National Library of Energy BETA

Sample records for trans alaska pipeline

  1. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  2. EIS-0139: Trans-Alaska Gas System

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation's proposed construction of the Trans-Alaska Gas System (TAGS), a 796.5-mile long, 36-inch diameter pipeline to transport high-pressured natural gas between Prudhoe Bay and a tidewater terminal and liquefied natural gas plant near Anderson Bay, Alaska.

  3. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on ... It would also fulfill the Bush Administration's policy to bring ...

  4. Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guarantee Program | Department of Energy Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to

  5. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska

  6. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,938 5,564 7,250 2000's 7,365 5,070 4,363 4,064 3,798 2,617 2,825 2,115 2,047 2,318 2010's 3,284 3,409 3,974 544 309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas

  7. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. igure 1. Map of N. Alaska and NW Canada Showing the Locations of the NPR-A,

    U.S. Energy Information Administration (EIA) Indexed Site

    ANWR, 1002 Area, Current Productive Area, and TAPS 1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current Productive Area, and Trans-Alaska Pipeline System (TAPS) fig1.jpg (122614 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999.

  9. Final EIS Keystone Pipeline Project Appendix E Pipeline Restrictive Layer

    Energy Savers [EERE]

    E Pipeline Restrictive Layer Areas Crossings Final EIS Keystone Pipeline Project Appendix F Soil Associations along the Keystone Pipeline Project Route Final EIS Keystone Pipeline Project Appendix F Soil Associations along the Keystone Pipeline Project Route Appendix G Public Water Supply Wells Within One Mile of the Proposed Keystone Pipeline Project Centerline (Note: This appendix is Table 3.5-6, taken directly from the Environmental Report for the Keystone Pipeline Project [TransCanada

  10. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves and production, 2011-14 billion cubic feet State and Subdivision 2011 2012 2013 2014 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 Lower 48 States 131,616 129,369 159,115 199,684 7,994 10,371 11,415 13,447 Arkansas 14,808 9,779 12,231 11,695 940 1,027 1,026 1,038 California 855 777 756 44 101 90 89 3 Coastal Region Onshore 0 0 0 9 0 0 0 1 San Joaquin Basin Onshore 855 777 756 15 101 90 89 1 State Offshore 0 0 0 20 0 0 0 1 Colorado 10 53 136 3,775 3 9 18 236 Florida

  11. Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14 billion cubic feet State and Subdivision 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014 Alaska 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 16,817 13,591 12,392 15,696 1,886 1,763 1,655 1,466 1,404 Alabama 1,298 1,210 1,006 413 978 102 98 91 62 78 Arkansas 28 21 10 13 15 3 4 2 2 2 California 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 6,580 5,074 4,391 5,103 533 516 486 444 412 Florida 0 0 0 0 0 0 0 0 0 0 Kansas 258 228 183 189 211 41 37 34 30 27

  12. Alaska - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  13. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  14. Alaska - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Alaska

  15. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  16. Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline | Department of Energy Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm Addthis Agreement Establishes Framework for Increasing Energy Security WASHINGTON, DC - The U.S. Department of Energy and 14 other federal departments and agencies have signed an agreement to expedite the permitting and construction of the Alaska Natural Gas Pipeline which, when

  17. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  18. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy security policy. The agreement signals the U.S. government's commitment to expedite the federal permitting processes for the Alaska Natural Gas Pipeline and ...

  19. Alaska START

    Broader source: Energy.gov [DOE]

    The DOE Office of Indian Energys Alaska Strategic Technical Assistance Response Team (START) Program assists Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects.

  20. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  1. Yukon-Koyukuk Census Area, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Alaska Nikolai, Alaska Nulato, Alaska Rampart, Alaska Ruby, Alaska Shageluk, Alaska Stevens Village, Alaska Takotna, Alaska Tanana, Alaska Venetie, Alaska Wiseman, Alaska...

  2. DOE - Office of Legacy Management -- Alaska

    Office of Legacy Management (LM)

    Alaska Alaska akmap Amchitka Site Chariot

  3. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  4. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001), available electronically at http://www.gi.alaska.edu/services/library/pipeline.html codes. The Association of Oil Pipe Lines (AOPL) and the American Petroleum Institute (API) jointly provide an overview covering the life cycle of design, construction, operations, maintenance, economic regulation, and deactivation of liquid pipelines (AOPL/API 2007).

  5. EIS-0410: Keystone Oil Pipeline Project | Department of Energy

    Energy Savers [EERE]

    0: Keystone Oil Pipeline Project EIS-0410: Keystone Oil Pipeline Project SUMMARY This environmental impact statement (EIS) analyzes the environmental impacts of the TransCanada Keystone Oil Pipeline Project. The U.S. Department of State (DOS) was the lead agency. The U.S. Department of Energy's (DOE's) Western Power Administration (Western) participated as a cooperating agency in the preparation of this EIS in order to address Western's proposed response to interconnection requests from Minnkota

  6. Kenai Peninsula Borough, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Alaska Funny River, Alaska Halibut Cove, Alaska Happy Valley, Alaska Homer, Alaska Hope, Alaska Kachemak, Alaska Kalifornsky, Alaska Kasilof, Alaska Kenai, Alaska Lowell...

  7. Pipeline Expansions

    Reports and Publications (EIA)

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  8. EIS-0512: Alaska LNG Project, Alaska

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS to analyze the potential environmental impacts of a proposal to develop, construct, and operate facilities that would commercialize the natural gas resources on Alaska’s North Slope. The proposed Alaska LNG Project would include a gas treatment plant, more than 800 miles of natural gas pipeline, liquefaction and storage facilities, an LNG export (marine) terminal, and associated infrastructure and facilities. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the export of natural gas, including LNG, unless it finds that the export is not consistent with the public interest.

  9. Remarks re: Alaska resources conference

    SciTech Connect (OSTI)

    Hickel, W.J.

    1984-05-01

    Alaska has an immense amount of natural gas buried beneath its North Slope. It is important to the nation's energy needs and to Alaska's need for a more diversified economy that this gas be marketed. Currently there is plenty of gas to meet America's energy needs. The lack of this one market does not foreclose the existence of other markets. A potential market lies in the Pacific Basin, in Asia. By passing legislation banning export of Alaska's North Slope oil, America has decided not to compete in Asia. These laws were passed not for the purpose of energy conservation, but to protect the status quo. The speaker stresses the need for America to decide to be competitive. That is how forces are brought together to build a gas pipeline across Alaska. Since the nine billion dollar oil pipeline was completed in 1977, more than that amount has been spent in construction, processing and drilling on the North Slope. That work has come in on time and under budget. A project is being planned that would make the 14.5 million tons of LNG available from Prudhoe Bay for export to Japan, Korea and Taiwan. The goal is to decide to do the project before starting the work.

  10. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen ...

  11. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  12. Bethel Census Area, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alaska Nunapitchuk, Alaska Oscarville, Alaska Platinum, Alaska Quinhagak, Alaska Red Devil, Alaska Sleetmute, Alaska Stony River, Alaska Toksook Bay, Alaska Tuluksak,...

  13. ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan...

    Open Energy Info (EERE)

    ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ALASKA ENERGY AUTHORITY Alaska Geothermal...

  14. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  15. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  16. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rawls Savannah River National Laboratory This presentation does not contain proprietary, confidential, or otherwise restricted information Fiber Reinforced Composite Pipelines ...

  17. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  18. Aleutians West Census Area, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Adak, Alaska Atka, Alaska Attu Station, Alaska Nikolski, Alaska St. George, Alaska St. Paul, Alaska Unalaska, Alaska Retrieved from "http:en.openei.orgwindex.php?titleAleutia...

  19. Kodiak Island Borough, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Station, Alaska Kodiak, Alaska Larsen Bay, Alaska Old Harbor, Alaska Ouzinkie, Alaska Port Lions, Alaska Womens Bay, Alaska Retrieved from "http:en.openei.orgw...

  20. Aleutians East Borough, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Aleutians East Borough, Alaska Akutan, Alaska Cold Bay, Alaska False Pass, Alaska King Cove, Alaska Nelson Lagoon, Alaska Sand Point, Alaska Retrieved from "http:...

  1. Alaska Energy Authority Overview

    Office of Environmental Management (EM)

    as may be specified by law, to serve as a clearinghouse in managing the state's energy related functions to avoid ... NGOs * Renewable Energy Alaska Project (REAP) * Rural Alaska ...

  2. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-12-17

    A method and apparatus are provided for laying an offshore pipeline or flowline bundle to a deepwater subsea structure. The pipeline or flowline bundle is laid along a prescribed path, preferably U-shape, such that a pullhead at the terminus of the pipeline or flowline bundle falls just short of the subsea structure. A pull-in tool connected to the pipeline or flowline bundle by a short length of pull cable is then landed on and latched to the subsea structure, and the pipeline or flowline bundle is pulled up to the subsea structure by the pull-in tool and pull cable.

  3. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate

  4. Alaska: Alaska's Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  5. Alaska Power Co (Alaska) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for December...

  6. Alaska Power Co (Alaska) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for November...

  7. Alaska Power Co (Alaska) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for February...

  8. Alaska Power Co (Alaska) EIA Revenue and Sales - September 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for September...

  9. Alaska Energy Efficiency Finance Forum

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority (AEA) is hosting an Alaska Energy Efficiency Finance Seminar to cover community- and commercial-scale energy efficiency in Alaska.

  10. Permafrost problems as they affect gas pipelines (the frost heave problem)

    SciTech Connect (OSTI)

    Lipsett, G.B.

    1980-01-01

    The major problems associated with the construction of a large diameter gas pipeline in a permafrost region are outlined in this presentation. Data pertains to the design and construction of the Alaska Highway Gas Pipeline Project. One of the main problems is maintaining the permafrost in its frozen state. Large diameter pipelines operating at high capacity are heat generators. Therefore, it is necessary to refrigerate the gas to ensure that it remains below 0/sup 0/C at all points in the pipeline system. The pipeline also passes through unfrozen ground where the potential for frost heave exists. The conditions under which frost heave occurs are listed. The extent and location of potential frost heave problem areas must be determined and a frost heave prediction method must be established before construction begins. Another task involves development of design criteria for the pipeline/soil interaction analysis. Remedial methods for use during the operational phase are also discussed. (DMC)

  11. Product Pipeline Reports Tutorial

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe ...

  12. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Estimated Natural Gas Pipeline Mileage in the ...

  13. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  14. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  15. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous hydrogen via

  16. Aspen Pipeline | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and distribution systems....

  17. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-09-17

    A method and apparatus are provided for connecting an offshore pipeline or flowline bundle to a deepwater subsea structure and then laying away from said structure. The pipeline or flowline bundle is deployed vertically from a pipelay vessel to make a hinged connection with the subsea structure. The connection operation is facilitated by a flowline connection tool attached to the pipeline or flowline bundle and designed to be inserted into a funnel located either centrally or to one side of the subsea structure. The connection procedure consists of landing and securing the flowline connection tool onto the subsea structure, then hinging over and connecting the pipeline or flowline bundle to the subsea structure as the pipeline or flowline bundle is laid on the seafloor beginning at the subsea structure.

  18. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    Alaska State Office Jump to: navigation, search Logo: BLM Alaska State Office Name: BLM Alaska State Office Abbreviation: Alaska Address: 222 West Seventh Ave., 13 Place:...

  19. Alaska Newsletter Archives

    Broader source: Energy.gov [DOE]

    The Office of Indian Energy's Alaska Energy Pioneer newsletter highlights opportunities and actions for Alaska Native villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska’s energy crisis.

  20. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  1. START Program: Alaska

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

  2. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  3. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  4. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  5. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interstate Natural Gas Pipeline Segment Two-thirds of the lower 48 States are almost totally dependent upon the interstate pipeline system for their supplies of natural gas. On the interstate pipeline grid, the long-distance, wide-diameter (20-42 inch), high capacity trunklines carry most of the natural gas that is transported throughout the

  6. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  7. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  8. Alaska AS 46.15, Alaska Water Use Act | Open Energy Information

    Open Energy Info (EERE)

    link for Alaska AS 46.15, Alaska Water Use Act Citation Alaska AS 46.15, Alaska Water Use Act (2007). Retrieved from "http:en.openei.orgwindex.php?titleAlaskaAS46.15,Alaska...

  9. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and ...

  10. Alaska Power Co (Alaska) EIA Revenue and Sales - March 2008 ...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for March 2008....

  11. Alaska Power Co (Alaska) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for August 2008....

  12. Alaska Power Co (Alaska) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for October 2008....

  13. Alaska Power Co (Alaska) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for January 2009....

  14. Alaska Power Co (Alaska) EIA Revenue and Sales - April 2008 ...

    Open Energy Info (EERE)

    Alaska Power Co (Alaska) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for April 2008....

  15. 2016 Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The 2016 Alaska Rural Energy Conference is a three-day event that offers a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  16. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  17. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  18. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  19. ARM - Kiosks - Barrow, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  20. World pipeline construction to slip for 1994 and beyond

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1994-02-07

    World pipeline construction planned in 1994 and beyond has fallen in the past year, reflecting uncertainties in energy markets. Still, significant expansions are under way or planned for Latin America, Asia and the Pacific regions, and Europe. Latest Oil and Gas Journal data, derived from its survey of world pipeline operators, industry sources, and published information, show more than 55,000 miles of crude oil, product, and natural gas pipeline planned for 1994 and beyond. The data include projections for pipeline construction in Russia and former republics of the Soviet Union. Western Russia and all countries west of the Ural Mountains are included under totals for Europe, eastern Russia and countries east of the Urals under totals for the Asia-Pacific region. The paper discusses the following: European gas lines; North Sea projects; Gulf of Thailand; Yacheng subsea pipeline; Australian gas lines; other Asian lines; Russian activity; Algeria-Europe gas lines; Southeast US; Gulf gathering systems; Western US; South America; Trans-Ecuadorian expansion; Chilean gas network; and Bolivia-Brazil gas line.

  1. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  2. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  3. New Materials for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

  4. UQ Pipeline Lorenz Portlet

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    This is web client software that can help initiate UQ Pipeline jobs on LLNL's LC compute systems and visually shows the status of such jobs in a browser window. The web client interacts with LC's interactive compute nodes using (LLNL) Lorenz REST API to initiate action and obtain status data in JSON format.

  5. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  6. Alaska Village Electric Cooperative (AVEC) - Deploying Renewables in Alaska

    Energy Savers [EERE]

    Deploying Renewables in Remote Alaskan Communities By Meera Kohler Alaska Village Electric Cooperative U.S. Dept. of Energy Program Review Denver, CO November 17, 2008 New turbines in Hooper Bay Who is AVEC? * 53 villages * 22,000 population - Would be the 4 th largest city in Alaska after Anchorage, Fairbanks and Juneau * 44% of Village Alaska population * Anvik (smallest) 101 * Hooper Bay (largest) 1,124 * Average population 420 * Anchorage 277,498 * 94% Alaska Native #2 Alaska Vs. Lower Forty

  7. Alaska Electric & Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    Alaska Electric & Energy Coop Jump to: navigation, search Name: Alaska Electric & Energy Coop Place: Alaska Phone Number: 1-907-235-3353 Website: www.homerelectric.com Twitter:...

  8. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  9. Alaska ADEC Wetlands Regulation | Open Energy Information

    Open Energy Info (EERE)

    Wetlands Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska ADEC Wetlands Regulation Author Alaska Division of Water Published Alaska...

  10. Trans Tech Green Power | Open Energy Information

    Open Energy Info (EERE)

    Trans Tech Green Power Jump to: navigation, search Name: Trans Tech Green Power Place: India Sector: Biomass Product: Plans to develop biomass projects in Rajasthan. References:...

  11. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  12. EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations

    U.S. Energy Information Administration (EIA) Indexed Site

    List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only

  13. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    U.S. Energy Information Administration (EIA) Indexed Site

    Stations Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008 Map of U.S. Natural Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation Information System. The EIA has determined that the informational map displays here do not raise security

  14. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years

  15. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length

  16. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  17. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    third, and newest, ARM Mobile Facility, or AMF3. Oliktok Point, approximately 300 kilometers southeast of the fixed ARM site in Barrow, Alaska, is home to an extended deployment...

  18. Alaska Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned...

  19. Alaska Renewable Energy Fair

    Broader source: Energy.gov [DOE]

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  20. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  1. Southwest Alaska Regional Geothermal Energy Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southwest Alaska Regional Geothermal Energy Project Southwest Alaska Regional Geothermal Energy Project Engineered Geothermal Systems Demonstration Projects. Project objectives: ...

  2. Alaska Energy Pioneer

    Energy Savers [EERE]

    inaugural U.S. Department of Energy (DOE) Office of Indian Energy's quarterly newsletter for Alaska Native villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska's energy crisis. We will highlight examples of projects in action, local Energy Champions, and ways you can become engaged and access funding and techni- cal assistance. Your feedback is welcomed and encouraged! Energy Ambassadors Prepping for Deployment DOE's Office of Indian Energy

  3. AMCHITICA ISLAND, ALASKA

    Office of Legacy Management (LM)

    Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712."

  4. Workforce Pipeline | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daily Herald True Romance: From walking opposite paths to following the same route Dallas Morning News Workforce Pipeline Argonne seeks to attract, hire and retain a diverse ...

  5. Hydrogen Embrittlement in Pipeline Steels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applied Chemicals & Materials Division Material Measurement Laboratory HYDROGEN EMBRITTLEMENT IN PIPELINE STEELS AJ Slifka, ES Drexler, RL Amaro, DS Lauria, JR Fekete Applied ...

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

  7. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  8. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  9. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  10. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  11. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  12. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  13. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  14. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  15. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  16. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  17. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  18. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  19. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric...

  20. Bristol Bay Borough, Alaska: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    as an ASHRAE 169-2006 Climate Zone Number 7. Places in Bristol Bay Borough, Alaska King Salmon, Alaska Naknek, Alaska South Naknek, Alaska Retrieved from "http:...

  1. Alaska Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiatives, the Alaska Rural Small Business Conference is a three-day conference to bring together rural businesses and leaders and provide them with networking opportunities, training, and technical information.

  2. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment (AFN) is Alaska's largest statewide gathering of environmental professionals to cover sessions on climate change, energy, environmental regulations, cleanup and remediation, fish and wildlife, solid waste, and more.

  3. Alaska START | Department of Energy

    Energy Savers [EERE]

    Alaska Plans Geothermal Leasing at Volcano Alaska Plans Geothermal Leasing at Volcano June 26, 2008 - 4:19pm Addthis ANCHORAGE, Alaska - In Alaska, a state rich in oil and gas, officials are seeking to stir interest in a different source of underground energy -- the geothermal heat simmering beneath the volcanoes and hot springs that dot the landscape that could power thousands of homes. The state Division of Oil and Gas is preparing a lease sale that would allow companies to explore the

  4. Alaska | OpenEI Community

    Open Energy Info (EERE)

    Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White...

  5. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

  7. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

  8. Alaska Energy in Action: Alaska Residents Tapping into Technical Assistance for Energy Projects

    Broader source: Energy.gov [DOE]

    Feature article from the Summer 2015 edition of the Alaska Energy Pioneer on DOE's technical assistance requests in Alaska.

  9. BP and Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP and Hydrogen Pipelines BP and Hydrogen Pipelines BP Environmental Commitment: Green corporate philosophy and senior management commitment PDF icon hpwgw_bp_yoho.pdf More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop EIS-0018: Final Environmental Impact Statement Hydrogen permeability and Integrity of hydrogen transfer pipelines

  10. Alaska Native Village CEO Association 2015 Conference

    Broader source: Energy.gov [DOE]

    The Alaska Native Village Corporation Association is hosting its 7th Annual 2015 Conference in Anchorage, Alaska. The two-day conference includes a State of Alaska update, board election best practices, Alaska's economic future, Alaska Native subsistence co-management, and more.

  11. WebTrans Update - August 31, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: WebTrans Update Posted Date: 8312015 BPAT is deploying a minor change to Production webTrans in...

  12. WebTrans Update - September 9, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: WebTrans Update Posted Date: 992015 BPAT is deploying a change to Production webTrans today...

  13. Venetie, Alaska energy assessment.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson; Baca, Micheal J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  14. START Program 2013: Alaska

    Broader source: Energy.gov [DOE]

    The Strategic Technical Assistance Response Team (START) Program is part of the DOE's Office of Indian Energy Policy and Programs effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska can apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation.

  15. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by 08-Smith to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  16. Fatigue analysis for submarine pipelines

    SciTech Connect (OSTI)

    Celant, M.; Re, G.; Venzi, S.

    1982-01-01

    The techniques used in fatigue life forecasts for a submarine pipeline, which have been worked out during the design of the Transmediterranean Pipeline, are presented. The stress level imposed by supports configuration, pipeline weight and weight-pressure-temperature of the internal fluid, is increased further by cyclic loads of sensible extent, resulting from hydroelastic phenomena of interaction between spanning pipe and seabottom current; the synchronization between the characteristic frequencies of vortex-shedding and the natural frequencies of the spans provokes cyclic loading which affect negatively the fatigue life of the pipeline. The results of this research have affected the design choices from the operations of route selection; in particular, they were aiming at the determination of the intervention works on the sea bottom before pipelaying, and the possible installation of overweights or pipe supports in order to avoid free spans of unacceptable length, and at the determination of the interval between periodic inspection.

  17. Pipelines programming paradigms: Prefab plumbing

    SciTech Connect (OSTI)

    Boeheim, C.

    1991-08-01

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  18. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  19. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 23-25, 2015 Bethel, Alaska University of Alaska Fairbanks March 26-27, 2015 Dillingham, Alaska University of Alaska, Bristol Bay Campus March 30-April 1, 2015 Juneau, Alaska ...

  20. Wind Energy Alaska | Open Energy Information

    Open Energy Info (EERE)

    Energy Alaska Jump to: navigation, search Name: Wind Energy Alaska Place: Anchorage, Alaska Zip: 99508 Sector: Wind energy Product: 50:50-owned subsidiary of Enxco and CIRI that is...

  1. Alaska - Alaska Administrative Code - Title 3 - Commerce, Community...

    Open Energy Info (EERE)

    Alaska Administrative Code - Title 3 - Commerce, Community and Economic Development - January 2012 Supplement Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Alaska Power Co (Alaska) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for January 2008. Monthly Electric Utility Sales and Revenue Data...

  3. Alaska Power Co (Alaska) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data...

  4. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline ...

  5. Regulatory Commission of Alaska | Open Energy Information

    Open Energy Info (EERE)

    includes general information about the RCA and its Commissioners. Commission The Alaska Public Service Commission (APSC) existed from 1960 until 1970. In 1970, the Alaska...

  6. Alaska Native Village Energy Development Workshop Agenda

    Broader source: Energy.gov [DOE]

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  7. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    kickofff meeting for Alaska was sparsely attended with representatives from Division of Oil and Gas, Alaska Energy Authority, and Economic Development Commission. Discussions...

  8. Alaska Energy Pioneer Winter 2016 Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Winter 2016 newsletter highlights opportunities and actions to accelerate Alaska Native energy development.

  9. Alaska Energy Pioneer Fall 2015 Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Fall 2015 newsletter highlights opportunities and actions to accelerate Alaska Native energy development.

  10. Alaska Special Area Regulations | Open Energy Information

    Open Energy Info (EERE)

    to library Web Site: Alaska Special Area Regulations Author Alaska Department of Fish & Game Published Publisher Not Provided, 2014 DOI Not Provided Check for DOI...

  11. Alaska Renewable Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Project Jump to: navigation, search Logo: Renewable Energy Alaska Project Name Renewable Energy Alaska Project AgencyCompany Organization Executive Director...

  12. Alaska Local Ordinances Governing Nonpoint Source Pollution ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Alaska Local Ordinances Governing Nonpoint Source Pollution Citation Alaska...

  13. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    Amchitka, Alaska, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Amchitka, Alaska, Site Location of the Amchitka, Alaska, Site Site Description and History Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles

  14. Alaska Energy Pioneer - Spring 2016

    Office of Environmental Management (EM)

    Senior Finance Analyst Paul Schwabe SOLAR ENERGY PROSPECTING IN REMOTE ALASKA In February, the Office of Indian Energy released a new report called "Solar Energy Prospecting in ...

  15. Alaska Affordable Energy Strategy

    Energy Savers [EERE]

    Affordable Energy Strategy Developing Cost-Effective Renewables and Energy for Rural Alaska Photo by: Cassandra Cerny, GVEA Emily Ford, energy policy and outreach manager Dec. 7. 2015 What Does Energy Include? 2 3 AEA: Focus on Communities Engaging communities in providing sustainable energy futures * Maintain consistency with state energy policy and goals * Technical assistance, regional planning and project management * Provide synergy between planning, projects and funding sources * Assist

  16. Alaska Wind Update

    Energy Savers [EERE]

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First  Make homes, workplaces and communities energy efficient thru weatherization and efficient lighting/appliances.  Because of PCE, residential rate payers won't see as much benefit from a wind farm as do commercial customers.  Once efficient, pursue renewable energy. Otherwise, money is wasted to build an oversized system.  EE makes economic sense - faster payback (2-3 years vs. 15-20

  17. Rural Alaska Maintenance Partnership

    Office of Environmental Management (EM)

    Rural Alaska Community Action Program, Inc. Ellen Kazary, Community Development Manager (907) 865-7358, ekazary@ruralcap.com GOALS: * Create jobs for rural Alaskans * Lower residential energy burden in tribal communities Additional Goals - Demonstrate that education and simple efficiency improvements can make an important difference in lowering residential energy costs - Provide a model component for energy plans - important to incorporate Energy Wise strategies in holistic energy plans Energy

  18. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  19. Method and system for pipeline communication

    DOE Patents [OSTI]

    Richardson; John G.

    2008-01-29

    A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

  20. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf South Pipeline Co. Southeast, Southwest Southwest AL, FL, LA, MS, TX, GM 676 6,260 6,886 El Paso Natural Gas Co. Western, Southwest Southwest AZ, CO, NM, TX 1,638 6,182 10,302 ...

  1. Accelerating Tribal Energy Project Development in Alaska | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Accelerating Tribal Energy Project Development in Alaska Accelerating Tribal Energy Project Development in Alaska Accelerating Tribal Energy Project Development in Alaska Image icon Accelerating Tribal Energy Project Development in Alaska More Documents & Publications Office of Indian Energy Alaska Energy Pioneer Spring 2015 Newsletter DOE Alaska Native Village Renewable Energy Workshop Agenda Alaska Native Village Energy Development Workshop Agenda

  2. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, nonprofit and for-profit businesses, community leaders, Alaskan youth, conservationists, biologists, and community elders. The sessions include topics on climate change, energy, environmental regulations, cleanup and remediation, solid waste, and more.

  3. Kinder Morgan Central Florida Pipeline Ethanol Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol

  4. California Natural Gas Pipelines: A Brief Guide

    SciTech Connect (OSTI)

    Neuscamman, Stephanie; Price, Don; Pezzola, Genny; Glascoe, Lee

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  5. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  6. EIA - Natural Gas Pipeline System - Midwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  7. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  8. EIA - Natural Gas Pipeline System - Southeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama,

  9. EIA - Natural Gas Pipeline System - Southwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  10. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  11. OMAE 1993: Proceedings. Volume 5: Pipeline technology

    SciTech Connect (OSTI)

    Yoon, M.; Murray, A.; Thygesen, J.

    1993-01-01

    This volume of conference proceedings is volume five of a five volume series dealing with offshore and arctic pipeline, marine riser, platforms, and ship design and engineering. This volume is a result of increased use of pipeline transportation for oil, gas, and liquid products and the resultant need for lower design and operating costs. Papers in this conference cover topics on environmental considerations, pipeline automation, computer simulation techniques, materials testing, corrosion protection, permafrost problems, pipeline integrity, geotechnical concerns, and offshore engineering problems.

  12. Seismic assessment of buried pipelines

    SciTech Connect (OSTI)

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  13. Trans India Acquisition Corporation | Open Energy Information

    Open Energy Info (EERE)

    India Acquisition Corporation Jump to: navigation, search Name: Trans-India Acquisition Corporation Place: Delaware Sector: Solar Product: Blank check company to be merged with...

  14. TransWest Old | Open Energy Information

    Open Energy Info (EERE)

    Old Jump to: navigation, search NEPA Document Collection for: TransWest Old EIS NEPA name unknown General NEPA Document Info Environmental Analysis Type EIS Applicant Not Provided...

  15. Alaska Strategic Energy Plan and Planning Handbook | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the ...

  16. Alaska Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Alaska Region High School Regional Alaska Alaska High School Regional Science...

  17. RAPID/Geothermal/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    None ContactsAgencies: Alaska Department of Natural Resources, Alaska Department of Fish and Game, Alaska Department of Environmental Conservation State Environment Process...

  18. RAPID/BulkTransmission/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    ContactsAgencies: Alaska Department of Natural Resources, Alaska Department of Fish and Game, Alaska Department of Environmental Conservation State Environment Process...

  19. Alaska Energy Pioneer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletters » Alaska Energy Pioneer Alaska Energy Pioneer The U.S. Department of Energy (DOE) Office of Indian Energy's Alaska Energy Pioneer newsletter highlights opportunities and actions for Alaska Native villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska's energy challenges. Browse stories below, download the full newsletter, or read past issues of the newsletter. Senate Field Hearing in Bethel Focuses on Energy Technology Innovation

  20. Alaska Native Villages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Native Villages Alaska Native Villages Alaska Native Villages The U.S. Department of Energy (DOE) Office of Indian Energy provides Alaska Native villages with resources, technical assistance, skills, and analytical tools needed to develop sustainable energy strategies and implement viable solutions to community energy challenges. Technical Assistance Alaska Native villages and regional and village corporations can apply to receive up to 40 hours of technical assistance with residential

  1. State of Alaska Regional Energy Planning

    Energy Savers [EERE]

    Tribal Energy Summit September 24, 2015 State of Alaska Regional Energy Planning Solar Energy Anaktuvuk Pass, Alaska Humpback Creek Hydroelectric Cordova, Alaska Wind Diesel Generation Selawik, Alaska WHPacific, Inc. REGIONAL PLANNING ZONES:  North Slope  Northwest Arctic  Bering Straits  Interior (YK/Upper Tanana)  YK Delta (Lower Yukon- Kuskokwim)  Chugach Logistics Reality Alaska Arctic Communities: Energy Platform A Holistic Approach Infrastructure Housing Water Systems

  2. Alaska Statutes Chapter 38.5 Alaska Land Act | Open Energy Information

    Open Energy Info (EERE)

    Chapter 38.5 Alaska Land Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Alaska Statutes Chapter 38.5 Alaska Land ActLegal...

  3. Chariot, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    Chariot, Alaska, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Chariot, Alaska, Site Location of the Chariot Site Site Description and History The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the

  4. Natural Gas Pipeline & Distribution Use

    U.S. Energy Information Administration (EIA) Indexed Site

    70,174 674,124 687,784 730,790 833,061 835,757 1997-2014 Alabama 18,849 22,124 23,091 25,349 22,166 18,688 1997-2014 Alaska 2,318 3,284 3,409 3,974 544 309 1997-2014 Arizona 20,846...

  5. Alaska Power Co (Alaska) EIA Revenue and Sales - March 2009 ...

    Open Energy Info (EERE)

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for March 2009. Monthly Electric Utility Sales and Revenue Data Short...

  6. Alaska Power Co (Alaska) EIA Revenue and Sales - June 2008 |...

    Open Energy Info (EERE)

    June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for June 2008. Monthly Electric Utility Sales and Revenue Data Short...

  7. Alaska Power Co (Alaska) EIA Revenue and Sales - July 2008 |...

    Open Energy Info (EERE)

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for July 2008. Monthly Electric Utility Sales and Revenue Data Short...

  8. Wind Energy Assessment on Alaska Native Lands in Cordova, Alaska

    Energy Savers [EERE]

    Assessment on Alaska Native Lands in Cordova, Alaska Bruce Cain, Executive Director & Autumn Bryson, Environmental Coordinator Native Village of Eyak Native Village of Eyak  Federally Recognized Tribe in Cordova, AK  Governed by a five- member tribal council  Provides health and social services, economic development, job training and environmental and resource management  525 Tribal members Location of Project Cordova Current Energy Systems:  Hydrolelectric power:  Cordova

  9. Alaska Energy Efficiency Finance Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Energy Efficiency Finance Forum Alaska Energy Efficiency Finance Forum January 14, 2016 9:00AM to 4:00PM AKST Anchorage, Alaska The Alaska Energy Authority (AEA) is hosting ...

  10. Nikolski, Alaska, Wind Resource Report

    Energy Savers [EERE]

    Nikolski, Alaska Wind Resource Report Report written by: Douglas Vaught, P.E., V3 Energy ... Roughness Class 1.77 (few trees) Power law exponent 0.174 (moderate wind shear) ...

  11. Alaska Statutes | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- StatuteStatute: Alaska StatutesLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for...

  12. Alaska Energy Champion: Karen Johnson

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are championing innovative solutions to Alaska’s energy challenges. Alaska Energy Champions is a regular feature in the Office of Indian Energy's Alaska Energy Pioneer newsletter that spotlights pioneers of Alaska’s new energy frontier. This issue features Karen Johnson, program manager at the Denali Commission.

  13. IRAK4 Dimerization and Trans-Autophosphorylation Are Induced...

    Office of Scientific and Technical Information (OSTI)

    IRAK4 Dimerization and Trans-Autophosphorylation Are Induced by Myddosome Assembly Citation Details In-Document Search Title: IRAK4 Dimerization and Trans-Autophosphorylation Are ...

  14. 2015 Alaska Regional Energy Workshops Flier | Department of Energy

    Energy Savers [EERE]

    Regional Energy Workshops Flier 2015 Alaska Regional Energy Workshops Flier Learn about the three Alaska Regional Energy Workshops that the DOE Office of Indian Energy is presenting in March 2015. PDF icon Alaska Regional Energy Workshops Flier More Documents & Publications Alaska Energy Pioneer Winter 2016 Newsletter Alaska Energy Pioneer Summer 2015 Newsletter Alaska Energy Pioneer Fall 2015 Newsletter

  15. Alaska Energy Pioneer Spring 2016 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring 2016 Newsletter Alaska Energy Pioneer Spring 2016 Newsletter The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Spring 2016 newsletter highlights opportunities and actions to accelerate Alaska Native energy development. PDF icon Alaska Energy Pioneer - Spring 2016 More Documents & Publications Alaska Energy Pioneer Summer 2015 Newsletter 2015 Alaska Project Development and Finance Workshop Agenda and Presentations

  16. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  17. Alaska Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 3.17 1967-2010 Exports Price 12.19 12.88 15.71 -- 15.74 1989-2014 Pipeline and Distribution Use Price 1970-2005 Citygate Price 6.67 6.53 6.14 6.02 6.34 6.57 1988-2015 Residential Price 8.89 8.77 8.47 8.85 9.11 9.68 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 8.78 8.09 8.09 8.34 8.30 7.80 1967-2015 Percentage of Total Commercial Deliveries included

  18. US pipelines report mixed results for 1993

    SciTech Connect (OSTI)

    True, W.R.

    1994-11-21

    US natural gas pipelines started 1994 in generally better conditions than a year earlier. These companies' operational and financial results for 1993 indicate modest but continuing improvement. Petroleum liquids pipelines, on the other hand, suffered reduced revenues and incomes last: increased deliveries and trunkline movement of liquid petroleum products failed fully to offset fewer barrels of crude oil moving through the companies' pipeline systems. Revenues, incomes, mileage operated, and other data are tracked in Oil and Gas Journal's exclusive Economics Report. Additionally, this report contains extensive data on actual costs of pipeline construction compared with what companies expected to spend at the time of projects' approvals. The paper also discusses the continuing shift of natural gas pipelines as merchants to role of transporter; what was spent; the US interstate network; pipeline mileage; deliveries; the top 10 companies; construction activities; cost trends; and cost components.

  19. Buried pipelines in large fault movements

    SciTech Connect (OSTI)

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  20. Pipeline Safety Research, Development and Technology

    Energy Savers [EERE]

    Transportation Pipeline and Hazardous Materials Safety Administration Pipeline Safety Research, Development and Technology Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Nov 2014 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Thank You! * We appreciate the opportunity to share! * Much to share about DOT natural gas infrastructure R&D * Many facets to the fugitive methane issue * DOT/DOE - We would like to restart the

  1. Acoustic system for communication in pipelines

    DOE Patents [OSTI]

    Martin, II, Louis Peter; Cooper, John F.

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  2. Composites Technology for Hydrogen Pipelines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution PDF icon pipelinegroupsmithms.pdf More Documents & ...

  3. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Bulk Packaging Placarding Requirements - Placarding of Packages vs. Placarding Vehicle * LSASCO Scenarios - 7 - U.S. Department of Transportation Pipeline and Hazardous Materials...

  4. Colonial Pipeline Company Timothy C. Felt

    Broader source: Energy.gov (indexed) [DOE]

    United States - a 370 million dollar pipeline that would deliver gasoline and other ... Those words remain true to this day - infrastructure projects that are designed to serve ...

  5. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos ... Students are provided a mentor and challenging projects to demonstrate their capabilities ...

  6. GLAST (FERMI) Data-Processing Pipeline

    SciTech Connect (OSTI)

    Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

    2011-08-12

    The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

  7. Clean Development Mechanism Pipeline | Open Energy Information

    Open Energy Info (EERE)

    Clean Development Mechanism Pipeline AgencyCompany Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation,...

  8. Alaska Tribal Conference on Environmental Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Tribal Conference on Environmental Management Alaska Tribal Conference on Environmental Management October 26, 2015 8:00AM PDT to October 29, 2015 5:00PM PDT Anchorage,...

  9. Title 46 Alaska Statutes | Open Energy Information

    Open Energy Info (EERE)

    Title 46 Alaska StatutesLegal Published NA Year Signed or Took Effect 1971 Legal Citation Alaska Stat. tit. 46 (1971) DOI Not Provided Check for DOI availability: http:...

  10. REAP Alaska Wind-Integration Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Renewable Energy Alaska Project (REAP) is hosting the Alaska Wind-Integration Workshop. This two-day conference will give attendees the opportunity to learn and share information on wind systems in...

  11. Alaska Rural Energy Conference- Federal Energy Track

    Broader source: Energy.gov [DOE]

    On the first day of the Alaska Rural Energy Conference, the U.S. Department of Energy (DOE) Office of Indian Energy is hosting a federal energy track to cover federal programs and opportunities for Alaska Native villages.

  12. Solar Energy Prospecting in Remote Alaska

    Broader source: Energy.gov [DOE]

    This Office of Indian Energy report provides a high-level examination of the potential economics of solar energy in rural Alaska across a geographically diverse sample of remote Alaska Native villages throughout the state.

  13. University of Alaska Fairbanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Fairbanks University of Alaska Fairbanks From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. Project Description For the inaugural U.S.

  14. Alaska Native Weatherization Training and Jobs Program

    Energy Savers [EERE]

    Tlingit-Haida Regional Housing Authority Alaska Native Weatherization Training & Jobs Program University of Alaska Southeast Marquam George Associate Professor Construction Technology marquam.george@uas.alaska.edu 907 796 6124 Juneau Southeast Alaska Weatherization Training Center Southeast Climate Data - HDD * Yakutat 9,485 * Angoon 8,450 * Haines 8,505 * Juneau (Airport) 9,105 * Ketchikan 7,084 * Sitka 8,011 * Tenakee Springs 8,180 Annual Water Equivalent Precipitation - 1971-2000 *

  15. Alaska/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) Utility Rebate Program Yes Golden Valley Electric Association - Residential Energy...

  16. Energy Incentive Programs, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Energy Incentive Programs, Alaska Updated June 2015 What public-purpose-funded energy efficiency programs are available in my state? Alaska has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? There are currently no utility energy efficiency programs available to federal customers in Alaska. What load management/demand response options are available to me? Anchorage Municipal Light & Power has an interruptible rate

  17. Alaska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  18. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  19. FERC approves Northwest pipeline expansion

    SciTech Connect (OSTI)

    Not Available

    1992-06-15

    Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.

  20. 2007 Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Hydrogen Pipeline Working Group Workshop 2007 Hydrogen Pipeline Working Group Workshop The Department of Energy (DOE) Hydrogen Pipeline Working Group met Sept. 25-26, 2007, to review the progress and results of DOE-sponsored pipeline research and development (R&D) projects. More than 30 researchers and industry representatives shared their research results and discussed the current challenges and future goals for hydrogen pipeline R&D. One of the Pipeline Working Group's near-term

  1. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Systems Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co

  2. Changes in the Pipeline Transportation Market

    Reports and Publications (EIA)

    1999-01-01

    This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

  3. Algeria LPG pipeline is build by Bechtel

    SciTech Connect (OSTI)

    Horner, C.

    1984-08-01

    The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

  4. Rio Grande pipeline introduces LPG to Mexico

    SciTech Connect (OSTI)

    1997-06-01

    Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

  5. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  6. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Monitor Telescope Pipeline Citation Details In-Document Search Title: The Sloan Digital Sky Survey Monitor Telescope Pipeline You are accessing a...

  7. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  8. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  9. Minnesota Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic ... Natural Gas Pipeline & Distribution Use Minnesota Natural Gas Consumption by End Use ...

  10. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices Price for ...

  11. DOE Hydrogen Pipeline Working Group Workshop | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop DOE Hydrogen Pipeline Working Group Workshop Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal ...

  12. December 4, 2007: NETL's Robotic Pipeline Inspection Tool

    Broader source: Energy.gov [DOE]

    December 4, 2007The Department's National Energy Technology Laboratory announces the development of a new robotic pipeline inspection tool that could revolutionize the pipeline inspection process....

  13. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar Access the ...

  14. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  15. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed ...

  16. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Interstate - Pipeline systems that cross one or more States Intrastate - Pipeline systems that operate only within State boundaries Network Design - Basic concepts and parameters ...

  17. EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana Summary The Federal Energy Regulatory ...

  18. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 years) > Transmission Pipelines 6-10 billion per year Over 10 million hp of installed compression capacity > Local Distribution Pipelines 12 billion year > 8.2 ...

  19. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of ...

  20. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) ... Causes and Remediation Hydrogen permeability and Integrity of hydrogen transfer pipelines

  1. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held ... More Documents & Publications Hydrogen Embrittlement of Pipeline Steels: Causes and ...

  2. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  3. Alaska Facility- and Community-Scale Project Development Regional Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops | Department of Energy Facility- and Community-Scale Project Development Regional Energy Workshops Alaska Facility- and Community-Scale Project Development Regional Energy Workshops April 13, 2015 - 9:40am Addthis March 23-25, 2015 Bethel, Alaska University of Alaska Fairbanks March 26-27, 2015 Dillingham, Alaska University of Alaska, Bristol Bay Campus March 30-April 1, 2015 Juneau, Alaska University of Alaska Southeast The Office of Indian Energy hosted three back-to-back

  4. Failure modes for pipelines in landslide areas

    SciTech Connect (OSTI)

    Bruschi, R.; Spinazze, M.; Tomassini, D.; Cuscuna, S.; Venzi, S.

    1995-12-31

    In recent years a number of incidences of pipelines affected by slow soil movements have been reported in the relevant literature. Further related issues such as soil-pipe interaction have been studied both theoretically and through experimental surveys, along with the environmental conditions which are responsible for hazard to the pipeline integrity. A suitable design criteria under these circumstances has been discussed by several authors, in particular in relation to a limit state approach and hence a strain based criteria. The scope of this paper is to describe the failure mechanisms which may affect the pipeline in the presence of slow soil movements impacting on the pipeline, both in the longitudinal and transverse direction. Particular attention is paid to environmental, geometric and structural parameters which steer the process towards one or other failure mechanism. Criteria for deciding upon remedial measures required to guarantee the structural integrity of the pipeline, both in the short and in the long term, are discussed.

  5. U.S. interstate pipelines ran more efficiently in 1994

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-27

    Regulated US interstate pipelines began 1995 under the momentum of impressive efficiency improvements in 1994. Annual reports filed with the US Federal Energy Regulatory Commission (FERC) show that both natural-gas and petroleum liquids pipeline companies increased their net incomes last year despite declining operating revenues. This article discusses trends in the pipeline industry and gives data on the following: pipeline revenues, incomes--1994; current pipeline costs; pipeline costs--estimated vs. actual; current compressor construction costs; compressor costs--estimated vs. actual; US interstate mileage; investment in liquids pipelines; 10-years of land construction costs; top 10 interstate liquids pipelines; top 10 interstate gas pipelines; liquids pipeline companies; and gas pipeline companies.

  6. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

  7. Rapid Threat Organism Recognition Pipeline

    Energy Science and Technology Software Center (OSTI)

    2013-05-07

    The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has alsomore » been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on quality and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less

  8. EIS-0433: Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE’s Western Area Power Administration, a cooperating agency, has jurisdiction over certain proposed transmission facilities (construction and operation of a short 230-kv transmission line and construction of a new substation). The State Department published a notice in the Federal Register on February 3, 2012, regarding the denial of the Keystone XL presidential permit (77 FR 5614).

  9. Alaska Energy Champion: Jed Drolet

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are championing innovative solutions to Alaska’s energy challenges. Alaska Energy Champions is a regular feature spotlighting pioneers of Alaska’s new energy frontier.

  10. Design method addresses subsea pipeline thermal stresses

    SciTech Connect (OSTI)

    Suman, J.C.; Karpathy, S.A. )

    1993-08-30

    Managing thermal stresses in subsea pipelines carrying heated petroleum requires extensive thermal-stress analysis to predict trouble spots and to ensure a design flexible enough to anticipate stresses and expansions. Explored here are various methods for resolving predicaments posed by thermal loads and resulting deformations by keeping the stresses and deformations in the pipeline system within allowable limits. The problems posed by thermal stresses are not unique; the solutions proposed here are. These methods are based on recent work performed for a major Asian subsea pipeline project currently under construction.

  11. Pipeline transportation of heavy crude oil

    SciTech Connect (OSTI)

    Kessick, M.A.; St. Denis, C.E.

    1982-08-10

    Heavy crude oils are transported by pipeline from deposit location to a remote upgrading location by emulsifying the crude oil using deaerated sodium hydroxide solution, conveying the oilin-water emulsion through the pipeline, and recovery of the oil from the oil-in-water emulsion by inverting the emulsion and dewatering the resulting water-in-oil emulsion. The emulsion inversion may be effected using slaked lime, resulting in recovery of a substantial proportion of the sodium hydroxide used in the initial emulsification. The sodium hydroxide solution may be recycled by a separate pipeline for reuse or treated for discharge.

  12. Middleware for Astronomical Data Analysis Pipelines

    SciTech Connect (OSTI)

    Abdulla, G; Liu, D; Garlick, J; Miller, M; Nikolaev, S; Cook, K; Brase, J

    2005-01-26

    In this paper the authors describe the approach to research, develop, and evaluate prototype middleware tools and architectures. The developed tools can be used by scientists to compose astronomical data analysis pipelines easily. They use the SuperMacho data pipelines as example applications to test the framework. they describe their experience from scheduling and running these analysis pipelines on massive parallel processing machines. they use MCR a Linux cluster machine with 1152 nodes and Luster parallel file system as the hardware test-bed to test and enhance the scalability of the tools.

  13. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1,717 0 0 0 2007-2014 Pipeline Prices -- -- 3.55 -- --

  14. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network, 2009 U.S. Natural Gas Pipeline Network Map The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial Data in Response to Security Concerns

  15. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Light&Power Co (Alaska) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for...

  16. Observation manipulator bell proves worth in Transmediterranean pipeline construction

    SciTech Connect (OSTI)

    Lewis, R.E.

    1981-10-26

    In constructing the trans-Mediterranean undersea pipeline between Tunisia and Sicily, Perry Oceanographics used a manned, tethered vehicle called an observation manipulator bell (OMB), which has proven itself in deepwater pipelaying operations. The OMB carries a crew of two inside a pressure hull with an internal diameter of 76 in. Its overall diameter is 102 in. and it weighs 17,500 lb. The vehicle has two 5-hp port- and starboard-mounted electric thrusters. Its vertical position can be controlled by either the bell operator using a clump-weight haul-down winch or the surface operator with the umbilical winch. The OMB is fitted with video cameras and voice communication. The vehicle has reached depths of 3000 ft within 30 min with only a 10-ft overshoot. The OMB's single and/or dual manipulator-arm systems can operate its onboard impact wrenches, cut-off saws, water jets, and cable cutters. In addition, the manipulator claws can operate valve wheels and levers, attach anodes, and connect of disconnect cables and hydraulic systems. The versatility of the OMB was demonstrated recently when the vehicle rescued a PC-1602 submarine that had become entangled at 1740 ft.

  17. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Alaska Division of Oil and Gas Address: 550 W. 7th Ave., Suite 1100 Place: Alaska Zip: 99501 Website: dog.dnr.alaska.gov References:...

  18. Alaska Department of Fish and Game | Open Energy Information

    Open Energy Info (EERE)

    Game Jump to: navigation, search Logo: Alaska Department of Fish and Game Name: Alaska Department of Fish and Game Address: 1255 W. 8th Street Place: Juneau, Alaska Zip: 99811-5526...

  19. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  20. Microsoft Word - EOC Activation - Pipeline Overpressurization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (EOC) has been activated as a precautionary measure after an over-pressurized pipeline vented about 100 gallons of liquid natural gas approximately two miles from the WIPP...

  1. Pump packages for Colombian crude oil pipeline

    SciTech Connect (OSTI)

    1994-05-01

    The Caterpillar Large Engine Center recently packaged ten engine-driven centrifugal pump packages for British Petroleum Exploration`s crude oil pipeline in South America. The ten sets, which use Ingersoll-Dresser centrifugal pumps, are designed to increase significantly the output of BP`s Central LLanos pipeline located in a remote region near Bogota, Colombia. BP anticipates that the addition of the new pump packages will increase daily volume from the current 100000 barrels to approximately 210000 barrels when the upgrade of the pipeline is completed in September. The ten sets are installed at three separate pumping stations. The stations are designed to operate continuously while unmanned, with only periodic maintenance required. The pump packages are powered by Caterpillar 3612 engines rated 3040 kW at 1000 r/min. The 12-cylinder engines are turbocharged and charge-air cooled and use the pipeline oil as both fuel and a cooling medium for the fuel injectors.

  2. Method and apparatus for constructing buried pipeline systems

    SciTech Connect (OSTI)

    Heuer, C.E.; Hsu, H.; Jahns, H.O.

    1982-11-09

    A method and apparatus for mitigating or eliminating the frost heave of refrigerated pipelines buried in frost-susceptible soil are provided. A blanket of heat absorbent material is placed over the pipeline on the surface of the soil to increase the flow of heat into the region surrounding the pipeline. This technique may be used in combination with other frost heave mitigation techniques, such as insulating the pipeline and supporting the pipeline with a heave resistant bedding material.

  3. Seadrift/UCAR pipelines achieve ISO registration

    SciTech Connect (OSTI)

    Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. )

    1992-10-01

    Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

  4. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist Pipeline/Apprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled journeyworker machinists. It is based on a program developed by the National Institute for Metalworking Skills (NIMS) in conjunction with metalworking trade associations to develop and maintain a globally competitive U.S. workforce. The goal is to develop and implement apprenticeship programs that are aligned with

  5. Are shorted pipeline casings a problem

    SciTech Connect (OSTI)

    Gibson, W.F. )

    1994-11-01

    The pipeline industry has many road and railroad crossings with casings which have been in service for more than 50 years without exhibiting any major problems, regardless of whether the casing is shorted to or isolated from the carrier pipe. The use of smart pigging and continual visual inspection when retrieving a cased pipeline segment have shown that whether shorted or isolated, casings have no significant bearing on the presence or absence of corrosion on the carrier pipe.

  6. Alaska Feature Articles and Blogs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Feature Articles and Blogs Alaska Feature Articles and Blogs RSS April 26, 2016 Village of Chefornak, Alaska. Photo from Lovina Tunuchuk, flickr Thirteen Alaska Community Efficiency Champions Selected to Receive Technical Assistance from the Energy Department Today, at the 2016 Alaska Rural Energy Conference in Fairbanks, I had the pleasure of announcing 13 communities selected to receive technical assistance as part of the Remote Alaska Communities Energy Efficiency (RACEE) Competition.

  7. Alaska Native Village Energy Development Workshop: Anchorage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Native Village Energy Development Workshop: Anchorage Alaska Native Village Energy Development Workshop: Anchorage April 29, 2014 - 1:58pm Addthis Resources for Alaska Native Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy Tribal Energy Program held an Alaska Native Village Energy Development Workshop April 29-30, 2014, in Anchorage, Alaska. The workshop gave Alaska Native

  8. World pipeline work set for rapid growth

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion.

  9. Bayou pipeline crossing requires helical pilings

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This paper discusses a routine inspection by Transcontinental Gas Pipe Line Corp. which revealed the approximately 100 ft of its 30-in gas pipeline in St. Landry Parish, La., had become suspended. The situation occurred in the West Atchafalaya Floodway after periods of heavy rain produced strong currents that scoured the soil from around and below the pipeline. To protect the pipeline from possible damage from overstressing, Transco awarded a lump-sum contract to Energy Structures Inc., Houston, to design and install pipeline supports. The pipeline supports engineered by ESI used helical-screw pilings instead of conventional driven pilings. The helical piles were manufactured by A.B. Chance Co., Centralia, Mo. Typically, helical pilings consist of steel pipe ranging from 3.5- to 8-in. diameter pipe with one or more helixes welded onto the pipe. Selection of the proper piling cross-section was based on design loads and soil conditions at the project locations. length was determined by the amount of pipeline suspension and on-site soil conditions.

  10. New England Hydro-Trans Corp | Open Energy Information

    Open Energy Info (EERE)

    Hydro-Trans Corp Jump to: navigation, search Name: New England Hydro-Trans Corp Place: New Hampshire Phone Number: 1.800.661.3805 Website: www.transcanada.comindex.html Twitter:...

  11. New England Hydro-Tran Elec Co | Open Energy Information

    Open Energy Info (EERE)

    New England Hydro-Tran Elec Co Jump to: navigation, search Name: New England Hydro-Tran Elec Co Place: Massachusetts Phone Number: 860 729 9767 Website: www.nehydropower.com...

  12. Central Council Tlingit Haida Indian Tribes of Alaska

    Office of Environmental Management (EM)

    Positions * 300+ WX Audits and Homes Weatherized * Native Elder Participation * Energy consumption and Costs Reduced Alaska Native WX Training Program Training House Alaska ...

  13. Office of Indian Energy Alaska Energy Pioneer Spring 2015 Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Spring 2015 newsletter highlights opportunities and actions to accelerate Alaska Native energy development.

  14. File:AlaskaTitleVApplicationSubmittalInstructions.pdf | Open...

    Open Energy Info (EERE)

    AlaskaTitleVApplicationSubmittalInstructions.pdf Jump to: navigation, search File File history File usage File:AlaskaTitleVApplicationSubmittalInstructions.pdf Size of this...

  15. DOE to Host Workshop in Conjunction with Alaska Rural Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on April 25, 2016, to help Alaska Native communities identify opportunities to ... 26-28 in Fairbanks, Alaska. Workshop speakers will include Office of Indian Energy ...

  16. Alaska Department of Transportation and Public Facilities | Open...

    Open Energy Info (EERE)

    Public Facilities Jump to: navigation, search Logo: Alaska Department of Transportation and Public Facilities Name: Alaska Department of Transportation and Public Facilities...

  17. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    GeothermalExplorationAlaska < RAPID | Geothermal | Exploration(Redirected from RAPIDOverviewGeothermalExplorationAlaska) Jump to: navigation, search RAPID Regulatory...

  18. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315,...

  19. EERE Success Story-Geothermal Technology Breakthrough in Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technology Breakthrough in Alaska: Harvesting Heat below Boiling Temperatures EERE Success Story-Geothermal Technology Breakthrough in Alaska: Harvesting Heat below ...

  20. Pilgrim's Progress: An Update on Geothermal Potential in Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilgrim's Progress: An Update on Geothermal Potential in Alaska Pilgrim's Progress: An Update on Geothermal Potential in Alaska November 20, 2014 - 4:32pm Addthis Sunrise at ...

  1. City of King Cove, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    King Cove, Alaska (Utility Company) Jump to: navigation, search Name: City of King Cove Place: Alaska Phone Number: (907) 497-2340 Website: www.cityofkingcove.comfinance Outage...

  2. Alaska Department of Natural Resources Public Notices and Proposed...

    Open Energy Info (EERE)

    Webpage Internet. cited 20140929. Available from: http:dnr.alaska.govcommispicpubnotfrm.htm Retrieved from "http:en.openei.orgwindex.php?titleAlaskaDepartment...

  3. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Office of Indian Energy hosted three back-to-back Alaska Renewable Energy Project Development and Finance Workshops in Bethel, Dillingham, and Juneau, Alaska, from March ...

  4. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  5. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Alaska. Use the Edit with form button to editupdate. Planning Organizations not provided Alaska Owners not provided Current Projects not...

  6. EECBG Success Story: Alaska Town Invests in Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Town Invests in Energy Efficiency EECBG Success Story: Alaska Town Invests in ... courtesy of the City of Muscatine EECBG Success Story: Lighting Retrofit Improving ...

  7. Alaska Feature Articles and Blogs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing...

  8. Alaska DEC Water Permit Search | Open Energy Information

    Open Energy Info (EERE)

    Water Permit Search Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska DEC Water Permit Search Author Alaska Department of Environmental...

  9. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality(Redirected from RAPIDOverviewGeothermalAir QualityAlaska) Jump to: navigation, search RAPID...

  10. Alaska Special Area Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Form: Alaska Special Area Permit Application Form Type ApplicationNotice Form Topic Fish and Game Special Area Permit Application Organization Alaska Department of Fish and...

  11. Alaska Sample Special Area Permit | Open Energy Information

    Open Energy Info (EERE)

    to library General: Alaska Sample Special Area Permit Author Alaska Department of Fish and Game Published Division of Habitat, 122012 DOI Not Provided Check for DOI...

  12. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  13. Alaska Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    library Legal Document- RegulationRegulation: Alaska Administrative CodeLegal Published NA Year Signed or Took Effect 2013 Legal Citation Not provided DOI Not Provided Check for...

  14. Geothermal Exploration At Akutan, Alaska- Favorable Indications...

    Open Energy Info (EERE)

    an exploration program to characterize the geothermal resource and assess the feasibility of geothermal development on Akutan Island. Akutan Island, Alaska is home to North...

  15. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  16. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. Sustainable Energy Solutions for Rural Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Kerry serving in that role from 2015 until 2017. Among ... interaction among local, state, and federal government officials. Alaska Native Regional Corporations and ...

  18. Alaska Newsletter Archives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    villages and others who are partnering with us to explore and pursue sustainable solutions to rural Alaska's energy crisis. View past newsletters below, or read the current issue. ...

  19. Alaska Power Telephone Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: Alaska Power Telephone Company Address: 193 Otto Street PO Box 3222 Place: Port Townsend Zip: 98368 Region: United States Sector: Marine and Hydrokinetic Phone Number:...

  20. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Area Sitka Hot Spring Geothermal Area South Geothermal Area Tolovana Geothermal Area ... further results Energy Generation Facilities within the Alaska...

  1. Applications for Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Alaska Native communities are dealing with the impacts of climate change, such as coastal and river flooding and erosion, in real time," said Joel Neimeyer of the Denali ...

  2. Kodiak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Kodiak, Alaska Kodiak Electric Association KEA References US Census Bureau Incorporated place and minor civil division population...

  3. Remote Alaska Communities Energy Efficiency (RACEE) Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In July 2015, the unsubsidized cost of heating oil averaged ... Later in 2016 those communities selected to receive ... 1 Alaska Fuel Price Report - July 2015 Update, https:...

  4. Alaska Federation of Natives Annual Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples.

  5. Alaska - CPCN General Information | Open Energy Information

    Open Energy Info (EERE)

    CPCN General Information Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Alaska - CPCN General...

  6. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Alaska Planning Commission Handbook | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Alaska Planning Commission HandbookPermittingRegulatory GuidanceGuide...

  8. Alaska Strategic Energy Plan and Planning Handbook

    Energy Savers [EERE]

    Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence ...

  9. Alaska Tribal Conference on Environmental Management

    Broader source: Energy.gov [DOE]

    The Alaska Tribal Conference on Environmental Management is hosting its annual gathering that bring together tribes, nonprofits, and state and federal organizations for a week of environmental conversations.

  10. Akhiok, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 56.9455556, -154.1702778 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. University of Alaska Fairbanks: Technical Design Report

    Office of Environmental Management (EM)

    University of Alaska Fairbanks Collegiate 2014 Technical Report 2 Table of Contents Turbine Overview ................................................................................................................................................. 3 Blade Design Techniques and Methods ......................................................................................................... 3 Hub Design Techniques and Methods

  12. Alaska Water Quality Standards | Open Energy Information

    Open Energy Info (EERE)

    Water Quality Standards Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Alaska Water Quality...

  13. Alaska Village Initiatives Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Business Conference brings together rural businesses and leaders to provide them with networking opportunities, trainings, and technical information.

  14. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1997, the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility established research sites on the North Slope of Alaska (NSA), to provide data about cloud and radiative processes in cold environments and high latitudes. Comprehensive measurements from ARM's state-of-the-art instrument systems at Barrow and Oliktok Point will help scientists improve the understanding of high-latitude cloud and radiation processes, and their representation in global climate models. More

  15. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., those pipelines designed for in-plant transport of hydrogen for use as feedstock or fuel are not counted). Operational status and hydrogen purity levels are also factors in defining these ranges. Hydrogen pipelines in the United States are predominantly along the Gulf Coast and connect major hydrogen producers with well-established, long-term customers. These hydrogen transmission systems pall by comparison with the 180,000-mile natural gas transmission pipeline. Since 1939, Germany has had a 130-mile pipeline carrying 20,000 lb/hour of hydrogen in a 10-inch pipe at 290 psi gauge (psig). The longest hydrogen pipeline in Europe is owned by Air Liquide and extends 250 miles from Northern France to Belgium. In theory, a blend of up to 20% hydrogen in natural gas can be transported without modifying natural gas pipelines (Oney et al. 1994).

  16. The 14th Pipeline and Gas Journal 500 report. [Statistical dimensions of leading US pipeline companies

    SciTech Connect (OSTI)

    Congram, G.E.

    1994-09-01

    This article presents compiled data on oil and gas pipeline systems in the US and includes specific information on mileage, volume of transported fluids, and cost information. It lists the rankings based on miles of pipeline, units of gas sold, number of customers, units of petroleum sold, and utility by production sales. Information is also presented in alphabetical format.

  17. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2004-11-05

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

  18. Alaska Department of Environmental Conservation | Open Energy...

    Open Energy Info (EERE)

    SPAR ensures spill prevention through the review and approval of prevention plans for oil terminals, pipelines, tank vessels and barges, railroads, refineries, and exploration...

  19. Figure ES1. Map of Northern Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Figure ES1. Map of Northern Alaska figurees1.jpg (61418 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999. Return to the Executive Summary.

  20. Exploring Energy Options for Rural Alaska

    Broader source: Energy.gov [DOE]

    In mid-February, I had the opportunity to attend the Alaska Forum on the Environment in Anchorage, Alaska. The conference was attended by over 1,500 people and included a film festival, poster sessions, keynote speeches, and dozens of presentations.

  1. Southwest Alaska Economic Summit and Business Meeting

    Broader source: Energy.gov [DOE]

    The Southwest Alaska Economic Summit and Business Meeting (SWAMC) highlights the need for Alaska communities to pull together and make a way through challenging fiscal times. Panels and discussion will focus on providing conference attendees with the knowledge they need to pursue new opportunities.

  2. Alaska Rural Manager Panelists Call for Nominations

    Broader source: Energy.gov [DOE]

    The Alaska Rural Managers are seeking nominations for city, tribal, and utility managers to participate in several Anchorage focus group/workshops this April. Selected panelists will represent their profession and will help develop guidelines for the training and education of Alaska's Rural Managers.

  3. Hydrogen Transition (HyTRANS) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition (HyTRANS) Model (Oak Ridge National Laboratory) Objectives Dynamically simulate the transition to hydrogen powered light-duty vehicles in the U.S. to 2050, representing the simultaneous interaction of (1) hydrogen production and delivery, (2) hydrogen fuel cell vehicle production, and (3) consumers' choices among alternative vehicle technologies. Determine a market equilibrium solution by multi-period optimization of an objective function that reflects private costs and benefits. Key

  4. Subsea pipeline isolation systems: Reliability and costs

    SciTech Connect (OSTI)

    Masheder, R.R.

    1996-08-01

    Since the Piper Alpha disaster, more than 80 subsea isolation systems (SSIS) have been installed in subsea gas and oil pipelines in the U.K. continental shelf at an estimated cost in the region of {Brit_pounds}500 million. The reliability and costs of these installations have now been assessed between Dec. 1992 and Oct. 1993. This assessment was based upon comprehensive reliability and cost databases which were established so that the studies could be based upon factual information in order to obtain a current status as required by the sponsoring group. The study consultants report findings have now been consolidated into a report by the UKOOA Pipeline Valve Work Group. Probabilities of failure for different types of valves and systems have been assessed and expenditures broken down and compared. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.

  5. Caspian pipeline combine awards construction contract

    SciTech Connect (OSTI)

    Not Available

    1992-11-02

    This paper reports that the Caspian Pipeline Consortium (CPC) has let contract to Overseas Bechtel Inc. for a 500 mile crude oil export pipeline in Russia. Bechtel will provide engineering, procurement, financing, and construction services and serve as project manager for the 42 inc. line that will extend west from Grozny, near the Caspian Sea, to Novorossiisk, on the Black Sea. Estimated cost is more than $850 million. At Grozny, the new line will tie into 800 miles of existing pipeline that runs along the north shore of the Caspian Sea from supergiant Tengiz field in Kazakhstan. Together, the two segments will form a 1,300 mile system capable of shipping crude oil from the Tengiz region and from Baku, Azerbaijan, to a new terminal and port facilities at Novorossiisk for shipment to world markets, ultimately reaching open oceans via the Mediterranean Sea.

  6. Alaska Power Association Annual Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Power Association Annual Meeting Alaska Power Association Annual Meeting September 21, 2016 8:00AM AKDT to September 23, 2016 5:00PM AKDT Cordova, Alaska Hosted by Cordova Electric Association, the Alaska Power Association Annual Meeting will cover various sessions and topics as well as feature exhibitors

  7. Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  8. U.S. Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 83 83 72 64 59 70 1973-2016 Pipeline Prices 1.65 1.55 1.08 1.22 1.50 1.22 1993

  9. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge ...

  10. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 ...

  11. Marine pipeline dynamic response to waves from directional wave spectra

    SciTech Connect (OSTI)

    Lambrakos, K.F.

    1982-07-01

    A methodology has been developed to calculate the dynamic probabilistic movement and resulting stresses for marine pipelines subjected to storm waves. A directional wave spectrum is used with a Fourier series expansion to simulate short-crested waves and calculate their loads on the pipeline. The pipeline displacements resulting from these loads are solutions to the time-dependent beam-column equation which also includes the soil resistance as external loading. The statistics of the displacements for individual waves are combined with the wave statistics for a given period of time, e.g. pipeline lifetime, to generate probabilistic estimates for net pipeline movement. On the basis of displacements for specified probability levels the pipeline configuration is obtained from which pipeline stresses can be estimated using structural considerations, e.g. pipeline stiffness, end restraints, etc.

  12. U.S. pipelines continue gains into 1996

    SciTech Connect (OSTI)

    True, W.R.

    1996-11-25

    US interstate natural gas, crude oil, and petroleum product pipelines turned in health performances for 1995, continuing impressive efficiency improvements that were evident in 1994. Revenues and incomes earned from operations along with volumes moved are among data annually submitted to FERC and tracked by Oil and Gas Journal year to year in this exclusive report. This year`s report expands coverage of plans for new construction and completed-cost figures by including Canadian activity for the same 12-month period: July 1, 1995, to June 30, 1996. The paper includes data on the following: pipeline revenues, incomes--1995; North American pipeline costs, estimated; US pipeline costs, estimated vs. actual; North American compressor-construction costs; US compressor costs, estimated vs. actual; Canadian pipeline construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; to 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  13. Weather, construction inflation could squeeze North American pipelines

    SciTech Connect (OSTI)

    True, W.R.

    1998-08-31

    Major North American interstate and interprovincial pipeline companies appear headed for a squeeze near-term: 1997 earnings from operations were down for the second straight year even as the companies expected new construction to begin this year or later to cost more. The effects of warmer-than-normal weather during 1997 in North America made a showing in annual reports filed by US regulated interstate oil and gas pipeline companies with the US Federal Energy Regulatory Commission (FERC). This paper contains data on the following: pipeline revenues, incomes--1997; North American pipeline costs; North American pipeline costs (estimated vs. actual); North American compressor construction costs; US compressor costs (estimated vs. actual); US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  14. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada (MMcf)" 26845,1027883 27210,959063 ...

  15. Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Hydrogen Pipeline Working Group Workshop included more than 45 researchers and industry experts. The workshop provided an overview of hydrogen pipeline projects.

  16. Webinar January 12: Assessing Steel Pipeline and Weld Susceptibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen pipelines in the United States are built in compliance with the ASME B31.12 Code for Hydrogen Piping and Pipelines. The Code is based on decades of research and in-field ...

  17. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Broader source: Energy.gov [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

  18. Detroit, MI Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  19. Detroit, MI Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  20. EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent

  1. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 04_adams_nat_gas.pdf More Documents & Publications Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen Compatibility of Materials

  2. 2005 Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Hydrogen Pipeline Working Group Workshop 2005 Hydrogen Pipeline Working Group Workshop DOE held a Hydrogen Pipeline Working Group Workshop August 30-31, 2005 in Augusta, Ga. The workshop provided the opportunity for researchers to hear from industry experts about their field experiences with current in-service hydrogen pipelines (both new construction and converted). The group also explored research or other activities needed to improve costs and operability. Issues addressed by industry

  3. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  4. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in

  5. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines Map States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New

  6. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  7. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

  8. Workplace Charging Challenge Partner: University of Alaska Southeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Alaska Southeast Workplace Charging Challenge Partner: University of Alaska Southeast Workplace Charging Challenge Partner: University of Alaska Southeast Joined the Challenge: October 2015 Headquarters: Juneau, AK Charging Location: Juneau, AK Domestic Employees: 200 University of Alaska Southeast (UAS) lies in the heart of Alaska's Southeast rainforest receiving over 100 inches of rain each year. Hydroelectric power is plentiful, renewable and one of the great

  9. Workshop Explores Energy Project Financing Options for Southwest Alaska |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshop Explores Energy Project Financing Options for Southwest Alaska Workshop Explores Energy Project Financing Options for Southwest Alaska March 10, 2016 - 2:07pm Addthis Kodiak Island, Alaska. Photo by Andrew Petersen. Kodiak Island, Alaska. Photo by Andrew Petersen. Last week, the U.S. Department of Energy Office of Indian Energy hosted a Project Development and Finance workshop in conjunction with the Southwest Alaska Municipal Conference (SWAMC) Annual Economic

  10. 2012 Alaska Federation of Natives Convention | Department of Energy

    Energy Savers [EERE]

    2012 Alaska Federation of Natives Convention 2012 Alaska Federation of Natives Convention October 18, 2012 - 12:49pm Addthis Anchorage, Alaska October 18 - 20, 2012 During the Alaska Federation of Natives Convention held October 18-20 in Anchorage, the DOE Office of Indian Energy and the EERE Tribal Energy Program presented a preconference workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development." The workshop was designed to help tribal leaders

  11. EERE Success Story-Geothermal Technology Breakthrough in Alaska:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harvesting Heat below Boiling Temperatures | Department of Energy Geothermal Technology Breakthrough in Alaska: Harvesting Heat below Boiling Temperatures EERE Success Story-Geothermal Technology Breakthrough in Alaska: Harvesting Heat below Boiling Temperatures March 19, 2015 - 11:49am Addthis Sunrise at Pilgrim Hot Springs outside of Nome, Alaska. | Photo courtesy of CPike, Alaska Center for Energy and Power (ACEP). Sunrise at Pilgrim Hot Springs outside of Nome, Alaska. | Photo courtesy

  12. Order 3643: Alaska LNG Project, LLC | Department of Energy

    Energy Savers [EERE]

    43: Alaska LNG Project, LLC Order 3643: Alaska LNG Project, LLC ORDER CONDITIONALLY GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE PROPOSED ALASKA LNG TERMINAL IN NIKISKI, ALASKA, TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the Alaska LNG Application have not demonstrated that the requested authorization will be inconsistent with

  13. Executive Order 13096: American Indian and Alaska Education (1998) |

    Energy Savers [EERE]

    Department of Energy 96: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and

  14. Alternative Fuels Data Center: Alaska Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alaska Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alaska Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alaska

  15. Sustainable Energy Solutions for Rural Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Solutions for Rural Alaska Sustainable Energy Solutions for Rural Alaska Photo of the Sustainable Energy Solutions for Rural Alaska report. The report, "Sustainable Energy Solutions for Rural Alaska," provides recommendations from a study conducted over the course of 18 months that involved in-person interviews with utility staff and community members from more than 30 Alaska rural communities. The purpose of the study was to understand the current challenges and

  16. Sensor and transmitter system for communication in pipelines

    DOE Patents [OSTI]

    Cooper, John F.; Burnham, Alan K.

    2013-01-29

    A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

  17. Expansion of the U.S. Natural Gas Pipeline Network

    Reports and Publications (EIA)

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  18. TransForum 15-2 Special Issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the vulnerabilities facing infrastructure components such as the electric grid, natural gas distribution and petroleum pipelines. "A variety of factors can impact a...

  19. North West Shelf pipeline. Part 2 (conclusion). Laying Australia's North West Shelf pipeline

    SciTech Connect (OSTI)

    Seymour, E.V.; Craze, D.J.; Ruinen, W.

    1984-05-14

    Details of the construction of Australia's North West Shelf gas pipeline cover the pipelaying operation, trunkline-to-riser tie-in, posttrenching, backfilling, slugcatcher construction, connection with the shore terminal, and hydrostatic testing.

  20. Cathodic protection of pipelines in discontinuous permafrost

    SciTech Connect (OSTI)

    Mitchell, C.J.; Wright, M.D.; Waslen, D.W.

    1997-10-01

    There are many unknowns and challenges in providing cathodic protection (CP) for a pipeline located in discontinuous permafrost areas. Preliminary pipe-to-soil data indicates that CP coverage was achieved in these regions without needing local anodes. Work is required to verify whether this conclusion can be extended over the course of an annual freeze-thaw cycle.

  1. New system pinpoints leaks in ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-04-01

    A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

  2. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

  3. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name...

  4. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for January 2009. Monthly Electric Utility Sales and Revenue Data Short Name...

  5. Alaska Onshore Natural Gas Processed in Alaska (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 -380 -1,099 -291 -524 -949 -961 -900 -1,482 -1,951 -1,600 917 1,424 2014 -301 559 -197 -701 -263 -1,546 -256 -697 -564 106 -558 -733 2015 194 185 235 219 -71 -78 -171 -108 92 -52 197 140 2016 -50 -459

    Underground Storage Volume (Million Cubic Feet) Alaska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 16,578 28,110 27,940 28,524 29,473 30,384 31,284 32,766 34,652

  6. Coway International TechTrans Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    company with experience in technology transfer in China, specialising in biotech, chemical, energy environment and CDM areas. References: Coway International TechTrans Co...

  7. Deseret Generation & Tran Coop (Colorado) | Open Energy Information

    Open Energy Info (EERE)

    Coop (Colorado) Jump to: navigation, search Name: Deseret Generation & Tran Coop Place: Colorado Website: www.deseretpower.com Outage Hotline: (801) 619-6500 References: EIA Form...

  8. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  9. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hope is a census-designated place in Kenai Peninsula Borough, Alaska. It falls under...

  10. Alaska Statutes: Title 38 | Open Energy Information

    Open Energy Info (EERE)

    Alaska Statutes: Title 38Legal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  11. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  12. Alaska Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Primary Renewable Energy Capacity Source Hydro ... Conventional 414 20.1 Solar - - Wind 7 0.4 WoodWood ...Landfill Gas - - Other Biomass 6 0.1 - No data reported. ...

  13. Figure ES1. Map of Northern Alaska

    U.S. Energy Information Administration (EIA) Indexed Site

    Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999. Return to the Executive Summary.

  14. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  15. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  16. Wind Resource Assessment of St. George, Alaska

    Energy Savers [EERE]

    Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.aidea.orgwind.htm Wind Resource Assessment for ST GEORGE, ALASKA Site 2401 Date last modified: 11222005 Prepared ...

  17. Alaska Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Alaska Strategic Energy Plan and Planning Handbook

    Energy Savers [EERE]

    Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence Ave. SW, Washington DC 20585 | 202-586-1272 energy.gov/indianenergy | indianenergy@hq.doe.gov Alaska Strategic Energy Plan and Planning Handbook ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof,

  19. Alaska

    Energy Savers [EERE]

    Alana Duerr About Us Alana Duerr - Ph.D., Ocean Engineer (New West Technologies) image001.jpeg Alana Duerr is an Ocean Engineer supporting the Wind and Water Power Technologies Office (WWPTO) at DOE. Alana utilizes her background in ocean engineering by provide subject matter expertise to the various offshore wind activities within the office, including the $168M Offshore Wind Advanced Technologies Demonstration Projects, the offshore wind lidar buoy program, as well as research awards with

  20. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  1. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  3. Coal slurry pipelines: Blach Mesa and future projects

    SciTech Connect (OSTI)

    Brolick, H.J.

    1998-12-31

    Most people in the mining industry have some familiarity with pipelining of minerals in slurry form, however, many may not realize the extent that mineral slurry pipeline transport is used throughout the world. The author is referring to the shipment of the minerals in the raw or concentrate form, not tailings pipelines which are also commonplace in the minerals industry. There are over forty mineral pipelines around the world. The list covers a wide range of minerals, including copper ore concentrate, iron ore concentrate, limestone, phosphate concentrate, kaolin, Gilsonite and gold ore, with only eleven of the mineral pipelines located in the USA. It should be noted that one of the earliest slurry pipelines was a 108 mile coal slurry pipeline in Ohio, which started up in 1957. The pipeline only operated until 1963 when a railroad company literally bought out the transportation contract. This really was the beginning of the unit train concept. Each mineral has specific physical and chemical characteristics to be considered when evaluating transport by pipeline. The processing required at the pipeline origin, as well as at the pipeline termination, are also important factors in determining slurry pipeline feasibility. Transport distance, annual volume, and continuity of shipments are other important factors. One of the most difficult minerals to transport as a slurry is coal because the specific gravity is closer to water than most other minerals. Thus, the fine balance of creating enough fine particles to serve as a carrier for the coarser material, while at the same time having a material that can be economically dewatered is very sensitive and technical designs will vary with types of coal. Additionally, since coal is purchased for its thermal value, excess surface moisture can lower the value of the coal to the customer. One of the most successful slurry pipeline operations, and the only current operating long-distance coal slurry pipeline is the Black Mesa Pipeline System. The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 MW steam powered electric generating plant located in Laughlin, Nevada. Black Mesa Pipeline began commercial operation in November, 1970 and has transported in excess of 110,000,000 tons (99,800,000 metric tons) of coal with an availability factor of 99%.

  4. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications (EIA)

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  5. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of

  6. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    U.S. Energy Information Administration (EIA) Indexed Site

    Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it,

  7. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  8. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect (OSTI)

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  9. CFPL installs products pipeline with directional drilling

    SciTech Connect (OSTI)

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland {number_sign}70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line.

  10. Drag reduction in coal log pipelines

    SciTech Connect (OSTI)

    Marrero, T.R.; Liu, H.

    1996-12-31

    It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

  11. EA-216 TransAlta Energy Marketing (U.S) Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TransAlta Energy Marketing (U.S) Inc EA-216 TransAlta Energy Marketing (U.S) Inc Order authorizing TransAlta Energy Marketing (U.S) Inc to export electric energy to Canada. PDF ...

  12. EA-262-C TransCanada Power Marketing Ltd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C TransCanada Power Marketing Ltd EA-262-C TransCanada Power Marketing Ltd Order authorizing TransCanada Power Marketing Ltd to export electric energy to Canada. PDF icon EA-262-C ...

  13. EA-262-A TransCanada Power Marketing Ltd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A TransCanada Power Marketing Ltd EA-262-A TransCanada Power Marketing Ltd Order authorizing TransCanada Power Marketing Ltd to export electric energy to Canada. PDF icon EA-262-A ...

  14. EA-262-B TransCanada Power Marketing Ltd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B TransCanada Power Marketing Ltd EA-262-B TransCanada Power Marketing Ltd Order authorizing TransCanada Power Marketing Ltd to export electric energy to Canada. PDF icon EA-262-B ...

  15. EA-262 TransCanada Power Marketing Ltd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TransCanada Power Marketing Ltd EA-262 TransCanada Power Marketing Ltd Order authorizing TransCanada Power Marketing Ltd to export electric energy to Canada. PDF icon EA-262 ...

  16. EA-216-C TransAlta Energy Marketing (U.S.)Inc. | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -C TransAlta Energy Marketing (U.S.)Inc. EA-216-C TransAlta Energy Marketing (U.S.)Inc. Order authorizing TransAlta Energy Marketing (U.S.) Inc to export electric energy to Canada. ...

  17. EA-216-B TransAlta Energy Marketing (U.S) Inc | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B TransAlta Energy Marketing (U.S) Inc EA-216-B TransAlta Energy Marketing (U.S) Inc Order authorizing TransAlta Energy Marketing (U.S) Inc to export electric energy to Canada. PDF ...

  18. Hydrogen pipeline compressors annual progress report.

    SciTech Connect (OSTI)

    Fenske, G. R.; Erck, R. A.

    2011-07-15

    The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

  19. City of Saint Paul, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Saint Paul, Alaska (Utility Company) Jump to: navigation, search Name: City of Saint Paul Place: Alaska Phone Number: 907-546-3165 Website: www.stpaulak.communicipal-pow...

  20. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm Addthis NEWS ...

  1. City of White Mountain, Alaska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of White Mountain, Alaska (Utility Company) Jump to: navigation, search Name: City of White Mountain Place: Alaska Phone Number: 907-638-2230 Outage Hotline: 907-638-2230...

  2. DOE Alaska Native Village Renewable Energy Workshop Agenda

    Broader source: Energy.gov [DOE]

    Download the agenda for the DOE Alaska Native Village Renewable Energy Workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development" being held October 16-17,...

  3. Alaska Division of Mining Land and Water | Open Energy Information

    Open Energy Info (EERE)

    Mining Land and Water Jump to: navigation, search Name: Alaska Division of Mining Land and Water Address: 550 W. 7th Ave., Suite 1260 Place: Anchorage, Alaska Zip: 99501-3557 Phone...

  4. Alaska Department of Natural Resources Land Use Planning Webpage...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Use Planning Webpage Abstract This webpage provides an overview of Alaska's land use...

  5. Alaska Request for SHPO Section 106 Review | Open Energy Information

    Open Energy Info (EERE)

    Alaska Request for SHPO Section 106 Review Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Alaska Request for SHPO Section 106 Review Form Type...

  6. DOE to Host Alaska Native Village Energy Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Native Village Energy Development Workshop April 29-30 DOE to Host Alaska Native Village Energy Development Workshop April 29-30 March 13, 2014 - 12:58pm Addthis The DOE ...

  7. Alaska Division of Water Permit Fees | Open Energy Information

    Open Energy Info (EERE)

    Water Permit Fees Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published...

  8. Title 16 Alaska Statutes Chapter 20 Fish and Game Conservation...

    Open Energy Info (EERE)

    Title 16 Alaska Statutes Chapter 20 Fish and Game Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 Alaska...

  9. Alaska Fish Habitat Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Alaska Fish Habitat Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Alaska Fish Habitat Permit Application Form Type ApplicationNotice...

  10. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  11. City of Elfin Cove, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Elfin Cove, Alaska (Utility Company) Jump to: navigation, search Name: City of Elfin Cove Place: Alaska Phone Number: 1-907-239-2218 Outage Hotline: 1-907-239-2218 References: EIA...

  12. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    Open Energy Info (EERE)

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  13. U.S., Canada pipeline work shows gain in 1994

    SciTech Connect (OSTI)

    Watts, J.

    1994-01-01

    Pipeline construction activity in the US and Canada is expected to be down slightly during 1994 from 1993 mileage, even though natural gas pipeline work remains steady on both sides of the border. Pipeline and Gas Journal and Pipeline and Utilities Construction estimate that a total of 3.638 miles of new gas, crude oil and refined products pipeline will be installed during 1994 in the US, down from a total of 4.278 miles built in 1993. Canadian 1994 work remains essentially unchanged in 1994, with 1,094 new miles compared to 1,091 miles in 1993. This paper reviews the proposed construction by region and company. It includes information on mileage, type pipeline, and estimated completion date.

  14. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  15. Community Efficiency Champions Designated in Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Efficiency Champions Designated in Alaska Community Efficiency Champions Designated in Alaska February 18, 2016 - 6:49pm Addthis Energy Department Secretary Ernest Moniz visited Alaska this week and recognized the Community Efficiency Champions who have pledged to improve energy efficiency and lower energy costs through the Remote Alaskan Communities Energy Efficiency Competition. Energy Department Secretary Ernest Moniz visited Alaska this week and recognized the Community Efficiency

  16. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleStateofAlaskaDepartmentofTransportationandPublicFacilities-ApplicationRenewalforEncroachmentPermit&oldid800654" Feedback...

  17. FACT SHEET: Remote Alaska Communities Energy Efficiency (RACEE) Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy FACT SHEET: Remote Alaska Communities Energy Efficiency (RACEE) Competition FACT SHEET: Remote Alaska Communities Energy Efficiency (RACEE) Competition The Remote Alaska Communities Energy Efficiency Competition will empower Alaskan communities and native Alaskan villages to develop effective tools to advance the use of reliable, affordable, and energy efficient solutions that are replicable throughout Alaska and other Arctic regions. Download the fact sheet below for

  18. Alaska Energy Champion: Craig Moore | Department of Energy

    Energy Savers [EERE]

    Craig Moore Alaska Energy Champion: Craig Moore May 20, 2015 - 5:24pm Addthis Craig Moore, Vice President of Planning and Development. Photo by Dennis Schroeder, NREL 33444 Craig Moore, Vice President of Planning and Development. Photo by Dennis Schroeder, NREL 33444 Change doesn't happen on its own. It's led by dedicated and passionate people who are championing innovative solutions to Alaska's energy challenges. Alaska Energy Champions is a regular feature spotlighting pioneers of Alaska's new

  19. Alaska Strategic Energy Plan and Planning Handbook | Department of Energy

    Energy Savers [EERE]

    Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the Office of Indian Energy, is a tool for Alaska Native Villages and communities to use in achieving energy goals in both the near- and long-term. This Handbook intends to help Alaska Native leaders and community members define their unique energy goals and priorities through stakeholder input, dialog, and consensus-building. The

  20. DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resources | Department of Energy Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into

  1. Helping Alaska Native Communities Reduce Their Energy Costs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency

  2. Thirteen Alaska Community Efficiency Champions Selected to Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance from the Energy Department | Department of Energy Thirteen Alaska Community Efficiency Champions Selected to Receive Technical Assistance from the Energy Department Thirteen Alaska Community Efficiency Champions Selected to Receive Technical Assistance from the Energy Department April 26, 2016 - 12:58pm Addthis Village of Chefornak, Alaska. Photo from Lovina Tunuchuk, flickr Village of Chefornak, Alaska. Photo from Lovina Tunuchuk, flickr Rebuilding a home in Galena,

  3. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these

  4. World`s developing regions provide spark for pipeline construction

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1996-02-05

    This paper reviews the proposed construction of oil and gas pipelines which are underway or proposed to be started in 1996. It breaks down the projects by region of the world, type of product to be carried, and diameter of pipeline. It also provides mileage for each category of pipeline. Major projects in each region are more thoroughly discussed giving details on construction expenditures, construction problems, and political issues.

  5. DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -

    Office of Legacy Management (LM)

    NM 02 Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines

  6. New construction era reflected in East Texas LPG pipeline

    SciTech Connect (OSTI)

    Mittler, T.J. )

    1990-04-02

    Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

  7. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  8. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  9. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  10. Advanced Manufacturing pipeline brings NSC and Minority Serving...

    National Nuclear Security Administration (NNSA)

    aligns with the broad interests of DOE sites and emphasizes the entire career pipeline. ... Kansas to collaborate on NNSA technology projects Amarillo Students Win Regional National ...

  11. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting ... Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted ...

  12. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting ... Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground ...

  13. EIA - Natural Gas Pipeline Network - Regional/State Underground...

    U.S. Energy Information Administration (EIA) Indexed Site

    RegionalState Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional ...

  14. EIA - Natural Gas Pipeline Network - Natural Gas Transmission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural ...

  15. ,"Rhode Island Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  16. ,"New Jersey Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  17. ,"North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    s","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  18. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  19. ,"New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    es","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  20. ,"New Mexico Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  1. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  2. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Energy Savers [EERE]

    Counties, Texas, and Cameron Parish, Louisiana EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline Project; Jefferson and Orange Counties, Texas, and Cameron ...

  3. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  4. Enter the Post-Doc: The Untapped Sourcing Pipeline

    SciTech Connect (OSTI)

    Boscow, Ryan B.

    2011-07-30

    This article addresses the potential formulation and utilization of an industry-based Post-Doc program in order to create workforce candidate pipelines with targeted universities.

  5. Report to Congress: Dedicated Ethanol Pipeline Feasability Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independence and Security Act of 2007 (EISA). Section 243 directs DOE to study the feasibility of constructing and using pipelines dedicated to the transportation of ethanol. ...

  6. Refiners react to changes in the pipeline infrastructure

    SciTech Connect (OSTI)

    Giles, K.A.

    1997-06-01

    Petroleum pipelines have long been a critical component in the distribution of crude and refined products in the U.S. Pipelines are typically the most cost efficient mode of transportation for reasonably consistent flow rates. For obvious reasons, inland refineries and consumers are much more dependent on petroleum pipelines to provide supplies of crude and refined products than refineries and consumers located on the coasts. Significant changes in U.S. distribution patterns for crude and refined products are reshaping the pipeline infrastructure and presenting challenges and opportunities for domestic refiners. These changes are discussed.

  7. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  8. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    natural gas marine terminal along the Sabine-Neches ship channel (Jefferson County, Texas), about 35 miles of new pipeline, and associated facilities. DOE, Office of Fossil...

  9. EnSys Energy Report on Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    As part of ongoing analysis, the Department of Energy's Office of Policy and International Affairs commissioned a report on the proposed Keystone XL pipeline project.

  10. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  11. Renewable Energy Pipeline Development Terms of Reference | Open...

    Open Energy Info (EERE)

    Development Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Pipeline Development Terms of Reference AgencyCompany Organization:...

  12. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  13. Evaluation of Trenchless Technologies for Installation of Pipelines...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, ...

  14. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  15. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  16. Materials Solutions for Hydrogen Delivery in Pipelines

    SciTech Connect (OSTI)

    Ningileri, Shridas T.; Boggess, Todd A; Stalheim, Douglas

    2013-01-02

    The main objective of the study is as follows: Identify steel compositions/microstructures suitable for construction of new pipeline infrastructure and evaluate the potential use of the existing steel pipeline infrastructure in high pressure gaseous hydrogen applications. The microstructures of four pipeline steels were characterized and tensile testing was conducted in gaseous hydrogen and helium at pressures of 5.5 MPa (800 psi), 11 MPa (1600 psi) and 20.7 MPa (3000 psi). Based on reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi). The basic format for this phase of the study is as follows: Microstructural characterization of volume fraction of phases in each alloy; Tensile testing of all four alloys in He and H{sub 2} at 5.5 MPa (800 psi), 11 MPa (1600 psi), and 20.7 MPa (3000 psi). RA performance was used to choose the two best performers for further mechanical property evaluation; Fracture testing (ASTM E1820) of two best tensile test performers in H{sub 2} at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi); Fatigue testing (ASTM E647) of two best tensile test performers in H2 at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi) with frequency =1.0 Hz and R-ratio=0.5 and 0.1.

  17. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  18. Praxair extending hydrogen pipeline in Southeast Texas

    SciTech Connect (OSTI)

    Not Available

    1992-08-24

    This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

  19. Cathodic protection of pipelines in discontinuous permafrost

    SciTech Connect (OSTI)

    Mitchell, C.J.; Wright, M.D.; Waslen, D.W.

    1997-08-01

    This paper discusses the challenges in providing cathodic protection for a pipeline located in an area with discontinuous permafrost. Specific challenges included: unknown time for the permafrost to melt out, unpredictable current distribution characteristics and wet, inaccessible terrain. Based on preliminary pipe-to-soil data, it appears that cathodic protection coverage was achieved in discontinuous permafrost regions without the need of local anodes. Future work is required to verify whether this conclusion can be extended over the course of an annual freeze-thaw cycle.

  20. Natural Gas Imports by Pipeline into the U.S. Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Pipeline into the U.S. Form Natural Gas Imports by Pipeline into the U.S. Form File Excel Version of Natural Gas Imports by Pipeline into the U.S. Form.xlsx PDF icon PDF Version ...

  1. TransCanada Energy Marketing ULC | Open Energy Information

    Open Energy Info (EERE)

    Marketing ULC Jump to: navigation, search Name: TransCanada Energy Marketing ULC Place: California References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  2. TransCanada Power Mktg Ltd (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Phone Number: 1.800.661.3805 Website: www.transcanada.compowermarke Twitter: @TransCanada Outage Hotline: 1-800-447-8066 References: EIA Form EIA-861 Final Data...

  3. Alaska Power Co (Alaska) EIA Revenue and Sales - May 2008 | Open...

    Open Energy Info (EERE)

    May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Power Co for May 2008. Monthly Electric Utility Sales and Revenue Data Short...

  4. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  5. Leak detection on an ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-12-31

    A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

  6. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process

  7. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  8. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  9. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  10. UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy...

    Open Energy Info (EERE)

    Risoe CDMJI Pipeline Analysis and Database (Redirected from UNEP Risoe CDMJI Pipeline Analysis and Database) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe...

  11. UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy...

    Open Energy Info (EERE)

    UNEP-Risoe CDMJI Pipeline Analysis and Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe CDMJI Pipeline Analysis and Database AgencyCompany...

  12. Uncertainty quantification methodologies development for storage and trans-

    Office of Scientific and Technical Information (OSTI)

    portation of used nuclear fuel: Pilot study on stress corrosion cracking of canister welds (Technical Report) | SciTech Connect Technical Report: Uncertainty quantification methodologies development for storage and trans- portation of used nuclear fuel: Pilot study on stress corrosion cracking of canister welds Citation Details In-Document Search Title: Uncertainty quantification methodologies development for storage and trans- portation of used nuclear fuel: Pilot study on stress corrosion

  13. Gulf of Mexico pipelines heading into deeper waters

    SciTech Connect (OSTI)

    True, W.R.

    1987-06-08

    Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

  14. Use of look-ahead modeling in pipeline operations

    SciTech Connect (OSTI)

    Wray, B.; O`Leary, C.

    1995-12-31

    Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

  15. Pipeline in-service relocation engineering manual. Final report

    SciTech Connect (OSTI)

    Rosenfeld, M.J.

    1994-12-31

    When pipeline relocation is necessary, it is a common practice for pipeline operators to move the line while it contains gas or liquid product under pressure in order to avoid taking the line out of service. Reasons for this practice include lowering to accommodate a new crossing, raising for repair or recoating, or moving to avoid encroachment. Such operations increase the longitudinal stresses in the relocated section of pipeline. Usually, this has not caused significant problems. However, at least four pipeline failures have been associated with the movement of pipelines over the years. On October 22, 1991, the DOT Office of Pipeline Safety issued an `Alert Notice` to US pipeline operators urging them to conduct analyses prior to moving a pipeline, regardless of whether the line is in service during the operation or not; to determine the extent to which a pipeline may be safely moved, considering the material toughness as a factor; and specific procedures for the operation. The notice resulted from recommendations by the National Transportation Safety Board following their investigation of the North Blenheim failure. This document in intended to be a reasonably comprehensive manual for engineering a safe relocation of an operating pipeline in service. The major elements of the desired guidelines were perceived to already exist in various industry guidelines, standards, proceedings, and research reports. Those sources were compiled, compared and distilled into recommendations for designing a safe line relocation. This manual supplements existing guidelines such as API RP-1117 rather than superseding them; indeed, the user of this document would benefit by referring to them as well. Observance of recommendations made herein should satisfy the nominal requirements and concerns of regulators. However, this document could not possibly address every conceivable situation which might arise in line relocation, nor is it a substitute for independent engineering judgement.

  16. TAPS design concepts: environmental concerns

    SciTech Connect (OSTI)

    Turner, M.J.

    1981-05-01

    The engineering concepts used in the design, construction, and operation of the Trans-Alaska Pipeline System (TAPS) were often new and in many cases in the state of the art. To accommodate environmental concerns for operating a hot oil pipeline in permafrost soil, unique features were incorporated into TAPS. Design concepts include a sophisticated leak detection and internal pipeline monitoring system. Additional features for accommodating thaw-unstable soils, earthquakes, and river systems are described. (23 references)

  17. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  18. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 2 3 2 2 2010's 2 2 3 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Hawaii Natural Gas

  19. Illinois user sues pipeline on refusal to transport gas

    SciTech Connect (OSTI)

    Barber, J.

    1985-12-02

    An Illinois steel company filed suit against Panhandle Eastern Pipeline Co. for refusing to transport natural gas after its gas transportation program ended on November 1. The company is asking for three times the amount it is losing, which is $7,000 per day, since being forced to purchase from a higher priced distribution company. The suit claims that Panhandle's refusal violates federal and state anti-trust laws and threatens the plant's continued operation. This is the first legal action by a single industrial user, but consumer groups have named over 20 major interstate pipelines for the same allegation when pipelines declined to participate in open access transportation under Order 436.

  20. Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2010-10-18

    This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

  1. Methane Hydrate Production Technologies to be Tested on Alaska's North

    Energy Savers [EERE]

    Slope | Department of Energy Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will

  2. 2015 Alaska Project Development and Finance Workshop Agenda and

    Energy Savers [EERE]

    Presentations | Department of Energy Project Development and Finance Workshop Agenda and Presentations 2015 Alaska Project Development and Finance Workshop Agenda and Presentations The DOE Office of Indian Energy hosted three back-to-back Alaska Renewable Energy Project Development and Finance Workshops in Bethel, Dillingham, and Juneau, Alaska, from March 23-April 1, 2015. Below are agendas and presentations from the workshops. PDF icon Bethel Agenda PDF icon Dillingham Agenda PDF icon

  3. Alaska Native Village to Become a Model for Sustainable Northern

    Energy Savers [EERE]

    Native Village Energy Development Workshop Alaska Native Village Energy Development Workshop Here you will find the agenda and presentations from a workshop presented April 29-30, 2014, in Anchorage, Alaska, about developing renewable energy and energy efficiency projects in Alaska Native villages. PDF icon DOE Office of Indian Energy - Pilar Thomas, DOE Office of Indian Energy PDF icon DOE Tribal Energy Program - Lizana Pierce, U.S. Department of Energy Office of Energy Efficiency and Renewable

  4. Energy Department Supports Efficiency Upgrades in Alaska's Lake and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peninsula Borough | Department of Energy Supports Efficiency Upgrades in Alaska's Lake and Peninsula Borough Energy Department Supports Efficiency Upgrades in Alaska's Lake and Peninsula Borough March 24, 2016 - 4:48pm Addthis Insulation is a key element of weatherization because it provides resistance to heat flow which lowers a family’s heating and cooling costs. Insulation is especially important for homes in arctic climates, like this home in Alaska. The Energy Department's

  5. Financing Opportunities for Renewable Energy Development in Alaska

    Broader source: Energy.gov [DOE]

    This DOE Office of Indian Energy technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding available to Alaska Native villages and corporations: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment.

  6. Alaska Energy Pioneer Summer 2015 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2015 Newsletter Alaska Energy Pioneer Summer 2015 Newsletter The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Summer 2015 newsletter highlights opportunities and actions to accelerate Alaska Native energy development. Read newsletter stories below or download the newsletter at the bottom of the page. Five Villages Win Bids for START Technical Assistance Image of a boat in the foreground, with a frozen lake and a wind turbine in the background. The DOE Office

  7. Alaska Harbors Geothermal Energy Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Harbors Geothermal Energy Potential Alaska Harbors Geothermal Energy Potential January 10, 2014 - 12:00am Addthis Alaska Harbors Geothermal Energy Potential Leveraging historical investments in innovative exploration technologies from the U.S. Department of Energy, a study released yesterday from the USGS estimates a potential 29 MW of geothermal energy - €nearly ten times higher than estimates from the 1980s - €beneath Akutan Volcano. Energy from this active volcano, nestled in the

  8. Alaska Native Village Energy Development Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Native Village Energy Development Workshop Alaska Native Village Energy Development Workshop Here you will find the agenda and presentations from a workshop presented April 29-30, 2014, in Anchorage, Alaska, about developing renewable energy and energy efficiency projects in Alaska Native villages. PDF icon DOE Office of Indian Energy - Pilar Thomas, DOE Office of Indian Energy PDF icon DOE Tribal Energy Program - Lizana Pierce, U.S. Department of Energy Office of Energy Efficiency and Renewable

  9. Alaska Plans Geothermal Leasing at Volcano | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plans Geothermal Leasing at Volcano Alaska Plans Geothermal Leasing at Volcano June 26, 2008 - 4:19pm Addthis ANCHORAGE, Alaska - In Alaska, a state rich in oil and gas, officials are seeking to stir interest in a different source of underground energy -- the geothermal heat simmering beneath the volcanoes and hot springs that dot the landscape that could power thousands of homes. The state Division of Oil and Gas is preparing a lease sale that would allow companies to explore the geothermal

  10. Alaska Native Village Energy Development Workshop Wind Update

    Office of Environmental Management (EM)

    Alaska Native Village Energy Development Workshop Wind Update - Rich Stromberg Apr. 29, 2014 Kotzebue Wind Farm Community and Utility-Scale Wind Projects Installed in Alaska Icon scale roughly correlates to installed capacity 2  Wind turbines in 29 communities.  16 Renewable Energy Fund project sites.  More than 12 million gallons of diesel fuel and heating oil offset.  $30 million in equivalent diesel fuel offset. 3 Community and Utility-Scale Wind Projects Installed in Alaska

  11. Project Reports for Northwest Alaska Native Association (NANA) Regional

    Office of Environmental Management (EM)

    of Alaska: Tlingit and Haida Regional Housing Authority - 2010 Project | Department of Energy Central Council of the Tlingit and Haida Indian Tribes of Alaska: Tlingit and Haida Regional Housing Authority - 2010 Project Project Reports for Central Council of the Tlingit and Haida Indian Tribes of Alaska: Tlingit and Haida Regional Housing Authority - 2010 Project This project meets the Tlingit-Haida Regional Housing Authority (THRHA) need to expand weatherization services and jobs for tribal

  12. Senate Energy and Natural Resources Committee Field Hearing on Energy Innovation in Alaska

    Broader source: Energy.gov [DOE]

    Senate Energy and Natural Resources Committee Field Hearing Held in Bethel, Alaska on Energy Innovation in Alaska. Testimony of Secretary Moniz.

  13. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleStateofAlaskaDepartmentofTransportationandPublicFacilities-UtilityPermit&oldid800661" Feedback Contact needs updating Image...

  14. Wade Hampton Census Area, Alaska: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Wade Hampton Census Area, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 62.1458336, -162.8919191 Show Map Loading map......

  15. Southwest Alaska Economic Summit and Business Meetup | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Southwest Alaska Economic Summit and Business Meeting (SWAMC) highlights the need for ... providing conference attendees with the knowledge they need to pursue new opportunities.

  16. Alaska Department of Natural Resources Land Search Records Webpage...

    Open Energy Info (EERE)

    Records Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Department of Natural Resources Land Search Records Webpage Abstract This...

  17. Alaska Underground Storage Tanks Website | Open Energy Information

    Open Energy Info (EERE)

    Underground Storage Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill...

  18. Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy...

    Open Energy Info (EERE)

    project the University of Alaska is proposing a new and innovative iterative method of digital processing of acquired thermal infrared data adapted from thermal data processing...

  19. Energy Department Expands Support of Alaska Native Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... "Alaska Native communities are dealing with the impacts of climate change, such as coastal and river flooding and erosion, in real time," said Joel Neimeyer of the Denali ...

  20. Alaska - 3 AAC 48.650 - Incomplete Applications | Open Energy...

    Open Energy Info (EERE)

    Alaska - 3 AAC 48.650 - Incomplete ApplicationsLegal Abstract This section sets forth the authority of the Regulatory Commission to dismiss incomplete CPCN applications....