Powered by Deep Web Technologies
Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Studies of wax deposition in the Trans Alaska pipeline  

SciTech Connect (OSTI)

The crude oil being pumped into the Trans Alaska pipeline experiences considerable cooling during its 800-mile (1,287 km) journey from Prudhoe Bay to Valdez. The conditions during the initial flow period were favorable especially for the deposition of the waxy constituents of the crude on the pipeline wall. As time passed and the crude oil flow rate increased, segments of the pipeline warmed up to temperatures greater than that at which wax deposition occurs. This study investigated mechanisms of wax deposition and determined the expected nature and thickness of deposits in the pipeline as a function of time and distance. Results indicate that deposition during start-up is a consequence of 3 separate mechanisms which transport both dissolved and precipitated waxy residue laterally. 31 references.

Burger, E.D.; Perkins, T.K.; Striegler, J.H.

1980-03-01T23:59:59.000Z

2

Trans-Alaska Pipeline Oversight. Hearings before the Subcommittee on Oversight and Investigations of the Committee on Energy and Commerce, House of Representatives, One Hundred Third Congress, First Session, July 14 and November 10, 1993  

SciTech Connect (OSTI)

This subcommittee hearing examined Alyeska's ability to manage and operate the Trans-Alaska Pipeline safely and the effectiveness of the Federal Government's oversite of Alyeska. Testimony of the following was given: R. Armstrong, J. Baca, DOI; Biddy, inspector, Alyeska Pipeline Service Co.; Bowlin, Atlantic Richfield Co.; Green, Plumlee, Schooley, Tracanna, former Alyeska pipeline inspectors; Howitt, Pritchard, Alyeska Pipeline Service Co; Longwell, Exxon Co.; Oliver, British Petroleum Exploration; Sanderson, EPA; Schroeder, Williams, and Ehero, Quality Technology Co.; Tenley, DOT; Miller, Rep. from California; Young, Rep. from Alaska.

Not Available

1994-01-01T23:59:59.000Z

3

EIA Report 8/10/06 - Alaska's Prudhoe Bay Crude Oil Pipeline Shutdown  

Gasoline and Diesel Fuel Update (EIA)

Alaska Prudhoe Bay Crude Oil Shut-in Alaska Prudhoe Bay Crude Oil Shut-in Facts and Impacts on the U.S. Oil Markets As of Thursday, August 10, 10:00 am Background on Alaska Crude Production and Transport Alaska ranks second, after Texas, among the States in crude oil reserves. On December 31, 2004, Alaska's proved reserves totaled 4,327 million barrels. Although Alaska's production declined from 2 million barrels per day (bbl/d) in 1988 to 864,000 bbl/d in 2005, it is still the second largest oil producing State when Federal offshore production is excluded. Alaskan Production Graph of US Crude Oil Production figure data The Trans-Alaska Pipeline Systems (TAPS) connects the North Slope oil fields with the Port of Valdez in southern Alaska. From Valdez, crude oil is shipped primarily to refineries located on the U.S. West Coast.

4

EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

5

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping.  

E-Print Network [OSTI]

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans m). So we can toss this out. Now estimate the energy content of gasoline: Many of you tried figuring

Nimmo, Francis

6

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

7

Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward on Alaska Natural Gas Pipeline Loan Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm Addthis WASHINGTON, DC - The Department of Energy tomorrow, Friday, May 27, will publish a Notice of Inquiry in the Federal Register seeking public comment on an $18 billion loan guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's 35 trillion cubic feet of proven natural gas reserves, and would be a major step forward in meeting America's growing energy needs and reducing our dependence on foreign sources of energy. It would also fulfill the Bush Administration's policy to bring Alaska's natural gas reserves to market.

8

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

9

Trans-oceanic pipeline: reaffirms Panama's strategic position  

SciTech Connect (OSTI)

The Trans-Panama Pipeline, which began in July 1980 and was finished October 1, 1982, will transport Alaskan crude from Puerto Armuelles, in the Pacific Ocean, to Chiriqui Grande, in the Atlantic. Built at a total cost of $400 million, the facility will speed deliveries of North Slope crude to refining centers in Houston, Puerto Rico, the Virgin Islands, and New Jersey; it is expected to move about 800,000 barrels/day by January 1983. With construction of a pump station near Chiriqui Grande, the pipeline could easily be altered for reverse-flow capability. This issue of Energy Detente reviews the use of the new pipeline, as it cuts crude oil transportation time and cost and provides an alternative to the Panama Canal. The issue also updates the fuel price/tax series for the countries of the Western Hemisphere.

Not Available

1982-11-24T23:59:59.000Z

10

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Alaska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

11

The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event  

Science Journals Connector (OSTI)

...the Trans Alaska Pipeline at the Denali fault crossing was engineered...dextral slip. The pipeline, designed to...slip at the fault crossing (12), withstood...13 Alyeska Pipeline Service Company (APSC), Design Basis DB-180...

Donna Eberhart-Phillips; Peter J. Haeussler; Jeffrey T. Freymueller; Arthur D. Frankel; Charles M. Rubin; Patricia Craw; Natalia A. Ratchkovski; Greg Anderson; Gary A. Carver; Anthony J. Crone; Timothy E. Dawson; Hilary Fletcher; Roger Hansen; Edwin L. Harp; Ruth A. Harris; David P. Hill; Sigrn Hreinsdttir; Randall W. Jibson; Lucile M. Jones; Robert Kayen; David K. Keefer; Christopher F. Larsen; Seth C. Moran; Stephen F. Personius; George Plafker; Brian Sherrod; Kerry Sieh; Nicholas Sitar; Wesley K. Wallace

2003-05-16T23:59:59.000Z

12

1. [M] Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping. As always, try not to look anything up.  

E-Print Network [OSTI]

1. [M] Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans to this (which is 1 bend per 10 m). So we can toss this out. Now estimate the energy content of gasoline: Many

Nimmo, Francis

13

The Trans-Africa Pipeline: Building a Sustainable Water Generation and Distribution Network  

E-Print Network [OSTI]

The Trans-Africa Pipeline (TAP), the vision of University of Toronto professor emeritus Rod Tennyson, aims to mitigate poverty, disease, desertification, and conflict in Africas Sahel1 region through the daily provision of roughly one billion litres of fresh water to 20 million people for domestic and agricultural use (Tennyson, n.d; Tennyson et al, n.d). As the effects of climate change become more pronounced,

unknown authors

2011-01-01T23:59:59.000Z

14

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Broader source: Energy.gov (indexed) [DOE]

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

15

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Broader source: Energy.gov (indexed) [DOE]

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

16

Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii  

SciTech Connect (OSTI)

As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the footprint of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the Presidents Climate Action Plan.

Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

2014-03-25T23:59:59.000Z

17

sea pipeline  

Science Journals Connector (OSTI)

sea pipeline, sealine, marine (pipe)line, undersea (pipe)line, submarine (pipe)line, subsea (pipe)line ? Untermeer(es)(rohr)leitung f

2014-08-01T23:59:59.000Z

18

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

19

Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas  

Broader source: Energy.gov (indexed) [DOE]

Federal Agencies Collaborate to Expedite Construction of Alaska Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm Addthis Agreement Establishes Framework for Increasing Energy Security WASHINGTON, DC - The U.S. Department of Energy and 14 other federal departments and agencies have signed an agreement to expedite the permitting and construction of the Alaska Natural Gas Pipeline which, when operational, will substantially increase domestic natural gas supply and advance the Administration's energy security policy. The agreement signals the U.S. government's commitment to expedite the federal permitting processes for the Alaska Natural Gas Pipeline and establishes a project management framework for cooperation among participating agencies to reduce

20

water pipeline gallery  

Science Journals Connector (OSTI)

water pipeline gallery, water pipeline drift; water pipeline tunnel (US) ? Wasserleitungsrohrstollen m

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The future of oil and gas in Northern Alaska  

SciTech Connect (OSTI)

The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, Trans-Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

1995-04-01T23:59:59.000Z

22

Dear Fellow Columbian, Join alumni and friends in Alaska from June 24-July 1, 2013 on an 8-day exploration of  

E-Print Network [OSTI]

and stunning Sandhill Cranes. · The emergence of Alaska's beautiful wildflowers, such as lupine and fireweed history. After tonight's welcome dinner, we'll visit the famous Alaska Pipeline. Overnight at Pike

Lazar, Aurel A.

23

diamond pipeline  

Science Journals Connector (OSTI)

the various steps through, which a diamond passes from production to marketing not including the end consumer. Also called diamond chain , pipeline ...

2009-01-01T23:59:59.000Z

24

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

25

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline....

26

PIPELINE INVENTORIES  

Science Journals Connector (OSTI)

Inventory that are in the transportation network, the distribution system, and intermediate stocking points are called . The higher the time for the materials to move through the pipeline the larger the pipel...

2000-01-01T23:59:59.000Z

27

ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan...  

Open Energy Info (EERE)

ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ALASKA ENERGY AUTHORITY Alaska Geothermal...

28

Pipeline Setback Ordinance (Minnesota)  

Broader source: Energy.gov [DOE]

This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

29

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

30

Frozen Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frozen Alaska Frozen Alaska Nature Bulletin No. 549-A January 11, 1975 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation FROZEN ALASKA Alaska, admitted to the Union in 1959 as our largest state, was purchased from Russia in 1867 for only $7,200,000. That huge peninsula has an area of 586,400 square miles -- more than twice the area of Texas and almost one-fifth of the whole United States. It is a treasure chest of vast wealth in gold, silver, copper, platinum and other important metals; of coal and petroleum; of fishes and furs; of forests, fertile soils and magnificent scenery. As our last frontier, it has become of vital strategic importance in our national defense. Alaska was a rare bargain, obtained largely through the insistent efforts of William H. Seward, secretary of state, but most of its great natural resources were unknown then. The American people, opposed to the purchase, scornfully called it "Seward's Folly," "Walrussia," "Polaria," and "a giant icebox ".

31

Pipeline ADC Design Methodology  

E-Print Network [OSTI]

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

32

cautious pipeline trench blasting  

Science Journals Connector (OSTI)

cautious pipeline trench blasting, pipeline trench blasting (with)in built-up areas...n in bebauten Gebieten

2014-08-01T23:59:59.000Z

33

Alaska START Round 3  

Broader source: Energy.gov [DOE]

The DOE Office of Indian Energy is accepting applications for the third round of the Alaska Strategic Technical Assistance Response Team (START) Program to assist Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects.

34

Alaska BIA Providers Conference  

Broader source: Energy.gov [DOE]

The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

35

ARM - Kiosks - Barrow, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Barrow, Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global...

36

Overview of the design, construction, and operation of interstate liquid petroleum pipelines.  

SciTech Connect (OSTI)

The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

Pharris, T. C.; Kolpa, R. L.

2008-01-31T23:59:59.000Z

37

4271 pipeline [n  

Science Journals Connector (OSTI)

envir. (Long-distance pipe for conveying natural gas, oil, potable water, etc.; specific terms gas pipeline, oil pipeline); spipeline [m] (Conducto destinado al transporte de petrleo o gas a larg...

2010-01-01T23:59:59.000Z

38

Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)  

Reports and Publications (EIA)

At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

2009-01-01T23:59:59.000Z

39

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

40

Pipeline Safety (South Dakota)  

Broader source: Energy.gov [DOE]

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Pipeline Operations Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

42

Pipeline Safety (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

43

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

44

Pipeline refurbishing  

SciTech Connect (OSTI)

A novel process for simultaneously removing deteriorated coatings (such as coal tar and asphalt enamel or tape) and providing surface preparation suitable for recoating has been developed for pipelines up to 36 in. (914 mm) in diameter. This patented device provides a near-white metal surface finish. Line travel or bell-hole operations are possible at rates up to 10 times conventional blasting techniques. This article describes development of a tool and machine that will remove pipeline coatings, including coal tar enamel and adhesive-backed plaster tape systems. After coating removal, the pipe surface is suitable for recoating and can be cleaned to a near-white metal finsh (Sa 2 1/2 or NACE No. 2) if desired. This cleaning system is especially useful where the new coating is incompatible with the coating to be removed, the new coating requires a near-white or better surface preparation, or no existing method has been found to remove the failed coating. This cleaning system can remove all generic coating systems including coal tar enamel, asphalt, adhesive-backed tape, fusion-bonded epoxy, polyester, and extruded polyethylene.

McConkey, S.E.

1989-04-01T23:59:59.000Z

45

Alaska Rural Energy Conference  

Broader source: Energy.gov [DOE]

The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

46

,"Alaska Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

RL2R9911SAK1","RNGR9908SAK1","RNGR9909SAK1","RNGR9910SAK1" "Date","Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alaska (with...

47

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

Aspen Pipeline Jump to: navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and...

48

START Program: Alaska  

Broader source: Energy.gov [DOE]

Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

49

A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams?  

E-Print Network [OSTI]

A version of this appeared in Economic & Political Weekly (1999) XXXIV(18) Natural Gas Imports by South Asia: Pipelines or Pipedreams? TransAsia Pipeline System (TAPS): A Shared Natural Gas Pipeline situations where there are eager purchasers of natural gas (India and Pakistan), willing suppliers of natural

50

EMPLOYMENT FACTS: THE KEYSTONE XL PIPELINE Under the forest in northern Alberta, Canada lie the world's largest deposits of so-called "tar sands,"  

E-Print Network [OSTI]

EMPLOYMENT FACTS: THE KEYSTONE XL PIPELINE Under the forest in northern Alberta, Canada lie being shipped to the US. The Keystone XL will be a 36-inch crude oil pipeline stretching nearly 2 PIPELINE TransCanada Corporation "Keystone has many benefits, including 20,000 high paying jobs

Danforth, Bryan Nicholas

51

Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields  

SciTech Connect (OSTI)

The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

1993-05-01T23:59:59.000Z

52

Pipeline Construction Guidelines (Indiana)  

Broader source: Energy.gov [DOE]

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

53

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

54

Keystone XL pipeline update  

Broader source: Energy.gov [DOE]

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

55

Pipeline operation and safety  

SciTech Connect (OSTI)

Safety is central to the prosperity of the pipeline industry and the need to maintain high standards of the safety at all times is of paramount importance. Therefore, a primary concern of pipeline operator is adequate supervision and the control of the operation of pipelines. Clearly defined codes of practice, standards and maintenance schedules are necessary if protection is to be afforded to the pipeline system employees, the public at large, and the environment.

Tadors, M.K. [Petroleum Pipelines Co., Cairo (Egypt)

1996-12-31T23:59:59.000Z

56

RETROSPECTIVE: Software Pipelining  

E-Print Network [OSTI]

- cialized hardware designed to support software pipelining. In the meantime, trace scheduling was touted compiler with software pipelining for the polycyclic architecture, which had a novel crossbar whose crossRETROSPECTIVE: Software Pipelining: An Effective Scheduling Technique for VLIW Machines Monica S

Pratt, Vaughan

57

Alaska/Incentives | Open Energy Information  

Open Energy Info (EERE)

Alaska/Incentives Alaska/Incentives < Alaska Jump to: navigation, search Contents 1 Financial Incentive Programs for Alaska 2 Rules, Regulations and Policies for Alaska Download All Financial Incentives and Policies for Alaska CSV (rows 1 - 21) Financial Incentive Programs for Alaska Download Financial Incentives for Alaska CSV (rows 1 - 15) Incentive Incentive Type Active Alaska - Residential Energy-Efficient Appliance Rebate Program (Alaska) State Rebate Program No Association Loan Program (Alaska) State Loan Program Yes Energy Efficiency Interest Rate Reduction Program (Alaska) State Loan Program Yes Energy Efficiency Revolving Loan Fund Program (Alaska) State Loan Program Yes Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) Utility Rebate Program Yes

58

EXPORTS: Alaska LNG to Japan  

Science Journals Connector (OSTI)

EXPORTS: Alaska LNG to Japan ... Sometime within the coming few weeks the Polar Alaska and the Arctic Tokyo will begin their regular 3700- mile shuttle run between Alaska and Japan. ...

1969-08-11T23:59:59.000Z

59

6 - Pipeline Drying  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews pipeline dewatering, cleaning, and drying. Dewatering can be a simple process or, if the procedure is not properly planned, a difficult one. Pipelines used to transport crude oil and/or refined products will probably only require removal of the test water before the line is placed in service. If the pipeline will be used to transport materials that must meet a specified dryness requirement, the pipeline will need to be dewatered, cleaned, and dried. Pipelines used to transport natural gas will need some drying, depending on the operating pressure and the location of the line, to prevent the formation of hydrates. Other pipelines may require drying to protect the pipe from internal corrosion caused by the formation of corrosive acids, such as carbonic acid in the case of carbon dioxide pipelines.

2014-01-01T23:59:59.000Z

60

Alaska Forum on the Environment  

Office of Energy Efficiency and Renewable Energy (EERE)

The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A pipeline scheduling model  

E-Print Network [OSTI]

A PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER QF SCIENCE August 1975 Major Subject: Computing... Science R PIPELINE SCHEDULING MODEL A Thesis by THOMAS MELVIN BEATTY Approved as to style and content by: Chairman of ommittee Member (Head o f Department ) Member August 1975 ABSTRACT A PIPELINE SCHEDULING MODEL (August 1975) Thomas Melvin...

Beatty, Thomas Melvin

2012-06-07T23:59:59.000Z

62

AMF Deployment, Oliktok, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

63

The Motion Capture Pipeline.  

E-Print Network [OSTI]

?? Motion Capture is an essential part of a world full of digital effects in movies and games. Understanding the pipelines between software is a (more)

Holmboe, Dennis

2008-01-01T23:59:59.000Z

64

Product Pipeline Reports Tutorial  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player...

65

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Interstate Natural Gas...

66

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

67

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

68

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

69

Alaska ADEC Wetlands Regulation | Open Energy Information  

Open Energy Info (EERE)

Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska ADEC Wetlands Regulation Author Alaska Division of Water Published Alaska Department...

70

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

71

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

72

Natural Gas Pipeline Safety (Kansas)  

Broader source: Energy.gov [DOE]

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

73

FEATURE ARTICLE Pipeline Corrosion  

E-Print Network [OSTI]

F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

Botte, Gerardine G.

74

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

75

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

76

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export Locations  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines > Import/Export Location List Pipelines > Import/Export Location List About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Currently, there are 58 locations at which natural gas can be exported or imported into the United States, including 9 LNG (liquefied natural gas) facilities in the continental United States and Alaska (There is a tenth U.S. LNG import facility located in Puerto Rico). At 28 of these locations natural gas or LNG currently can only be imported; while at 17 they may only be exported (1 LNG export facility is located in Alaska). At 13 of the 58 locations natural gas may, and sometimes does, flow in both directions, although at each of these sites the flow is primarily either import or export.

77

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

78

Indian/Alaska.pmd  

Broader source: Energy.gov (indexed) [DOE]

Indian Indian & Alaska Native Tribal Government Policy American Indian & Alaska Native Tribal Government Policy 1 U.S. DEPARTMENT OF ENERGY AMERICAN INDIAN & ALASKA NATIVE TRIBAL GOVERNMENT POLICY PURPOSE This Policy sets forth the principles to be followed by the Department of Energy (DOE) to ensure an effective implementation of a government to government relation- ship with American Indian and Alaska Native tribal governments. This Policy is based on the United States Constitution, treaties, Supreme Court decisions, Execu- tive Orders, statutes, existing federal policies, tribal laws, and the dynamic political relationship between Indian nations and the Federal government 1 . The most impor- tant doctrine derived from this relationship is the trust responsibility of the United States to protect tribal sover-

79

North Slope of Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govSitesNorth Slope of Alaska govSitesNorth Slope of Alaska NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts North Slope of Alaska Barrow: 71° 19' 23.73" N, 156° 36' 56.70" W Atqasuk: 70° 28' 19.11" N, 157° 24' 28.99" W The North Slope of Alaska (NSA) site is providing data about cloud and radiative processes at high latitudes. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. The principal instrumented facility was installed near Barrow in 1997,

80

Alaska | OpenEI  

Open Energy Info (EERE)

Alaska Alaska Dataset Summary Description The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within a geothermal area are located where available; the majority of the data are from company documents, well logs and publications. Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow, Source SMU Date Released Unknown Date Updated Unknown Keywords Alaska geothermal hawaii SMU Data text/csv icon Alaska and Hawaii geothermal 2008 (csv, 20.9 KiB) Quality Metrics

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Interconnection Guidelines (Alaska)  

Broader source: Energy.gov [DOE]

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

82

Alaska Workshop: Workforce Development  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

83

Alaska Renewable Energy Fair  

Office of Energy Efficiency and Renewable Energy (EERE)

The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

84

Composites Technology for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution

85

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

2003-05-01T23:59:59.000Z

86

Tefken builds Turkish pipeline project  

SciTech Connect (OSTI)

A turnkey contract was let in early 1983 for the construction of the Yumurtalik-Kirikkale crude oil pipeline system in Turkey. The design and construction of the 277 mile, 24 in dia pipeline will be completed toward the end of 1985. The pipeline will transport crude oil to the Central Anatolian Refinery. In the original design, the pipeline was planned for an ultimate capacity of 10 million tons/year with three pumping stations. Problems encountered in constructing the pipeline are discussed.

Not Available

1984-08-01T23:59:59.000Z

87

Pipelines in the constructed environment  

SciTech Connect (OSTI)

New pipeline construction, the maintenance of existing pipelines, and the rehabilitation or replacement of deteriorating pipelines often takes place with many challenges and constraints imposed by developmental regulations. The 1998 Pipeline Division Conference provided a forum for those involved in the field to share ideas and learn more about the issues faced today. These 92 peer-reviewed papers reflect the current methods and technology in the field of pipeline construction.

Castronovo, J.P.; Clark, J.A. [eds.

1998-07-01T23:59:59.000Z

88

Alaska: Alaska's Clean Energy Resources and Economy (Brochure)  

SciTech Connect (OSTI)

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

Not Available

2013-03-01T23:59:59.000Z

89

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

90

Gas Pipelines (Texas)  

Broader source: Energy.gov [DOE]

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

91

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

92

Gas Pipeline Securities (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

93

Historical pipeline construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for the pipeline construction cost, by analysing individual pipeline cost components with historical pipeline cost data. Cost data of 412 pipelines recorded between 1992 and 2008 in the Oil and Gas Journal are collected and adjusted to 2008 dollars with the chemical engineering plant cost index (CEPCI). The distribution and share of these 412 pipeline cost components are assessed based on pipeline diameter, pipeline length, pipeline capacity, the year of completion, locations of pipelines. The share of material and labour cost dominates the pipeline construction cost, which is about 71% of the total cost. In addition, the learning curve analysis is conducted to attain learning rate with respect to pipeline material and labour costs for different groups. Results show that learning rate and construction cost are varied by pipeline diameters, pipeline lengths, locations of pipelines and other factors. This study also investigates the causes of pipeline construction cost differences among different groups. [Received: October 13, 2010; Accepted: December 20, 2010

Zhenhua Rui; Paul A. Metz; Doug B. Reynolds; Gang Chen; Xiyu Zhou

2011-01-01T23:59:59.000Z

94

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

95

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

96

DOE Hydrogen Pipeline Working Group Workshop  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen...

97

1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion  

SciTech Connect (OSTI)

Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

Hall, D.

1982-07-01T23:59:59.000Z

98

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lAlaska-Amchitka Island. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

99

Alaska.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska Alaska www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

100

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

102

Venetie, Alaska energy assessment.  

SciTech Connect (OSTI)

This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

Jensen, Richard Pearson; Baca, Micheal J.; Schenkman, Benjamin L.; Brainard, James Robert

2013-07-01T23:59:59.000Z

103

Alaska Native Villages  

Broader source: Energy.gov [DOE]

The DOE Office of Indian Energy Policy and Programs (DOE Office of Indian Energy), in partnership with the Denali Commission, provides Alaska Native villages with resources, technical assistance, skills, and analytical tools needed to develop sustainable energy strategies and implement viable solutions to community energy challenges

104

ALASKA SURVEYS AND INVESTIGATIONS  

Science Journals Connector (OSTI)

...with the Forest Service. The hot springs of Alaska are of impor-tance...A. Waring, who will visit the hot springs of Ketchikan and Sitka, in southeastern...one near Circle and the Baker and Chena hot springs, in the Tanana Valley; and one...

1915-05-14T23:59:59.000Z

105

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

106

Materials Requirements for Pipeline Construction  

Science Journals Connector (OSTI)

...the same time, pipeline failure must be...the huge cost of repair. The first oil...where the initial pipeline construction cost...cost of a single repair can exceed C1M. TABLE 2. NORTH SEA PIPELINES grade max. water...

1976-01-01T23:59:59.000Z

107

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

108

Predicting pipeline frost load  

SciTech Connect (OSTI)

A study was undertaken to find a formula for predicting the additional load imposed on underground pipelines by soil freezing. The authors conclude that a modified Boussinesq equation can be used to assess this load. Results also showed that frost affects the modulus of soil reaction and therefore the induced stress in flexible pipe.

Fielding, M.B.; Cohen, A.

1988-11-01T23:59:59.000Z

109

New Materials for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

110

The SINFONI pipeline  

E-Print Network [OSTI]

The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

2007-01-10T23:59:59.000Z

111

Framework of pipeline integrity management  

Science Journals Connector (OSTI)

Pipeline integrity is the cornerstone of many industrial and engineering systems. This paper provides a review and analysis of pipeline integrity that will support professionals from industry who are investigating technical challenges of pipeline integrity. In addition, it will provide an overview for academia to understand the complete picture of pipeline integrity threats and techniques to deal with these threats. Pipeline threats are explained and failures are classified. Design practices are discussed using pressure criteria. Inspection techniques are studied and used as a basis for describing the corresponding integrity assessment techniques, which are linked with integrity monitoring and maintenance criteria. Finally, pipeline integrity management system design is presented using activity models, process models, and knowledge structures. The paper will be useful for further development of automated tools to support pipeline integrity management.

Hossam A. Gabbar; Hossam A. Kishawy

2011-01-01T23:59:59.000Z

112

Alaska START | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resources » START Program » Alaska START Resources » START Program » Alaska START Alaska START Led by the DOE Office of Indian Energy, in partnership with the Denali Commission, the DOE Office of Energy Efficiency and Renewable Energy, and the National Renewable Energy Laboratory (NREL), the Strategic Technical Assistance Response Team (START) Initiative for Rural Alaska Native Community Energy Planning and Projects will support activities of Alaska Native communities and entities that are focused on community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community will receive technical assistance focused on community-based energy planning, energy awareness and

113

OpenEI - Alaska  

Open Energy Info (EERE)

SMU: Alaska and Hawaii SMU: Alaska and Hawaii Geothermal Data http://en.openei.org/datasets/node/591 The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within
a geothermal area are located where available;  the majority of the data are from company documents, well logs and publications.  Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow,

License

114

Alaska START | Department of Energy  

Office of Environmental Management (EM)

awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community...

115

ALASKA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. ALASKA RECOVERY ACT SNAPSHOT More Documents & Publications

116

Applications for Alaska Strategic Technical Assistance Response...  

Office of Environmental Management (EM)

Applications for Alaska Strategic Technical Assistance Response Team Program Are Due Feb. 6 Applications for Alaska Strategic Technical Assistance Response Team Program Are Due...

117

Alaska Native Village Energy Development Workshop Agenda  

Broader source: Energy.gov [DOE]

Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

118

START Alaska Historical Energy Usage Spreadsheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Alaska Historical Energy Usage Spreadsheet START Alaska Historical Energy Usage Spreadsheet Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance...

119

Alaska Water Quality Standards | Open Energy Information  

Open Energy Info (EERE)

PermittingRegulatory Guidance - GuideHandbook: Alaska Water Quality StandardsPermittingRegulatory GuidanceGuideHandbook Author Alaska Department of Environmental Conservation...

120

Abstract--A mesochronous pipeline scheme is described in this paper. In a conventional pipeline scheme each pipeline stage  

E-Print Network [OSTI]

Abstract-- A mesochronous pipeline scheme is described in this paper. In a conventional pipeline scheme each pipeline stage operates on only one data set at a time. In the mesochronous scheme, pipeline stages operate on multiple data sets simultaneously. The clock period in conventional pipeline scheme

Delgado-Frias, José G.

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

122

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

123

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

124

Alternative Fuels Data Center: Alaska Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alaska Information to Alaska Information to someone by E-mail Share Alternative Fuels Data Center: Alaska Information on Facebook Tweet about Alternative Fuels Data Center: Alaska Information on Twitter Bookmark Alternative Fuels Data Center: Alaska Information on Google Bookmark Alternative Fuels Data Center: Alaska Information on Delicious Rank Alternative Fuels Data Center: Alaska Information on Digg Find More places to share Alternative Fuels Data Center: Alaska Information on AddThis.com... Alaska Information This state page compiles information related to alternative fuels and advanced vehicles in Alaska and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

125

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

126

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length

127

Deepwater pipeline-repair system deployed to Mediterranean  

SciTech Connect (OSTI)

The latest phase in development of a deepwater pipeline-repair system received full-scale trials earlier this summer in Norway and has been deployed on standby for the Trans-Mediterranean pipeline by operator SNAM. In Stavanger harbor in June, Sonsub International Inc.`s Arcos diverless repair system underwent successful shallow-water trials that employed all the system`s equipment. (Arcos is an Italian acronym for attrezzaturre per la riparazione di condotte sottomarine-subsea pipe repair tooling.) The system is the most recent development in an evolution of efforts to develop a diverless pipeline-repair system for deepwater use. The prototype PRS (pipeline repair system) received deepwater (300m) trials offshore southern Italy in 1992. It used two work-class ROVs. In 1995, a modified PRS, renamed the DSRS (diverless sealine repair system), underwent shallow-water trials, also offshore southern Italy, that led to a modification of its pipe-lifting system. In 1997, the DSRS underwent more shallow-water trials, this time in Stavanger, which led to improvement in the spool-installation module. According to Sonsub, this refined version of the Arcos employs a low-force modular concept that is ROV supported and can be adapted quickly and easily to a wide range of pipe sizes.

True, W.R.

1998-11-16T23:59:59.000Z

128

Pipelines (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

129

Microsoft Word - alaska.doc  

Gasoline and Diesel Fuel Update (EIA)

Alaska Alaska NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 2,067 48 Electric Utilities ...................................................................................................... 1,889 39 Independent Power Producers & Combined Heat and Power ................................ 178 51 Net Generation (megawatthours) ........................................................................... 6,759,576 48 Electric Utilities ...................................................................................................... 6,205,050 40

130

Microsoft Word - alaska.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Alaska NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 2,067 48 Electric Utilities ...................................................................................................... 1,889 39 Independent Power Producers & Combined Heat and Power ................................ 178 51 Net Generation (megawatthours) ........................................................................... 6,759,576 48 Electric Utilities ...................................................................................................... 6,205,050 40

131

Chapter Three - Pipeline Reliability Assessment  

Science Journals Connector (OSTI)

Abstract Another aspect of pipeline integrity management is the assessment of system reliability over the age of the pipeline. In order to assess the aging effects through the pipes lifetime, a reliability assessment is carried out for the pipeline or its segment. The assessment of the residual stress effect is carried out by evaluating the reliability of new uncorroded pipelines, which are assumed to be free from any flaw. The influence of residual stress parameters, mean, and coefficient of variation are considered in the reliability assessment.

Ramesh Singh

2014-01-01T23:59:59.000Z

132

Hydrogen Embrittlement in Pipeline Steels  

Broader source: Energy.gov (indexed) [DOE]

& Materials Division Material Measurement Laboratory HYDROGEN EMBRITTLEMENT IN PIPELINE STEELS AJ Slifka, ES Drexler, RL Amaro, DS Lauria, JR Fekete Applied Chemicals &...

133

Pipelining characteristics of Daqing waxy crude oil  

Science Journals Connector (OSTI)

Compared with pipelining Newtonian fluid, the pipelining characteristics of the waxy crude pipeline are sensitive to the complicated rheological properties. When the temperature is lower than the wax appearance t...

Ying-ru Zhu ???; Jin-jun Zhang ???

2007-02-01T23:59:59.000Z

134

RNA-Seq Pipeline in Galaxy  

E-Print Network [OSTI]

Assembly in Galaxy RNA-Seq q Pipeline p QC : To find outRNA-Seq Pipeline in Galaxy Xiandong Meng 1 , Jeffrey Martinof California RNA--Seq Pipeline in Galaxy RNA Xiandong Meng

Meng, Xiandong

2014-01-01T23:59:59.000Z

135

Chapter 4 - Pipeline Inspection and Subsea Repair  

Science Journals Connector (OSTI)

Abstract Pipeline inspection is a part of the pipeline integrity management for keeping the pipeline in good condition. The rules governing inspection are the pipeline safety regulations. In most cases the pipeline is inspected regularly. The pipeline safety regulations require that the operator shall insure that a pipeline is maintained in an efficient state, in efficient working order and in good repair. The pipeline inspection includes external inspection and internal inspection. In this chapter, the metal loss inspection techniques are discussed. The subsea pipeline internal inspection is normally carried out through non-destructive testing techniques and technologies by intelligent pigs, such as magnetic-flux leakage technology inn axial and circumferential, ultrasound technologies, eddy-current technologies and other technologies. The repair methods are different for shallow and deep water subsea pipelines. The conventional repair methods are used for shallow water pipeline, but diverless repair and intelligent plus are good for deepwater pipeline repair.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

136

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Project Renewable Energy Project Jump to: navigation, search Logo: Renewable Energy Alaska Project Name Renewable Energy Alaska Project Agency/Company /Organization Executive Director Chris Rose Partner native, municipal, state, and federal coalition Sector Energy Focus Area Renewable Energy Topics Background analysis Website http://alaskarenewableenergy.o Country United States Northern America References Renewable Energy Alaska Project homepage[1] The Renewable Energy Alaska Project is a coalition of small and large Alaska utilities, businesses, consumer and conservation groups, Alaska native organizations, and municipal, state, and federal partners with an interest in developing Alaska's renewable energy resources.[2] REAP's mission is increase the development of renewable energy resources,

137

Alaska Harbors Geothermal Energy Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Harbors Geothermal Energy Potential Alaska Harbors Geothermal Energy Potential January 10, 2014 - 12:00am Addthis Alaska Harbors Geothermal Energy Potential Leveraging...

138

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

139

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

140

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Detection of the internal corrosion in pipeline  

E-Print Network [OSTI]

Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

2006-10-17T23:59:59.000Z

142

Machinist Pipeline/Apprentice Program Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

143

Composites Technology for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

144

Heavy oil transportation by pipeline  

SciTech Connect (OSTI)

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

145

Propagating buckles in corroded pipelines  

Science Journals Connector (OSTI)

Rigidplastic solutions for the steady-state, quasi-static buckle propagation pressure in corroded pipelines are derived and compared to finite element predictions (ABAQUS). The corroded pipeline is modeled as an infinitely long, cylindrical shell with a section of reduced thickness that is used to describe the corrosion. A five plastic hinge mechanism is used to describe plastic collapse of the corroded pipeline. Closed-form expressions are given for the buckle propagation pressure as a function of the amount of corrosion in an X77 steel pipeline. Buckles that propagate down the pipeline are caused by either global or snap-through buckling, depending on the amount of corrosion. Global buckling occurs when the angular extent of the corrosion is greater than 90. When the angular extent is less than 90 and the corrosion is severe, snap-through buckling takes place. The buckle propagation pressure and the corresponding collapse modes also compare well to finite element predictions.

Michelle S. Hoo Fatt; Jianghong Xue

2001-01-01T23:59:59.000Z

146

Scour below submerged skewed pipeline  

Science Journals Connector (OSTI)

Summary Local scour below pipelines commonly occurs due to the erosive action of currents and waves. Scour is a major cause for the failure of underwater pipelines which is very important in water resources management. In this study, experiments were conducted to investigate the effect of four different pipeline orientations (30, 45, 60 and 90) across a channel. The data sets of the laboratory measurements were also collected from published works. The temporal variation of local pipelines scour depth was studied to estimate the scour depth. The scour depth below the pipeline was determined using a regression model with five dimensionless parameters. A regression model with a coefficient of determination (R2=0.55) and a low root mean square error (RMSE=0.47) produced fairly good predictions of the relative scour depth. The proposed equation gave satisfactory results when compared with the existing predictors.

H.Md. Azamathulla; M.A.M. Yusoff; Z.A. Hasan

2014-01-01T23:59:59.000Z

147

Planning Amid Abundance: Alaskas FY 2013 Budget Process  

E-Print Network [OSTI]

extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

McBeath, Jerry

2013-01-01T23:59:59.000Z

148

Categorical Exclusion Determinations: Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Alaska Categorical Exclusion Determinations: Alaska Location Categorical Exclusion Determinations issued for actions in Alaska. DOCUMENTS AVAILABLE FOR DOWNLOAD July 3, 2013 CX-011085: Categorical Exclusion Determination Alaska Wind Energy Research Project (formally "St. Paul Wind Technology Development Project, Phase 2") CX(s) Applied: A9, B2.2, B3.1 Date: 07/03/2013 Location(s): Alaska Offices(s): Golden Field Office July 3, 2013 CX-010690: Categorical Exclusion Determination Alaska Wind Energy Research Project CX(s) Applied: A9, B2.2, B3.1 Date: 07/03/2013 Location(s): Alaska Offices(s): Golden Field Office April 1, 2013 CX-010103: Categorical Exclusion Determination Alaska-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC CX(s) Applied: B2.5, B5.1

149

Alaska | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

150

Recovery Act State Memos Alaska  

Broader source: Energy.gov (indexed) [DOE]

Alaska Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

151

Alaska Renewable Energy Fund Grants for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

152

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

2004-04-12T23:59:59.000Z

153

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

154

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

155

Transforming an ObjectOriented Pipeline to a MasterWorker: The StateBased Pipeline  

E-Print Network [OSTI]

Transforming an Object­Oriented Pipeline to a Master­Worker: The State­Based Pipeline Steve Mac in such an algorithm is exposed using a pipeline [5, 6, 7]. The pipeline is a conceptually simple parallel structure in their education. However, expert parallel programmers typically eschew using the pipeline structure, especially

MacDonald, Steve

156

Transforming an Object-Oriented Pipeline to a Master-Worker: The State-Based Pipeline  

E-Print Network [OSTI]

Transforming an Object-Oriented Pipeline to a Master-Worker: The State-Based Pipeline Steve Mac in such an algorithm is exposed using a pipeline [5, 6, 7]. The pipeline is a conceptually simple parallel structure in their education. However, expert parallel programmers typically eschew using the pipeline structure, especially

MacDonald, Steve

157

Subsea pipeline operational risk management  

SciTech Connect (OSTI)

Resources used for inspection, maintenance, and repair of a subsea pipeline must be allocated efficiently in order to operate it in the most cost effective manner. Operational risk management aids in resource allocation through the use of risk assessments and cost/benefit analyses. It identifies those areas where attention must be focused in order to reduce risk. When they are identified, a company`s resources (i.e., personnel, equipment, money, and time) can then be used for inspection, maintenance, and/or repair of the pipeline. The results are cost effective risk reduction and pipeline operation with minimum expenditure.

Bell, R.L.; Lanan, G.A.

1996-12-31T23:59:59.000Z

158

Pipeline design essential in making pigging plans  

SciTech Connect (OSTI)

Pigs have gotten an unfortunate reputation for getting stuck in pipelines. As a result, for many years few pigged their pipelines and consequently, many companies are paying the price to repair or replace their corroded pipelines. It is currently considered a necessary evil to run pigs to improve pipeline efficiency and prevent corrosion. Some pipelines were not designed to run pigs and occasionally the wrong type of pig is selected to run in a particular pipeline, increasing the chances of sticking a pig. A pipeline properly designed for pigging along with proper pig selection greatly reduces chances of sticking a pig.

Fisher, H. [BJ Pipeline Cleaners, Houston, TX (United States)

1998-08-01T23:59:59.000Z

159

DOE Hydrogen Pipeline Working Group Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pipeline Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping (aboveground or underground) that delivers to a customer if all property is owned and controlled by Air Products and the customer. ppt00 4 Pipeline Photos ppt00 5 Pipeline Photos ppt00 6 Pipeline Photos ppt00 7 Pipeline Photos ppt00 8 Pipeline Photos ppt00 9 Overview of North American

160

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Chapter 8 - Pipeline External Corrosion Protection  

Science Journals Connector (OSTI)

Offshore steel pipelines are normally designed for a life ranging from 10 years to 40 years. To enable the pipeline to last for the design life, the pipeline needs to be protected from corrosion both internally and externally. Internal corrosion is related to fluid that is carried by the pipeline, and this topic is not covered here. This chapter describes the method by which the external corrosion of offshore pipelines may be minimized.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

162

Natural Gas Pipeline Leaks Across Washington, DC  

Science Journals Connector (OSTI)

Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. ... Along with reducing greenhouse gas emissions, repairing production and pipeline leaks would improve consumer health and safety and save money. ... (37) Several barriers to pipeline repair and replacement exist, however, as cost recovery for pipeline repairs by distribution companies is often capped by Public Utility Commissions (PUCs). ...

Robert B. Jackson; Adrian Down; Nathan G. Phillips; Robert C. Ackley; Charles W. Cook; Desiree L. Plata; Kaiguang Zhao

2014-01-16T23:59:59.000Z

163

VNG's Hampton Roads Pipeline Crossing  

Broader source: Energy.gov (indexed) [DOE]

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

164

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

165

Pipeline Processing of VLBI Data  

E-Print Network [OSTI]

As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

C. Reynolds; Z. Paragi; M. Garrett

2002-05-08T23:59:59.000Z

166

Pipelines programming paradigms: Prefab plumbing  

SciTech Connect (OSTI)

Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

Boeheim, C.

1991-08-01T23:59:59.000Z

167

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect (OSTI)

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

168

Update on pipeline repair methods  

SciTech Connect (OSTI)

A comprehensive review of pipeline repair methods has been recently completed under the sponsorship of the American Gas Association`s, Pipeline Research Committee. This paper is intended to summarize the important results of that review. First and foremost, two relatively new methods of repair are reviewed. One involves the use of a continuous-fiber fiberglass composite material which can be applied as an alternative to a steel sleeve for the reinforcement of nonleaking defects. The second is the use of deposited weld metal to replace metal lost to external corrosion. This latter technique is not new in principle, but recent research has shown how it can be done safely on a pressurized pipeline. The other significant outcome of the comprehensive review was a set of guidelines for using all types of repairs including full-encirclement sleeves and repair clamps. Pipeline operators can use these guidelines to enhance their current repair procedures, or to train new personnel in maintenance techniques.

Kiefner, J.F. [Kiefner and Associates, Inc., Worthington, OH (United States); Bruce, W.A. [Edison Welding Inst., Columbus, OH (United States); Stephens, D.R. [Battelle, Columbus, OH (United States)

1995-12-31T23:59:59.000Z

169

Decoupled Sampling for Graphics Pipelines  

E-Print Network [OSTI]

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

170

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Presentation by 08-Smith to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

171

Gas Pipelines, County Roads (Indiana)  

Broader source: Energy.gov [DOE]

A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

172

Interstate Natural Gas Pipelines (Iowa)  

Broader source: Energy.gov [DOE]

This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

173

Trans Tech Green Power | Open Energy Information  

Open Energy Info (EERE)

Green Power Jump to: navigation, search Name: Trans Tech Green Power Place: India Sector: Biomass Product: Plans to develop biomass projects in Rajasthan. References: Trans Tech...

174

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

175

Alaska Rural Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

176

Ionosphere Research Lab Sparks Fears in Alaska  

Science Journals Connector (OSTI)

...Angeles, 325 kilometers down the road from HAARP in Chena Hot Springs, Alaska. The HAARP facility...Angeles, 325 kilometers down the road from HAARP in Chena Hot Springs, Alaska. The HAARP facility, with three times the...

Lisa Busch

1997-02-21T23:59:59.000Z

177

Creating a pipeline rehabilitation plan  

SciTech Connect (OSTI)

This paper will highlight the various aspects of planning a pipeline rehabilitation project to maximize used resources. The paper will visit in some detail the aspect of pipeline data collection to make rehabilitation decisions, including intelligent pig data and its use, close interval survey and its use, hydrotest data and its use, etc. This paper will also review the analysis of the hydrotest data, the close interval survey data, and its meaning to the overall rehabilitation design and plan. The paper will also assess the various types of pipeline coatings and methods of recoating and typical and innovative cathodic protection methods. The paper will stress analysis of pipeline structural integrity prior to making rehabilitation decisions. It will review cost estimating for various types of pipeline rehabilitation, and look at various alternatives. Finally, this paper will review typical results from various types of rehabilitation and soil conditions. It will emphasize the need to assess the results of the different rehabilitation methods and detail the future pipeline rehabilitation project decision making. The paper will discuss the use of RAP sheets (rehabilitation analysis profile) for data review and suggest various methods to invest rehabilitation dollars to get the greatest quantity of rehabilitation work done for the least cost.

Marshall, W.F.

1997-05-01T23:59:59.000Z

178

The pipeline and future of drug development in schizophrenia  

E-Print Network [OSTI]

The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

Gray, J A; Roth, B L

2007-01-01T23:59:59.000Z

179

Alaska | OpenEI Community  

Open Energy Info (EERE)

Alaska Alaska Home Kyoung's picture Submitted by Kyoung(155) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White Papers On June 26th, we held the 3rd Quarter GRR Stakeholder Update at the Grand Sierra Resort in Reno, NV. The meeting was well-attended with over 40 attendees, including in-person and webinar attendance. Thanks to all who attended! Files: application/pdf icon Presentation: 3rd Quarterly Stakeholder Update Meeting application/vnd.openxmlformats-officedocument.presentationml.presentation icon Mock-up: GRR Permitting Wizard Interface Syndicate content 429 Throttled (bot load)

180

Alaska Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Wellhead Price 5.63 7.39 2.93 3.17 1967-2010 Exports Price 6.21 7.69 8.59 12.19 12.88 15.71 1989-2012 Pipeline and Distribution Use Price 1970-2005 Citygate Price 6.75 6.74 8.22 6.67 6.53 6.14 1988-2012 Residential Price 8.68 8.72 10.23 8.89 8.77 8.47 1967-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 7.57 8.66 9.51 8.78 8.09 8.09 1967-2012 Percentage of Total Commercial Deliveries included in Prices 76.0 74.9 85.3 87.7 88.6 94.9 1990-2012 Industrial Price 4.67 5.49 4.02 4.23 3.84 5.11 1997-2012 Percentage of Total Industrial Deliveries included in Prices 70.0 78.2 72.5 70.5 60.8 100.0 1997-2012

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alaska Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

5.63 7.39 2.93 3.17 1967-2010 5.63 7.39 2.93 3.17 1967-2010 Exports 6.21 7.69 8.59 12.19 12.88 15.71 1989-2012 Pipeline and Distribution Use 1970-2005 Citygate 6.75 6.74 8.22 6.67 6.53 6.14 1988-2012 Residential 8.68 8.72 10.23 8.89 8.77 8.47 1967-2012 Commercial 7.57 8.66 9.51 8.78 8.09 8.09 1967-2012 Industrial 4.67 5.49 4.02 4.23 3.84 5.11 1997-2012 Electric Power 3.58 W W W 5.04 4.32 1997-2012 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 11,917 7,699 9,101 8,838 9,424 1977-2011 Adjustments 1 -3 3 1 -1 1977-2011 Revision Increases 2,147 184 1,868 622 928 1977-2011 Revision Decreases 112 4,068 108 452 206 1977-2011 Sales 10 0 5 131 36 2000-2011 Acquisitions 6 0 0 0 221 2000-2011 Extensions

182

Pipeline Safety (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

183

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

184

Mapco's NGL Rocky Mountain pipeline  

SciTech Connect (OSTI)

The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

Isaacs, S.F.

1980-01-01T23:59:59.000Z

185

Categorical Exclusion Determinations: Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 3, 2010 November 3, 2010 CX-004353: Categorical Exclusion Determination Alaska-Tribe-Nanwalek (Also Known As English Bay) CX(s) Applied: A9, A11 Date: 11/03/2010 Location(s): Nanwalek, Alaska Office(s): Energy Efficiency and Renewable Energy November 2, 2010 CX-004354: Categorical Exclusion Determination Alaska-Tribe-Village of Kotlik CX(s) Applied: A9, B2.5, B5.1 Date: 11/02/2010 Location(s): Kotlik, Alaska Office(s): Energy Efficiency and Renewable Energy October 27, 2010 CX-004312: Categorical Exclusion Determination Alaska-Tribe-Native Village of Scammon Bay CX(s) Applied: A9, A11, B2.5, B5.1 Date: 10/27/2010 Location(s): Scammon Bay, Alaska Office(s): Energy Efficiency and Renewable Energy October 1, 2010 CX-004006: Categorical Exclusion Determination Alaska-Tribe-Wrangel Cooperative Association

186

Categorical Exclusion Determinations: Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

29, 2010 29, 2010 CX-002910: Categorical Exclusion Determination Alaska-Tribe-Yakutat Tlingit Tribe CX(s) Applied: A9, A11, B5.1 Date: 06/29/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002786: Categorical Exclusion Determination Alaska-Tribe-Igiugig Tribal Village Council CX(s) Applied: A9, B5.1 Date: 06/22/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002785: Categorical Exclusion Determination Alaska-Tribe-Koniag, Inc. CX(s) Applied: B5.1 Date: 06/22/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy June 10, 2010 CX-002700: Categorical Exclusion Determination Alaska-Tribe-Leisnoi Village-Woody Island Tribal Council CX(s) Applied: B2.5, A9, B5.1 Date: 06/10/2010

187

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network [OSTI]

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

188

Robotic equipment for pipeline repair  

SciTech Connect (OSTI)

Hyperbaric welding provides the most reliable method for connection or repair of subsea oil and gas pipelines. Research on hyperbaric arc welding processes indicates that it should be possible to achieve stable welding conditions with Gas Tungsten Arc (GTA) to approximately 600m, and with Gas Metal Arc (GMA) and Plasma Arc to at least 1,000m. These depths are well beyond the limits of manned saturation diving. At the present time the limitation on the maximum depth to which these processes can be applied, in practice, is the requirement for completely diverless operation deeper than approximately 350m. Fully diverless hyperbaric welding is not presently available to the industry but several diverless pipeline repair systems which utilize mechanical connectors have been developed. This paper reviews the present status of mechanized hyperbaric welding systems currently being used in the North Sea and discusses some of the work being done to achieve fully diverless robotic pipeline repair with both welding and connectors.

Gibson, D.E.; Barratt, K.; Paterson, J. [National Hyperbaric Centre, Aberdeen (United Kingdom)

1995-12-31T23:59:59.000Z

189

Dynamic Process Management for Pipelined Applications  

Science Journals Connector (OSTI)

Many applications, particularly in the area of Signal and Image Processing (SIP) make use of what is referred to as a pipeline architecture. In these pipelined architectures, data are collected from some source and fed into a system for computation. ...

David Cronk; Graham Fagg; Susan Emeny; Scot Tucker

2005-06-01T23:59:59.000Z

190

PGAP: pan-genomes analysis pipeline  

Science Journals Connector (OSTI)

......called pan-genomes analysis pipeline (PGAP), which has integrated...Stanhope, 2007). In PGAP pipeline, 1366 core clusters have been...replication, recombination and repair, cell wall/membrane/envelope...replication, recombination and repair and cell wall/membrane......

Yongbing Zhao; Jiayan Wu; Junhui Yang; Shixiang Sun; Jingfa Xiao; Jun Yu

2012-02-01T23:59:59.000Z

191

A Heart Health Alaska Natives  

E-Print Network [OSTI]

Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

Bandettini, Peter A.

192

Technological Advances in Pipeline Isolation and Repair  

Science Journals Connector (OSTI)

Pipeline isolation has been practised for many years to implement various repairs. The tools originally applied were simple and...

Dr A. Aldeen

1994-01-01T23:59:59.000Z

193

NAZ EDUCATION PIPELINE the-naz.org  

E-Print Network [OSTI]

NAZ EDUCATION PIPELINE the-naz.org 1200 W. Broadway #250 | Minneapolis, MN 55411 | Family Academy is a foundational component of the NAZ "cradle to career" pipeline. NAZ families can enroll in the Family Academy college ready. Families and children move through a "cradle to career" pipeline that provides

Amin, S. Massoud

194

A Pipeline for Computational Historical Linguistics  

E-Print Network [OSTI]

#12;A Pipeline for Computational Historical Linguistics Lydia Steiner Bioinformatics Group an algorithmic pipeline that mimics, as closely as possible, the traditional workflow of language reconstruction known as the comparative method. The pipeline consists of suitably modified algorithms based on recent

195

Proceedings of IPC 2004 International Pipeline Conference  

E-Print Network [OSTI]

Proceedings of IPC 2004 International Pipeline Conference October 4 - 8, 2004 Calgary, Alberta) inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, MFL The most common cause of pipeline failure in North America is mechanical damage: denting or gouging

Clapham, Lynann

196

BDP: BrainSuite Diffusion Pipeline  

E-Print Network [OSTI]

BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography

Leahy, Richard M.

197

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network [OSTI]

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

198

Trawler: de novo regulatory motif discovery pipeline  

E-Print Network [OSTI]

Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation Laurence, the fastest computational pipeline to date, to efficiently discover over-represented motifs in chromatin present the Trawler pipeline (Fig. 1a) that attempts the de novo identification of all over

Cai, Long

199

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

200

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network [OSTI]

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed before "going public." 3) Explore the possibility of doing the Pipeline thesis for credit

Dennehy, John

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network [OSTI]

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed. The proposal must be completed and signed by your mentor by the beginning of the Pipeline summer research

Dennehy, John

202

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

203

Buckle interaction in deep subsea pipelines  

Science Journals Connector (OSTI)

Abstract The paper investigates the interaction between propagation buckling and upheaval or lateral buckling in deep subsea pipelines. The upheaval and lateral buckling are two possible global buckling modes in long pipelines while the propagation buckling is a local mode that can quickly propagate and damage a long segment of a pipeline in deep water. A numerical study is conducted to simulate buckle interaction in deep subsea pipelines. The interaction produces a significant reduction in the buckle design capacity of the pipeline. This is further exasperated due to the inherent imperfection sensitivity of the problem.

Hassan Karampour; Faris Albermani; Martin Veidt

2013-01-01T23:59:59.000Z

204

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

205

Directional boring produces a better pipeline crossing  

SciTech Connect (OSTI)

This paper reviews the design of a directional drilling project by Tennessee Pipeline Company, to cross Chillipitin Creek in Texas. This pipeline was part of an overall pipeline repair and upgrade. Stream erosion had left the existing pipeline exposed in the channel of the creek. The paper describes the drilling equipment selected and the methods used in tracking the drilling operation throughout its completion. The Texas Railroad Commission requires a minimum of 45 feet of cover between the bottom of the stream and the pipeline. The methods used for engineering this crossing are described.

NONE

1996-06-01T23:59:59.000Z

206

Pipeliners beat designers across Panama's jungle  

SciTech Connect (OSTI)

Hard-driving pipeline crews are slashing a path down the steep slopes of the Andes range on Panama's Caribbean coast for the final leg of an 80-mile Pacific-Atlantic oil link that will reduce shipping times for North Slope crude to Gulf Coast refineries. When completed in late August, the trans-isthmus tube will be able to drain the Panama Canal of Alaskan oil, which currently must be pumped from large tankers to 65,000 ton ships before passage through the 50-mile cut. The 36 and 40-in.-dia pipe will connect an existing Northville oil transshipment terminal at Puerto Armuelles, near Costa Rica on the Pacific Coast, with a new 2.5-million-bbl storage area at Chiriqui Grande on the Caribbean coast. Two pumping stations, one at Puerto Armuelles and another at the base of the Serrania de Tabasara mountains, will lift the oil 4,000 ft over the Continental Divide. Gravity flows of 7 1/2 ft per second down the steep drop to the swamps along the Caribbean will feed three 833,000-bbl tanks being built on a hillside overlooking Chiriqui Bay. From there, two 36-in. lines will feed concrete-coated pipe sections trenched into the surf zone and placed on the muddy bottom for the remaining distance to two marine loading buoys over a mile offshore. The catenary anchor-leg mooring buoys are designed to handle tankers of up to 160,000 tons in 65 ft of water at maximum fill rates of 120,000 bbl per hour.

Not Available

1982-05-27T23:59:59.000Z

207

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

208

March 13, 1968: Oil discovered on Alaska's North Slope | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The...

209

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

South-Central Alaska Natural Gas Study South-Central Alaska Natural Gas Study Strategic Center for Natural Gas & Oil SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Final Report June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 Page Intentionally Blank FOREWORD This assessment and analysis of south-central Alaska natural gas supply and demand was performed for the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) by Science Applications International Company's (SAIC) Alaska Energy Office, Anchorage, Alaska. The work was initiated in August 2003 and completed and published in June 2004 following reviews by the Steering Committee, state and federal stakeholders, local

210

Regulatory Commission of Alaska | Open Energy Information  

Open Energy Info (EERE)

Regulatory Commission of Alaska Regulatory Commission of Alaska Jump to: navigation, search Logo: Regulatory Commission of Alaska Name Regulatory Commission of Alaska Address 701 West Eight Ave., Suite 300 Place Anchorage, Alaska Zip 99501-3469 Phone number 907-276-6222 Website http://rca.alaska.gov/RCAWeb/h Coordinates 61.2143463°, -149.8931523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2143463,"lon":-149.8931523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Alaska Native Village Energy Development Workshop  

Broader source: Energy.gov (indexed) [DOE]

Alaska Native Village Energy Development Workshop Alaska Native Village Energy Development Workshop October 21-23, 2013 Presented by: U.S. Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program Co-sponsored by: University of Alaska-Fairbanks and Alaska Center for Energy and Power This workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and renewable energy opportunities that exist in their remote communities. Part of an overall effort to further support and encourage accelerated clean energy resource development in Alaska Native villages, the workshop will cover topics such as: * Strategic energy planning * Clean energy project development and financing

212

Clean Development Mechanism Pipeline | Open Energy Information  

Open Energy Info (EERE)

Clean Development Mechanism Pipeline Clean Development Mechanism Pipeline Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Development Mechanism Pipeline Agency/Company /Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation, Background analysis Resource Type: Dataset Website: www.cdmpipeline.org/overview.htm Clean Development Mechanism Pipeline Screenshot References: CDM Pipeline[1] Overview "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses. This monthly newsletter shows a sample of the analysis in the Pipeline. If you want more information, then look into the left column and click on the

213

34 - Pipeline Commissioning, Operations, and Maintenance  

Science Journals Connector (OSTI)

Abstract The commissioning of a pipeline involves the activities after installation required to place the system into services, which activities include hydrostatic testing, cleaning and drying, and the introduction of the product to be transported into the pipeline. Pipeline operations are generally carried out by the pipeline operating company. Detailed operation and maintenance procedures specific to the pipeline should be available for use before the pipeline is commissioned and handed over to operation. Manuals for operation and maintenance should be prepared, setting out the schedules, procedures, and instructions on which activities are to be carried out, including liaison with third parties. In this chapter, the procedures of commissioning, operation, and maintenance of subsea pipeline are detailed.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

214

Pipeline rehabilitation using field applied tape systems  

SciTech Connect (OSTI)

Bare steel pipelines were first installed years before the turn of the century. Pipeline operators soon realized the lie of bare steel could be greatly enhanced by applying coatings. Thus began ``pipeline rehabilitation.`` Many of the older pipelines were exposed, evaluated, coated and returned to service. This procedure has reached new heights in recent years as coated pipelines of the twentieth century, having lived past their original design life, are now subject to coating failure. Many operator companies with pipelines thirty years or older are faced with ``replace or recondition.`` Considering the emphasis on cost restraints and environmental issues, replacing an existing pipeline is often not the best decision. Rehabilitation is a preferred solution for many operators.

Reeves, C.R. [Tapecoat Co., Evanston, IL (United States)

1998-12-31T23:59:59.000Z

215

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

216

Alaska Village Initiatives Rural Small Business Conference  

Broader source: Energy.gov [DOE]

The Alaska Village Initiatives 23rd Annual Rural Small Business Conference will bring together rural businesses and leaders and provide them with networking opportunities, training, and technical...

217

Alaska - CPCN General Information | Open Energy Information  

Open Energy Info (EERE)

CPCN General Information Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Alaska - CPCN General...

218

Geothermal Exploration At Akutan, Alaska- Favorable Indications...  

Open Energy Info (EERE)

development on Akutan Island. Akutan Island, Alaska is home to North America's largest seafood processing plant. The City of Akutan and the fishing industry have a combined peak...

219

Alaska Special Area Permit Application | Open Energy Information  

Open Energy Info (EERE)

Form: Alaska Special Area Permit Application Form Type ApplicationNotice Form Topic Fish and Game Special Area Permit Application Organization Alaska Department of Fish and...

220

Alaska Fish Habitat Permit Application | Open Energy Information  

Open Energy Info (EERE)

Form: Alaska Fish Habitat Permit Application Form Type ApplicationNotice Form Topic Fish Habitat Permit Organization Alaska Department of Fish and Game Published Publisher Not...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alaska Sample Special Area Permit | Open Energy Information  

Open Energy Info (EERE)

to library General: Alaska Sample Special Area Permit Author Alaska Department of Fish and Game Published Division of Habitat, 122012 DOI Not Provided Check for DOI...

222

Climate, Conservation, and Community in Alaska and Northwest Canada  

Office of Energy Efficiency and Renewable Energy (EERE)

Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

223

Title 18 Alaska Administrative Code Chapter 70 Water Quality...  

Open Energy Info (EERE)

Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 70 Water Quality StandardsLegal Published NA Year Signed or Took Effect 1997 Legal Citation Alaska...

224

Title 18 Alaska Administrative Code Chapter 50 Air Quality Control...  

Open Energy Info (EERE)

Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 50 Air Quality ControlLegal Published NA Year Signed or Took Effect 2004 Legal Citation Alaska...

225

Financing Opportunities for Renewable Energy Development in Alaska...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities for Renewable Energy Development in Alaska Financing Opportunities for Renewable Energy Development in Alaska This DOE Office of Indian Energy technical report...

226

RAPID/Geothermal/Exploration/Alaska | Open Energy Information  

Open Energy Info (EERE)

or jurisdiction. Permitting at a Glance State: Alaska Exploration Permit Agency (Pre-drilling): Alaska Division of Oil and Gas Exploration Permit (Pre-drilling): A plan of...

227

Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department...  

Energy Savers [EERE]

Springs, Alaska Hydrothermal Exploration at Pilgrim Hot Springs, Alaska Lower Temperature Geothermal Resources are Yielding Power Thanks to Energy Department Investments Lower...

228

Alaska Division of Water Permit Fees | Open Energy Information  

Open Energy Info (EERE)

Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability:...

229

TransWest Express Transmission Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operate, maintain and decommission the TransWest Express 600-kV Direct Current Transmission Project. TransWest Express, LLC is a whollyowned subsidiary of the Anschutz...

230

Trans-Atlantic Telephone Cable  

Science Journals Connector (OSTI)

... and Telegraph Co. of Canada, for the provision of the first trans -Atlantic telephone cable, as distinct from the existing telegraph ... , as distinct from the existing telegraph cables. The installation, which is estimated to cost 12-J million, is likely to ...

1953-12-19T23:59:59.000Z

231

Workforce Pipeline | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diversity Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach & Education In the News High school workshop invites girls to explore STEM possibilities Daily Herald EcoCAR 2 competition drives auto engineers to excel Yuma (Ariz.) Sun Mississippi universities collaborate with national labs Mississippi Public Radio Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the best talent. Today, that talent is increasingly diverse. Argonne fosters an environment that welcomes and values a diverse

232

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) September 2004 Final Report on Benchmarking Emerging Pipeline Inspection Technologies Cofunded by Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) by Stephanie A. Flamberg and Robert C. Gertler September 2004 BATTELLE 505 King Avenue Columbus, Ohio 43201-2693 Neither Battelle, nor any person acting on their behalf: (1) Makes any warranty or representation, expressed or implied, with respect to the

233

Analytic prognostic for petrochemical pipelines  

E-Print Network [OSTI]

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

234

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents [OSTI]

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

235

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe #12;Pipeline Christi 8" H2 Pipeline (1998) Originally built as crude oil gathering pipelines (1940-1950) ­ 140 miles

236

Alaskan Oil: Court Ruling Revives Canada Pipeline Issue  

Science Journals Connector (OSTI)

...48-inch hot oil pipeline-the largest ever-from...integrity of the pipeline from potential earthquakes...the pi,peline design. For their part...State-ment on the pipeline project would have...for a pipe-line crossing the federal domain...and its service road a right-of-way...

Luther J. Carter

1973-03-09T23:59:59.000Z

237

Pipeline incidents and emergency repair in the North Sea  

SciTech Connect (OSTI)

The failures of submarine pipelines in the North Sea, and the response of pipeline operators are first discussed. Against this background, the methods currently available for submarine pipeline repairs are reviewed. The Emergency Pipeline Repair Services available are described, and some future developments in the field of submarine pipeline repair are briefly outlined.

Wood, G.D.

1988-12-01T23:59:59.000Z

238

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

239

10 - Lateral Buckling and Pipeline Walking  

Science Journals Connector (OSTI)

Abstract Lateral buckling of pipelines due to high pressure and high temperature (HPHT) may occur if the pipeline is exposed on the seabed, and upheaval buckling may occur if it is buried or constrained in a trench. Uncontrolled global buckling can cause excessive plastic deformation of the pipeline, which could lead to localized buckling collapse or cyclic fatigue failure during operation, if it is not properly managed. In this chapter, the principles of lateral buckling and pipeline walking are detailed, the Hobbss method is used to predicate the critical effective axial force for buckling. The limit state design of pipeline for lateral buckling is given. Then, mitigation methods, such as snakelay, sleeper, and distributed buoyancy for lateral buckling and pile for pipeline walking are discussed.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

240

Protecting coatings vital to ensuring pipelines` longevity  

SciTech Connect (OSTI)

Today many old pipelines are being rehabilitated because of corrosion damage. A tremendous amount of time, personnel and money is invested to keep these old pipelines operating. The pipeline companies have created new departments to monitor their pipelines, one of which is the corrosion control group. This group is continuously looking for the next weak spot caused by corrosion that needs to be repaired in order to keep the pipeline from being shut down. As these groups discover the corrosion and research its cases, they have been able to teach us what not to do during pipeline construction so the coating will not be damaged. The paper discusses coating protection, types of coating protection, and choosing the best method.

Turnage, C. [Ozzie`s Pipeline Padder, Scottsdale, AZ (United States)

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments.  Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

242

Anaesthetic machine pipeline inlet pressure gauges do not always measure pipeline pressure  

Science Journals Connector (OSTI)

Some anaesthetic gas machines have pipeline inlet pressure gauges which indicate the higher of either pipeline pressure, or machine circuit pressure (the ... specific circumstances lead to a delayed appreciation ...

Douglas B. Craig; John Longmuir

1980-09-01T23:59:59.000Z

243

Geochemical characterization of solid bitumen in the Chesterian (Mississippian) sandstone reservoir of the Hitch field, southwest Kansas  

Science Journals Connector (OSTI)

...The relative amounts of wax components in the produced oils...to those of the extractable wax hydrocarbons from the corresponding...Striegler, 1981, Studies of wax deposition in the trans-Alaska pipeline: Journal of Petroleum Technology...

Dongwon Kim; R. Paul Philp; Raymond P. Sorenson

244

Categorical Exclusion Determinations: Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 2, 2011 June 2, 2011 CX-006033: Categorical Exclusion Determination Monitoring, Maintenance, Environmental and Biological Sampling, and Administrative Actions on Amchitka and Adak Islands, Aleutian Islands, Alaska CX(s) Applied: B1.3, B1.28, B3.1, B3.8 Date: 06/02/2011 Location(s): Amchitka, Alaska Office(s): Legacy Management June 1, 2011 CX-006009: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Alaska-Tribe Organized Village of Kake CX(s) Applied: A9, A11, B5.1 Date: 06/01/2011 Location(s): Kake, Alaska Office(s): Energy Efficiency and Renewable Energy May 24, 2011 CX-006008: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Alaska-Tribe-Interior Regional Housing Authority Circle Tribe

245

Wind Energy Alaska | Open Energy Information  

Open Energy Info (EERE)

Alaska Alaska Jump to: navigation, search Name Wind Energy Alaska Place Anchorage, Alaska Zip 99508 Sector Wind energy Product 50:50-owned subsidiary of Enxco and CIRI that is dedicated to developing and operating wind energy facilities along Alaska's Railbelt energy grid. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Categorical Exclusion Determinations: Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 7, 2010 April 7, 2010 CX-001571: Categorical Exclusion Determination Validation of Innovative Techniques - Pilgrim Hot Springs, Alaska CX(s) Applied: B3.1, A9 Date: 04/07/2010 Location(s): Pilgrim Hot Springs, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 6, 2010 CX-001436: Categorical Exclusion Determination Source Characterization and Temporal Variation of Methane Seepage CX(s) Applied: B3.1, B3.8 Date: 04/06/2010 Location(s): Alaska Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2010 CX-006880: Categorical Exclusion Determination Alaska-Tribe-Native Village of Port Lions CX(s) Applied: A9, B3.6, B5.1 Date: 03/29/2010 Location(s): Native Village of Port Lions, Alaska Office(s): Energy Efficiency and Renewable Energy

247

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

248

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

249

Modelling of Paraffin Wax in Oil Pipelines.  

E-Print Network [OSTI]

?? As warm oil or condensate from the reservoir flow through a pipeline on the cold sea bottom, wax often precipitate and deposit on the (more)

Siljuberg, Morten Kristoffer

2012-01-01T23:59:59.000Z

250

Chapter 14 - Pipeline Testing and Precommissioning  

Science Journals Connector (OSTI)

From its fabrication to start-up, a pipeline system has to pass a series of tests. Some of these, such as the factory acceptance test (FAT), are done onshore at the fabrication yards with individual components. The FAT mainly consists of the inspection, testing, and reporting of the system according to the drawings, specifications, and requirements of the contract. Pipe sections must pass the FAT before they are accepted. Some of the tests, such as the pipeline hydrotest, are mainly done offshore with either a portion of the whole pipeline system or the whole pipeline system. The hydrotests are conducted to check the mechanical strength of the pipeline system and the integrity of the connections. The hydrotest is one of the pipeline precommissioning activities. Precommissioning is performed after the pipeline system is installed, and all the tie-ins are completed to assess the global integrity, qualify the system as ready for commissioning and start-up, confirm the safety to personnel and environment, and confirm the operational control of the pipeline system. This chapter covers the main activities associated with subsea pipeline testing and pre-commissioning.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

251

Local Linear Learned Image Processing Pipeline  

Science Journals Connector (OSTI)

The local linear learned (L3) algorithm is presented that simultaneously performs the demosaicking, denoising, and color transform calculations of an image processing pipeline for a...

Lansel, Steven; Wandell, Brian

252

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

253

Optical Pipeline for Transport of Particles  

Science Journals Connector (OSTI)

We developed an optical pipeline for laser-guiding particles in air using vortex beams. Transport of agglomerates of nanoparticles forward and backward between two optical traps...

Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw Z; Kivshar, Yuri S

254

GLAST (FERMI) Data-Processing Pipeline  

SciTech Connect (OSTI)

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

255

Shorting pipeline and jacket cathodic protection systems  

SciTech Connect (OSTI)

The benefits of shorting pipeline and jacket cathodic protection (CP) systems for the external protection of subsea pipelines based on data from operations in the Gulf of Mexico, Persian Gulf, North Sea, and Indonesia are discussed. Shorting, as opposed to traditional electrical isolation, is cost effective because CP surveys and future retrofits are greatly simplified. Jacket CP systems can provide protection of coated pipelines for distances much greater than normally anticipated. Some simple modeling of jacket/pipeline CP systems is used to illustrate the effect of various design parameters.

Thomason, W.H. (Conoco Inc., Ponca City, OK (United States)); Evans, S. (Conoco Inc., Houston, TX (United States)); Rippon, I.J. (Conoco Ltd., Aberdeen (United Kingdom)); Maurin, A.E. III (Conoco Inc., Lafayette, LA (United States))

1993-09-01T23:59:59.000Z

256

Pipeline Safety Research, Development and Technology  

Energy Savers [EERE]

Pipeline and Hazardous Materials Safety Administration Replacing Hydrotesting? * Why hydro? What benefits? - Pressure & Spike Tests * Can ILI tools in concert with leak...

257

Adhesive technologies in repairing polyethylene pipelines  

Science Journals Connector (OSTI)

Adhesive technologies for repairing polyethylene pipelines are considered taking into account the peculiarities ... the modified binder for application in the gluing repair technologies under consideration. It is...

V. F. Stroganov

2014-07-01T23:59:59.000Z

258

External corrosion assessment in a LNG pipeline  

SciTech Connect (OSTI)

A 16 inch. diameter LNG pipeline which transports 54 MBPD between extraction and fractionation facilities located north-east of Venezuela, showed an accelerated external corrosion even though coating and cathodic protection had been used to protect it. A diagnosis of the external condition of the pipeline was addressed by matching the results obtained by using different techniques such as electromagnetic pigging, DC voltage gradient survey, close interval potential survey, soil classification and resistivity profiles along the pipeline. This paper discusses the factors evaluated to identify sections of the pipe where corrosion problems occurred under disbonded pipeline coating, which required immediate attention for coating rehabilitation.

Luciani, B.; Gutierrez, X. [Corpoven S.A., Caracas (Venezuela)

1998-12-31T23:59:59.000Z

259

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

260

Pipeline repair development in support of the Oman to India gas pipeline  

SciTech Connect (OSTI)

This paper provides a summary of development which has been conducted to date for the ultra deep, diverless pipeline repair system for the proposed Oman to India Gas Pipeline. The work has addressed critical development areas involving testing and/or prototype development of tools and procedures required to perform a diverless pipeline repair in water depths of up to 3,525 m.

Abadie, W.; Carlson, W.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bulletin of the Seismological Society of America, Vol. 94, No. 6B, pp. S1S4, December 2004 Preface to the Issue Dedicated to the 2002 Denali Fault  

E-Print Network [OSTI]

where it crosses the Denali fault trace. Also significantly displaced was the Trans-Alaska Pipeline measure to the careful design and en- gineering of the pipeline in the vicinity of the Denali fault occur on the Denali fault (Woodward-Clyde, 1982). In this location the pipeline was designed

Rowe, Charlotte

262

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network [OSTI]

of Minimal Organisms: Pipeline and Results Sung-Hou Kim*,~500 genes, respectively). Pipeline: To achieve our mission,determination. Over all pipeline schemes for the single-path

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

263

Global buckling behavior of submarine unburied pipelines under thermal stress  

Science Journals Connector (OSTI)

Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling

Lin-ping Guo ???; Run Liu ??; Shu-wang Yan ???

2013-07-01T23:59:59.000Z

264

A new versatile method for modelling geomagnetic induction in pipelines  

Science Journals Connector (OSTI)

......geomagnetic induction in pipelines D. H. Boteler...2617 Anderson Road, Ottawa. E-mail...telluric currents in pipelines and creates fluctuations...being used at the design stage allowing...PSP variations on pipelines crossing or adjacent to......

D. H. Boteler

2013-01-01T23:59:59.000Z

265

Supplementary Figure 1 SHAPE-MaP data analysis pipeline.  

E-Print Network [OSTI]

Supplementary Figure 1 SHAPE-MaP data analysis pipeline. Outline of software pipeline that fully.1 GHz Intel Core i7 and 16 GB RAM). This strategy is implemented in the SHAPE-MaP Folding Pipeline

Cai, Long

266

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alaska Laws and Alaska Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Alaska. For more information, contact your

267

Alternative Fuels Data Center: Alaska Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alaska Points of Alaska Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Alaska Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Alaska Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Alaska Points of Contact on Google Bookmark Alternative Fuels Data Center: Alaska Points of Contact on Delicious Rank Alternative Fuels Data Center: Alaska Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Alaska Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Points of Contact The following people or agencies can help you find more information about Alaska's clean transportation laws, incentives, and funding opportunities.

268

A qualitative analysis of writing as a focus for developing policy statements on public issues in large petrochemical companies  

E-Print Network [OSTI]

helped environmentalists secure a Federal court injunction against the proposed Trans-Alaska Pipeline, leaving expensive equipment and pipe stockpiled along the banks of the Yukon River for five years. ' Debate on the Trans-Alaska Pipeline and outrage.... He would call up the manager of a refinery near a wetlands. He was pulling together ideas and formulating them himself just about as quick as the president was. "" More than just putting the executive' s thoughts into words, the writer...

Cunningham, Richard Lee

2002-01-01T23:59:59.000Z

269

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network [OSTI]

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

270

E-Print Network 3.0 - arctic gas pipeline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pipeline Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic gas pipeline...

271

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

Leonard Bond; Kevin Kostelnik; Richard Holman

2006-11-01T23:59:59.000Z

272

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

2006-07-01T23:59:59.000Z

273

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

274

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

275

Report to Congress: Dedicated Ethanol Pipeline Feasability Study...  

Office of Environmental Management (EM)

Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline...

276

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

277

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

278

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

279

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

280

Price of Massena, NY Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Price of Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet)...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2005 Hydrogen Pipeline Working Group Workshop | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Presentations on August 31, 2005 Hydrogen Pipeline Experience (PDF 473 KB), Leroy Remp, Air Products Questions and Issues on Hydrogen Pipelines (PDF 1 MB), Jim Campbell, Air...

282

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

283

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

Broader source: Energy.gov (indexed) [DOE]

Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group...

284

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

285

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

286

Cleaning the Valhall offshore oil pipeline  

SciTech Connect (OSTI)

Severe wax deposits built up in the 20-in. (500-mm) Valhall subsea crude oil pipeline over a period of years. The successful program to remove these deposits gradually but completely with a series of foam and mechanical pigs is described, including details on equipment and procedures. The unique risks and difficulties associated with solids removal in offshore pipelines are discussed.

Marshall, G.R. (Amoco Norway Oil Co. (NO))

1990-08-01T23:59:59.000Z

287

Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.2008413,"lon":-149.4936733,"alt":0,"address":"Alaska","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

289

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

290

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

291

Encirclement sleeves reduce pipeline repair costs  

SciTech Connect (OSTI)

Welded sleeve, or replacement of line repair methods have been used successfully for many years in the pipeline industry but can lead to other difficulties for a pipeline operator. Clock Spring`s composite sleeves have been used in over ten thousand pipeline repairs with pipe sizes ranging from 6- to 56-inches in diameter, all without costly shutdown, welding or purging. Repairs can be completed while the pipeline is fully operational and require only six inches of clearance under the pipe for wrapping the eight thicknesses of the coil. This minimizes costly digging and backfilling over long runs of pipe and necessary shoring for personnel safety. Also it provides a more cost-effective alterative to conventional pipeline repair since special handling, lifting, or installation equipment is not needed. This paper reviews the installation and performance of these sleeves.

NONE

1996-01-01T23:59:59.000Z

292

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

293

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

294

Options for Gas-to-Liquids Technology in Alaska  

SciTech Connect (OSTI)

The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, Eric Partridge

1999-10-01T23:59:59.000Z

295

Options for gas-to-liquids technology in Alaska  

SciTech Connect (OSTI)

The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, E.P.

1999-12-01T23:59:59.000Z

296

E-Print Network 3.0 - alaska oil pipeline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Texas at Austin Collection: Renewable Energy 8 Energy (Oil and Gas) Exploration (and Development) on the U.S. Summary: ;12;Beaufort Sea Oil and Gas Lease...

297

Alaska's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Alaska's At-large congressional district: Energy Resources Alaska's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Alaska. Registered Energy Companies in Alaska's At-large congressional district ABS Alaskan Inc Alaskan Wind Industries Four Dam Pool Power Agency FDPPA Kodiak Electric Association KEA Remote Power Inc. Sustina Energy Systems Wind Energy Alaska Energy Generation Facilities in Alaska's At-large congressional district Chena Hot Springs Geothermal Facility Utility Companies in Alaska's At-large congressional district Alaska Energy Authority Retrieved from "http://en.openei.org/w/index.php?title=Alaska%27s_At-large_congressional_district&oldid=174110"

298

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

299

Energy Incentive Programs, Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Alaska Energy Incentive Programs, Alaska October 29, 2013 - 11:29am Addthis Updated September 2013 What public-purpose-funded energy efficiency programs are available in my state? Alaska has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Golden Valley Electric Association's Business $ense program , depleted its current funding as of June, 2013. The utility is evaluating the program and future program funding will be determined in late 2013. Interested parties are advised to check the website for updates. What load management/demand response options are available to me? Anchorage Municipal Light & Power has an interruptible rate available to customers with peak demands over 100 kW. In exchange for their willingness

300

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alaska Native Village Energy Development Workshop  

Broader source: Energy.gov [DOE]

Presented by the DOE Office of Indian Energy and Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and...

302

,"Alaska Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"12292014 2:04:58 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

303

2013 Alaska Federation of Natives Convention  

Broader source: Energy.gov [DOE]

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

304

Alaska Federation of Natives Annual Convention  

Broader source: Energy.gov [DOE]

The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

305

Alaska Village Initiatives Rural Business Conference  

Broader source: Energy.gov [DOE]

Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

306

Mineral Springs of Alaska | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Mineral Springs of Alaska Abstract Geologists and engineers of the United States Geological Survey, who for a number...

307

Alaska Meeting #1 | OpenEI Community  

Open Energy Info (EERE)

Alaska Meeting #1 Alaska Meeting #1 Home > Groups > Geothermal Regulatory Roadmap Kwitherbee's picture Submitted by Kwitherbee(15) Member 12 August, 2012 - 21:38 The kickofff meeting for Alaska was sparsely attended with representatives from Division of Oil and Gas, Alaska Energy Authority, and Economic Development Commission. Discussions included current and planned geothermal development in AK. Progress was made in review of flowcharts for geothermal leasing and the use of the Misc Land Use Pwermit for geothermal/geophysical exploration, including seismic. Follow up with state agency personnel is planned prior to the planned second meeting. Groups: Geothermal Regulatory Roadmap Login to post comments Kwitherbee's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC

308

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

309

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

310

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

311

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline  

E-Print Network [OSTI]

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline in 2005 Build It, and They Will Come, the pipeline of physician- scientists has a serious problem, first de- scribed more than a generation ago.2-scientist career pipeline. Design We assessed recent trends in the physician-scientist career pipeline using data

Oliver, Douglas L.

312

Reference: RGL 84-07 Subject: MAPPING PIPELINES  

E-Print Network [OSTI]

Reference: RGL 84-07 Subject: MAPPING PIPELINES Title: CHARTING OF PIPELINES AND CABLES Issued: 05/01/84 Expires: 12/31/86 Originator: DAEN-CWO-N Description: REQUIRES MAPPING OF PIPELINE CROSSINGS ON NAUTICAL and pipeline crossings on nautical charts published by the Government. This policy is contained in 33 CFR 209

US Army Corps of Engineers

313

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses  

E-Print Network [OSTI]

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

Paris-Sud XI, Université de

314

Pipelined FPGA Adders LIP Research Report RR2010-16  

E-Print Network [OSTI]

Pipelined FPGA Adders LIP Research Report RR2010-16 Florent de Dinechin, Hong Diep Nguyen, Bogdan and frequency for pipelined large-precision adders on FPGA. It compares three pipelined adder architectures: the classical pipelined ripple-carry adder, a variation that reduces register count, and an FPGA- specific

Paris-Sud XI, Université de

315

A moving horizon solution to the gas pipeline optimization problem  

E-Print Network [OSTI]

A moving horizon solution to the gas pipeline optimization problem EWO MEETING, Fall 2010 Ajit Gopalakrishnan Advisor: L. T. Biegler #12;Background: Gas pipeline optimization 2 Gas pipeline networks optimization Load forecast Weather, load history Controller #12;Pipeline modeling [Baumrucker & Biegler, 09

Grossmann, Ignacio E.

316

Pipeline Carriers (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carriers (Montana) Carriers (Montana) Pipeline Carriers (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Program Info State Montana Program Type Siting and Permitting Provider State of Montana Public Service Commission Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by these regulations. The regulations address construction permits and the use of eminent domain by pipeline carriers, records and reporting, connection and interchange facilities, and the prohibition of discrimination in rates and service

317

The pipeline and valve location problem  

Science Journals Connector (OSTI)

This paper, proposes an exact algorithm for the problem of locating a pipeline between two points of a network, as well as a set of safety valves which help control the damage caused by possible spills along the pipeline. A labelling approach is developed to determine simultaneously the optimal pipeline and valve locations, with the objective of optimising an impact measure that depends on the average number of accidents and their cost. Computational experiments on grid and random instances are presented in order to evaluate the algorithm's performance and to compare its results to the solutions provided by sequential approaches. [Received 11 May 2010; Revised 10 October 2010; Accepted 21 November 2010

Gilbert Laporte; Marta M.B. Pascoal

2012-01-01T23:59:59.000Z

318

Chapter 14 - Pipeline Flow Risk Assessment  

Science Journals Connector (OSTI)

Abstract Risk assessment is the process of assessing risks and factors influencing the level of safety of a project. It involves researching how hazardous events or states develop and interact to cause an accident. The risk assessment effort should be tailored to the level and source of technical risk involved with the project and the project stage being considered. The assessment of technical risk will take different forms in different stages of the project. Pipeline flow risk mainly includes fluid leakage and blockage happening in the pipelines. This chapter describes the application of Quantitative Risk Assessment (QRA) for the blockage in the oil and gas pipelines.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

319

Chapter Two - Pipeline Defects and Corrective Actions  

Science Journals Connector (OSTI)

Abstract One important part of pipeline integrity management activity encompasses the repair and maintenance of anomalies by the maintenance crew. In addition to the advanced inspection tools, knowledge of pipeline defects and how to conduct both immediate and scheduled repairs is of critical importance. The pipeline industry had used the ASME B31G criteria to evaluate corroded pipe for removal or repair. However, there was a need to establish a new approach. The modified criteria were therefore established with the objective to reduce excess conservatism without creating an unsafe condition.

Ramesh Singh

2014-01-01T23:59:59.000Z

320

Regulation changes create opportunities for pipeline manufacturers  

SciTech Connect (OSTI)

The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

Santon, J.

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cathodic protection retrofit of an offshore pipeline  

SciTech Connect (OSTI)

The cathodic protection anodes and corrosion coating on two 8-inch (203.2 mm) outside diameter (O.D.) offshore pipelines were damaged during deep water ({minus}380 feet, {minus}116 m) installation. In-situ methods for deep water inspection and repair of the pipelines` cathodic protection and coating systems were developed and performed. Methods are described in which underwater anode retrofits were performed and friction welding technology was used to re-attach anode leads. Standard procedures for underwater pipeline coating repair and remediation of damaged line pipe are provided.

Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

1997-09-01T23:59:59.000Z

322

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

323

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition  

Science Journals Connector (OSTI)

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition ... In the present work, various solid surfaces and crude oils have been used to study the effect of material and crude oil composition on the wettability of pipeline-mimicking surfaces. ... A procedure for evaluation of the plugging potential and for identification and extn. of naturally hydrate inhibiting components in crude petroleums was presented. ...

Guro Aspenes; Sylvi Hiland; Anna E. Borgund; Tanja Barth

2009-11-16T23:59:59.000Z

324

TransAtlas | Open Energy Information  

Open Energy Info (EERE)

TransAtlas TransAtlas Jump to: navigation, search Tool Summary Name: TransAtlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Evaluate Effectiveness and Revise as Needed Topics: Analysis Tools Resource Type: Dataset, Maps User Interface: Website Website: maps.nrel.gov/transatlas Cost: Free OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: TransAtlas TransAtlas is an interactive map with data sets related to transportation and alternative fuels in the United States How to Use This Tool

325

Pipeline Morphing and Virtual Pipelines W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung  

E-Print Network [OSTI]

Pipeline Morphing and Virtual Pipelines W. Luk, N. Shirazi, S.R. Guo and P.Y.K. Cheung Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK Abstract. Pipeline morphing is a simple but e ective technique for re- con guring pipelined FPGA designs at run time. By overlapping com

Cheung, Peter Y. K.

326

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance Yield in sub-100nm Technologies*  

E-Print Network [OSTI]

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance), Intel Corp. and Semiconductor Research Corp. (SRC). Abstract Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100

Paris-Sud XI, Université de

327

ACS calibration pipeline testing: error propagation  

E-Print Network [OSTI]

1 ACS calibration pipeline testing: error propagation Doug Van Orsow, Max Mutchler, Warren Hack files (see ISRs 99-03 "CALACS Operation and Implementation" by Hack and 99-04 "ACS calibra- tion

Sirianni, Marco

328

On-the-fly pipeline parallelism  

E-Print Network [OSTI]

Pipeline parallelism organizes a parallel program as a linear sequence of s stages. Each stage processes elements of a data stream, passing each processed data element to the next stage, and then taking on a new element ...

Lee, I-Ting Angelina

329

BALBES: a molecular-replacement pipeline  

Science Journals Connector (OSTI)

The fully automated pipeline, BALBES, integrates a redesigned hierarchical database of protein structures with their domains and multimeric organization, and solves molecular-replacement problems using only input X-ray and sequence data.

Long, F.

2007-12-04T23:59:59.000Z

330

Experience with pipelined multiple instruction streams  

SciTech Connect (OSTI)

Pipelining has been used to implement efficient, high-speed vector computers. It is also an effective method for implementing multiprocessors. The Heterogeneous Element Processor (HEP) built by Denelcor Incorporated is the first commercially available computer system to use pipelining to implement multiple processes. This paper introduces the architecture and programming environment of the HEP and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware.

Jordon, H.F.

1984-01-01T23:59:59.000Z

331

Intelligent pigging of pipelines: A turnkey approach  

SciTech Connect (OSTI)

The international pipeline systems are growing in age and some installations have already been in operation beyond the service life they had originally been designed for. It is therefore of ever increasing importance that pipeline operators are provided with the means to accurately and reliably inspect their pipelines and obtain the information needed for decision making regarding safe operation, rehabilitation and repair. This paper will introduce the concept of bundled services for pipeline-inspection and -maintenance, ranging from pre-inspection engineering, cleaning, gauging, on-line inspection through to analysis of data, interpretation, advice on action plans including aspects of maintenance, rehabilitation and repair. Special attention will be given to an assessment of the latest developments in on-line inspection tools for metal loss- and crack-detection and the type of information that can be obtained and consequently used for integrity assessment and fitness for purpose analysis.

Beller, M. [Pipetronix GmbH, Stutensee (Germany); Hettrich, U. [Hettrich Consulting, Munich (Germany)

1997-05-01T23:59:59.000Z

332

Products pipeline rehabilitated while on stream  

SciTech Connect (OSTI)

Rehabilitation of a 186-mile petroleum products pipeline in southern Africa employed sleeve welding, reinstatement of external coatings, and upgrading of the cathodic-protection system. The pipeline had an unusual history in which the political environment of the region forced its shutdown for 17 years. This shutdown played a major role in its deterioration. The pipeline, which exhibited extensive internal and external corrosion, was a crucial supply route for imported refined products. So important was the line that during the entire repair project, the line could not be shutdown. This technical difficulty was compounded by various practical difficulties as well. The paper describes the shutdown, the coatings and cathodic protection history, pipeline inspection, repair program, sleeving on a live line, developing a procedure, wrapping systems, cathodic protection, practical problems, and hydrostatic testing.

Denney, A.K.; Coleman, S.L.; Pirani, R. (John Brown Engineers and Constructors Ltd., London (United Kingdom)); Webb, N. (Corrolec and Metallurgical Services, Rivonia (South Africa)); Turner, P. (Teknica (Overseas) Ltd., London (United Kingdom))

1995-01-09T23:59:59.000Z

333

Review of Gas Transmission Pipeline Repair Methods  

Science Journals Connector (OSTI)

Repair methods are key operations for the integrity management of pipelines. The parameters guiding the repair decision are briefly reminded. A nonexhaustive external and internal repair techniques are described,...

Remi Batisse

2008-01-01T23:59:59.000Z

334

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

335

Sleeve installations speed pipeline defect repair  

SciTech Connect (OSTI)

Repairing defects in pipelines can be a major challenge for pipeline companies or contractors. To reduce cost and eliminate unscheduled shut downs, pipeline operating companies have adopted ``in-service`` repair methods to restore overall integrity of the pipeline without taking it out of service. Interprovincial Pipe Line Co. has undertaken an aggressive approach to this ``in-service`` repair method by using a developed sleeving system for repairing leaking and non-leaking defects. A structural reinforcement sleeve consists of two non-fillet welded collars (one on each side of the defect) and a full encirclement sleeve welded on top of these collars. The annular space between the pipe and sleeve is filled with a hardenable, non-shrinking epoxy. Three different pressure vessel sleeves can be used for repairing certain defects. They can be used in combination with the pre-stressed sleeve or for independent repairs. This paper reviews the performance and installation of these sleeves.

Friedrich, J.; Smith, J.

1995-12-01T23:59:59.000Z

336

Exploiting level sensitive latches in wire pipelining  

E-Print Network [OSTI]

The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load...

Seth, Vikram

2005-02-17T23:59:59.000Z

337

Computer Systems to Oil Pipeline Transporting  

E-Print Network [OSTI]

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

338

Seadrift/UCAR pipelines achieve ISO registration  

SciTech Connect (OSTI)

Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. (Carbide Corp., Danbury, CT (United States))

1992-10-01T23:59:59.000Z

339

Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Ethanol The list below contains summaries of all Alaska laws and incentives related

340

Alternative Fuels Data Center: Alaska Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Other The list below contains summaries of all Alaska laws and incentives related

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Biodiesel The list below contains summaries of all Alaska laws and incentives related

342

Alaska Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

343

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are the summaries of all current Alaska laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

344

Alaska Natives Benefit from First-Ever Community Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Alaska Natives Benefit from First-Ever Community Energy Development Alaska Natives Benefit from First-Ever Community Energy Development Workshop Alaska Natives Benefit from First-Ever Community Energy Development Workshop November 9, 2012 - 12:29pm Addthis Alaska Natives Benefit from First-Ever Community Energy Development Workshop As Alaska Native villages prepared for winter and the intensified energy challenges the season will bring, DOE's Office of Indian Energy (DOE-IE) and DOE's Office of Energy Efficiency and Renewable Energy Tribal Energy Program co-hosted a workshop focused on solutions to those challenges. Held in Anchorage, Alaska, on October 16 and 17, the Renewable Energy and Energy Efficiency for Alaska Native Community Development workshop was designed to help Alaska tribal leaders and staffs understand the range of

345

Alaska Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

346

DOE Alaska Native Village Renewable Energy Workshop Agenda  

Broader source: Energy.gov [DOE]

Download the agenda for the DOE Alaska Native Village Renewable Energy Workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development" being held October 16-17,...

347

Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

348

alaska north slope: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and accurate manner; and managing the AKSC office and staffAlaska Seafood Cooperative Report to the North Pacific Fishery Management 10 UNIVERSITY OF ALASKA MUSEUM OF THE NORTH...

349

Energy Department Expands Support of Alaska Native Clean Energy...  

Office of Environmental Management (EM)

Expands Support of Alaska Native Clean Energy Energy Department Expands Support of Alaska Native Clean Energy December 3, 2014 - 2:30pm Addthis News Media Contact 202- 586-4940...

350

Alaska Forum on the Environment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Forum on the Environment Alaska Forum on the Environment February 9, 2015 9:00AM AKST to February 13, 2015 5:00PM AKST Anchorage, Alaska Dena'ina Convention Center 600 W. 7th Ave....

351

Alternative Fuels Data Center: Alaska Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Other The list below contains summaries of all Alaska laws and incentives related

352

Alaska Natives Benefit from First-Ever Community Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Alaska Natives Benefit from First-Ever Community Energy Development Alaska Natives Benefit from First-Ever Community Energy Development Workshop Alaska Natives Benefit from First-Ever Community Energy Development Workshop November 9, 2012 - 12:29pm Addthis Alaska Natives Benefit from First-Ever Community Energy Development Workshop As Alaska Native villages prepared for winter and the intensified energy challenges the season will bring, DOE's Office of Indian Energy (DOE-IE) and DOE's Office of Energy Efficiency and Renewable Energy Tribal Energy Program co-hosted a workshop focused on solutions to those challenges. Held in Anchorage, Alaska, on October 16 and 17, the Renewable Energy and Energy Efficiency for Alaska Native Community Development workshop was designed to help Alaska tribal leaders and staffs understand the range of

353

Alaska Plans Geothermal Leasing at Volcano | Department of Energy  

Office of Environmental Management (EM)

at Volcano June 26, 2008 - 4:19pm Addthis ANCHORAGE, Alaska - In Alaska, a state rich in oil and gas, officials are seeking to stir interest in a different source of underground...

354

Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska  

SciTech Connect (OSTI)

Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

2005-09-30T23:59:59.000Z

355

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. However, not all pipelines can be inspected with current systems that move inside the pipeline propelled by the product flow. Inspection platforms that crawl slowly inside a pipeline are being developed to maneuver past the physical barriers that limit inspection. Battelle is building innovative electromagnetic sensors for pipeline crawlers. The various sensor types will assess a wide range of pipeline anomalies including corrosion, mechanical damage, cracking and seam weld defects. An implementation of two electromagnetic sensors were designed and tested. A pulsed eddy current system that uses sensors to measure the decay of induced eddy currents to establish the wall thickness has excellent potential. The results of experiments are comparable with magnetic flux leakage detecting 10% metal loss steps following a monotonic increase in signal strength. A rotating permanent remote field eddy current exciter was designed and built to produce strong signal levels at the receiver and reduce power consumption. Midway through the development of each technology, both sensor systems have produced results that warrant further development.

J. Bruce Nestleroth

2004-05-01T23:59:59.000Z

356

Pipeline integrity programs help optimize resources  

SciTech Connect (OSTI)

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

357

Stuck in the Pipeline: A Critical Review of STEM Workforce Literature  

E-Print Network [OSTI]

and science careers: Leaky pipeline or gender filter? GenderL. (2006). Expanding the pipeline: Transforming the cultureThe incredible shrinking pipeline. Inroads: SIGCE Bulletin,

Metcalf, Heather

2010-01-01T23:59:59.000Z

358

GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes  

E-Print Network [OSTI]

PRediction IMprovement Pipeline for Amrita Pati 1 , NataliaGene Prediction IMprovement Pipeline, http://geneprimp.jgi-based post-processing pipeline that identifies erroneously

Pati, Amrita

2012-01-01T23:59:59.000Z

359

Applications of the Pipeline Environment for Visual Informatics and Genomics Computations  

E-Print Network [OSTI]

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

360

Applications of the pipeline environment for visual informatics and genomics computations  

E-Print Network [OSTI]

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads  

E-Print Network [OSTI]

transcriptome assembly pipeline from stranded RNA-Seq readsRnnotator assembly pipeline. Figure 2. Read dereplicationan automated software pipeline that generates transcript

Martin, Jeffrey

2011-01-01T23:59:59.000Z

362

E-Print Network 3.0 - argentinian pipeline enlargement Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and that our pipelines will not be damaged. NGT&S would like... of pipelines, pipeline facilities and utilities Any crossing of ... Source: Wynne, Randolph H. -...

363

E-Print Network 3.0 - areas osbra pipeline Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Performance through Organized Pipeline... both the pipeline registers and the pipeline stage combinational ... Source: Iowa State University, Department of Electrical...

364

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

365

Categorical Exclusion Determinations: Alaska | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 10, 2009 December 10, 2009 CX-000125: Categorical Exclusion Determination Native Village of Chitina Renewable Energy Technology - Solar Array for Community Hall CX(s) Applied: B3.6, B5.1, B4.12 Date: 12/10/2009 Location(s): Chitina, Alaska Office(s): Energy Efficiency and Renewable Energy December 7, 2009 CX-000111: Categorical Exclusion Determination Koniag Incorporated Renewable Energy Technologies - Solar CX(s) Applied: B3.6, B5.1 Date: 12/07/2009 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy December 4, 2009 CX-000104: Categorical Exclusion Determination Pedro Bay Native Village Technical Consulting Services for Mini Hydropower Feasibility Study CX(s) Applied: A9, A11 Date: 12/04/2009 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy

366

Alaska Strategic Energy Plan and Planning Handbook  

Broader source: Energy.gov (indexed) [DOE]

Alaska Strategic Energy Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence Ave. SW, Washington DC 20585 | 202-586-1272 energy.gov/indianenergy | indianenergy@hq.doe.gov Alaska Strategic Energy Plan and Planning Handbook ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

367

Alaska Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Logo: Alaska Energy Authority Name Alaska Energy Authority Address 813 West Northern Lights Blvd Place Anchorage, Alaska Zip 99503 Website www.akenergyauthority.org Coordinates 61.1954022°, -149.898802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1954022,"lon":-149.898802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

369

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

370

trans-Bis(4-quinolyl)ethylene  

Science Journals Connector (OSTI)

The title compound belongs to the class of styrylquinolines which are of interest because of their photochemical behaviour. The central double bond is trans configured and the two quinoline rings form similar angles with the plane of the double bond.

Jerdioui, B.

1999-12-15T23:59:59.000Z

371

TransWest Old | Open Energy Information  

Open Energy Info (EERE)

TransWest Old TransWest Old Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: TransWest Old EIS at {{{GeothermalArea}}} for {{{GeothermalDevelopmentPhases}}} {{{NEPA_Name}}} General NEPA Document Info Environmental Analysis Type EIS Applicant Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Techniques Time Frame (days) Participating Agencies Lead Agency none provided Funding Agency none provided Managing District Office none provided Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Relevant Numbers Lead Agency Doc Number Retrieved from "http://en.openei.org/w/index.php?title=TransWest_Old&oldid=686707"

372

Economics of Alaska North Slope gas utilization options  

SciTech Connect (OSTI)

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

373

Application of composite repair for pipeline anomalies  

SciTech Connect (OSTI)

The cost of maintaining the structural integrity of the 650,000 kilometer high-pressure gas gathering and transmission pipeline network is a significant part of the operating budget of the US pipeline industry. To help in controlling thee costs, the Gas Research institute (GRI) has supported research resulting in the development of Clock Spring{reg_sign}, a low-cost fiberglass composite alternative to conventional steel sleeves for transmission line pipe reinforcement and repair. Investigation and development of engineering guidelines have been completed. Field validation of laboratory research on application of Clock Spring as a repair for corrosion and mechanical damage defects is in progress. This paper presents an overview of composite repair technology for pipeline corrosion and mechanical damage defects. It summarizes the results and conclusions of modeling and experiments on reinforcement and repair of both corrosion and mechanical damage (i.e., dent and gouge) pipeline defects. These investigations provide quantitative results on the operating envelope of composite reinforcements and installation requirements that ensure sound and reliable repair of pipeline defects. The paper further summarizes the work to date on field installation in verification of composite repair performance.

Stephens, D.R. [Battelle, Columbus, OH (United States); Lindholm, U.S. [Southwest Research Inst., San Antonio, TX (United States); Hill, V.L. [Gas Research Inst., Chicago, IL (United States); Block, N. [Clock Spring Co., Houston, TX (United States)

1996-09-01T23:59:59.000Z

374

Diverless pipeline repair clamp: Phase 1  

SciTech Connect (OSTI)

Offshore oil and gas developments are underway for water depths beyond which divers can function. The economic lifelines of these projects are the pipelines which will transport the products to shore. In preparation for the day when one of these pipelines will require repair because of a leak, the Pipeline Research Committee of the American Gas Association is funding research directed at developing diverless pipeline repair capabilities. Several types of damage are possible, ranging from latent weld defects on one end of the spectrum to damage resulting in parting of the pipe at the other end. This study is specifically directed toward laying the groundwork for development of a diverless pipeline repair clamp for use in repair of leaks resulting from minor pipe defects. The incentive for a clamp type repair is costs. When compared to replacing a section of pipe, either by welding or by mechanical means, the clamp type repair requires much less disturbance of the pipe, less time, fewer operations and less equipment. This report summarizes (1) capabilities of remotely operated vehicles (ROV's) and associated systems, (2) highlights areas for further research and development, (3) describes the required capabilities of the diverless repairclamp, (4) investigates some alternatives to the diverless clamp, (5) overviews the state of the art in leak repair clamps, and (6) critiques several possible generic clamp concepts.

Miller, J.E.; Knott, B. (Stress Engineering Services, Inc., Houston, TX (United States))

1991-12-01T23:59:59.000Z

375

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

376

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

377

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Broader source: Energy.gov (indexed) [DOE]

DOE Accord Seeks Accelerated Development of Alaska's Vast DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

378

Alternative Fuels Data Center: Alaska Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Driving / Idling

379

DOE Alaska Native Village Renewable Energy Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Alaska Native Village Renewable Energy Workshop DOE Alaska Native Village Renewable Energy Workshop DOE Alaska Native Village Renewable Energy Workshop October 16, 2012 8:30AM AKDT to October 17, 2012 6:00PM AKDT Anchorage, Alaska The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native village and corporation leaders and staff members to learn about the range of energy efficiency and renewable energy opportunities that exist in Alaska Native villages. The training will also cover project development and financing for clean energy projects. Don't miss the opportunity to learn from other Alaska Native Villages about their efforts to deploy clean energy technologies. View the agenda.

380

2012 Alaska Federation of Natives Convention | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Federation of Natives Convention Alaska Federation of Natives Convention 2012 Alaska Federation of Natives Convention October 18, 2012 - 12:49pm Addthis Anchorage, Alaska October 18 - 20, 2012 During the Alaska Federation of Natives Convention held October 18-20 in Anchorage, the DOE Office of Indian Energy and the EERE Tribal Energy Program presented a preconference workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development." The workshop was designed to help tribal leaders and staff understand the range of energy efficiency and renewable energy opportunities that exist in their remote communities, and also covered project development and financing for clean energy projects. Download the Alaska workshop presentations. Addthis Related Articles

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Broader source: Energy.gov (indexed) [DOE]

Accord Seeks Accelerated Development of Alaska's Vast Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

382

Alaska Strategic Energy Plan and Planning Handbook | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the Office of Indian Energy, is a tool for Alaska Native Villages and communities to use in achieving energy goals in both the near- and long-term. This Handbook intends to help Alaska Native leaders and community members define their unique energy goals and priorities through stakeholder input, dialog, and consensus-building. The Handbook: Provides a step-by-step process that Alaska Native villages and communities may wish to use as a roadmap for discussion and decisions related to strategic energy planning and energy project prioritization Includes blank text boxes for communities to input their own

383

E-Print Network 3.0 - automatic pipeline monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lake Erie Crossing Summary: ... 25 7.0 Pipeline monitoring and repair... .8%). Millennium will monitor the pipeline continuously...

384

NewPipeline-Robot-Power-Source.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

385

Pipeline compressor station construction cost analysis  

Science Journals Connector (OSTI)

This study aims to provide a reference for pipeline compressor station construction costs by analysing individual compressor station cost components using historical compressor station cost data between 1992 and 2008. Distribution and share of these pipeline compressor station cost components are assessed based on compressor station capacity, year of completion, and locations. Average unit costs in material, labour, miscellaneous, land, and total costs are $866/hp, $466/hp, $367/hp, $13/hp, and $1,712/hp, respectively. Primary costs for compressor stations are material cost, approximately 50.6% of the total cost. This study conducts a learning curve analysis to investigate the learning rate of material and labour costs for different groups. Results show that learning rates and construction component costs vary by capacity and locations. This study also investigates the causes of pipeline compressor station construction cost differences. [Received: March 25, 2012; Accepted; 20 February 2013

Yipeng Zhao; Zhenhua Rui

2014-01-01T23:59:59.000Z

386

Chapter 8 - Risk Analysis for Subsea Pipelines  

Science Journals Connector (OSTI)

Abstract The purpose of this chapter is to apply risk-based inspection planning methodologies to pipeline systems, by developing a set of methods and tools for the estimation of risks using structural reliability approach and incidental databases, and to illustrate our risk based inspection and management approach through three examples, including risk analysis for a subsea gas pipeline, dropped object risk analysis and how to use RBIM to reduce operation costs. After outlining the constituent steps of a complete risk analysis methodology, it gives detailed information about each step of the methodology such that a complete risk analysis can be achieved. To get the final acceptable design/procedure, these steps are needed, including acceptance criteria, identification of initiating events, crude consequence analysis, cause analysis, quantitative cause analysis, consequence analysis and risk estimation. This chapter also gave a detailed guidance on evaluation of failure frequency, consequence, risk and risk-based inspection and integrity management of pipeline systems.

Yong Bai; Qiang Bai

2014-01-01T23:59:59.000Z

387

Enhancing pipeline integrity through internal inspection  

SciTech Connect (OSTI)

A pipeline operating company with an 8,000 mile liquid petroleum distribution system reviews the costs and results of the past ten-year, internal inspection program. A comparison of total inspection and repair costs and repair rates are presented for twenty mainline sections. Comparisons are also made for five different internal inspection contractors and for inspection tools of the first and second generation. The effects of cost in comparison to pipeline length, coating condition, and the location of a line in urban or rural environments are analyzed. The effects this program has had on the number of corrosion leaks are also analyzed. Also, a conclusion is made as to the program`s impact on pipeline integrity.

Turner, D.R. [Williams Pipe Line Co., Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

388

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

389

Study of Paraffin Wax Deposition in Seasonally Pigged Pipelines  

Science Journals Connector (OSTI)

Waxy crude oil pipelines are pigged periodically to scrape the adhered wax deposit from the pipe wall and remove it from the pipeline. If wax deposition on the pipe wall is not ... severe and there is not much ch...

Wang Wenda; Huang Qiyu; Huang Jun; Pang Quan

2014-03-01T23:59:59.000Z

390

Detroit, MI Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Imports by Pipeline from...

391

Marysville, MI Natural Gas Pipeline Exports to Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Imports by Pipeline from...

392

St. Clair, MI Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Imports by Pipeline from...

393

Detroit, MI Natural Gas Pipeline Exports to Canada (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Exports by Point of Exit Detroit, MI Natural Gas Imports by Pipeline from...

394

Marysville, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Exports by Point of Exit Marysville, MI Natural Gas Imports by Pipeline from...

395

St. Clair, MI Natural Gas Pipeline Imports From Canada (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry St. Clair, MI Natural Gas Imports by Pipeline from...

396

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National...

397

In-service repair of main pipelines by welding  

Science Journals Connector (OSTI)

A new approach to the repair of main pipelines by welding without removing them from service ... failure risk; safety of welding works on pipeline under pressure; use of different variants of repair by welding; s...

V. I. Makhnenko; V. S. But; O. I. Oleinik

2009-09-01T23:59:59.000Z

398

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied repair procedures have been investigated to determine if they can be used for pipeline repair under hydrogen service. The focus was on the pipeline load and the effect...

399

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

Broader source: Energy.gov [DOE]

Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

400

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Energy Savers [EERE]

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Calais, ME Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Calais, ME Natural Gas Imports by Pipeline from...

402

Massena, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Massena, NY Natural Gas Imports by Pipeline from...

403

Corsby, ND Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Corsby, ND Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Corsby, ND Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

404

Noyes, MN Natural Gas Pipeline Imports From Canada (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Noyes, MN Natural Gas Imports by Pipeline from...

405

Champlain, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Champlain, NY Natural Gas Imports by Pipeline from...

406

Waddington, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Waddington, NY Natural Gas Imports by Pipeline from...

407

Eastport, ID Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Eastport, ID Natural Gas Imports by Pipeline from...

408

Vibration of a Pipeline with Liquid Under Combined Vibration Perturbations  

Science Journals Connector (OSTI)

We study the influence of combined vibration perturbations on the vibration of a pipeline with flowing liquid. The ... nonlinear model of a pipeline whose foundation suffers vibration perturbations in the longitu...

V. O. Limarchenko

2014-09-01T23:59:59.000Z

409

Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines  

E-Print Network [OSTI]

Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

Cobanoglu, Mustafa Murat

2014-03-28T23:59:59.000Z

410

Some applications of pipelining techniques in parallel scientific computing  

E-Print Network [OSTI]

In this thesis, we study the applicability of pipelining techniques to the development of parallel algorithms for scientific computation. General principles for pipelining techniques are discussed and two applications, Gram-Schmidt orthogonalization...

Deng, Yuanhua

2012-06-07T23:59:59.000Z

411

University of Alaska Fairbanks Utility Development Plan  

E-Print Network [OSTI]

.1 Strategy 2 - Natural Gas Sub-Option - New Equipment STEAM SYSTEM Equipment MachineorGrouUniversity of Alaska Fairbanks Utility Development Plan October 25,2006TechnicalAppendices B UTILITY DEVELOPMENT PLAN APPENDIX B: TECHNICAL APPENDIX #12;10/25/06 SECTION 1 ­ TECHNICAL PRODUCTION

Hartman, Chris

412

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network [OSTI]

;Pipeline Repair Protocol 1 Leak detection and compressor shut down 2 Damage location 3 Excavate pipe 4 hyperbaric repair welding 9 Repair coating 10 Recommission pipeline North Atlantic Pipeline Partners, L of Presentation #12;PIPELINE PIPELINE FAILURE, CRACK, BUCKLE ETC. REPAIR OF A DAMAGED SECTION OF PIPELINE AT 250 m

Bruneau, Steve

413

The North American North (2): Money or energy problem?  

Science Journals Connector (OSTI)

... American energy projects (such as the trans-Alaska oil pipeline and the mammoth James Bay hydroelectric project) push costs for the Alaska Highway project to the $15,000 million or ... many key industries in Canada and the United States- steel, construction equipment, valves and turbine compressors, ditchers and welding machines, engineering and consulting services. It should therefore come ...

Jeff Carruthers

1977-11-17T23:59:59.000Z

414

Software design for panoramic astronomical pipeline processing  

E-Print Network [OSTI]

We describe the software requirement and design specifications for all-sky panoramic astronomical pipelines. The described software aims to meet the specific needs of super-wide angle optics, and includes cosmic-ray hit rejection, image compression, star recognition, sky opacity analysis, transient detection and a web server allowing access to real-time and archived data. The presented software is being regularly used for the pipeline processing of 11 all-sky cameras located in some of the world's premier observatories. We encourage all-sky camera operators to use our software and/or our hosting services and become part of the global Night Sky Live network.

Lior Shamir; Robert J. Nemiroff; David O. Torrey; Wellesley E. Pereira

2005-11-23T23:59:59.000Z

415

Experience with pipelined multiple instruction streams  

SciTech Connect (OSTI)

The authors introduces the architecture and programming environment of the heterogeneous element processor (HEP) and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware. 35 references.

Jordan, H.F.

1984-01-01T23:59:59.000Z

416

Pipeline gas pressure reduction with refrigeration generation  

SciTech Connect (OSTI)

The high pressure of pipeline gas is reduced to the low pressure of a distribution system with simultaneous generation of refrigeration by passing the gas through two successive centrifugal compressors driven by two turbo-expanders in which the compressed gas is expanded to successively lower pressures. Refrigeration is recovered from the gas as it leaves each turbo-expander. Methanol is injected into the pipeline gas before it is expanded to prevent ice formation. Aqueous methanol condensate separated from the expanded gas is distilled for the recovery and reuse of methanol.

Markbreiter, S. J.; Schorr, H. P.

1985-06-11T23:59:59.000Z

417

Tests validate pipeline sleeve repair technique  

SciTech Connect (OSTI)

The sleeve-on-sleeve pipeline-repair technique is a viable, acceptable means of repairing sleeves and preventing fluid leakage resulting from fracture of cracked fillet welds at the ends of an existing single-layer sleeve. This technique was conceived by Interprovincial Pipe Line Co. as a means of repair for situations in which one or both of the circumferential fillet welds at the ends of an initial repair sleeve may need to be reinforced. It was necessary to determine whether this technique can be employed without serious impairment of the integrity of the pipelines on which it is to be used.

Kiefner, J.F.; Maxey, W.A. (Battelle Memorial Inst., Columbus, OH (USA))

1989-08-28T23:59:59.000Z

418

Improving the Design Reliability of Petroleum Pipeline Components on Repair  

Science Journals Connector (OSTI)

Developments are considered that may appreciably improve the design reliability in the repair of petroleum pipeline components.

I. N. Karelin

419

Impacts of different diameter combinations on the temperature of a crude oil pipeline when colocating with a products pipeline  

Science Journals Connector (OSTI)

In order to show the effects of different diameter combinations on crude oil temperature when a crude oil pipeline and a products pipeline are laid in one trench, four typical ... temperature difference of the cr...

Bo Yu; Yue Shi; Xin Liu; Jinjun Zhang

2010-06-01T23:59:59.000Z

420

Method for route selection of transcontinental natural gas pipelines  

E-Print Network [OSTI]

1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

Kouroupetroglou, Georgios

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water;Objectives · To come up with a mechanistic understanding of hydrogen embrittlement in pipeline steels

422

Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox  

E-Print Network [OSTI]

DRAFT Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox Computer Laboratory, University of Cambridge Submitted: 15th December, 1995 Revised: 30th May, 1996 Abstract The rotary pipeline processor is a new architecture for su- perscalar computing. It is based on a simple and regular pipeline

Robinson, Peter

423

INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS  

E-Print Network [OSTI]

BNL-65970 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION R PIPELINE LEAKS: FEASIBILITY EVALUATION A Concept Paper Russell N. Dietz, Head Gunnar I. Senum Tracer with Battelle Memorial Institute and the Colonial Pipeline Company #12;ABSTRACT The approximately 200,000-mile

424

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002  

E-Print Network [OSTI]

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

425

Performance of Concurrent Rendezvous Systems with Complex Pipeline Structures  

E-Print Network [OSTI]

Performance of Concurrent Rendezvous Systems with Complex Pipeline Structures Real February 11, 1998 Abstract The term ``complex pipeline'' describes a set of tasks which process incoming data in a sequence, like a pipeline, but have various kinds of parallel execution steps coupled

Woodside, C. Murray

426

Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox  

E-Print Network [OSTI]

DRAFT Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox Computer Laboratory pipeline processor is a new architecture for su- perscalar computing. It is based on a simple and regular pipeline structure which can support several ALUs for effi- cient dispatching of multiple instructions

Moore, Simon

427

Abstract 3967: The Cancer Genome Project high throughput analysis pipeline  

Science Journals Connector (OSTI)

...Genome Project high throughput analysis pipeline Adam P. Butler 1 Jon W. Teague 1 Keiran...somatic changes. We have built an analysis pipeline to track and analyse large numbers of...externally available tools. The analysis pipeline is built around a 2,000 node compute...

Adam P. Butler; Jon W. Teague; Keiran M. Raine; Andrew Menzies; David Jones; John Marshall; Jon Hinton; Serge Dronov; John Gamble; Lucy Stebbings; Alagu Jayakumar; Catherine Leroy; Ultan McDermott; Michael R. Stratton; Peter Campbell; Andy Futreal

2012-06-04T23:59:59.000Z

428

A computational genomics pipeline for prokaryotic sequencing projects  

Science Journals Connector (OSTI)

......used to perform tasks in the pipeline. In the Discussion section...objectives of our work on the pipeline and how these relate to larger...end-polishing, adaptor ligation, nick repair and single-stranded library...passed to the first stage of the pipeline-genome assembly. Table 1......

Andrey O. Kislyuk; Lee S. Katz; Sonia Agrawal; Matthew S. Hagen; Andrew B. Conley; Pushkala Jayaraman; Viswateja Nelakuditi; Jay C. Humphrey; Scott A. Sammons; Dhwani Govil; Raydel D. Mair; Kathleen M. Tatti; Maria L. Tondella; Brian H. Harcourt; Leonard W. Mayer; I. King Jordan

2010-08-01T23:59:59.000Z

429

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters  

E-Print Network [OSTI]

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters Michael S. Lee1,2,3 , Rajkumar. Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial

430

Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman  

E-Print Network [OSTI]

Capabilities of the VLA pipeline in AIPS Lor??ant O. Sjouwerman National Radio Astronomy Observatory November 15, 2006 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line

Sjouwerman, Loránt

431

Color Appearance and the Digital Imaging Pipeline Brian A. Wandell  

E-Print Network [OSTI]

Color Appearance and the Digital Imaging Pipeline Brian A. Wandell Psychology Department Stanford reproduction pipeline, spanning image capture, processing and display, must be designed to account for the properties of the human observer. In designing an image pipeline, three principles of human vision

Wandell, Brian A.

432

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS  

E-Print Network [OSTI]

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman March 19, 2007 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line. The latter and an analysis of a pilot

Sjouwerman, Loránt

433

Software Pipelined Execution of Stream Programs on GPUs  

E-Print Network [OSTI]

Software Pipelined Execution of Stream Programs on GPUs Abhishek Udupa, R. Govindarajan, Matthew J task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUsIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs

Plotkin, Joshua B.

434

INT WFS Pipeline Processing Mike Irwin & Jim Lewis  

E-Print Network [OSTI]

INT WFS Pipeline Processing Mike Irwin & Jim Lewis Institute of Astronomy, Madingley Road pipeline processing developed specifically for the Wide Field Sur­ vey (WFS). The importance of accurate and complete FITS header information is stresed. Data processing products output from the complete pipeline

Irwin, Mike

435

CUNY Pipeline Program for Careers in College Teaching and Research  

E-Print Network [OSTI]

CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity to the CUNY Pipeline Program which is designed to prepare promising undergraduate students for admission;CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity & Diversity

Dennehy, John

436

A Reactive Control Approach for Pipeline Inspection with an AUV  

E-Print Network [OSTI]

A Reactive Control Approach for Pipeline Inspection with an AUV Pedro K. Paim, Bruno Jouvencel and research activities, performing tasks such as survey, inspection of sub-sea pipelines and object recovery of mission. This paper proposes a reactive control approach for pipeline following by a torpedo- like

Paris-Sud XI, Université de

437

Innovative Electromagnetic Sensors for Pipeline Crawlers  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

J. Bruce Nestleroth

2006-05-04T23:59:59.000Z

438

TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu)  

E-Print Network [OSTI]

1 TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens....................................................................................................................................................................... 3 Pipeline Controls.0_standalone or tassel4.0_standalone. Execute On Windows, use run_pipeline.bat to execute the pipeline. In UNIX

Buckler, Edward S.

439

The development of a wax layer on the interior wall of a circular pipe transporting heated oil  

Science Journals Connector (OSTI)

......of oil in long subsea pipelines is a common occurrence...formation of a paraffinic wax deposit on the inside...Striegler, Studies of wax deposition in the trans Alaska pipeline, Journal of Petroleum...review of the modeling of wax deposition mechanisms......

D. J. Needham; B. T. Johansson; T. Reeve

2014-02-01T23:59:59.000Z

440

North Slope: Oil Rush  

Science Journals Connector (OSTI)

...place of about 46,000, situated on the Chena slough of the Tanana River. It has become...permafrost. The Trans Alaska PipelineW carrying hot oil, may face worse problems. [L. A...Despite all the unanswered questions about hot pipelines and permafrost, the restoring...

Luther J. Carter

1969-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

442

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

443

Deepwater pipeline repair technology: A general overview  

SciTech Connect (OSTI)

During the life of oil and gas transportation sea lines, periodic inspection, maintenance and repair in case of major damage are the most important tasks to be considered especially in deepwater installations. In particular the capabilities to perform quick and cost effective repairs have been of strategic importance in the eighties for SNAM during the development of the S.A.S. (Submersible Automatic System) a diverless and guidelineless repair system for the 20 inch Transmediterranean sealines. The trials on this prototype were successfully completed in early summer 1992, simulating a complete repair procedure at 610 in water depth. Based on the technology the authors have acquired during the implementation of the system, an upgrading phase aimed at improving the capability to mate the new 26 inch lines is being developed. Considering that at the moment only a few pipeline transportation systems are laid in deep water, but some new installations are foreseen in the near future, technological developments would be necessary in view of different scenarios other than the Mediterranean area. This paper will be focused on an overview of the existing repair technologies and will discuss the possible future pipelines operating scenarios and the envisaged new developments of repair technology. Possible way of approaching and solving in a cost-effective way the needs of Pipeline Operators to have repair systems available will be discussed for the different pipeline scenarios.

Magnelli, G.; Radicioni, A. [Snamprogetti S.p.A., Fano (Italy). Offshore Division

1994-12-31T23:59:59.000Z

444

New system pinpoints leaks in ethylene pipeline  

SciTech Connect (OSTI)

A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

Hamande, A. [Solvay et Cie, Jemeppe sur Sambre (Belgium); Condacse, V.; Modisette, J. [Modisette Associates, Inc., Houston, TX (United States)

1995-04-01T23:59:59.000Z

445

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

446

TRAN-STAR EXECUTIVE LIMOUSINE COMPANY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRAN-STAR EXECUTIVE LIMOUSINE COMPANY TRAN-STAR EXECUTIVE LIMOUSINE COMPANY http://www.tranexec.com 20% off published rates for BNL Our reservation center is open 24 hours a day, 365 days a year, so you will always talk to a live agent who has direct contact with our chauffeurs. You can make reservations via phone, website or a simple e-mail to customerservice@tranexec.com once a profile has been established. Our advanced reservation system will track any flight and you can rest assured someone will always be there to meet the arriving passenger, no matter what time the flight arrives. http://www.tranexec.com/TranStarSalesBrochure.pdf These rates are inclusive rates, meaning they include gratuity, taxes....everything. They do not include parking or tolls

447

SensorTran | Open Energy Information  

Open Energy Info (EERE)

SensorTran SensorTran Jump to: navigation, search Name SensorTran Place Austin, Texas Zip 78701 Product Austin, Texas-based designer of fibre optic-based Distributed Temperature Sensing (DTS) systems and solutions for the energy industry, with applications in asset and environmental monitoring. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

449

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

450

AS 42.05.990, Alaska Public Utilities Regulatory Act Definitions...  

Open Energy Info (EERE)

AS 42.05.990, Alaska Public Utilities Regulatory Act DefinitionsLegal Abstract Definitions provided in Section 42.05.990 of the Alaska Statutes, released as part of the Alaska...

451

Geothermal Exploration In Pilgrim, Alaska- First Results From Remote  

Open Energy Info (EERE)

Pilgrim, Alaska- First Results From Remote Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First Results From Remote Sensing Studies Details Activities (3) Areas (1) Regions (0) Abstract: In an effort to develop a sustainable alternate energy resource and decrease the dependency on expensive oil in rural Alaska, the Department of Energy and the Alaska Energy Authority have jointly funded an exploration project to investigate the Pilgrim Hot Springs geothermal system in western Alaska. Phase one of the exploration involves a remote sensing based assessment of the geothermal system. We used all available cloud-free summer-time thermal infrared (TIR) images from the Landsat data archive to detect and map the surface thermal anomalies in the study area

452

Executive Order 13096: American Indian and Alaska Education (1998) |  

Broader source: Energy.gov (indexed) [DOE]

96: American Indian and Alaska Education (1998) 96: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion and postsecondary attendance rates (3) reducing the influence of long-standing factors that impede educational performance, such as poverty and substance abuse (4) creating strong, safe, and drug-free school environments (5) improving science education (6)

453

Alaska Coal Geology: GIS Data | OpenEI  

Open Energy Info (EERE)

Coal Geology: GIS Data Coal Geology: GIS Data Dataset Summary Description Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Available here: GIS shapefiles of relevant faults and geology, associated with the following report: http://pubs.usgs.gov/dds/dds-077/pdf/DDS-77.pdf

454

Helping Alaska Native Communities Reduce Their Energy Costs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs Helping Alaska Native Communities Reduce Their Energy Costs May 3, 2013 - 12:50pm Addthis The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. The Energy Department is helping Alaska Native communities reduce their energy costs by investing in renewable energy and energy efficiency upgrades. | Photo courtesy of Western Community Energy. Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs What are the key facts? It's not uncommon for families in Alaska Native communities to spend nearly half of their monthly income on energy costs. To help these communities make smart energy choices, the Energy

455

Alaska Native Village Energy Development Workshop POSTPONED | Department of  

Broader source: Energy.gov (indexed) [DOE]

Alaska Native Village Energy Development Workshop POSTPONED Alaska Native Village Energy Development Workshop POSTPONED Alaska Native Village Energy Development Workshop POSTPONED October 21, 2013 8:00AM AKDT to October 23, 2013 5:00PM AKDT Fairbanks, Alaska NOTICE: WORKSHOP POSTPONED ******************************************************************* The DOE Office of Indian Energy and the Office of Energy Efficiency and Renewable Energy Tribal Energy Program regret to inform you that, due to the partial shutdown of the federal government, we had to postpone the Alaska Native Village Energy Development Workshop scheduled for October 21-23. We apologize for any inconvenience this postponement has created. The Department is committed to working with Alaska Native villages, corporations, and organizations to promote the development of clean energy

456

Executive Order 13096: American Indian and Alaska Education (1998) |  

Broader source: Energy.gov (indexed) [DOE]

096: American Indian and Alaska Education (1998) 096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998) Executive Order 13096: American Indian and Alaska Education (1998). Affirms the Federal government's special and historic responsibility for the education of American Indian and Alaska native students. Directs federal agencies to improve the academic performance of American Indian and Alaska Native students via six goals: (1) improving reading and mathematics (2) increasing high school completion and postsecondary attendance rates (3) reducing the influence of long-standing factors that impede educational performance, such as poverty and substance abuse (4) creating strong, safe, and drug-free school environments (5) improving science education (6)

457

Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

458

Alternative Fuels Data Center: Alaska Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Climate Change / Energy Initiatives on AddThis.com...

459

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

460

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PRS -- A priority ranking system for managing pipeline integrity  

SciTech Connect (OSTI)

Pipeline operating companies have a huge investment in pipelines that vary in age from recent construction to more than 50 years old. Aging pipelines contain a variety of operational integrity concerns that most often begin to show up as leaks, but sometimes result in ruptures if not detected soon enough. Fluor Daniel Williams Brothers (FDWB) has developed a management tool that helps pipeline operating companies address this concern and take a proactive approach to pipeline integrity management. Using this methodology, a Priority Ranking System (PRS) is developed which allows early detection and resolution of pipeline integrity concerns. When fully developed, it includes a spreadsheet of annual budgets related to pipeline integrity work and a complete historical record of inspection and rehabilitation results.

Hodgdon, A.M. [Fluor Daniel Williams Brothers, Houston, TX (United States); Wernicke, T. [Texas Utilities Fuel Co., Dallas, TX (United States)

1997-05-01T23:59:59.000Z

462

Homer, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homer, Alaska: Energy Resources Homer, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.6425°, -151.5483333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.6425,"lon":-151.5483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Kodiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kodiak, Alaska: Energy Resources Kodiak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 57.79°, -152.4072222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.79,"lon":-152.4072222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Alatna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alatna, Alaska: Energy Resources Alatna, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 66.5572222°, -152.7072222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.5572222,"lon":-152.7072222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Nikolaevsk, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nikolaevsk, Alaska: Energy Resources Nikolaevsk, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.8119444°, -151.6105556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.8119444,"lon":-151.6105556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Ninilchik, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ninilchik, Alaska: Energy Resources Ninilchik, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.0513889°, -151.6688889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.0513889,"lon":-151.6688889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Alaska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 282,018 261,026 234,298 241,910 231,276 247,528 1991-2013 From Gas Wells

468

Kaltag, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaltag, Alaska: Energy Resources Kaltag, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.3272222°, -158.7219444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.3272222,"lon":-158.7219444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Kachemak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kachemak, Alaska: Energy Resources Kachemak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.6722222°, -151.4338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.6722222,"lon":-151.4338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Anchorage, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anchorage, Alaska: Energy Resources Anchorage, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.2180556°, -149.9002778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2180556,"lon":-149.9002778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Cohoe, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cohoe, Alaska: Energy Resources Cohoe, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3686111°, -151.3063889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3686111,"lon":-151.3063889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Sunrise, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunrise, Alaska: Energy Resources Sunrise, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.8866667°, -149.4277778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.8866667,"lon":-149.4277778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Kalifornsky, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kalifornsky, Alaska: Energy Resources Kalifornsky, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4183333°, -151.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4183333,"lon":-151.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Executive Summary June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 ii The complete report (PDF 4 MB) can be found at www.fe.doe.gov and www.netl.doe.gov. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Nei- ther the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately

475

Nuiqsut, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nuiqsut, Alaska: Energy Resources Nuiqsut, Alaska: Energy Resources (Redirected from Nuiqsut, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 70.2175°, -150.9763889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":70.2175,"lon":-150.9763889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Juneau, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Juneau, Alaska: Energy Resources Juneau, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 58.3019444°, -134.4197222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3019444,"lon":-134.4197222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Nanwalek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nanwalek, Alaska: Energy Resources Nanwalek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.3563889°, -151.9208333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.3563889,"lon":-151.9208333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Akiachak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akiachak, Alaska: Energy Resources Akiachak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.9094444°, -161.4313889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.9094444,"lon":-161.4313889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Nikiski, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nikiski, Alaska: Energy Resources Nikiski, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.6902778°, -151.2888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6902778,"lon":-151.2888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Akiak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akiak, Alaska: Energy Resources Akiak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.9122222°, -161.2138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.9122222,"lon":-161.2138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "trans alaska pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Naknek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naknek, Alaska: Energy Resources Naknek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 58.7283333°, -157.0138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.7283333,"lon":-157.0138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

College, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

College, Alaska: Energy Resources College, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8569444°, -147.8027778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8569444,"lon":-147.8027778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Seldovia, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seldovia, Alaska: Energy Resources Seldovia, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.4380556°, -151.7113889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.4380556,"lon":-151.7113889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Adak, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Adak, Alaska: Energy Resources Adak, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 51.88°, -176.6580556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.88,"lon":-176.6580556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Kenai, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenai, Alaska: Energy Resources Kenai, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5544444°, -151.2583333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5544444,"lon":-151.2583333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Kasilof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kasilof, Alaska: Energy Resources Kasilof, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3375°, -151.2744444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3375,"lon":-151.2744444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Beluga, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beluga, Alaska: Energy Resources Beluga, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.1411111°, -151.0827778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1411111,"lon":-151.0827778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

Salcha, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salcha, Alaska: Energy Resources Salcha, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.469257°, -146.94149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.469257,"lon":-146.94149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Ridgeway, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridgeway, Alaska: Energy Resources Ridgeway, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.5319444°, -151.0852778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5319444,"lon":-151.0852778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Salamatof, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salamatof, Alaska: Energy Resources Salamatof, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.6188889°, -151.3425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.6188889,"lon":-151.3425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Primrose, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Primrose, Alaska: Energy Resources Primrose, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.3436111°, -149.3441667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3436111,"lon":-149.3441667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Alakanuk, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alakanuk, Alaska: Energy Resources Alakanuk, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 62.6888889°, -164.6152778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":62.6888889,"lon":-164.6152778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Soldotna, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Soldotna, Alaska: Energy Resources Soldotna, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 60.4877778°, -151.0583332° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.4877778,"lon":-151.0583332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

Fairbanks, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fairbanks, Alaska: Energy Resources Fairbanks, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8377778,"lon":-147.7163889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Akhiok, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Akhiok, Alaska: Energy Resources Akhiok, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 56.9455556°, -154.1702778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.9455556,"lon":-154.1702778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Alaska Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alaska Geothermal Region Details Areas (54) Power Plants (1) Projects (2) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[2] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Alaska Area 1,717,854 km²1,717,854,000,000 m² 663,091.644 mi² 18,490,808,670,600 ft² 2,054,553,384,000 yd² 424,490,312.67 acres USGS Resource Estimate for this Region Identified Mean Potential 677 MW677,000 kW

497

Ester, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ester, Alaska: Energy Resources Ester, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8472222°, -148.0144444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8472222,"lon":-148.0144444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Ruby, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ruby, Alaska: Energy Resources Ruby, Alaska: Energy Resources (Redirected from Ruby, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.7394444°, -155.4869444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7394444,"lon":-155.4869444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

Akutan, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources (Redirected from Akutan, AK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 54.1355556°, -165.7730556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1355556,"lon":-165.7730556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Tyonek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tyonek, Alaska: Energy Resources Tyonek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.0680556°, -151.1369444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.0680556,"lon":-151.1369444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}