/pipe string switching technology for down-hole telemetry

    DOE Patents [OSTI]

    Clark, David D. (Santa Fe, NM); Coates, Don M. (Santa Fe, NM)

    2007-08-14T23:59:59.000Z

    A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

  14. Application of the cracked pipe element to creep crack growth prediction

    SciTech Connect (OSTI)

    Brochard, J.; Charras, T.

    1997-04-01T23:59:59.000Z

    The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.

  15. Water heat pipe frozen startup and shutdown transients with internal temperature, pressure and visual observations

    E-Print Network [OSTI]

    Reinarts, Thomas Raymond

    1989-01-01T23:59:59.000Z

    with Internal Temperature, Pressure and Visual Observations. IDecember 1989) Thomas Raymond Reinarts, B. S. , Texas A8M University Chair of Advisory Committee: Dr. Frederick Best In a set of transient heat pipe experiments vapor space and wick... LIST OF TABLES Page Table 1. Outer Aluminum Wall Temperatures Observed and Predicted 79 Table 2. Summary of Measured Dryout, Rewet and Melting Front 126 Velocities LIST OF FIGURES Figure 1. Typical Heat Pipe Diagram Figure 2. Curvature of Vapor...

  16. Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6

    SciTech Connect (OSTI)

    MOSS, TIMOTHY A.

    2002-03-01T23:59:59.000Z

    The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

  17. Design and fabrication of polymer-concrete-lined pipe for testing in geothermal-energy processes. Final report

    SciTech Connect (OSTI)

    Kaeding, A.O.

    1981-12-01T23:59:59.000Z

    A specific polymer-concrete formulation was applied as a steel pipe liner in response to a need for durable, economical materials for use in contact with high temperature geothermal brine. Processes are described for centrifugally applying the liner to straight pipe, for casting the liner in pipe fittings, and for closure of field joints. Physical properties of the liner materials were measured. Compressive strengths of up to 165.8 MPa (24,045 psi) and splitting tensile strengths of 23.5 MPa (3408 psi) were measured at ambient temperature. Compressive strengths of 24 MPa (3490 psi) and splitting tensile strengths of 2.5 MPa (366 psi) were measured at about 150/sup 0/C (302/sup 0/F). A full-scale production plant is described which would be capable of producing about 950 m (3120 ft) of lined 305-mm-diam (12 in.) pipe per day. Capital cost of the plant is estimated to be about $8.6 million with a calculated return on investment of 15.4%. Cost of piping a geothermal plant with PC and PC-lined steel pipe is calculated to be $1.21 million, which compares favorably with a similar plant piped with alloy steel piping at a cost of $1.33 million. Life-cycle cost analysis indicates that the cost of PC-lined steel pipe would be 82% of that of carbon steel pipe over a 20-year plant operating life.

  18. The Second International Piping Integrity Research Group (IPIRG-2) program. Final report, October 1991--April 1996

    SciTech Connect (OSTI)

    Hopper, A.; Wilowski, G.; Scott, P.; Olson, R. [and others

    1997-03-01T23:59:59.000Z

    The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validate LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst`s group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs.

  19. Electrical detection of liquid lithium leaks from pipe joints

    SciTech Connect (OSTI)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15T23:59:59.000Z

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k? trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  20. HTS current lead using a composite heat pipe

    SciTech Connect (OSTI)

    Daugherty, M.A.; Prenger, F.C.; Hill, D.D.; Daney, D.E.; Woloshun, K.A.

    1995-12-31T23:59:59.000Z

    This paper discusses the design and fabrication of HTS current leads being built by Los Alamos to supply power to a demonstration HTS coil which will operate in a vacuum cooled by a cryocooler. Because vapor cooling is not an option for this application the leads must be entirely conductively cooled. In the design of HTS current leads for this type of application, it is desirable to intercept part of the heat load at an intermediate temperature. This thermal intercept or connection must be electrically insulating but thermally conductive, two mutually exclusive properties of most candidate solid materials. To achieve this end we incorporate a composite nitrogen heat pipe, constructed of conducting and non-conducting materials, to provide efficient thermal communication and simultaneously, electrical isolation between the lead and the intermediate temperature heat sink. Another important feature of the current lead design is the use of high Jc thick film superconductors deposited on a non-conducting substrate to reduce the conductive heat leak through the lower portion of the lead. Two flexible electrical conductors are incorporated to accommodate handling, assembly and the dissimilar expansion coefficients of the various materials.

  1. Repeating pneumatic pipe-gun for plasma fueling

    SciTech Connect (OSTI)

    Viniar, I. [State Technical University, Saint Petersburg 195251 (Russia)] [State Technical University, Saint Petersburg 195251 (Russia); Sudo, S. [National Institute for Fusion Science, Nagoya 464-01 (Japan)] [National Institute for Fusion Science, Nagoya 464-01 (Japan)

    1997-03-01T23:59:59.000Z

    A pellet injector of the repeating pneumatic pipe-gun type has been designed for plasma fueling applications. Its use reduces the time for pellet formation by an {ital in situ} technique from 2 to 3 min to 2{endash}10 s. The basic idea of the proposed approach to pellet formation is to melt prefrozen solid fuel and to admit it through a porous unit into a barrel for refreezing. The injector provides for a continuous injection of an unlimited number of pellets. Over 250 hydrogen and deuterium pellets of 3 mm diameter and 3{endash}10 mm in length were accelerated to 1.2 km/s at a rate of 1 pellet per 10{endash}34 s by manually controlled injector operation. An automatically controlled multishot pellet injector ({gt}10 barrels) is capable of providing a continuous and reliable fueling of large fusion devices such as the large helical device and the International Thermonuclear Experimental Reactor (ITER). {copyright} {ital 1997 American Institute of Physics.}

  2. Electrical detection of liquid lithium leaks from pipe joints

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Mehl, J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA

    2014-11-01T23:59:59.000Z

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k#2; trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  3. The qualification of advanced composite pipe for use in fire water deluge systems on open type offshore oil platforms

    SciTech Connect (OSTI)

    Lea, R.H. [Specialty Plastics, Inc., Baton Rouge, LA (United States); Stubblefield, M.A.; Pang, S.S. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering

    1996-12-01T23:59:59.000Z

    Different types of FIBERBOND{reg_sign} pipe in the dry condition and with a butt and strap joint were subjected to a controlled fire for fire endurance evaluation. Testing adheres to a modification of the ASTM 1173-95 guideline, which simulates the development of an actual hydrocarbon fire. For a fire water deluge system, the pipe is in the dry condition approximately one to three minutes during an actual hydrocarbon fire. Preliminary testing shows that composite pipe is able to withstand this exposure to fire for the five minute duration of the test. This is achieved with modifying the chemical composition of the composite pipe and in some cases, adding an additional structural component to the overall pipe. Therefore, composite pipe could be used for the deluge fire system of an offshore oil platform.

  4. Beam Fields and Energy Dissipation Inside the the BE Beam Pipe of the Super-B Detector

    SciTech Connect (OSTI)

    Novokhatski, Alexander; /SLAC; Sullivan, Michael; /SLAC; ,

    2010-09-10T23:59:59.000Z

    We study the bunch field diffusion and energy dissipation in the beam pipe of the Super-B detector, which consists of two coaxial Be thin pipes (half a millimeter). Cooling water will run between these two pipes. Gold and nickel will be sputtered (several microns) onto the beryllium pipe at different sides. The Maxwell equations for the beam fields in these thin layers are solved numerically for the case of infinite pipes. We also calculate the amplitude of the electromagnetic fields outside the beam pipe, which may be noticeable as the beam current can reach 4 A in each beam. Results of simulations are used for the design of this central part of the Super-B detector.

  5. Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines

    SciTech Connect (OSTI)

    Sulfredge, Charles David [ORNL

    2007-07-01T23:59:59.000Z

    The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} < -50 F or 228 K) can extend for a mile or more upstream from the rupture point within 30 s of a break. These conditions are colder than the temperature range specifications for many valve lubricants. The length of the low-temperature zone due to this cooling effect is also essentially independent of the system shut-off valve spacing or the distance between the break and a compressor station. (6) Having more redundant shut-off valves available would reduce the probability that pipe cooling effects could interfere with isolating the broken area following a pipeline rupture accident.

  6. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part I: Nondeformable external medium

    E-Print Network [OSTI]

    Aleksandrova, Nadezhda

    2013-01-01T23:59:59.000Z

    The study focuses on propagation of longitudinal waves in an elastic pipe partly embedded in a medium with dry friction. Mathematical formulation of the problem on the impact pipe driving into the soil is based on the model of longitudinal vibration of an elastic rod with taking into account lateral resistance. The lateral resistance of soil is described by the law of the contact dry friction. Numerical and analytical solutions to problems on longitudinal impulse loading of a pipe are compared.

  8. INL Reactor Technology Complex Out-of-Service Buried Piping Hazards

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2008-05-01T23:59:59.000Z

    Idaho National Laboratory (INL) Reactor Technology Complex (RTC) buried piping and components are being characterized to determine if they should be managed as hazardous waste and subject to the Hazardous Waste Management Act /Resource Conservation and Recovery Act (RCRA). RTC buried piping and components involve both active piping and components from currently operating nuclear facilities, such as the Advanced Test Reactor (ATR), and inactive lines from facilities undergoing D&D activities. The issue exists as to the proper methods to analyze and control hazards associated with D&D activities on facilities collocated with existing operating nuclear facilities, or future collocated facilities being considered with the resurgent nuclear industry. During initial characterization activities, it was determined that residual radioactive material in several inactive RTC lines and components could potentially exceed hazard category (HC) 3 thresholds. In addition, concerns were raised as to how to properly isolate active nuclear facility piping and components from those inactive lines undergoing RCRA actions, and whether the operating facility safety basis could be impacted. Work was stopped, and a potential inadequacy in the safety analysis (PISA) was declared, even though no clear safety basis existed for the inactive, abandoned lines and equipment. An unreviewed safety question (USQ) and an occurrence report resulted. A HC 3 or greater Nuclear Facility/Activity for the buried piping and components was also declared in the occurrence report. A qualitative hazard assessment was developed to evaluate the potential hazards associated with characterization activities, and any potential effects on the safety basis of the collocated RTC operating nuclear facilities. The hazard assessment clearly demonstrated the low hazards associated with the activities based on form and dispersiblity of the radioactive material in the piping and components. The hazard assessment developed unique controls to isolate active RTC piping and components from inactive components, and demonstrated that existing safety management programs were adequate for protection of the worker.

  9. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  10. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    SciTech Connect (OSTI)

    Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.

  11. Natural gas imports and exports. Second quarter report 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This quarter`s feature report focuses on natural gas exports to Mexico. OFP invites ideas from the public on future topics dealing with North American natural gas import/export trade. Such suggestions should be left on OFP`s electronic bulletin board. Natural Gas exports to Mexico continued to grow and reached an historic high for the month of June (7.8 Bcf). Two new long-term contracts were activated; Pennsylvania Gas & Water Company began importing 14.7 MMcf per day from TransCanada PipeLines Ltd., and Renaissance Energy (U.S.) Inc. began importing 2.8 MMcf per day from Renaissance Energy Ltd. for resale to Delmarva Power & Light Company. Algerian LNG imports remained stagnant with only one tanker being imported by Pan National Gas Sales, Inc. (Pan National). During the first six months of 1995, data indicates gas imports increased by about 10 percent over the 1994 level (1,418 vs. 1,285 Bcf), with Canadian imports increasing by 14 percent and Algerian imports decreasing by 81 percent. During the same time period, exports increased by 18 percent (83 vs. 70.1 Bcf).

  12. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  13. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

    2009-03-16T23:59:59.000Z

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  14. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  15. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  16. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  17. Future of Natural Gas

    Office of Environmental Management (EM)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  18. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  19. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  20. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  1. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  2. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  3. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  4. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  5. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  6. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    SciTech Connect (OSTI)

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20T23:59:59.000Z

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  7. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01T23:59:59.000Z

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  8. Superfluid helium testing of a stainless steel to titanium piping transition joint

    E-Print Network [OSTI]

    Soyars, W; Bedeschi, F; Budagov, J; Foley, M; Harms, E; Klebaner, A; Nagaitsev, S; Sabirov, B; 10.1063/1.3422408

    2012-01-01T23:59:59.000Z

    Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.

  9. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28T23:59:59.000Z

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  10. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOE Patents [OSTI]

    Mathur, Mahendra P. (Pittsburgh, PA); Spenik, James L. (Morgantown, WV); Condon, Christopher M. (Morgantown, WV); Anderson, Rodney (Grafton, WV); Driscoll, Daniel J. (Morgantown, WV); Fincham, Jr., William L. (Fairmont, WV); Monazam, Esmail R. (Morgantown, WV)

    2010-11-23T23:59:59.000Z

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  11. Crack shape developments and leak rates for circumferential complex-cracked pipes

    SciTech Connect (OSTI)

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

    1997-04-01T23:59:59.000Z

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  12. Superfluid helium testing of a stainless steel to titanium piping transition joint

    SciTech Connect (OSTI)

    Soyars, W.; /Fermilab; Basti, A.; Bedeschi, F.; /INFN, Pisa; Budagov, J.; /Dubna, JINR; Foley, M.; Harms, E.; Klebaner, A.; Nagaitsev, S.; /Fermilab; Sabirov, B.; Dubna, JINR

    2009-11-01T23:59:59.000Z

    Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.

  13. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOE Patents [OSTI]

    Fernandez, Felix E. (Mayaguez, PR)

    2003-01-01T23:59:59.000Z

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  14. Study of the use of truck tire beads as drainage pipe and analysis of the economics of tire disposal in Oklahoma. Part 1. Culverts. Final report

    SciTech Connect (OSTI)

    Everett, J.W.; Gattis, J.L.

    1994-07-01T23:59:59.000Z

    In an attempt to find alternate ways of dealing with waste truck tires, a private tire recycling company developed a pipe from the tire bead and sidewall. The tire-pipe has seen limited use as a roadway drainage culvert. To encourage wider use of this product, an evaluation of pipe performance was performed. The evaluation consisted of (1) inspections of existing installations; (2) structural tests; and (3) leakage tests. The study found that the majority of installations were performing well. Compared with corrugated steel and fiberglass pipes, the tire-pipe exhibited favorable structural performance. An individual tire-pipe section was found to be watertight. However, when tested in the open-air (not in the ground), the tire-pipe joints were found to leak. Development of an improved end connection would improve the utility of the tire-pipe.

  15. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22T23:59:59.000Z

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  16. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    SciTech Connect (OSTI)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01T23:59:59.000Z

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  17. Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Abstract Drill pipe in a curved section of the drilled well is considered as a rotating

  18. An experimental setup to evaluate the daylighting performance of an advanced optical light pipe for deep-plan office buildings

    E-Print Network [OSTI]

    Martins Mogo de Nadal, Betina Gisela

    2005-11-01T23:59:59.000Z

    This research focuses on an advanced optical light pipe daylighting system as a means to deliver natural light at the back of deep-plan office buildings (15ft to 30ft), using optimized geometry and high reflective materials. The light pipe...

  19. Probabilistic evaluation of main coolant pipe break indirectly induced by earthquakes: Savannah River Project L and P Reactors

    SciTech Connect (OSTI)

    Short, S.A.; Wesley, D.A.; Awadalla, N.G.; Kennedy, R.P. (Impell Corp., Mission Viejo, CA (USA); Westinghouse Savannah River Co., Aiken, SC (USA); Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA))

    1989-01-01T23:59:59.000Z

    A probabilistic evaluation of seismically-induced indirect pipe break for the Savannah River Project (SRP) L- and P-Reactor main coolant (process water) piping has been conducted. Seismically-induced indirect pipe break can result primarily from: (1) failure of the anchorage of one or more of the components to which the pipe is anchored; or (2) failure of the pipe due to collapse of the structure. The potential for both types of seismically-induced indirect failures was identified during a seismic walkdown of the main coolant piping. This work involved: (1) identifying components or structures whose failure could result in pipe failure; (2) developing seismic capacities or fragilities of these components; (3) combining component fragilities to develop plant damage state fragilities; and (4) convolving the plant seismic fragilities with a probabilistic seismic hazard estimate for the site in order to obtain estimates of seismic risk in terms of annual probability of seismic-induced indirect pipe break. 6 refs., 5 figs., 2 tabs.

  20. 878 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 4, AUGUST 2010 A Flat Heat Pipe Architecture Based on

    E-Print Network [OSTI]

    MacDonald, Noel C.

    878 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 4, AUGUST 2010 A Flat Heat Pipe, such as microprocessor chip surfaces, thereby reducing thermal contact resistance and improving system packaging. Fluid. INTRODUCTION COOLING devices such as heat sinks, fans, and heat pipes have long been utilized for cooling

  1. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect (OSTI)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12T23:59:59.000Z

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between successive stepwise infusions.

  2. Optimization of the configuration and working fluid for a micro heat pipe thermal control device

    E-Print Network [OSTI]

    Coughlin, Scott Joseph

    2006-04-12T23:59:59.000Z

    Heat Pipe System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 8 Illustration of Embedded Micro Heat Pipe Placement and Orientation 24 9 Thermal Circuit Model Taken from Original Design Illustration : : : 31 10 Thermal Circuit Model... latent heat (kJ=kg) ? length (m) ? viscosity (Ns=m2) ? ratio of speci?c heat ? Boltzmann constant (1:38 ? 10?23 m2kg=s2 ? K) ? density (kg=m3) ? latent heat (kJ=kg) ? kinematic viscosity (m2=s) ? surface tension (N=m) Subscripts a adiabatic b boiling c...

  3. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    SciTech Connect (OSTI)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01T23:59:59.000Z

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.

  4. Fusion-bonded epoxy coating defects on weld center line of submerged-arc welded pipe

    SciTech Connect (OSTI)

    Sokol, D.R.; Herndon, C.M. (Tenneco Oil Co., Houston, TX (USA))

    1990-08-01T23:59:59.000Z

    The problem of weld center line coating defects in fusion-bonded epoxy coatings has occurred on pipe produced in Europe, North America, and Asia. At various times, the defects have been attributed to coating application practices, powder manufacturing, pipe manufacturing, welding methods, and overly critical inspectors. This article details plant experience and experimental trails that led to the identification of the cause and proof of the solution. The ultimate effect of initial coating defects on cathodic protection requirements is a matter of concern also.

  5. A study of the minimum meniscus radius as a function of vapor temperature using heat pipes

    E-Print Network [OSTI]

    Sonnier, Ronald James

    1973-01-01T23:59:59.000Z

    /sec 2 latent heat of vaporization, BTU/lb m wick permeability, ft 2 length, ft molecular weight, ibm water parameter, hf pfof/uf fgff f pressure, lbf/ft 2 desorption pressure, lbf/ft 2 saturation pressure, lbf/ft 2 heat transfer rate, BTU... into Cosgrove's equation, assuming the temperature is uni- form inside the heat pipe, replacing the sum of the section lengths by the total length of the heat pipe, and combining the fluid prop- erties into one var1able there is obtained N = hf pfof/uf...

  6. Fabrication process development for micro heat pipes using orientation dependent etching

    E-Print Network [OSTI]

    Ahmed, Akther Salehuddin

    1991-01-01T23:59:59.000Z

    between the chip and the working fluid. FINS CONOENSER WICK sELLows sacrloN GROOVE EVAPORAIOR CHIP Fig. 2. Indirect heat pipe application of Eldridge and Peterson [14] Kroman et al (1986) proposed an integral heat pipe where heat generated... wafer would have to be vertically etched to obtain that structure. 23 NOZZLE CHARGING EL ECTROOE DEFLECTION PLATES PAPER (IOO SI I V O N 4I (IIO) n-Sl P I I n-SI . 5mm ~ ~ ~ ~ 4I250 V ~ t ~ ~ ~ ~ 7. 5 mm ~ i ~ ~ GUTTER Oto...

  7. A new probe for corrosion monitoring of stainless steel piping systems

    SciTech Connect (OSTI)

    Valen, S.; Johnsen, R.; Gartland, P.O. [CorrOcean as, Trondheim (Norway); Hollen, I.H. [AS Norske Shell, Kristiansund (Norway)

    1995-12-01T23:59:59.000Z

    This paper presents theoretical background and development of a probe for corrosion monitoring of process- and piping systems made of stainless steels. The probe will be installed in two piping systems on the Draugen platform in the North Sea. One installation is for monitoring of a produced water systems made of duplex stainless steel (UNS S31803), and one for monitoring in a seawater system made of high-alloy austenitic stainless steel of the 6 Mo type (UNS S31254). Equipment for logging and storing data is also described.

  8. Using pipe with corrugated walls for a sub-terahertz FEL

    E-Print Network [OSTI]

    Stupakov, Gennady

    2014-01-01T23:59:59.000Z

    It has been noted in the past, in the study of the wall-roughness impedance, that a metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode in a metallic pipe with corrugated walls---via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation.

  9. Application of the cracked pipe element to creep crack growth prediction

    SciTech Connect (OSTI)

    Brochard, J.; Charras, T. [C.E.A.-C.E.-Saclay DRN/DMT, Gif Sur Yvette (France); Ghoudi, M. [C.E.A.-C.E.-Saclay, Gif Sur Yvette (France)

    1997-04-01T23:59:59.000Z

    Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.

  10. Effect of a 90° Elbow on the Accuracy of an Insertion Flowmeter, Results and Comparisons for 4 and 6 in. Diameter PVC Pipe

    E-Print Network [OSTI]

    Bryant, J. A.; O'Neal, D. L.

    1996-01-01T23:59:59.000Z

    downstream of obstructions such as bends, tees, elbows, etc. (ASME 1971). In a new facility, the requirements of the flow metering equipment can be integrated directly into the design and layout of the piping system. Differential pressure type flowmeters..., such as venturis or orifices, are common for new applications. For retrofit applications however, the engineer often has no choice about the configuration of the piping network in a facility. A specific piping system may have no long runs of straight pipe...

  11. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01T23:59:59.000Z

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  12. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    SciTech Connect (OSTI)

    Not Available

    1984-08-01T23:59:59.000Z

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry.

  13. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect (OSTI)

    Wollan, J. J. (John J.); Swift, G. W. (Gregory W.); Backhaus, S. N. (Scott N.); Gardner, D. L. (David L.)

    2002-01-01T23:59:59.000Z

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

  14. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  15. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tankthe house. Supply pipe – this is the water heater inlet pipewith refills the water heater with cold water Note: The TANK

  16. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    SciTech Connect (OSTI)

    Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

    1997-06-01T23:59:59.000Z

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.

  17. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  18. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15T23:59:59.000Z

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  19. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  20. Survey and assessment of the effects of nonconventional gases on gas distribution equipment

    SciTech Connect (OSTI)

    Jasionowski, W.J.; Scott, M.I.; Gracey, W.C.

    1982-10-01T23:59:59.000Z

    A literature search and a survey of the gas industry were conducted to assess potential problems in the distribution of nonconventional gases. Available literature did not uncover data that would describe potential problems or substantiate the presence of harmful trace elements in final gas compositions produced from various SNG processes. Information from the survey indicates that some companies have encountered problems with nonconventional gases and extraneous additives such as landfill gas, refinery off-gases, oil gas, carbureted water gas, coke-oven gas, propane-air, and compressor lubricant oils. These nonconventional gases and compressor oils may 1) cause pipeline corrosion, 2) degrade some elastomeric materials and greases and affect the integrity of seals, gaskets, O-rings, and meter and regulator diaphragms, and 3) cause operational and safety problems. The survey indicated that 62% of the responding companies plan to use supplemental gas, with most planning on more than one type. Distribution companies intend to significantly increase their use of polyethylene piping from 11.6% in 1980 to 22.4% in 2000 for gas mains and from 33.4% to 50.3% in 2000 for gas service lines.

  1. OpenEI Community - Corrugated Metal Pipe Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHome All0 en How

  2. OpenEI Community - Corrugated Metal Pipe Market Research

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHome All0 en How

  3. OpenEI Community - Corrugated Metal Pipe Market Size

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHome All0 en How

  4. OpenEI Community - Corrugated Metal Pipe Market Trends

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHome All0 en How

  5. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  6. Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states

    E-Print Network [OSTI]

    Khandekar, Sameer

    Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states V 400085, India h i g h l i g h t s PHP tested with varying heat powers under vertical orientation. Tube wall and inside fluid temperatures measured in the evaporator. Infrared temperature visualization

  7. A Series of Tubes: Adding Interactivity to 3D Prints Using Internal Pipes

    E-Print Network [OSTI]

    Zakhor, Avideh

    A Series of Tubes: Adding Interactivity to 3D Prints Using Internal Pipes Valkyrie Savage valkyrie flexibility and potential. Author Keywords Fabrication; 3D Printing; Interactive Objects; Design Tools ACM. Recently, human-computer interaction researchers have be- gun to explore adding interaction to 3D printed

  8. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01T23:59:59.000Z

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  9. Thermomechanical history measurements on Type 304L stainless steel pipe girth welds

    SciTech Connect (OSTI)

    Li, Ming; Atteridge, D.G.; Anderson, W.E.; Turpin, R. [Oregon Graduate Inst., Portland, OR (United States); West, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-12-31T23:59:59.000Z

    Thermal and strain histories were recorded for three 40-cm-diameter (16 inch), Type 304L stainless steel (SS), schedule 40 (1.27 cm thickness) pipe girth welds. Two weld groove preparations were standard V grooves while the third was a narrow groove configuration. The welding parameters for the three pipe welds simulated expected field practice as closely as possible. The narrow gap weld was completed in four continuous passes while the other two welds required six and nine (discontinuous) passes, due to the use of different weld wire diameters. Thermomechanical history measurements were taken on the inner counterbore surface, encompassing the weld centerline and heat-affected zone (HAZ), as well as 10 cm of inner counterbore surface on either side of the weld centerline; a total of 47 data acquisition instruments were used for each weld. These instruments monitored: (1) weld shrinkages parallel to the pipe axis; (2) surface temperatures; (3) surface strains parallel to weld centerline; and (4) radial deformations. Results show that the weld and HAZ experienced cyclic deformation in the radial direction during welding, indicating that the final residual stress distribution in multi-pass pipe weldments is not axisymmetric. Measured radial and axial deformations were smaller for the narrow gap groove than for the standard V grooves, suggesting that the narrow gap groove weldment may have lower residual stress levels than the standard V groove weldments. This study provides the experimental database and a guideline for further computational modeling work.

  10. Application of thermodynamic approach to pneumatic transport at pipe orientations above the horizontal

    SciTech Connect (OSTI)

    Zaltash, A.

    1987-01-01T23:59:59.000Z

    Application of thermodynamic analogy to pneumatic transport in 0.0266 m and 0.0504 m systems held at various angles of inclination was investigated. Particles used in these systems included glass particles of 67 ..mu..m, 450 ..mu..m, and 900 ..mu..m weight mean diameter as well as iron ore of 400 ..mu..m weight mean diameter. An equation of state similar to the van der Waals has been suggested for these systems. Measurements in these experimental set-ups included pressure drops, particle velocities, and solids mass flow rates in both the upper and lower halves of the pipe. These measurements were used to describe the phase behavior of the systems studied. It was found that the van der Waals analog is capable of describing the phase behavior of these systems. A method has been proposed to estimate the parameters of the van der Waals analog equation. The incorporation of dimensionless pressure drop into the analysis has been attempted by the use of energy functions in thermodynamics. The effect of inclination angle, pipe diameter, and particle characteristics on basic flow parameters were studied. The ratio of solids flow in the top half to that of the bottom half of the pipe showed that the concentration gradient is influenced by particle characteristics, and by the pipe diameter and orientation. Glass test section was used in these systems for visual observations of the flow patterns. 53 refs., 176 figs., 52 tabs.

  11. Friction factor for turbulent flow in rough pipes from Heisenberg's closure hypothesis

    E-Print Network [OSTI]

    Esteban Calzetta

    2009-04-17T23:59:59.000Z

    We show that the main results of the analysis of the friction factor for turbulent pipe flow reported in G. Gioia and P. Chakraborty (GC), Phys. Rev. Lett. 96, 044502 (1996) can be recovered by assuming the Heisenberg closure hypothesis for the turbulent spectrum. This highlights the structural features of the turbulent spectrum underlying GC's analysis.

  12. Roughness Tolerance Studies for the Undulator Beam Pipe Chamber of LCLS-II

    E-Print Network [OSTI]

    Bane, K

    2014-01-01T23:59:59.000Z

    We investigate the effect of wall roughness on the wakefield-induced energy variation in the undulator beam pipe of LCLS-II. We find that a wall roughness equivalent to an rms surface slope of 30 mr increases the total induced energy variation within the bunch (due to the resistive wall wake) by a modest 20%.

  13. Proceedings of PVP2006-ICPVT-11 2006 ASME Pressure Vessels and Piping Division Conference

    E-Print Network [OSTI]

    Barr, Al

    Proceedings of PVP2006-ICPVT-11 2006 ASME Pressure Vessels and Piping Division Conference July 23 response leading to large deformations. Some issues in measurement technique and validation testing of scientific investigation. It is a hazard that is occasion- ally encountered in the chemical [1,2], nuclear [3

  14. On the bifurcation structure of axisyrnmetric vortex breakdown in a constricted pipe

    E-Print Network [OSTI]

    Lopez, John M.

    On the bifurcation structure of axisyrnmetric vortex breakdown in a constricted pipe J. M. Lopez Department of Mathematics and Earth SystemScienceCenter;The PennsylvaniaState University, Universiv Park, Pennsylvania 16802 (Received 5 April 1994; accepted 20 July 1994) The bifurcation structure is presented

  15. MegaPipe: A New Programming Interface for Scalable Network I/O Sangjin Han+

    E-Print Network [OSTI]

    California at Irvine, University of

    that, by embracing a clean-slate design approach, MegaPipe is able to exploit new opportunities to which it can be optimized for performance. In contrast, a clean- slate redesign offers the opportunity and tedious burden of layering several abstractions for the sake of concurrency. Once again, a clean-slate

  16. Simultaneous Extrema in the Entropy Production for Steady-State Fluid Flow in Parallel Pipes

    E-Print Network [OSTI]

    Niven, Robert K

    2009-01-01T23:59:59.000Z

    Steady-state flow of an incompressible fluid in parallel pipes can simultaneously satisfy two contradictory extremum principles in the entropy production, depending on the flow conditions. For a constant total flow rate, the flow can satisfy (i) a pipe network minimum entropy production (MinEP) principle with respect to the flow rates, and (ii) the maximum entropy production (MaxEP) principle of Paltridge and Ziegler with respect to the choice of flow regime. The first principle - different to but allied to that of Prigogine - arises from the stability of the steady state compared to non-steady-state flows; it is proven for isothermal laminar and turbulent flows in parallel pipes with a constant power law exponent, but is otherwise invalid. The second principle appears to be more fundamental, driving the formation of turbulent flow in single and parallel pipes at higher Reynolds numbers. For constant head conditions, the flow can satisfy (i) a modified maximum entropy production (MaxEPMod) principle of \\v{Z}u...

  17. Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon

    E-Print Network [OSTI]

    Khandekar, Sameer

    Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase of the PHP operation. The fundamental thermo-fluidic processes occurring in the device operation gradients is to cause non-equilibrium pressure conditions, which is the primary driving force for thermo

  18. Induction welding and heat treatment of steel pipes: evolution of crystallographic texture

    E-Print Network [OSTI]

    Cambridge, University of

    Induction welding and heat treatment of steel pipes: evolution of crystallographic texture detrimental to toughness P. Yan*1 , O¨. E. Gu¨ngo¨r2 , P. Thibaux2 and H. K. D. H. Bhadeshia1 Steel welding using induction heating to produce pipelines is found to have lower toughness at the weld junction than

  19. WITHOUT MANUAL VALVE. 5. PIPING TO BE PRESSURE TESTED TO 2250 PSIG

    E-Print Network [OSTI]

    McDonald, Kirk

    WELDS SHALL BE DYE PENETRANT INSPECTED. WITH ASME SECTION IX. NO CODE STAMP REQUIRED. 1. WELDING SHALL 1. WELDING SHALL BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE STAMP REQUIRED. 2. ALL RIGID TUBE, 0.374 OD X 0.065 WALL CODE 61 (3000 PSI) 4 1" SCH 40 PIPE 1.00 DIA 4-BOLT SAE FLANGE PORT

  20. FSI IN L-SHAPED AND T-SHAPED PIPE SYSTEMS A.S. Tijsseling

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    " end (support, anchor), for example the connection of the test pipe to a liquid supply (reservoir reported in literature, the system does not suffer from unknown support conditions. The experimental experiments have been performed in systems with elbows, ranging from Blade et al [1962] to Jiao et al [1999

  1. Piping by queens of Apis cerana Fabricius 1793 and Apis koschevnikovi v Buttel-Reepen 1906

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    was piping, we recorded the audible sound with a Sony Profes- sional Walkman tape recorder equipped with a Sony F99LT microphone and Sony UX-Pro90 Type II (CrO2) high bias tape. Recordings were made from opened

  2. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    E-Print Network [OSTI]

    Wadley, Haydn

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution

  3. Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram

    E-Print Network [OSTI]

    Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram Research Laboratory the thermoelectric performance of the electronic devices themselves. Recognizing that minority carriers play for thermoelectric effects in a p-n diode (a prototypical electronic and optoelectronic component) where diffusion

  4. CHARACTERISATION OF AGED HDPE PIPES FROM DRINKING WATER DISTRIBUTION: INVESTIGATION OF CRACK DEPTH BY NOL RING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BY NOL RING TESTS UNDER CREEP LOADING C. Devilliers 1), 2), 3) , L. Laiarinandrasana 1) , B. Fayolle 2. KEYWORDS HDPE pipes, Nol Ring creep test, ageing effects, fracture mechanism, crack depth ratio, aged layer loading than a monotonic tensile loading. It is to be noticed that the Nol Ring test subjected to a creep

  5. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Pressure Vessels & Piping Division Conference

    E-Print Network [OSTI]

    Tijsseling, A.S.

    1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Pressure Vessels & Piping Division.P. Andersens veg 7 N-7465 Trondheim Norway E-mail: bjoernar.svingen@rainpower.no Anton BERGANT Litostroj Power = 50 m; inner diameters D1 = 1 m and D2 = 0.2 m [1]. #12;2 Copyright © 2012 by ASME Figure 2. Technical

  6. Field of Pipe Dreams: Minimizing Maintenance Cost for Hand-Moved

    E-Print Network [OSTI]

    Morrow, James A.

    Field of Pipe Dreams: Minimizing Maintenance Cost for Hand-Moved Irrigation Systems February 6 Conclusion 11 2 #12;Page 3 of 12 Control #23 The "hand-move" irrigation system is widely used on small fields to minimize the maintenance time of a hand-move irrigation system under the following constraints: · No part

  7. Onion ipmPIPE -Diagnostic Pocket Series Bulb Growth Stages of Onion (Allium cepa L.)

    E-Print Network [OSTI]

    Pappu, Hanu R.

    Onion ipmPIPE - Diagnostic Pocket Series Bulb Growth Stages of Onion (Allium cepa L.) Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 Allium Type: Fresh Market and Storage Onion Both pre- and post-bulb planting (seeds, transplants, sets). Pre-Bulb Growth Stages 1 ­ radical and flag leaf emergence (10-30 days

  8. FLUID-STRUCTURE INTERACTION AND TRANSIENT CAVITATION TESTS IN A T-PIECE PIPE

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    FLUID-STRUCTURE INTERACTION AND TRANSIENT CAVITATION TESTS IN A T-PIECE PIPE ARRIS S TIJSSELING featuring the combined phenomena of fluid-structure interaction (FSI) and vaporous cavitation is presented and the static pressure of the liquid control the severity of the cavitation phenomenon. Keywords: Water hammer

  9. Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes

    E-Print Network [OSTI]

    Soatto, Stefano

    the assumption that the densities of the two uids are di#11;erent and that the viscosity of the oil core is veryLevel Set Based Simulations of Two-Phase Oil-Water Flows in Pipes Hyeseon Shim July 31, 2000 Abstract We simulate the axisymmetric pipeline transportation of oil and water numerically under

  10. 2102, Page 1 Experimental Investigation of Closed Loop Oscillating Heat Pipe as the

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    pipe (CLOHP) as the condenser for a vapor compression refrigeration system. Split type air conditioner condenser in the split type air conditioner. The refrigeration capacity was set at 12,500 Btu/h (3.663 k is commonly used in a wide range of residential and commercial buildings. Most of the air conditioner types

  11. Numerical Analysis of JNES Seismic Tests on Degraded Combined Piping System

    SciTech Connect (OSTI)

    Zhang T.; Nie J.; Brust, F.; Wilkowski, G.; Hofmayer, C.; Ali, S.; Shim, D-J.

    2012-02-02T23:59:59.000Z

    Nuclear power plant safety under seismic conditions is an important consideration. The piping systems may have some defects caused by fatigue, stress corrosion cracking, etc., in aged plants. These cracks may not only affect the seismic response but also grow and break through causing loss of coolant. Therefore, an evaluation method needs to be developed to predict crack growth behavior under seismic excitation. This paper describes efforts conducted to analyze and better understand a series of degraded pipe tests under seismic loading that was conducted by Japan Nuclear Energy Safety Organization (JNES). A special 'cracked-pipe element' (CPE) concept, where the element represented the global moment-rotation response due to the crack, was developed. This approach was developed to significantly simplify the dynamic finite element analysis in fracture mechanics fields. In this paper, model validation was conducted by comparisons with a series of pipe tests with circumferential through-wall and surface cracks under different excitation conditions. These analyses showed that reasonably accurate predictions could be made using the abaqus connector element to model the complete transition of a circumferential surface crack to a through-wall crack under cyclic dynamic loading. The JNES primary loop recirculation piping test was analyzed in detail. This combined-component test had three crack locations and multiple applied simulated seismic block loadings. Comparisons were also made between the ABAQUS finite element (FE) analyses results to the measured displacements in the experiment. Good agreement was obtained, and it was confirmed that the simplified modeling is applicable to a seismic analysis for a cracked pipe on the basis of fracture mechanics. Pipe system leakage did occur in the JNES tests. The analytical predictions using the CPE approach did not predict leakage, suggesting that cyclic ductile tearing with large-scale plasticity was not the crack growth mode for the acceleration excitations considered here. Hence, the leakage was caused by low-cycle fatigue with small-scale yielding. The procedure used to make predictions of low-cycle fatigue crack growth with small-scale yielding was based on the Dowling {Delta}J procedure, which is an extension of linear-elastic fatigue crack growth methodology into the nonlinear plasticity region. The predicted moments from the CPE approach were used using a cycle-by-cycle crack growth procedure. The predictions compare quite well with the experimental measurements.

  12. The Merits of Piping Jeanne D'arc Gas to the AvalonThe Merits of Piping Jeanne D'arc Gas to the Avalon Dr. Stephen Bruneau, P.EngDr. Stephen Bruneau, P.Eng

    E-Print Network [OSTI]

    Bruneau, Steve

    Capacity OptionsNew Electrical Capacity Options 1.1. OilOil--based thermal.based thermal. 2.2. HVDC Hydro infeed from Labrador.HVDC Hydro infeed from Labrador. 3.3. OnOn--Island Hydro procurement.Island Hydro

  13. Cost of Gas Adjustment for Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

  14. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13T23:59:59.000Z

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  15. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part II: Deformable external medium

    E-Print Network [OSTI]

    Aleksandrova, Nadezhda

    2013-01-01T23:59:59.000Z

    Under analysis is travel of P-waves in an elastic pipe partly embedded in soil with dry friction. The mathematical formulation of the problem on impact pipe driving in soil is based on the model of axial vibration of an elastic bar, considering lateral resistance described using the law of solid dry friction. The author solves problems on axial load on pipe in interaction with external elastic medium, and compares the analytical and numerical results obtained with and without accounting for the external medium deformability.

  16. TOPAZ: a computer code for modeling heat transfer and fluid flow in arbitrary networks of pipes, flow branches, and vessels

    SciTech Connect (OSTI)

    Winters, W.S.

    1984-01-01T23:59:59.000Z

    An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.

  17. Influence of wetting effect at the outer surface of the pipe on increase in leak rate - experimental results and discussion

    SciTech Connect (OSTI)

    Isozaki, Toshikuni; Shibata, Katsuyuki

    1997-04-01T23:59:59.000Z

    Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.

  18. Vaporization cooling for gas turbines, the return-flow cascade

    SciTech Connect (OSTI)

    Kerrebrock, J.L.; Stickler, D.B.

    2000-01-01T23:59:59.000Z

    A new paradigm for gas turbine design is treated, in which major elements of the hot section flow path are cooled by vaporization of a suitable two-phase coolant. This enables the blades to be maintained at nearly uniform temperature without detailed knowledge of the heat flux to the blades, and makes operation feasible at higher combustion temperatures using a wider range of materials than is possible in conventional gas turbines with air cooling. The new enabling technology for such cooling is the return-flow cascade, which extends to the rotating blades the heat flux capability and self-regulation usually associated with heat-pipe technology. In this paper the potential characteristics of gas turbines that use vaporization cooling are outlined briefly, but the principal emphasis is on the concept of the return-flow cascade. The concept is described and its characteristics are outlined. Experimental results are presented that confirm its conceptual validity and demonstrate its capability for blade cooling at heat fluxes representative of those required for high pressure ratio high temperature gas turbines.

  19. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  20. Purchased Gas Adjustment Rules (Tennessee)

    Broader source: Energy.gov [DOE]

    The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

  1. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  2. Natural gas annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  3. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  4. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  5. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  6. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01T23:59:59.000Z

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  7. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10T23:59:59.000Z

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  8. 31761Federal Register / Vol. 75, No. 107 / Friday, June 4, 2010 / Notices inch gauge (psig) to clean gas pipes. A

    E-Print Network [OSTI]

    were made to eliminate or control potential ignition sources outside the power generation building. However, many ignition sources existed inside the building: electrical power to the building was on, welders were actively working, and diesel-fueled heaters were running. Initial calculations by CSB

  9. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31T23:59:59.000Z

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  10. Natural gas annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  11. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  12. SOLVING POWER-CONSTRAINED GAS TRANSPORTATION ...

    E-Print Network [OSTI]

    2014-11-27T23:59:59.000Z

    Nov 27, 2014 ... physical quantities but further incorporate heat power supplies and .... consist of pipes Api, resistors Ars, valves Ava, control valves Acv, and ...

  13. Rheology of Colloidal Gas Aphrons (Microfoams)

    E-Print Network [OSTI]

    Larmignat, Sophie; Vanderpool, Damien; Lai, Heung; Pilon, Laurent

    2008-01-01T23:59:59.000Z

    American Institute of Chemical Engineering Journal, vol. 46,dispersions , Chemical Engineering Research and Design, Vol.in vertical pipes , Chemical Engineering Science, Vol. 55,

  14. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17T23:59:59.000Z

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  15. Gas Cylinders: Proper Management

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

  16. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01T23:59:59.000Z

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  17. Natural Gas Exploration

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    . Exploration and extraction of natural gas from the Marcellus shale is a potentially valuable economic stimulus for landowners. You might be wondering how the nation's economic situation is affecting the market for naturalNatural Gas Exploration: A Landowners Guide to Financial Management Natural Gas Exploration

  18. Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index

    E-Print Network [OSTI]

    Fang, X.; Wang, Z.; Liu, H.

    2006-01-01T23:59:59.000Z

    This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results...

  19. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    SciTech Connect (OSTI)

    Hashemi, S. H. [Department of Mechanical Engineering, University of Birjand, POBOX 97175-376, Birjand (Iran, Islamic Republic of); Mohammadyani, D. [Materials and Energy Research Center (MERC) POBOX 14155-4777, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  20. From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring

    SciTech Connect (OSTI)

    Lombardi, Marcie L.

    2012-03-01T23:59:59.000Z

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today’s gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a “notch” filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF{sub 6} gas enrichment monitors have required empty pipe measurements to accurately determine the pipe attenuation (the pipe attenuation is typically much larger than the attenuation in the gas). This dissertation reports on a method for determining the thickness of a pipe in a GCEP when obtaining an empty pipe measurement may not be feasible. This dissertation studies each of the components that may add to the final error in the enrichment measurement, and the factors that were taken into account to mitigate these issues are also detailed and tested. The use of an x-ray generator as a transmission source and the attending stability issues are addressed. Both analytical calculations and experimental measurements have been used. For completeness, some real-world analysis results from the URENCO Capenhurst enrichment plant have been included, where the final enrichment error has remained well below 1% for approximately two months.

  1. Welcome FUPWG- Natural Gas Overview

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

  2. An analysis of the Cured-in-Place Pipe (CIPP) subproject of the sanitary sewer rehabilitation project

    SciTech Connect (OSTI)

    Morrow, W.; Siemiatkoski, S.

    1994-01-25T23:59:59.000Z

    The comprehensive rehabilitation of the Lawrence Livermore National Laboratory Sanitary Sewer System centers around a Cured-in-Place Pipe project. Driven by regulatory requirements to eliminate the potential for exfiltration, a careful condition assessment of the existing infrastructure was conducted. Under programmatic constraints to maintain continuous operations, the INLINER USA cured-in-place pipe system was selected as the appropriate technology, and the project is currently under contract.

  3. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20T23:59:59.000Z

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  4. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    SciTech Connect (OSTI)

    Qingbang, Han; Ling, Chen; Changping, Zhu [Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, College of IOT, Hohai University Changzhou, Jiangsu, 213022 (China)

    2014-02-18T23:59:59.000Z

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  5. Wave transmission and mooring-force characteristics of pipe-tire floating breakwaters

    SciTech Connect (OSTI)

    Harms, Volker W.; Westerink, Joannes J.

    1980-10-01T23:59:59.000Z

    The results are presented of a series of prototype scale tests of a floating breakwater that incorporates massive cylindrical members (steel or concrete pipes, telephone poles, etc.) in a matrix of scrap truck or automobile tires, referred to as the Pipe-Tire Breakwater (PT-Breakwater). Tests were conducted in the large wave tank at the US Army Coastal Engineering Research Center (CERC). Breakwater modules were preassembled at SUNY in Buffalo, New York, and then transported to CERC by truck, where final assembly on location was again performed by SUNY personnel. Wave-tank tests were conducted jointly by CERC and SUNY personnel. A series of wave-tank experiments and mooring system load-deflection tests were performed, and are described. Wave-transmission and mooring-load characteristics, based on 402 separate tests, were established and are reported. (LCL)

  6. MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre

    E-Print Network [OSTI]

    Stephen. D. J. Gwyn

    2007-10-01T23:59:59.000Z

    This paper describes the MegaPipe image processing pipeline at the Canadian Astronomical Data Centre. The pipeline combines multiple images from the MegaCam mosaic camera on CFHT and combines them into a single output image. MegaPipe takes as input detrended MegaCam images and does a careful astrometric and photometric calibration on them. The calibrated images are then resampled and combined into image stacks. The astrometric calibration of the output images is accurate to within 0.15 arcseconds relative to external reference frames and 0.04 arcseconds internally. The photometric calibration is good to within 0.03 magnitudes. The stacked images and catalogues derived from these images are available through the CADC website:

  7. The PEACE PIPE: Recycling nuclear weapons into a TRU storage/shipping container

    SciTech Connect (OSTI)

    Floyd, D.; Edstrom, C. [Manufacturing Sciences Corp. (United States); Biddle, K.; Orlowski, R. [BNFL, Inc. (United States); Geinitz, R. [Safe Sites of Colorado, Golden, CO (United States); Keenan, K. [USDOE-RFFO (United States); Rivera, M. [Science Applications International Corp./LATA (United States)

    1997-03-01T23:59:59.000Z

    This paper describes results of a contract undertaken by the National Conversion Pilot Project (NCPP) at the Rocky Flats Environmental Technology Site (RFETS) to fabricate stainless steel ``pipe`` containers for use in certification testing at Sandia National Lab, Albuquerque to qualify the container for both storage of transuranic (TRU) waste at RFETS and other DOE sites and shipping of the waste to the Waste Isolation Pilot Project (WIPP). The paper includes a description of the nearly ten-fold increase in the amount of contained plutonium enabled by the product design, the preparation and use of former nuclear weapons facilities to fabricate the components, and the rigorous quality assurance and test procedures that were employed. It also describes how stainless steel nuclear weapons components can be converted into these pipe containers, a true ``swords into plowshare`` success story.

  8. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOE Patents [OSTI]

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15T23:59:59.000Z

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  9. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOE Patents [OSTI]

    Hapstack, Mark (North Augusta, SC); Talarek, Ted R. (Augusta, GA); Zollinger, W. Thor (Martinez, GA); Heckendorn, II, Frank M. (Alken, SC); Park, Larry R. (North Augusta, SC)

    1994-01-01T23:59:59.000Z

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  10. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31T23:59:59.000Z

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  11. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  12. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    SciTech Connect (OSTI)

    Hagen Schempf; Daphne D'Zurko

    2004-10-31T23:59:59.000Z

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  13. The use of GRP materials in piping systems: The experience of Total

    SciTech Connect (OSTI)

    Aubert, C.F.P. [Total Exploration Production, Paris (France)

    1993-12-31T23:59:59.000Z

    The first use of GRP materials by Total took place in 1975 on one of the authors off-shore oil production facilities in the Middle-East. After only 8 months of operation, the fire water and the cooling water systems, which were made of galvanized carbon steel materials, happened to be heavily corroded, and, consequently, had to be changed. Corrosion experts had the evidence that this corrosion was caused by the use of sea water, and, accordingly, had to select an appropriate corrosion resistant material for the replacement of the existing systems which turned to the advantage of GRP materials for several reasons: good corrosion resistance, light weight, no need for hot work permits. As many other end-users, because it was found that the overall level of standardization of GRP materials was not as comprehensive as what it is for metallic materials, Total had to specify to some details what to use, where and how to use it. This led to the issue of several technical specifications, and, among them, one for the supply of GRP piping materials. This document is mainly based on ASTM standards, with additional guidelines in the following areas: type of resins, manufacturing processes, types of joints, gaskets, pipes supporting, inspection, testing of finished products (destructive tests and tightness tests). As an end-user, they also had to set-up a policy for the use of GRP piping materials with regards to its advantages, but also taking into account some disadvantages such as its poor fire resistance. This policy (which is based on several fire tests which have been carried-out) has been, for essential services such as Fire Water Systems, to use GRP materials only on lines which are permanently kept full of water; down-stream the block valves, where piping is normally dry (for instance, on deluge systems), they would only use metallic materials.

  14. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    Cooling Coil Efficiency Water viscosity at the water bulk temperature Water fluid viscosity at the pipe wall temperature Fin Pitch ix TABLE OF CONTENTS... of the analysis will be compared with the weather data and chilled water system data of the DFW Airport during 2010. Other possible causes of the reduced delta-T at low loads exist and will be investigated. 8 2 LITERATURE REVIEW 2.1 Heat transfer...

  15. Sulfide stress cracking susceptible pipe fittings bought to NACE MR0175

    SciTech Connect (OSTI)

    McIntyre, D.R.; Moore, E.M. Jr. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-09-01T23:59:59.000Z

    The NACE MR0175 limit of R{sub c} 22 is non-conservative for cold-forged and stress relieved ASTM A234 WPB pipe fittings. Hardness surveys and sulfide stress cracking test results per ASTM G39 and NACE TMO177 Method B are presented. More stringent inspection and a hardness limit of BHN 197 (for cold-forged and stress relieved fittings only) are recommended to rectify this situation.

  16. Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility

    Broader source: Energy.gov [DOE]

    Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

  17. Prediction of fluid flow in curved pipe using the finite element method

    E-Print Network [OSTI]

    Maitin, Christopher Benjamin

    1987-01-01T23:59:59.000Z

    . Therefore mathematical models have been developed to simulate the elfect of these stresses on the flow field. Until recently these models have only been used for simple geometries. With the advancement of the computer, numerical methods have been de... OF SCIENCE May 1987 Major Subject: Mechanical Engineering PREDICTION OF FLUID FLOW IN CURVED PIPE USING THE FINITE ELEMENT METHOD A Thesis CHRISTOPHER B. MAITIN Approved as to style and content by: Dennis L. O'Neal (Chairman of Committee) Warren...

  18. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-03-01T23:59:59.000Z

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  19. Critical elements in the design of piping systems for toxic fluids

    SciTech Connect (OSTI)

    Getz, R.C. [Raytheon Engineers and Constructors, Philadelphia, PA (United States)] [Raytheon Engineers and Constructors, Philadelphia, PA (United States)

    1996-09-01T23:59:59.000Z

    While releases of hazardous/toxic fluids from pressurized pipelines are infrequent, the potential for a catastrophic event resulting from such a release warrants extraordinary care of the hazardous/toxic piping systems containing these fluids, during the entire plant life cycle. System identification, segregation, material and component selection, construction techniques, and preventative maintenance programs all contribute to improved system reliability, and are discussed herein. Methods to mitigate damages in the event of a failure are also discussed.

  20. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect (OSTI)

    Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

    1994-09-12T23:59:59.000Z

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.