Powered by Deep Web Technologies
Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Monthly coal- and natural gas-fired generation equal for first ...  

U.S. Energy Information Administration (EIA)

Recently published electric power data show that, for the first time since EIA began collecting the data, generation from natural gas-fired plants is ...

2

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network (OSTI)

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

3

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

W. Golove (2003). Accounting for Fuel Price Risk: UsingForward Natural Gas Prices Insteadof Gas Price Forecasts to Compare Renewable to Gas-Fired

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

4

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

5

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Fuel Price Risk: Using Forward Natural Gas Prices Insteadof Gas Price Forecasts to Compare Renewable to Gas-FiredWhich way the natural gas price: an attempt to predict the

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

6

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

Science Conference Proceedings (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

7

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

DOE Green Energy (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

8

Natural-gas-fired CC unit holds NO[sub x] emissions below 9. 0 ppm  

Science Conference Proceedings (OSTI)

This article describes the East Syracuse generating plant, one of first commercial stations to include LM6000 gas turbines, designed to solve noise and emissions problems. This natural-gas-fired, combined-cycle cogeneration facility provides 97 MW of power to Niagara Mohawk Power Corp and up to 80,000 lb/hr of process steam to a nearby Bristol-Myers Squibb Co plant. The plant's original design had contemplated a base-loaded facility. This stemmed from the original power sales agreement with Niagara Mohawk Power Corp. Flexibility of original design proved advantageous to the East Syracuse (NY) plant when, during the latter stages of construction, the original agreement was renegotiated into a schedulable'' contract. The new agreement now in force, providing for limited dispatch of one of the two gas turbines, is designed around other pre-existing project agreements. Design flexibility and the choice of two gas turbines made the plant capable of meeting dispatch requirements with only minor modifications of plant design and staffing.

Grunbeck, G.

1994-09-01T23:59:59.000Z

9

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

10

On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.  

DOE Green Energy (OSTI)

Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.

Gupta, S. B.; Bihari, B.; Biruduganti, M.; Sekar, R.; Zigan, J. (Energy Systems); (Cummins Technical Center)

2011-01-01T23:59:59.000Z

11

An Engineering and Economic Evaluation of Post-Combustion CO2 Capture for Natural Gas-Fired Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

This report presents an Electric Power Research Institute (EPRI) assessment on the technical feasibility, performance, and associated costs of applying post-combustion carbon dioxide (CO2) capture technology to a natural gas–fired combined-cycle (NGCC) power station.

2012-03-23T23:59:59.000Z

12

Natural gas-fired combustion turbines are generally used to meet ...  

U.S. Energy Information Administration (EIA)

In 2012, there were 121 gigawatts of operating natural gas combustion turbines that contributed about 3% of overall electricity generation. The average capacity ...

13

Adjusting to Overcapacity: Impacts of New Gas-Fired Units on Power Supply and Fuel Use: Report Series on Natural Gas and Power Relia bility  

Science Conference Proceedings (OSTI)

Capacity additions of gas-fired combined-cycle units reached a peak in 2003 and will drop sharply in 2004. While the extraordinary boom of merchant capacity is now largely over, it has resulted in overbuilding in many regions and will have impacts that are widespread. The overall efficiency of this new capacity has been strong, but trends toward greater capacity utilization have been arrested by the combination of overbuilding and high natural gas prices. Capacity premiums have been driven to low levels,...

2004-03-22T23:59:59.000Z

14

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

15

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Risk: Using Forward Natural Gas Prices Instead of Gas Price2001). “Which way the natural gas price: an attempt toThe Role of Forward Natural Gas Prices Mark Bolinger, Ryan

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

16

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). “Which way the natural gas price: an attempt to

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

17

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

of Renewable and Natural Gas Electricity Contracts: Afor Fuel Price Risk: Using Forward Natural Gas PricesInstead of Gas Price Forecasts to Compare Renewable to Gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

18

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plantspower plants (Awerbuch 1993, 1994; Kahn & Stoft 1993). Specifically, in the context of natural gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

19

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

history nevertheless does not lend ready support to the view that the EIA’s reference case natural gas

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

20

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

natural gas is generally perceived to be much more volatile than the price of coal. Price regulation

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

DOE Green Energy (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

22

2.01 GAS-FIRED UNIT HEATERS  

E-Print Network (OSTI)

a. Requirement for gas fired equipment is limited to structures which are constructed outside the practical limits of the campus central steam distribution system and have access to natural gas from Public Service Company utility distribution system.

Section Basic Mechanical Requirements; A. Design Requirements; A. Manufacturers

2011-01-01T23:59:59.000Z

23

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Determining the Real Cost: Why Renewable Power is More Cost-Previously Believed. ” Renewable Energy World, 6(2), March-the Risk Profiles of Renewable and Natural Gas Electricity

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

24

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

EIA), natural gas combined-cycle and combustion turbineof energy from a new combined cycle gas turbine, and moregas needed to fuel an 85 MW combined-cycle gas turbine (heat

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

25

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

26

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

27

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

supply contracts and natural gas storage. As shown below insupply contracts and natural gas storage. As shown below in

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

28

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

CEC). 2002. Natural Gas Supply and Infrastructureincluded a long-term natural gas supply deal for years 2004fixed-price gas supply contracts and natural gas storage. As

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

29

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

supply contracts and natural gas storage. As shown below insupply contracts and natural gas storage. As shown below inWe find that natural gas options and storage are not

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

30

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Hedge Against Natural Gas Price Movements. ” http://Downward Pressure on Natural Gas Prices: The Impact ofTheis. 2001. “Which way the natural gas price: an attempt to

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

31

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. ” The EnergyProfiles of Renewable and Natural Gas Electricity Contracts:

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

32

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

solar, and hydro power are often sold on a fixed-pricesolar, and hydro power, which by their nature are immune to natural gas fuel price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

33

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Which way the natural gas price: an attempt to predict theas a Hedge Against Gas Price Movement. ” Public UtilitiesHedge Against Natural Gas Price Movements. ” http://

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

34

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

and Policy Options of California’s Reliance on Natural Gas. ”policy is often formulated with ratepayers in mind. 2) Second, long-term fixed-price natural gas

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

35

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

biomass in particular – are subject to fuel price risks ofbiomass, solar, and hydro power are often sold on a fixed-pricebiomass, solar, and hydro power, which by their nature are immune to natural gas fuel price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

36

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

history nevertheless does not lend ready support to the view that the EIA’s reference case natural gas

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

37

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

energy resources such as wind power carry no natural gas fuel priceenergy resources such as wind, geothermal, biomass, solar, and hydro power are often sold on a fixed-price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

38

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

39

Economic feasibility analysis of distributed electric power generation based upon the natural gas fired fuel cell. Draft and final progress report for the period May 1, 1993--July 31, 1993  

SciTech Connect

This report is an account of the work performed from May 1, 1993 to July 30,1993 on the economic feasibility generating electrical power by natural gas-fired fuel cells. The study is comprised of a survey of energy users, the development of numeric models of an energy distribution system and a central plant utilities system that includes a fuel cell. A model of the capital cost of the hardware elements is combined with a series of ownership scenarios and an operations model that provide the necessary input for a model of the cost of ownership of a fuel cell-based power generation system. The primary model development tasks are complete. The remaining study emphasis is to perform an economic analysis of varied ownership scenarios using the model. This report outlines the progress to date.

1993-09-01T23:59:59.000Z

40

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Computer Measurement and Automation System for Gas-fired Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Measurement and Automation System for Gas-fired Heating Furnace Title Computer Measurement and Automation System for Gas-fired Heating Furnace Publication Type Journal...

42

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network (OSTI)

vented natural-draft gas-fired storage water heater. Thevented natural?draft gas?fired storage water heater. Thevented natural?draft gas?fired storage water heater. The

Lutz, James D.

2009-01-01T23:59:59.000Z

43

The Modeling of a Laboratory Natural GasFired Furnace with a HigherOrder Projection Method for Unsteady Combustion \\Lambda  

E-Print Network (OSTI)

for Unsteady Combustion \\Lambda R.B. Pember, P. Colella, L.H. Howell, A.S. Almgren, J.B. Bell, W.Y. Crutchfield method for axisymmetric, unsteady, low­ Mach number combustion is used to model a natural gas flame from axisymmetric reacting flow code in order to evaluate the combustion model and the numerical method. The results

44

Natural gas fired electric generating technology: A key to the adequacy of electric generating capacity in North American Electric Reliability Councils. Topical report, May 1991  

SciTech Connect

Development and implementation of an enhanced modeling system for electricity market analysis is explained. The relevant geographic areas that must be used for accurate supply and demand modeling and analysis are defined. There is no national market for electricity in the United States. Surplus hydroelectric capacity from the Pacific Northwest cannot be made available in Florida. Any model of U.S. electricity consumer and producer interaction that does not differentiate by region would produce misleading results. The expected natural gas-dominated capacity expansion phase in electricity markets is described.

Makovick, L.

1991-05-01T23:59:59.000Z

45

Most generator retirements over the past decade were older natural ...  

U.S. Energy Information Administration (EIA)

Older, less efficient natural gas-fired generators accounted for 64% of the total generator retirements between 2000-2010. However, natural gas-fired generators also ...

46

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

47

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

natural gas- fired generation and in favor of investments in wind powerpower, which has nearly achieved economic parity with natural gas-fired generation

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

48

Study of abnormal combustion oscillations in gas fired appliances.  

E-Print Network (OSTI)

??The thesis work discusses abnormal combustion noise in gas-fired appliances. An experimental model was made to provide insight into the causes of abnormal combustion noises.… (more)

Kumar, Dasari

2006-01-01T23:59:59.000Z

49

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

50

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

51

Valuing a gas-fired power plant: A comparison of ordinary linear models, regime-switching approaches, and models with stochastic volatility  

E-Print Network (OSTI)

and natural gas daily spot prices and suggests that with the aim of valuing a gas-fired power plant, there is limited information about modelling electricity and natural gas spot prices distinctly, i.e., taking-run evolution of energy prices, such as oil, coal, and natural gas, and suggests that although the long

52

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

DOE Green Energy (OSTI)

For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind power, now largely competitive with gas-fired generation in the US (including the impact of the federal production tax credit and current high gas prices), a margin of 0.3-0.6 cents/kWh may in some cases be enough to sway resource decisions in favor of renewables.

Bolinger, Mark; Wiser, Ryan

2003-12-18T23:59:59.000Z

53

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Näsäkkälä

2003-01-01T23:59:59.000Z

54

Today in Energy - Natural gas-fired combustion turbines are ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

55

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

56

Active Humidity Control Through Gas-Fired Desiccant Humidity Pump  

E-Print Network (OSTI)

High equipment first cost and high operating costs, if electricity is used to drive such a system, have prohibited the application of active humidity control equipment in comfort conditioning in the past. Instead, passive techniques have been applied. A comparison of passive capacity control methods to control humidity shows that only the combined face and bypass and variable air volume system shows improved performance with respect to space humidity control, dew point depression, and response to perturbations. A gas-fired desiccant humidity pump will provide economical humidity control in existing and new construction using VAV or constant volume air distribution systems. The humidity pump is designed as a packaged make-up air module. It is coupled to new or existing conventional air-conditioning system via a duct. It consists of a triple integrated heat-exchanger combining (liquid) desiccant dehumidification with indirect evaporative cooling, a brine interchanger, and a gas-fired brine heater to regenerate the desiccant. Field experiments of two humidity pumps on existing commercial buildings have been initiated. Each system dehumidifies 5000 scfm of make-up air to meet all the latent loads, which is then fed to conventional, electric-driven HVAC equipment which meet all the sensible loads.

Novosel, D.; Griffiths, W. C.

1988-01-01T23:59:59.000Z

57

Gas-Fired Distributed Energy Resource Technology Characterizations  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

58

Development of an advanced gas-fired mineral wool melter. Final report, October 1987-December 1990  

SciTech Connect

A gas-fired mineral wool melter was successfully designed and tested. The test results clearly show that the gas-fired melter offers significant advantages over the current state-of-the-art system, the coke-fired cupola. The primary benefits offered are: lower energy costs, fewer airborne pollutant emissions, virtual elimination of solid waste generation and superior control and quality of the resultant melt stream. Specifically, the unit eliminates the emission of carbon monoxide, hydrogen sulfide and hydrocarbons. Emissions of SOx and particulate are substantially reduced as well. The generation of solid wastes is eliminated through the gas-fired melters ability to utilize untreated process wastes as a feedstock.

Vereecke, F.J.; Gardner, K.M.; Thekdi, A.C.; Swift, M.D.

1990-12-01T23:59:59.000Z

59

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

from storage during the winter months, but prompted demand for natural-gas-fired power generation during the summer months. Overall, natural gas consumption in 2006 was...

60

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

For many years, while coal-fired generation was less expensive, those natural gas-fired combined-cycle units were used at relatively low rates.

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas fired advanced turbine system. Phase 1, System scoping and feasibility studies  

DOE Green Energy (OSTI)

The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450{degrees}F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

LeCren, R.T.; White, D.J.

1993-11-01T23:59:59.000Z

62

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network (OSTI)

A gas-fired vented zone heater has recently been developed by the Altar Corporation for Colorado State University (CSU) under a Gas Research Institute (GRI) contract. The unit war developed for auxiliary heating applications in passive solar buildings. An early prototype was tested at Altas and operated as expected. The final model was shipped to CSU in December 1983 for testing in the REPEAT Facility at CSU. A heat pipe extends through the wall to the outside of the building. It has a modest water charge which can freeze repeatedly with no damage, since the heat pips is only partially filled. Firing efficiency at 4,000 Btu/b (1.17 kW thermal) is approximately 80%. The unit features a 3 foot by 3 foot radiator mounted inside the room to be heated, and is thermostatically controlled. Ignition is accomplished with an electronic sparker (pilot). The radiator typically operates at 150-180°F (65-82°C), and has been operated at between 2,000 and 5,000 Btu/h (0.6-1.47 kW). Results of testing the vented heat pipe zone heater at CSU arm presented. Also, a method for determining the optimal combination of zone heater, passive solar heating and energy conservation measures has been developed. Nomographs have been developed that may be used by a building designer to determine the optimal combination of zone heater size, passive solar system size, and energy conservation measures for given types of passive solar heating systems in selected locations. A representative nomograph is presented along with a design example.

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

63

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

64

Natural Gas Discovery and Development Impacts on Rio Vista and Its Community  

E-Print Network (OSTI)

fleet of natural gas-fired power plants in the world, and asthese plants. Natural gas is the company's main power source

Gbedema, Tometi Koku

2006-01-01T23:59:59.000Z

65

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

of gas-fired and renewable generation Mark Bolinger and Ryannatural gas prices, renewable energy resources – which bygas-fired generation, renewable generation, such as wind or

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

66

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

67

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Coal generation shares declined in some regions ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

68

Natural Gas - U.S. Energy Information Administration (EIA) -...  

Annual Energy Outlook 2012 (EIA)

2011 Tohoku earthquake, accompanying tsunami and subsequent nuclear plant outages, have led to higher use of thermal generation, including natural gas fired generation. According...

69

Cheaper natural gas alters generation dispatch in Southeast ...  

U.S. Energy Information Administration (EIA)

While coal-fired power plants continue to generate more than half of electricity in the region, ... and production from natural gas-fired plants has increased.

70

Electricity generation from coal and natural gas both ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

71

Medium-Term Risk Management for a Gas-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium-Term Risk Management for a Gas-Fired Power Plant Medium-Term Risk Management for a Gas-Fired Power Plant Speaker(s): Afzal Siddiqui Date: October 11, 2012 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Chris Marnay Electricity sectors in many countries have been deregulated with the aim of introducing competition. However, as a result, electricity prices have become highly volatile. Stochastic programming provides an appropriate method to characterise the uncertainty and to derive decisions while taking risk management into account. We consider the medium-term risk management problem of a UK gas-fired power plant that faces stochastic electricity and gas prices. In particular, the power plant makes daily decisions about electricity sales to and gas purchases from spot markets over a monthly

72

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

73

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

74

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

75

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study from Norway on Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume Quiviger and Howard Herzog (hjherzog@mit.edu; +1-617-253-0688) Massachusetts Institute of Technology (MIT) Room E40-471 1 Amherst Street Cambridge, MA 02139 INTRODUCTION On Thursday March 9, 2000, Norwegian Prime Minister Kjell Magne Bondevik's minority government resigned over a disagreement with the opposition about a controversial proposal to build two gas-fired power plants. The government had been rejecting the building of the proposed plants for months. Bondevik and his coalition government wanted to hold off construction until new technology, such as carbon sequestration, allowed building more environmentally friendly plants. They argued that their position was supported by European

76

Combustor design tool for a gas fired thermophotovoltaic energy converter  

DOE Green Energy (OSTI)

Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The US Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1,756 K (2,700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

Lindler, K.W.; Harper, M.J. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering Dept.

1995-07-01T23:59:59.000Z

77

Interdependency of security-constrained electricity and natural gas infrastructures  

Science Conference Proceedings (OSTI)

The electric power generation relies increasingly on the natural gas supply system as additional natural gas-fired power plants are installed in restructured power systems. In this context, the economics and the reliability of electric power and natural ...

Cong Liu / Mohammad Shahidehpour

2010-01-01T23:59:59.000Z

78

Natural Gas and Electric Industry Coordination in New England  

Science Conference Proceedings (OSTI)

Introduction of gas-fired generation will place unfamiliar operating requirements on the pipeline system in some parts of the country. Facing rapid growth in natural gas-fired generation in New England, regional gas and electric companies formed a group to improve operational coordination and understanding. This report documents the group's progress and procedures.

1993-11-01T23:59:59.000Z

79

Losses and Costs Associated with Coal vs. Natural Gas Firing at Hanes Dye and Finishing.  

E-Print Network (OSTI)

??Due to decreasing production and rising coal prices, the engineering and management staff at Hanes Dye and Finishing in Winston Salem, NC have been investigating… (more)

Gibides, Justin Tyler

2009-01-01T23:59:59.000Z

80

Natural gas-fired combustion turbines are generally used to meet ...  

U.S. Energy Information Administration (EIA)

Combustion turbines in this article do not include combined-cycle units that operate at higher ... to operate than other types of power plants but can ...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of an advanced gas-fired mineral-wool melter. Annual report, January-December 1988  

SciTech Connect

A gas-fired mineral-wool melter was designed to provide a melting technology option to the existing coke-fired cupola melters used by the mineral wool industry. Over the past few years, mineral-wool producers have been increasingly pressured to reduce their level of pollutant gaseous emissions. Including the fuel consumption for an afterburner required with a cupola melter, the direct production costs for fuel currently range from $32 to $44 per ton of melted product; dependent on the effectiveness of a heat-recovery system. The estimated direct fuel cost for a gas-fired mineral-wool melter could be as low as $16 per ton. The configuration of the prototype melter contributes to the energy savings because waste heat is reclaimed by preheating the feedstock in a counterflow shaft. Besides the beneficial decrease in energy costs, the proposed gas-fired melter will virtually eliminate carbon monoxide and unburned hydrocarbon emissions as well as substantially reduce emissions of hydrogen sulfide. Finally, with an improved capability to process the melted product at a controlled temperature and flow rate, the gas-fired melter should improve the overall quality of the mineral fiber product compared to the state-of-the-art coke-fired cupola melter.

Vereecke, F.J.; Thekdi, A.C.

1989-06-01T23:59:59.000Z

82

Can Deployment of Renewable Energy and Energy Efficiency Put Downward Pressure on Natural Gas Prices  

E-Print Network (OSTI)

with the price of natural gas (e.g. , coal or nuclear power,coal- to gas-fired generation. It is worthy of note that natural gas prices

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

83

Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency  

Science Conference Proceedings (OSTI)

A method is described for providing a variable output gas-fired furnace means with a constant temperature rise and efficiency where the furnace means includes burners, a blower, a thermostat and a delay timer, the method comprising the steps of: sensing the temperature in an area to be conditioned; comparing the sensed temperature to a predetermined set point; if the sensed temperature deviates from the predetermined set point by more than a predetermined amount, gas is supplied to the burners and the blower is started; determining the reference revolution per minute of the blower; determining the reference cubic feet per minute delivered by the blower; determining the manifold pressure; determining whether the furnace is in a high heat or a low heat mode of operation; determining the desired cubic feet per minute delivered by the blower for the current mode of operation; reading the actual revolution per minute of the blower; adjusting the speed of the blower motor if the actual and desired revolution per minute of the blower are not the same; determining whether the thermostat is satisfied; if the thermostat is not satisfied, returning to the step of determining the manifold pressure; and if the thermostat is satisfied, shutting off the gas and starting the delay timer.

Ballard, G.W.; Thompson, K.D.

1987-08-25T23:59:59.000Z

84

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

85

Rise in gas-fired power generation tracks gains in turbine efficiency  

SciTech Connect

Natural gas-fueled gas turbines--in both simple and combined-cycle configurations--will account for most power generation capacity additions through 2000. It is widely agreed that gas turbines will remain the dominant form of technology for power generation for the next decade or two, making them the power generation technology of choice for today and the future. The pre-eminent stature of gas turbines can be attributed to their low capital costs, high efficiency, low emissions, short permitting and construction lead times, and proven reliability. The versatility of gas turbines also makes them unique among power generation technologies, as they can economically serve a wide spectrum of applications and sizes--from distributed generation to industrial cogeneration and central station generation. Three primary factors contribute to the growing interest in gas turbine-based power generation and the role gas turbines will play in the future power generation market: An optimistic outlook for the supply and price of natural gas; technology advances that have produced substantial improvements in efficiency and emissions; and emissions regulations that may favor the use of gas turbines over traditional fossil-fueled steam turbines. These three factors are discussed.

Bautista, P. [Gas Research Inst., Chicago, IL (United States)

1996-08-12T23:59:59.000Z

86

Natural Gas Supply in Denmark -A Model of Natural Gas Transmission and the  

E-Print Network (OSTI)

Natural Gas Supply in Denmark - A Model of Natural Gas Transmission and the Liberalized Gas Market of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future

87

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

to the EIA’s natural gas price forecasts in AEO 2004 and AEOcost comparisons of fixed-price renewable generationwith variable price gas-fired generation that are based

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

88

The development of solar-assisted gas-fired appliances: phase ii. Final report dec 80-nov 81  

SciTech Connect

An evaluation of applying solar assistance to commercial laundry drying and supermarket dehumidification was accomplished. The laundry drying project included experimental evaluation of the transient and steady-state characteristics of the hot air produced by an air-heating solar collector; experimental evaluation of the performance characteristics of a gas-fired laundry dryer as affected by varying the inlet air temperature and humidity; and an assessment of the characteristics of commercial laundries in relation to the potential commercialization of the solar-assisted dryer concept. The supermarket dehumidification project included an assessment of the relative latent and sensible cooling requirements as a function of geographic location; typical design studies of the performance and cost effectiveness of desiccant dehumidification systems in this application; and the incremental effectiveness of solar assistance to desiccant regeneration. In both projects, the solar-assist feature is, at best, marginally cost effective, including incentives, in the near term; however, the gas-fired only desiccant dehumidification concept is shown to be a potentially attractive alternative to vapor compression dehumidification with a potential for widespread application.

Hagen, K.G.; Levine, A.; Colarusso, J.M.; Zakak, A.I.

1981-12-01T23:59:59.000Z

89

Gas-fired desiccant dehumidification system field evaluation in a quick-service restaurant. Final report, October 1989  

Science Conference Proceedings (OSTI)

This report describes the results of a field evaluation of state-of-art desiccant dehumidification equipment in Houston, TX. The evaluation demonstrated that comfort control in a quick-service restaurant could be improved dramatically. However, available gas-fired desiccant dehumidification equipment is too expensive, inefficient, and unreliable to be considered for wide application in the restaurant industry. Results of a technical and economic analysis of four HVAC options in four U.S. cities indicated that improved comfort control could be achieved with only a modest increase in operating costs with an advanced system. This, coupled with the economic benefits achieved through lower indoor humidity such as improved crew performance and reduced maintenance costs, could justify the introduction of an advanced, integrated, HVAC system using desiccant technology which has an installed cost similar to current equipment.

Koopman, R.N.; Marciniak, T.J.

1989-10-01T23:59:59.000Z

90

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

91

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Ways to Switch America to Renewable Electricity. Cambridge,Dioxide, and Mercury and a Renewable Portfolio Standard.associated with the use of renewable and natural gas-fired

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

92

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

93

Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities  

DOE Green Energy (OSTI)

Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K/sub 2/CO/sub 3/ on the heat exchange surface are also included.

Styrikovich, M.A.; Mostinskii, I.L.

1977-01-01T23:59:59.000Z

94

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

95

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

more volatile than the price of coal. Price regulation incoal-fired generation could reduce wholesale electricity pricecoal is found to be more negative than the beta of gas, given that the price

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

96

Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report  

DOE Green Energy (OSTI)

The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

Not Available

1994-03-01T23:59:59.000Z

97

Program on Technology Innovation: Nanoparticles at Coal and Gas Fired Power Plants  

Science Conference Proceedings (OSTI)

Nanoparticles—particles with diameters less than 100 nanometers—can occur from the combustion of fossil fuel, such as coal and natural gas. Recently, nanoparticles have gained the industry’s attention because they may be associated with adverse health effects. Despite potential health hazards, little published data exist concerning the types and concentrations of nanoparticles in work environments. This report is the first published study on concentration and composition of nanoparticles in power plant w...

2008-11-26T23:59:59.000Z

98

Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report  

DOE Green Energy (OSTI)

Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

NONE

1995-05-01T23:59:59.000Z

99

Operation Synopsis of Gas-Fired Double-Effect Absorption Chillers  

E-Print Network (OSTI)

Absorption refrigeration systems are one of the oldest systems available. The fundamentals of absorption refrigeration were formulated about 1777, and the first successful absorption machine was developed in 1850. The first U.S. patent for an absorption refrigeration system was issued in 1860. Absorption systems can use many different heat sources to produce the refrigeration effect: natural gas, steam, solar, and oil. While absorption systems were popular in the U.S. in the early part of the 20th century, their use declined in the mid twentieth century for several reasons: (1) increased reliability of vapor compression systems, (2) dropping electric prices (in real dollars), and (3) rapidly increasing gas prices. In recent years, there has been a resurgence of interest in absorption refrigeration and cooling. Natural gas prices have moderated while electric prices continue to rise. The reliability and performance of absorption systems have been substantially improved with new technology from Japan. This paper summarizes the results of the operation of three absorption systems located in the greater Dallas/Ft. Worth area.

Phillips, J.

1986-01-01T23:59:59.000Z

100

Impact of Natural Gas Market Conditions on Fuel Flexibility Needs for Existing and New Power Generation: Report Series on Natural Ga s and Power Reliability  

Science Conference Proceedings (OSTI)

The ongoing surge in new gas-fired capacity is changing the landscape of how natural gas will be used for power generation, leading to some surprising effects. While the new machines bring greater efficiency, the exit of dual-fuel units leads to a loss in fuel flexibility, greater natural gas price volatility, and less reliability of natural gas-fired generation. This report explores these effects systematically, bringing fresh insight on gas use in the electric sector, its market effects, and the ever-c...

2002-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

considering that natural gas prices (and gas pricein the market, allowing natural gas price volatility to flowincreasingly volatile natural gas prices, renewable energy

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

102

Gas Supply Outlook - Gauging Wellhead Deliverability Now and in the Future: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

While developers are postponing or cutting back plans for new natural gas-fired plants, the next few years will record additions of gas-fired capacity. Over the long term, this growth is expected to continue, causing a 30 percent increase in U.S. natural gas demand by 2015. Are there any limits to the U.S. "dash to gas"? Extraordinarily high gas prices during the winter of 2000-01 offered a warning. The current study investigates the availability of natural gas, asking what is reasonable to expect.

2002-02-12T23:59:59.000Z

103

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

gas supply contracts and natural gas storage. As is shown inor Storage Cost Gas Price Falls Gas Price Rises Natural Gas

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

104

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

in the market, allowing natural gas price volatility to flowClearly, the variability of gas prices poses a major risk toincreasingly volatile natural gas prices, renewable energy

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

105

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

106

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Energy Journal, 16 (1), 71-83. Xcel Energy. 2001. FairnessCompliance Report For Xcel Energy 1998 Resource Plan, DocketSystem Operations Planning: Xcel Energy – North Case Study,

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

107

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Energies’ system in Wisconsin found wind integration costsCost of Integrating Wind With Wind’s Hedge Value. 63 v Acknowledgements Work reported here was funded by the Assistant Secretary of Energywind integration costs (see Text Box 2); and including environmental externality costs in certain production cost simulation runs (Xcel Energy

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

108

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

109

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

fixed-price gas supply contracts and natural gas storage. Asnatural gas prices, rather than on prices that can be locked in through futures, swap, or fixed- price physical supplySupply, Renewable Energy Gas Options, Gas Storage Option Premium or Storage Cost Gas Price Falls Gas Price Rises Natural

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

110

Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The  

Reports and Publications (EIA)

This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

Information Center

2009-05-12T23:59:59.000Z

111

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

common practice of using gas price forecasts in long-rangeit is likely that gas prices in the US will continue to bethat natural gas prices (and gas price volatility) have a

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

112

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

Glenn C. England

2004-10-20T23:59:59.000Z

113

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

efficiency of natural gas fired power generation, which willefficiency of natural gas fired power generation, which will

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

114

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

1997-03-01T23:59:59.000Z

115

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

116

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the week. Strong gas supplies across the country supported another hefty net addition to storage of 105 Bcf.

117

Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices  

SciTech Connect

Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-07-17T23:59:59.000Z

118

Guide to natural gas cogeneration  

Science Conference Proceedings (OSTI)

This user-oriented guide contains expert commentary and details on both the engineering and economic aspects of gas-fired cogeneration systems. In this completely undated second edition, is a thorough examination of equipment considerations and applications strategies for gas engines, gas turbines, steam engines, and electrical switch-gear. Clear guidelines show how to select the prime mover which is best suited for a specific type of application. It describes which methods have proven most effective for utilizing recoverable heat, how to determine total installed capacity, and how to calculate the required standby capacity. The second edition provides an assessment of recent technological developments. A variety of case studies guide through all types of natural gas cogeneration applications, including both commercial and industrial, as well as packaged systems for restaurants and hospitals. Drawing upon the expertise of numerous authorities from the American Gas Association, this fully illustrated guide will serve as a valuable reference for planning or implementing a natural gas-fired cogeneration project.

Hay, N.E. (ed.)

1992-01-01T23:59:59.000Z

119

Biomass Cofiring with Natural Gas in California: Phase 1  

Science Conference Proceedings (OSTI)

This report by EPRI for the California Energy Commission presents the major cost and performance parameters of systems that enable natural gas to be augmented by 10 percent biomass fuel. The basic natural gas fired power plant is taken to be a 400 MWe natural gas-turbine/combined-cycle (NGCC). The biomass component is to generate 40 MWe from biomass fuel. Two forms of the biomass section of the power plant are considered: (1) biomass gasification with the gas derived from the biomass combined with the na...

2000-12-20T23:59:59.000Z

120

Guide to natural gas cogeneration. [Glossary included  

SciTech Connect

Guide to natural gas cogeneration is the most extensive reference ever written on the engineering and economic aspects of gas fired cogeneration systems. Forty-one chapters cover equipment considerations and applications for gas engines, gas turbines, stem engines, electrical switchgear, and packaged systems. The text is thoroughly illustrated with case studies for both commercial and industrial applications of all sizes, as well as for packaged systems for restaurants and hospitals. A special chapter illustrates market opportunities and keys to successful development. Separate abstracts of most chapters and several appendices have been prepared.

Hay, N.E. (ed.)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect

On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark; Wiser, Ryan

2009-01-28T23:59:59.000Z

122

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

Science Conference Proceedings (OSTI)

On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

2008-01-07T23:59:59.000Z

123

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

124

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11 (next release 2:00 p.m. on August 18) 11 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above average temperatures, high crude oil prices, and reduced coal deliveries, which added to demand for natural gas-fired power generation. The Henry Hub spot price increased 6 cents this week, or less than 1 percent, to $8.81 per MMBtu. The price of the NYMEX futures contract for September delivery increased 72 cents since last Wednesday (August 3) to settle yesterday at $9.071 per MMBtu. Natural gas in storage as of Friday, August 5, was 2,463 Bcf, which is 6.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil hit a record high yesterday of $64.80 per barrel ($11.17 per MMBtu) after increasing $4.04 per barrel (70 cents per MMBtu), or about 7 percent, on the week.

125

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

effic. Natural Gas-Fired Power Plants (NGCC turbine) K2Orecovery effic. Natural Gas-Fired Power Plants (Simple CycleNG recovery effic. Natural Gas-Fired Power Plants (Utility

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

126

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

intensive as natural gas-fired power plants (16), and open-demand, whereas natural gas-fired power plants are easy tonuclear, and natural gas-fired power plants are the types of

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

127

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

generation fuel. Natural gas-fired power plants come in twopercent, and a natural gas-fired power plant efficiency ofof actual natural gas-fired combined cycle power plants is

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

128

Outlook for Regional Generation Capacity Balances: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

The United States is in the midst of a power plant expansion boom, achieving record additions of natural gas-fired combustion turbines and combined-cycle units over the past two years, with 68,000 MW already added since 1998 and 17,000 MW more slated for completion by the end of 2001. This report provides a region-by-region accounting of how this new capacity -- plus hundreds of megawatts of possible additional natural gas and coal capacity -- may change reserve margins and result in many other impacts a...

2002-01-23T23:59:59.000Z

129

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE  

E-Print Network (OSTI)

the state’s natural gas-fired power generation facilities,the state’s natural gas-fired power generation facilities,

Sathaye, Jayant

2011-01-01T23:59:59.000Z

130

An Experimental Based Investigation of Oxycombustion in an SI Engine  

E-Print Network (OSTI)

Key parameters of natural gas-fired power plants with CO 2Key parameters of natural gas-fired power plants with CO 2

Van Blarigan, Andrew Charles

2012-01-01T23:59:59.000Z

131

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The number of natural gas-fired power stations is increasing in Japan, and roughly 26 percent of electricity was natural gas-fired in 2010.

132

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2001 8, 2001 Prices ended the week up slightly from where they started as a brief heat wave in the eastern half of the country caused a rise in prices (See Temperature Map) (See Deviation from Normal Temperatures Map) that was somewhat undone by the return of moderate temperatures and the report of another hefty stock build. On a Friday-to-Friday basis, the spot price at the Henry Hub increased by $0.25 to $3.88 per MMBtu compared with an increase of $0.23 to $0.33 at other major supply points in the eastern half of the country. In the same time period, the near-month (July delivery) futures contract was up less than 6 cents to $3.979 per MMBtu as of Friday, June 15, 2001. Prices in California rose substantially last Monday after coming off high inventory flow orders (OFOs) but ended the week close to or lower than the previous week due to another round of OFOs. For the past 7 weeks, weekly storage injections neared or exceeded 100 Bcf, bringing stocks to within less than a 1 percent difference from average levels. The string of record-breaking stock builds appears attributable to moderate spring temperatures and reduced cooling demand by natural-gas-fired electricity generation.

133

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on August 18) 1 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above average temperatures, high crude oil prices, and reduced coal deliveries, which added to demand for natural gas-fired power generation. The Henry Hub spot price increased 6 cents this week, or less than 1 percent, to $8.81 per MMBtu. The price of the NYMEX futures contract for September delivery increased 72 cents since last Wednesday (August 3) to settle yesterday at $9.071 per MMBtu. Natural gas in storage as of Friday, August 5, was 2,463 Bcf, which is 6.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil hit a record high yesterday of

134

Advanced natural gas fuel technologies for military installations. Final report  

SciTech Connect

Energy conservation efforts reduced Department of Defense (DoD) fossil fuel consumption considerably between FYX5 and FY9 I, yet electricity consumption increased. Electricity consumption accounts for only one-third of DoD energy use, but over half of DoD energy costs. In addition, the production of electricity at coal or nuclear plants often creates environmental concerns, while the use of clean-burning natural gas does not; its use can help DoD bases comply with increasingly stringent environmental regulations. Recent developments in natural gas-fired technologies also demonstrate improved efficiency and productivity at lower costs. This report identifies state-of-the-art and emerging natural gas utilization technologies with potential application on DoD installations. This report describes various technologies that have potential residential, commercial, or industrial applications on DoD installations. Applications include heating, cooling, power generation, food preparation, and several industrial processes.

Savoie, M.J.; Freeman, P.M.; Blazek, C.F.; Potts, N.L.

1994-09-01T23:59:59.000Z

135

Gas Market Transition: Buildup of Power Sector Demand: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Just how fast is natural gas demand for power generation growing in response to the many new gas-fired units being built? This simple question has a far from simple answer, due to confusing streams of data, the interplay between new efficient gas combined cycle units and existing capacity, and the surprisingly low overall levels of capacity utilization observed among the new units. This report dissects each component of gas use in the power sector and provides a novel, integrated view of near term trends...

2003-03-17T23:59:59.000Z

136

Gas-fired cooling status and trends  

SciTech Connect

The current US heating, ventilating, and air-conditioning (HVAC) market shows that the predictions of a health expansion in this market are attainable in this decade. The HVAC industry`s positive trade balance is widening; their successful hedge against various economic problems (the lack of financial and personnel resources) and their initiative to overcome the technical obstacles (caused by environmental issues) will have a positive, long-term impact. This along with energy availability and a favorable price structure has created a unique opportunity for the gas industry to regain and surpass previous respectable market shares attained with gas cooling technologies. New first generation gas cooling equipment is now entering the US marketplace with bold market predictions for commercial chillers and roof-top units, as well as for residential equipment. The marketing campaign covers a broad base of technical and supporting elements. It is the continued research, education, and training of engineers, architects, dealers, and utility sales personnel that can break the existing and serious barriers to the successful marketing of these cooling equipment products. Research in lowering equipment costs, personnel training, more units in the field, and more utility support in commercialization and deployment activities will guarantee an expansion of the market for the gas industry.

Wurm, J. [Inst. of Gas Technology, Chicago, IL (United States). Space Conditioning Research

1993-12-31T23:59:59.000Z

137

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Retrofits for State Correctional Facilities - Staton Corrections Facility Boiler Replace the existing natural gas fired boiler with a new, more efficient, gas fired...

138

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Energy Retrofits for State Correctional Facilities - Mobile WCWR Facility Boiler Replace the existing natural gas fired boiler with a new, more efficient, gas fired...

139

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Energy Retrofits for State Correctional Facilities - Draper Correctional Boiler Replace an existing natural gas fired boiler with a new, more efficient gas fired...

140

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

7, 2013 | Release Date: February 28, 7, 2013 | Release Date: February 28, 2013 | Next Release: March 7, 2013 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural Gas Generation Rises 21 Percent. According to the Energy Information Administration's (EIA) recently released Electric Power Monthly, natural gas net generation rose by 21 percent from 2011 to 2012 (the biggest increase since an 11 percent rise in 1994) as low natural gas prices encouraged more natural gas consumption in the electric power sector. Natural gas generation displaced some coal generation, which fell about 12 percent from 2011 to 2012. During 2012, an extremely hot summer combined with low natural gas prices relative to coal led to record high gas-fired power generation. BENTEK

142

Building America Expert Meeting Report: Transitioning Traditional...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to...

143

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

July 9, 2001 July 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the

144

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural gas-fired combustion turbines are generally used to meet peak electricity load. January 23, ...

145

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

natural gas-fired generation plants; and the prospect of future greenhouse gas (GHG) emission regulations.

Hopper, Nichole

2008-01-01T23:59:59.000Z

146

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

which could lead to more gas-fired electric generation. Other Market Trends: FERC Approves New Gas Infrastructure in Gulf Coast Region: The Federal Energy Regulatory...

147

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

148

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

149

Building Technologies Office: Transitioning Traditional HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Traditional HVAC Contractors to Whole House Performance Expert Meeting Building America hosted the "Transitioning Traditional HVAC Contractors to Whole House Performance...

150

Building Technologies Office: Transitioning Traditional HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transitioning Traditional HVAC Contractors to Whole House Performance Expert Meeting to someone by E-mail Share Building Technologies Office: Transitioning Traditional HVAC...

151

Natural Gas_v2 (9764 - Activated, Traditional).xps  

Gasoline and Diesel Fuel Update (EIA)

EEstimated RRead by Customer (select one) A E R 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes Exclude late fees, merchandise, repairs, and service charges...

152

Gas Storage for Power Generation -- Critical New Bridge Between Power Demand and Gas Supply: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Natural gas storage is a "sleeper" issue for the power industry that will demand a great deal of attention very soon as the building boom of gas-fired capacity draws to a close and these plants begin to operate. While an entire industry has emerged in recent years to develop high-deliverability gas storage, the new facilities are likely the tip of an iceberg. Pipelines will be taxed to meet fluctuating requirements of new units, and companies will turn to gas storage for reliability at an affordable cost...

2002-11-11T23:59:59.000Z

153

Variability in natural gas fuel composition and its effects on the performance of catalytic combustion systems. Final report for period September 18, 1998 - September 17, 2000  

SciTech Connect

Natural gas is composed primarily of methane with small amounts of higher hydrocarbons and diluents, which vary by region and over time. Compositions of natural gas from domestic and worldwide sources were surveyed with respect to content of higher hydrocarbons and diluents. The survey showed slight compositional variability between most of the gases, with a small fraction of them containing significantly larger contents of higher hydrocarbons than the mean. As gas-fired turbines will be used for power generation all over the world, they will need to tolerate operation with fuels with a wide variety of compositions, particularly with respect to the concentration of higher hydrocarbons and diluents. Subscale catalytic combustion modules typical of those used in gas turbine power generation with ultra low emissions of pollutants were tested in a subscale test system with natural gas alone and with added known levels of hydrocarbon compounds and diluents. The range of compositions tested contained the range observed in the survey. Test results were used to calculate the effect of composition on catalyst performance. The compositional variability is of little consequence to the catalyst for most of the gases in the survey, including nearly all of the gases delivered in the U.S. To accommodate the remaining gases, the catalyst inlet temperature must be lowered to maintain combustor durability. These results support commercial acceptance of catalytic combustion systems for use in natural gas fired turbines in distributed power generation with ultra low NO{sub x} emissions.

Ginter, David; Simchick, Chuck; Schlatter, Jim

2002-03-01T23:59:59.000Z

154

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

January 8, 2014 | Release Date: January 9, January 8, 2014 | Release Date: January 9, 2014 | Next Release: January 16, 2014 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Power sector response to high natural gas prices varies by region Day-ahead spot prices for natural gas and electric generation rose this week in both the Midwest and eastern United States, as the polar vortex brought cold temperatures to those parts of the country. While cold temperatures affected all of these regions, both gas and power prices increased more in New England, New York and the Mid-Atlantic than they did in the Midwest. Gas-fired power plants in the East had to compete for an increasingly limited amount of available pipeline capacity from a system that was

155

Drilling often results in both oil and natural gas production ...  

U.S. Energy Information Administration (EIA)

In 2011 and 2012, more than 50% of new wells produced both oil and natural gas. Despite this phenomenon, many traditional methods for estimating oil and natural gas ...

156

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

natural gas-fired power plant heat rates and generation,natural gas-fired power plant heat rates and generation,natural gas power plants and underestimates generation from

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

157

Sixth Northwest Conservation and Electric Power Plan Chapter 10: Resource Strategy  

E-Print Network (OSTI)

................................................................................................................ 7 Natural Gas-Fired Generation generation, and natural gas-fired generation. In addition, the region needs to better utilize, expand of resource needs will vary for every utility. The important message of the resource strategy is the nature

158

Restoring Equilibrium to Natural Gas Markets: Can Renewable Energy Help?  

Science Conference Proceedings (OSTI)

Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy technologies identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) can hedge natural gas price risk in more than one way, but a recent report by Berkeley Lab evaluates one such benefit in detail: by displacing gas-fired electricity generation, RE reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE. The Berkeley Lab report summarizes recent modeling studies that have evaluated the impact of RE deployment on gas prices, reviews the reasonableness of the results of these studies in light of economic theory and other research, and develops a simple tool that can be used to evaluate the impact of RE on gas prices without relying on a complex national energy model.

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

159

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

SciTech Connect

Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-12-21T23:59:59.000Z

160

Health Impacts of Traditional Medicines and Bio-prospecting: A World Scenario Accentuating Bhutan's Perspective  

E-Print Network (OSTI)

medicinal plants as indispensable cures for many ailments. Although some cultures used individual natural products as medicines, many traditions propounded powerful combinations with different ingredients known as poultices, tinctures and mixtures... health care, the natural products also play significant role in the discovery of the natural product-based drugs. The natural products like plants, animals, microorganisms, marine organisms and the extremophiles have been an important sources...

Wangchuk, Phurpa

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

162

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

8, 2013 | Release Date: September 19, 8, 2013 | Release Date: September 19, 2013 | Next Release: September 26, 2013 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Marcellus gas pipe capacity seen rising 0.5 Bcf/d by month's end; additional expansions expected this winter Initial service could begin by the end of September for two projects that would increase natural gas takeaway capacity from the Marcellus Shale formation by a combined 0.5 billion cubic feet per day (Bcf/d). These two projects are a 7.9 mile, 0.23 Bcf/d looping pipeline added to Kinder Morgan's Tennessee Gas Pipeline (TGP) (known as the MPP Project's "313 Loop") and a 2.5 mile, 0.22 Bcf/d pipeline connecting NiSource's Columbia Gas Transmission (TCO) pipeline to a 1,329-megawatt gas-fired

163

Dampers for Natural Draft Heaters: Technical Report  

Science Conference Proceedings (OSTI)

Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

Lutz, James D.; Biermayer, Peter; King, Derek

2008-10-27T23:59:59.000Z

164

Mitigation of Energy and Natural Gas Market Risks  

Science Conference Proceedings (OSTI)

This report examines the landscape of market risk management for owners of gas-fired capacity. Gas generation is experiencing a second boom, though not as great as the boom that began a decade ago. Whereas overbuilding of capacity was foreseeable then, the underpinnings of gas' new prominence appear more durable, though not without risk. This report reviews factors driving new gas-fired plants and describes the many facets of energy risk management. The report addresses the regulatory setting affecting u...

2010-12-31T23:59:59.000Z

165

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network (OSTI)

other than natural gas- fired generation, demand for naturalpresumption that demand for natural gas would be high as anatural gas-fired generation is the largest component of all incremental supply- and demand-

Barbose, Galen

2008-01-01T23:59:59.000Z

166

A Tradition of Sustainability | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Tradition of Sustainability A Tradition of Sustainability A Tradition of Sustainability September 15, 2010 - 10:00am Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Evansville, Wis., has a rich tradition of wind energy dating back to the 1800s. The city's first manufacturer - Baker Manufacturing Company - built windmills for farm pumps. When Evansville decided to build a new high school, planners continued this heritage by installing a wind turbine to provide the campus power. The city's spirit of sustainability lives on through a series of energy upgrades partially funded by a $133,000 Energy Efficiency Block Grant (EECGB) it received from Wisconsin's Office of Energy Independence. In the video below, find out how this small town is saving thousands of

167

A Tradition of Sustainability | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Tradition of Sustainability A Tradition of Sustainability A Tradition of Sustainability September 15, 2010 - 10:00am Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Evansville, Wis., has a rich tradition of wind energy dating back to the 1800s. The city's first manufacturer - Baker Manufacturing Company - built windmills for farm pumps. When Evansville decided to build a new high school, planners continued this heritage by installing a wind turbine to provide the campus power. The city's spirit of sustainability lives on through a series of energy upgrades partially funded by a $133,000 Energy Efficiency Block Grant (EECGB) it received from Wisconsin's Office of Energy Independence. In the video below, find out how this small town is saving thousands of

168

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

natural gas-fired generation plants; and the prospect of future greenhouse gas (GHG) emission regulations. Electricity market structures

Hopper, Nichole

2008-01-01T23:59:59.000Z

169

EIA - Electricity Data  

U.S. Energy Information Administration (EIA)

Natural Gas Fired Combustion Turbine Steam Turbine Internal Combustion Engine Steam Turbine Petroleum Liquids Fired Combustion Turbine Internal Combus ...

170

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network (OSTI)

in the construction of natural-gas-fired power plants andnatural gas demands because some coal-fired power plants

McCarthy, Ryan

2004-01-01T23:59:59.000Z

171

IEP - Water-Energy Interface: Non-Traditional Sources of Process and  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water Research and analysis are being conducted to evaluate and develop cost-effective approaches to using non-traditional (aka impaired or alternative) sources of water to supplement or replace freshwater for cooling and other power plant needs. Opportunities exist for the utilization of lower-quality, non-traditional water sources. Examples of non-traditional waters include surface and underground mine pool water, coal-bed methane produced waters, and industrial and/or municipal wastewater. Read More! IEP research in this area has focused on a variety of issues including feasibility studies for a variety of non-traditional water types and research into developing advanced water treatment technologies to enable coal-based power plants to use impaired water in recirculating cooling systems without notably increased scaling and without significant decreases in cycles of concentration. Feasibility studies involve multiple issues such as the flow of different non-traditional waters available in different regions, such as abandoned mine water, costs associated with collecting and treating each of the variety of non-traditional waters, like oil and natural gas produced water, and consideration of the variety of state-specific regulations pertaining to non-traditional water use.

172

Competitive position of natural gas: Industrial baking  

SciTech Connect

Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

Minsker, B.S.; Salama, S.Y.

1988-01-01T23:59:59.000Z

173

Don`t overlook natural gas cooling equipment  

Science Conference Proceedings (OSTI)

If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

Katzel, J.

1997-03-01T23:59:59.000Z

174

NETL: News Release - First Commercial Application of Advanced Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

February 19, 2004 February 19, 2004 First Commercial Application of Advanced Natural Gas Turbine Announced Turbine Developed Through Department of Energy's Advanced Turbine Systems Program GE Energy has announced that the world's first application of their next-generation 7H gas turbine technology will be an 800-megawatt class, combined-cycle project with Hydro-Quebec Production. The new natural-gas-fired power plant, to be built at Beauharnois, Quebec, southwest of Montreal, will be based on two GE 107H combined-cycle systems. The plant is expected to enter commercial service in mid 2007. The 7H gas turbine is one of two H System gas turbines developed by GE Energy as part of the U.S. Department of Energy's advanced turbine systems program. The Hydro-Quebec plant will be the first commercial application of the 60-hertz 7H, the H System turbine suitable for use in the United States and Canada. The 50-hertz 9H, suitable for the overseas market, got its commercial start in 2003 at the Baglan Bay Power Station in Wales, UK. The Baglan Bay plant has received a number of prestigious industry awards for its use of the innovative H System turbine.

175

Tanzania Traditional Energy Development and Environment Organization  

Open Energy Info (EERE)

Traditional Energy Development and Environment Organization Traditional Energy Development and Environment Organization (TaTEDO) Jump to: navigation, search Name Tanzania Traditional Energy Development and Environment Organization (TaTEDO) Place Tanzania Phone number 255.22. 27.00.438 Coordinates -6.369028°, 34.888822° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-6.369028,"lon":34.888822,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Alternatives to traditional transportation fuels 1996  

DOE Green Energy (OSTI)

Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

NONE

1997-12-01T23:59:59.000Z

177

How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 29, 2012 - 6:25pm Addthis...

178

Creation of an Ice Hockey Tradition in the South.  

E-Print Network (OSTI)

??This dissertation examines the links between culture and tradition. It argues that traditions are influenced by the underlying cultural foundations from which they develop. It… (more)

Wenner, Daryl Paul

2008-01-01T23:59:59.000Z

179

NERSC Continues Tradition of Cosmic Microwave Background Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tradition of Cosmic Microwave Background Data Analysis with the Planck Cluster NERSC Continues Tradition of Cosmic Microwave Background Data Analysis with the Planck...

180

Imported LNG (liquid natural gas) as an alternative fuel  

SciTech Connect

Imports of liquefied natural gas (LNG) first arrived in the United States in 1972 at the rate of one billion cubic feet (Bcf) per year. By 1979, they had reached 252 Bcf/year. However, as US as demand declined and domestic deliverability grew, inflexible LNG prices led to the complete collapse of trade during the 1980s. In 1987, all four US import terminals were idle and no LNG was imported. The situation bean to change with renegotiation of Distrigas' contract to import LNG from Algeria's Sonatrach. In 1988, the company imported 19 Bcf of gas to its Everett, Massachusetts terminal, with greater volumes in 1989. Panhandle Eastern has also renegotiated its Algerian supply contract and reactivated the company's Trunkline LNG terminal at Lake Charles, Louisiana. It received its first cargo in December 1989. Moves are also being made to bring the other two US import terminals, at Cove Point, Maryland and Elba Island, Georgia, back into service. On the supply side too, there are major new developments. Not only is Algeria seeking to expand its existing exports, but new LNG projects in Nigeria, Norway and Venezuela in particular are aimed at the US market. The purpose of this report is to describe the current status and potential development of LNG imports to the US with a view to identifying those circumstances in which an electric utility might consider LNG as an alternate back-up fuel to distillate or residual oil, in gas-fired generating facilities. 9 figs., 10 tabs.

Kelly, M. (Jensen Associates, Inc., Boston, MA (USA))

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nature's Greatest Puzzles  

Science Conference Proceedings (OSTI)

It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit.

Quigg, Chris; /Fermilab

2005-02-01T23:59:59.000Z

182

Alternatives to traditional transportation fuels 1993  

Science Conference Proceedings (OSTI)

In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

Not Available

1995-01-01T23:59:59.000Z

183

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Authors: Mohamed Toema (speaker), Sarah Nuss-Warren, and Kirby S. Chapman, Kansas State University National Gas Machinery Laboratory; James McCarthy and Thomas McGrath, Innovative Environmental Solutions Inc. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: The researchers are conducting a project to characterize pollutant emissions performance of field gas-fired four-stroke cycle rich burn engines equipped with non-selective catalytic reduction (NSCR) technology. Engine emissions and operating parameters are being monitored on three engines over an extended period. In addition, a mapping study was conducted on one engine. The NSCR was operated at various controlled air-to-fuel (AF) ratios while emission measurements were conducted and engine operating parameters monitored. NOx, CO, and oxygen were measured using both EPA reference method technology and the portable analyzer used in the long-term study. In the mapping study, ammonia, formaldehyde, CO, NOx, and speciated hydrocarbon emissions were recorded in real-time using an extractive FTIR system. This paper focuses on the engine mapping phase. The mapping tests demonstrated a trade-off between NOx emissions and CO, ammonia, and hydrocarbon emissions. Richer engine operation (lower AF) decreases NOx emissions at the expense of higher CO, ammonia, and hydrocarbons. Leaner operation has the opposite effect. The results to date of the semi-continuous monitoring are presented in a separate paper.

184

Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion  

DOE Green Energy (OSTI)

The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

2007-05-01T23:59:59.000Z

185

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Natural Gas.. 22 Power Generation .subsector. Power generation use of natural gas is subject toof natural gas-fired and non-fossil fuel power generation in

2004-01-01T23:59:59.000Z

186

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

emissions rate from natural gas supply that occurs upstreamassociated with natural gas supply to the power plant weresuggest natural gas-fired power plants will supply “

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

187

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

average peaking natural gas power plant (NGCT) supplies the13 categories. Natural gas- fired power plants comprise overcoal-fired power plant capacity, where natural gas plants

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

188

Searching, naturally  

Science Conference Proceedings (OSTI)

Keywords: artificial intelligence, computational linguistics, information retrieval, knowledge representation, natural language processing, text processing

Eileen E. Allen

1998-06-01T23:59:59.000Z

189

Pioneering Heat Pump Project Geothermal Project | Open Energy...  

Open Energy Info (EERE)

that will serve multiple buildings, converting them from a traditional gas-fired boiler system to ground source heat pumps that use carbon dioxide as the refrigerant source,...

190

Recent mix of electric generating capacity additions more diverse ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle plants accounted for about 68% of the total natural gas-fired capacity added between 1999 and 2010.

191

Addressing an Uncertain Future Using Scenario Analysis  

E-Print Network (OSTI)

estimate of how the history of natural gas fired generatingU.S. Natural Gas Generation Fuel Price The history shown in

Siddiqui, Afzal S.; Marnay, Chris

2008-01-01T23:59:59.000Z

192

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network (OSTI)

of a natural gas-fired combined cycle gas turbine (CCGT).integrated gasification combined cycle (IGCC) generationrate exceeding that of a combined-cycle natural gas unit.

Barbose, Galen

2008-01-01T23:59:59.000Z

193

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

as dispatchable natural gas power plants. But active loads,However, if natural gas-fired power plants (~400–600 gCO 2 /

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

194

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

polluting than large natural gas power plants with modernIn 2001, natural gas fired power plants in New York State

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

195

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Light Bulbs Compare with Traditional Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 29, 2012 - 6:25pm Addthis Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Compared to traditional incandescents, energy-efficient lightbulbs such as energy-saving incandescents, compact fluorescent lamps (CFLs), and light emitting diodes (LEDs) have the following advantages: Typically use about 25%-80% less energy, saving you money

196

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

197

Modeling natural gas prices as a random walk: The advantages for generation planning  

SciTech Connect

Random walk modeling allows decision makers to evaluate risk mitigation strategies. Easily constructed, the random walk provides probability information that long-term fuel forecasts do not. This is vital to meeting the ratepayers` need for low-cost power, the shareholders` financial objectives, and the regulators` desire for straightforward information. Power generation planning depends heavily on long-term fuel price forecasts. This is particularly true for natural gas-fired plants, because fuel expenses are a significant portion of busbar costs and are subject to considerable uncertainty. Accurate forecasts, then, are critical - especially if electric utilities are to take advantage of the current low cost of natural gas technologies and their relatively clean burning characteristics, without becoming overdependent on a fuel that might significantly increase in price. Moreover, the transition to a more competitive generation market requires a more market-driven planning process. Current planning techniques use several long-term fuel forecasts - one serving as an expected case and others for sensitivity analysis - as inputs for modeling production costs. These forecasts are deterministic: For every time interval there is one, and only one projected fuel price - a serious limitation. Further, past natural gas price predictions have been erroneous and may be susceptible to bias. Today, deregulation of the natural gas production industry allows for a new approach in long-term fuel forecasting. Using NYMEX information, a random walk model of natural gas prices can be constructed. A random walk assumes that prices move randomly, and in modeling prices in this context one would be sure to include this all-important price volatility.

Felder, F.A.

1995-11-01T23:59:59.000Z

198

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

199

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

DOE Green Energy (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

200

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

Science Conference Proceedings (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

SciTech Connect

Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they regulate. In restructured markets, the role of regulatory oversight of resource planning is more limited. Nonetheless, even in restructured markets, it is increasingly recognized that regulators have a critical role to play in directing the resource planning of providers of last resort--electric suppliers that provide service to those customers who choose not to switch to a competitive supplier. Our review of electricity contracts may also have educational value for those unfamiliar with the typical contents of these agreements. Details of our findings are provided in the body of the paper, but this summary is written to provide a concise alternative to reading the full report.

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-03-12T23:59:59.000Z

202

Drilling efficiency is a key driver of oil and natural gas ...  

U.S. Energy Information Administration (EIA)

Increases in drilling efficiency have contributed to the breakdown of traditional methods that seek to estimate oil and natural gas production based principally on ...

203

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

more information about natural gas regulation in the Unitednatural gas consumption per customer. In short, under traditional rate-of-return regulation

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

204

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

205

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

DOE Green Energy (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

206

Social organization of ancient Iranian traditional medical system  

Science Conference Proceedings (OSTI)

The history of ancient Iranian traditional medical system goes back several thousand years. This system is a form of integrated medicine of the kind found throughout Asia, which is based on holistic approach and not limited to the treatment of illness, ... Keywords: ancient Iran, holistic approach, social organization, traditional medical system

Rahim Farrokhnia

2010-06-01T23:59:59.000Z

207

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

208

NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY  

SciTech Connect

DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

R.E. Rogers

1999-09-27T23:59:59.000Z

209

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

210

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

211

Natural Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

originate? I need to give the intitial natural source of this energy. Replies: The energy source for most known organisms is the sun. Some organisms, such as deep-sea vent fauna...

212

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

213

Effect of Energy Efficiency Standards on Natural Gas Prices  

Science Conference Proceedings (OSTI)

A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its price as seen at the wellhead (Wiser 2007). The magnitude of the effect on price relative to the demand reduction, and the mechanism through which it occurs, is less well established. This report attempts to quantify the potential effects of reduced demand for natural gas in the residential sector, in response to the implementation of an energy efficiency standard for water heaters.

Carnall, Michael; Dale, Larry; Lekov, Alex

2011-07-26T23:59:59.000Z

214

Magnetism in Non-Traditional Materials  

SciTech Connect

We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

Menon, Madhu

2013-09-17T23:59:59.000Z

215

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

appear to be a good choice as a replacement for traditional fossil fuelscoal, oil, and natural gas. But the energy output-to-input ratio analysis for the crop-to-fuel...

216

Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

217

An Analysis of the Biases in Traditional Cyclone Frequency Maps  

Science Conference Proceedings (OSTI)

The traditional method of estimating cyclone frequency by counting the number of storms passing through latitude-longitude grid cells is known to be biased because it effectively overweights the lower latitudes. Here we show that it is also ...

Karl E. Taylor

1986-08-01T23:59:59.000Z

218

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

219

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

220

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

222

Natural games  

E-Print Network (OSTI)

Behavior in the context of game theory is described as a natural process that follows the 2nd law of thermodynamics. The rate of entropy increase as the payoff function is derived from statistical physics of open systems. The thermodynamic formalism relates everything in terms of energy and describes various ways to consume free energy. This allows us to associate game theoretical models of behavior to physical reality. Ultimately behavior is viewed as a physical process where flows of energy naturally select ways to consume free energy as soon as possible. This natural process is, according to the profound thermodynamic principle, equivalent to entropy increase in the least time. However, the physical portrayal of behavior does not imply determinism. On the contrary, evolutionary equation for open systems reveals that when there are three or more degrees of freedom for behavior, the course of a game is inherently unpredictable in detail because each move affects motives of moves in the future. Eventually, when no moves are found to consume more free energy, the extensive-form game has arrived at a solution concept that satisfies the minimax theorem. The equilibrium is Lyapunov-stable against variation in behavior within strategies but will be perturbed by a new strategy that will draw even more surrounding resources to the game. Entropy as the payoff function also clarifies motives of collaboration and subjective nature of decision making.

Jani Anttila; Arto Annila

2011-03-05T23:59:59.000Z

223

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

224

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

225

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

226

Air Pollution Control Permit to Construct and Permit to Operate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may be required prior to commencing construction of the facility. Fuel-burning boilers, coal, oil, or natural gas-fired boiler steam generators require a permit. Gas...

227

Capital costs have major impact on projected power sector ...  

U.S. Energy Information Administration (EIA)

Natural gas-fired power plants dominate the 2011 Annual ... AEO2011 also includes several alternative cases with lower assumed capital costs of nuclear, fossil fuel ...

228

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMC-IPOD 2009 Jose Benitez 2010-2012 Mount Meigs, Alabama Kilby Correctional Facility Boiler Replacement Remove existing natural gas fired 200 HP steam boiler at Kilby...

229

Project No  

NLE Websites -- All DOE Office Websites (Extended Search)

its existing natural gas fired Kimberlina Demonstration facility to operate on simulated coal syngas and hydrogen-depleted syngas. A blending station was installed to deliver gas...

230

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

flat block of power, generation from natural gas fired CCGTsnatural gas plants. Even at high penetration adding power from a flat block does not displace any generation

Mills, Andrew

2013-01-01T23:59:59.000Z

231

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

boilers, coal, oil, or natural gas-fired boiler steam generators require a permit. Gas turbines, as well as simple cycle combined with heat recovery steam turbine require...

232

An introduction to spark spreads - Today in Energy - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The spark spread is a common metric for estimating the profitability of natural gas-fired electric generators. The spark spread is the difference between the price ...

233

New electric generators typically come online at the start of ...  

U.S. Energy Information Administration (EIA)

Taking natural gas-fired generators as an example ... the trend toward summer online dates is more pronounced for gas combustion turbines and combined-cycle units, ...

234

Spark Spread - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The spark spread is a common metric for estimating the profitability of natural gas-fired electric generators. The spark spread is the difference between the price ...

235

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural gas-fired combustion turbines are generally used to meet peak electricity load. August 10, 2012 Wholesale electricity prices are lower during ...

236

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

natural gas firing in the steam generator of a CSP plant norCycle Steam Nuclear Hydro None Table 14: Incumbent generator

Mills, Andrew

2013-01-01T23:59:59.000Z

237

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... High natural gas-fired generation in 2012 occurred as a result of the lowest spot ...

238

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

using Integrated Gasification Combined Cycle (IGCC) plants.Natural gas-fired combined cycle plants can be converted toand more efficient combined-cycle plants. Combined cycle

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

239

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Texas electricity market faces summer challenges. July 6, 2012 Monthly coal- and natural gas-fired generation equal for first time in April 2012. June 29, 2012

240

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

cooling offset storage natural gas combustion solar thermalnatural gas-fired genset, solar thermal collectors, an absorption chiller and both electrical and heat storage.

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

chiller and cooling tower electricity consumption, boilerchiller and cooling tower electricity consumption, boilerheat outdoors using a cooling tower. A natural-gas-fired

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

242

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

competes with coal as a baseload power generation fuel withplants because both are baseload generation. The efficiencybuild natural gas-fired baseload electric power plants. The

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

243

EA-1836: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to facilitiate installation and operations of a high-efficiency natural-gas-fired cogeneration facility - would result in no significant adverse impacts. Finding of No...

244

Competition among fuels for power generation driven by changes ...  

U.S. Energy Information Administration (EIA)

Most recently, a number of factors have led to a continuing electric power industry trend of substituting coal-fired generation with natural gas-fired generation: ...

245

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors ... Natural gas-fired combustion turbines are generally used to meet peak ...

246

Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)  

E-Print Network (OSTI)

coal and natural gas fired power plants for the locations ornatural gas) because there are a lot of plants that use combined heat and power (

Xu, Tengfang

2013-01-01T23:59:59.000Z

247

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network (OSTI)

currently existing natural gas- fired power plants in southnatural gas-based distributed generation of electricity in California, which resulted in more air pollution than central power plants (

Wang, Guihua

2008-01-01T23:59:59.000Z

248

Water and Energy Interactions  

E-Print Network (OSTI)

lower for natural gas–fired power plants than for coal ornatural gas, oil, nuclear, biomass, and central solar power plants (

McMahon, James E.

2013-01-01T23:59:59.000Z

249

Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)  

E-Print Network (OSTI)

coal and natural gas fired power plants for the locations ornatural gas) because there are a lot of plants that use combined heat and power (

Xu, Tengfang

2013-01-01T23:59:59.000Z

250

Micro-Characterization, Corrosion, and Environmental Affects  

Science Conference Proceedings (OSTI)

Oct 13, 2010... such as a combustion environment in a natural gas-fired turbine, chromia ... Oil -Grade Alloy 718 in Oil Field Drilling Applications: Jing Xu1; ...

251

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

252

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

253

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on October 28) 1 (next release 2:00 p.m. on October 28) Increased natural gas demand owing to falling temperatures this week (Wednesday-Wednesday, October 13-20) combined with higher petroleum prices to lift spot and futures gas prices dramatically. The result at the Henry Hub was a net gain on the week of $1.86 per MMBtu, or 35 percent, to $7.25. After gaining value in the past three trading days, the NYMEX futures contract for November delivery at the Henry Hub ended the week at $7.623 per MMBtu, a net increase of 77.2 cents. Natural gas in storage continues to build at a rate that could result in the highest inventories in years by the start of the traditional heating season (November 1). As of Friday, October 15, inventories were 3,223 Bcf, which is 7.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil rose $1.07 per barrel on the week to yesterday's (October 20) closing price of $54.93 per barrel, or $9.47 per MMBtu.

254

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7 (next release 2:00 p.m. on April 14) 7 (next release 2:00 p.m. on April 14) Despite the close of the traditional heating season with relatively high volumes of natural gas remaining in storage and milder temperatures across much of the Lower 48 States, spot prices increased at most market locations. For the week, (Wednesday-Wednesday, March 30-April 6), the Henry Hub spot price increased by 29 cents per MMBtu, or 4 percent, to $7.46. Similarly, the NYMEX futures contract price for May delivery at the Henry Hub increased by nearly 10 cents from last Wednesday's level, settling yesterday (April 6) at $7.558 per MMBtu. As of Friday, April 1, natural gas in storage was 1,249 Bcf, or 22.2 percent higher than the 5-year average of 1,022 Bcf. The spot price for West Texas Intermediate (WTI) crude oil increased $1.92 per barrel or about 4 percent since last Wednesday, to $55.88 per barrel or $9.63 per MMBtu.

255

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, to Wednesday, April 2) 26, to Wednesday, April 2) Released: April 3, 2008 Next release: April 10, 2008 · Natural gas spot prices increased in all trading regions in the Lower 48 States this report week (Wednesday-Wednesday, March 26-April 2). During the report week, the Henry Hub spot price increased $0.34 per million Btu (MMBtu) to $9.59. Frigid temperatures continued for a portion of the week in the Northeast and for most of the week in the West, likely boosting space-heating demand. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered increases, albeit less than in spot markets. The futures contract for May delivery rose about 15 cents per MMBtu on the week to $9.832. · With the traditional heating season not quite over, natural gas withdrawals from underground storage continued through last week. As of Friday, March 28, working gas in storage was 1,248 billion cubic feet (Bcf), which is 0.5 percent above the 5-year (2003-2007) average.

256

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report  

SciTech Connect

The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-12-01T23:59:59.000Z

257

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

Science Conference Proceedings (OSTI)

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

258

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10, 2007 (next release 2:00 p.m. on May 17, 2007) 10, 2007 (next release 2:00 p.m. on May 17, 2007) Springtime temperatures in most regions of the country this week and lack of any significant cooling or heating load through much of the Lower 48 States led to an easing of natural gas spot prices since Wednesday, May 2. Furthermore, the formation of the first tropical storm of the 2007 Atlantic Hurricane Season 3 weeks prior to the beginning of the traditional hurricane season appeared to have no impact on the spot markets in the Lower 48 States. On the week (Wednesday-Wednesday, May 2-9), the Henry Hub spot price declined 18 cents per MMBtu, or 2.4 percent, to $7.46. In contrast to spot market activity, trading of futures contracts at the New York Mercantile Exchange (NYMEX) this week resulted in gains for all contracts with the exception of the near-month contract, possibly reflecting an expected tightness in supply over the summer months. While the NYMEX contract for June delivery decreased 1 cent per MMBtu on the week to a daily settlement of $7.720 yesterday (May 9), contracts through the end of the injection season all increased, albeit only by an average of 0.3 percent. Net injections reported in today's release of EIA's Weekly Natural Gas Storage Report brought natural gas storage supplies to 1,747 Bcf as of Friday, May 4, which is 20.5 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $2.24 per barrel on the week to $61.54 per barrel, or $10.61 per MMBtu.

259

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

260

Renewable Energy: A Centuries-old Tradition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy: A Centuries-old Tradition Renewable Energy: A Centuries-old Tradition Renewable Energy: A Centuries-old Tradition October 17, 2011 - 12:04pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs One of the benefits of living in the Nation's capital is direct access to so many great museums. From outdoor works of art at the Sculpture Garden to live butterflies at the National History museum-there's something out there to spark your interest and feed your curiosity. I learned that da Vinci-one of the most recognizable names in the world of art-was quite the Renaissance man. He was highly-skilled in an almost unimaginable variety of disciplines-including civil engineering, architecture, and even renewable energy. Yes, that's right, an inventor

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

262

Builder Brings Tradition to Efficient Home Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Builder Brings Tradition to Efficient Home Upgrades Builder Brings Tradition to Efficient Home Upgrades Builder Brings Tradition to Efficient Home Upgrades October 15, 2009 - 5:51pm Addthis Joshua DeLung When Tom Wade's grandfather started building single-family homes, he may not have imagined how far his grandson would take the practice. Tom's father followed in the family footsteps and founded Artistic Homes in Albuquerque, N.M., in the mid-1980s. Now, Tom has led the company from simply building quality, affordable homes to innovating ones that are highly energy-efficient. "My grandfather would absolutely love what we're doing today because he had an incredible passion for - and an interest in - craftsmanship and improving the product, which in this case is the home," Tom says. "The fact that we're using science and technology is something he would

263

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

264

Natural networks  

E-Print Network (OSTI)

Scale-free and non-computable characteristics of natural networks are found to result from the least-time dispersal of energy. To consider a network as a thermodynamic system is motivated since ultimately everything that exists can be expressed in terms of energy. According to the variational principle, the network will grow and restructure when flows of energy diminish energy differences between nodes as well as relative to nodes in surrounding systems. The natural process will yield scale-free characteristics because the nodes that contribute to the least-time consumption of free energy preferably attach to each other. Network evolution is a path-dependent and non-deterministic process when there are two or more paths to consume a common source of energy. Although evolutionary courses of these non-Hamiltonian systems cannot be predicted, many mathematical functions, models and measures that characterize networks can be recognized as appropriate approximations of the thermodynamic equation of motion that has been derived from statistical physics of open systems.

Tuomo Hartonen; Arto Annila

2011-06-21T23:59:59.000Z

265

On-line Approximate String Matching in Natural Language  

Science Conference Proceedings (OSTI)

We consider approximate pattern matching in natural language text. We use the words of the text as the alphabet, instead of the characters as in traditional string matching approaches. Hence our pattern consists of a sequence of words. From the algorithmic ... Keywords: Approximate string matching, filtering, natural language processing, phrase matching, word alphabet

Kimmo Fredriksson

2006-09-01T23:59:59.000Z

266

Engineering computation under uncertainty - Capabilities of non-traditional models  

Science Conference Proceedings (OSTI)

This paper provides a review of various non-traditional uncertainty models for engineering computation and responds to the criticism of those models. This criticism imputes inappropriateness in representing uncertain quantities and an absence of numerically ... Keywords: Computational efficiency, Fuzzy models, Fuzzy randomness, Imprecise probabilities, Interval analysis, Uncertainty modeling

Bernd Möller; Michael Beer

2008-05-01T23:59:59.000Z

267

Cloud resource usage: extreme distributions invalidating traditional capacity planning models  

Science Conference Proceedings (OSTI)

For years Capacity Planning professionals knew or suspected that various characteristics of computer usage have non-normal distribution. At the same time much of the traditional workload modeling and forecasting is based on mathematical techniques assuming ... Keywords: capacity planning, power law, probability distributions, resource usage, volatility

Charles Z. Loboz

2011-06-01T23:59:59.000Z

268

Non-Traditional Soil Additives: Can They Improve Crop Production?  

E-Print Network (OSTI)

Non-traditional soil additives include soil conditioners such as organic materials and minerals, soil activators that claim to stimulate soil microbes or inoculate soil with new beneficial organisms, and wetting agents that may be marketed to improve crop yields. As this publication advises, growers should evaluate such products carefully and conduct field trials to determine their merit.

McFarland, Mark L.; Stichler, Charles; Lemon, Robert G.

2002-06-26T23:59:59.000Z

269

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

270

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

271

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

272

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

273

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

274

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

275

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

276

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

277

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

278

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

279

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

280

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

282

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

283

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

284

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

285

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network (OSTI)

on the following topics: 1. Regional Economic Conditions 2. Electricity Demand 3. Natural Gas Markets and Prices 4 supplies or increasing demand. Increasingly, natural gas-fired generation is displacing coal Efficiency Achievements and Issues 23 IV. Renewable Resources 30 V. Natural Gas-Fired Generating Resources 34

286

Review: Oral Tradition and the Internet: Pathways of the Mind by John Miles Foley  

E-Print Network (OSTI)

Oral tradition and the Internet: Pathways of the mind.Oral Tradition and the Internet: Pathways of the Mind, bybook, Oral Tradition and the Internet: Pathways of the Mind,

Litwin, Rory B

2013-01-01T23:59:59.000Z

287

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

288

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

289

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

290

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

291

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

292

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

295

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

296

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

297

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

298

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

299

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

300

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

302

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

31 (next release 2:00 p.m. on April 7) 31 (next release 2:00 p.m. on April 7) With the traditional heating season coming to a close, temperatures moderated this week and spot price changes were relatively small at most trading locations. For the week (Wednesday-Wednesday, March 23-30), the spot price at the Henry Hub increased 6 cents per MMBtu, or less than 1 percent to $7.17. In contrast to the mixed price patterns on the spot markets, the prices of futures contracts at the New York Mercantile Exchange (NYMEX) for delivery through next heating season all rose on the week. After rising 32.4 cents per MMBtu on Tuesday, March 29, the day of expiration, the April NYMEX contract's monthly settlement price was $7.323. The futures contract for May delivery at the Henry Hub yesterday (Wednesday, March 30) settled at $7.460 per MMBtu, which is 20.5 cents more than last Wednesday's price. Natural gas in storage decreased to 1,239 Bcf as of March 25, which is 19.9 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil fell $4.53 per barrel or about 9 percent since last Wednesday to $53.96 per barrel or $9.30 per MMBtu.

303

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

12, 2007 (next release 2:00 p.m. on April 19, 2007) 12, 2007 (next release 2:00 p.m. on April 19, 2007) Unseasonably cold temperatures in most regions of the country led to increases of both spot and futures prices since Wednesday, April 4. On the week (Wednesday-Wednesday, April 4-11) the Henry Hub spot price increased 50 cents per MMBtu, or about 6.7 percent, to $7.96. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery increased 34 cents per MMBtu to a daily settlement of $7.855 yesterday (April 11). The first weekly report of the traditional injection season brought natural gas volumes in underground storage to 1,592 Bcf as of Friday, April 6, which is 28.4 percent above the 5-year average inventory for the report week. The spot price for the West Texas Intermediate (WTI) crude oil decreased $2.42 per barrel to $61.98 per barrel or $10.69 per MMBtu.

304

Dynamical probability, particle trajectories and completion of traditional quantum mechanics  

E-Print Network (OSTI)

Maintaining the position that the wave function $\\psi$ provides a complete description of state, the traditional formalism of quantum mechanics is augmented by introducing continuous trajectories for particles which are sample paths of a stochastic process determined (including the underlying probability space) by $\\psi$. In the resulting formalism, problems relating to measurements and objective reality are solved as in Bohmian mechanics (without sharing its weak points). The pitfalls of Nelson's stochastic mechanics are also avoided.

Tulsi Dass

2005-05-25T23:59:59.000Z

305

Non-traditional solution routes to ferroelectric materials  

DOE Green Energy (OSTI)

Non-traditional precursor solutions for production of ferroelectric thin films have been developed for PXZT (X = L, N, S), SBT, and PMN systems. For PXZT and SBT, pyridine is a key solvent, wherein, it both solubilizes and reduces the reactivity of the individual components of the solution. Further control of the final films has been obtained using novel tailor-made precursors to dictate their properties.

Boyle, T.J.; Buchheit, C.D. [Sandia National Labs., Albuquerque, NM (United States); Al-Shareef, H.N. [Micron Technology Inc., Boise, ID (United States)] [and others

1997-04-01T23:59:59.000Z

306

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

307

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

308

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

309

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

310

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

311

SRNL - Natural Attenuation Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Attenuation Monitor covers Natural Attenuation Monitor Published by the US DOE Monitored Natural Attenuation and Enhanced Attenuation for Chlorinated Solvents Technology...

312

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

313

Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000000  

E-Print Network (OSTI)

.elsevier.com/locate/procedia GHGT-11 Cycling coal and natural gas-fired power plants with CCS Peter Versteega* , David Luke Oatesa storage are modeled for new coal and natural gas-fired power plants with amine and ammonia-based post electricity price signals, including solvent storage and flue gas bypass. Power plants with these options may

314

Handbook of charcoal making: the traditional and industrial methods  

Science Conference Proceedings (OSTI)

The reviewer credits this handbook with expanding knowledge about the economic value of charcoal, particularly in the European area. The 10 chapters are: (1) history and fundamentals of the charcoal process, (2) traditional methods of the smallholder producer, (3) concepts and technology for the industrial producer, (4) recovering commercial products from pyrolysis oil, (5) raw materials supply, (6) end-use markets for by-products, (7) planning a charcoal venture, (8) charcoal briquettes and activated charcoal, (9) safety precautions and environmental considerations, and (10) charcoal laboratory work. Each chapter lists references. There are four appendices.

Emrich, W.

1985-01-01T23:59:59.000Z

315

TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE  

Science Conference Proceedings (OSTI)

Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.

Louthan, M

2007-07-17T23:59:59.000Z

316

Frontiers in Assessing the Role of Chemical Speciation and Natural Attenuation on the Bioavailability  

E-Print Network (OSTI)

1 Frontiers in Assessing the Role of Chemical Speciation and Natural Attenuation of contaminants in the terrestrial environment is greatly affected by a number of chemical factors and processes its fate, transport, and bioavailability. Traditionally, chemical extraction techniques have been

Sparks, Donald L.

317

Nature's objects : geology, aesthetics, and the understanding of materiality in eighteenth-century Britain and France  

E-Print Network (OSTI)

Explorations of aesthetic design and scientific experimentation have traditionally relied upon the natural world as a source of inspiration. Notably absent from previous studies of the eighteenth century is the dynamic ...

Ferng, Jennifer Hsiao-Mei

2012-01-01T23:59:59.000Z

318

Master EM Project Definition Rating Index - Traditional (Conventional) Definitions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17 Master EM Project Definition Rating Index - Traditional (Conventional) Definitions The following definitions describe the criteria required to achieve a maximum rating or maturity value of 5. It should be assumed that maturity values of 1-5 represent a subjective assessment of the quality of definition and/or the degree to which the end-state or maximum criteria have been met, or the product has been completed in accordance with the definition of maturity values. Rating Element Criteria for Maximum Rating COST A1 Cost Estimate A cost estimate has been developed and formally approved by DOE and is the basis for the cost baselines. The cost estimate is a reasonable approximation of Total Project Costs, and covers all phases of the project. The estimate is prepared in

319

Regulation of natural monopolies  

E-Print Network (OSTI)

This chapter provides a comprehensive overview of the theoretical and empirical literature on the regulation of natural monopolies. It covers alternative definitions of natural monopoly, regulatory goals, alternative ...

Joskow, Paul L.

2005-01-01T23:59:59.000Z

320

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

322

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

323

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

324

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

325

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

326

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Release: Thursday, August 26, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 18, 2010) Natural...

327

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

328

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

329

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

330

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

331

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

332

Application of activity-based costing in a manufacturing company: a comparison with traditional costing  

Science Conference Proceedings (OSTI)

Activity-Based Costing (ABC) represents an alternative paradigm to traditional cost accounting system and has received extensive attention during the past decade. Rather than distorting the cost information by using traditional overhead allocation methods, ...

Gonca Tuncel; Derya Eren Akyol; Gunhan Mirac Bayhan; Utku Koker

2005-05-01T23:59:59.000Z

333

Soap Manufacturing TechnologyChapter 4 Formulation of Traditional Soap Cleansing Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 4 Formulation of Traditional Soap Cleansing Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 4 Formulation of Tradition

334

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... natural gas prices relative to coal prices. High natural gas-fired generation in 2012 occurred as a result of the lowest spot natural gas prices in a decade ...

335

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

pdf/E-20.pdf, May 2008. PG&E natural gas tariffs. http://pdf/G-NT.pdf, May 2008. PG&E natural gas tariffs. http://than less expensive natural gas fired reciprocating engine

Norwood, Zack

2010-01-01T23:59:59.000Z

336

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

active natural gas generators and imports will decline, inadditional system imports and natural gas-fired generation66%) Natural gas (22%) Renewable (1.4%) DSW imports 3 Coal (

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

337

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

338

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

pollution from natural gas-fired power plants. Some of the50% from natural gas combined cycle power plants and 50%power plant. In Brazil, the most likely plant type that would be displaced is natural gas

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

339

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

Liquefied natural gas Electric power plants New technologiescycle, and natural gas-fired power plants also occupy aPower Plant and Industrial Fuel Use Act of 1978 in order to burn natural gas.

Authors, Various

2010-01-01T23:59:59.000Z

340

Gas-fired chiller-heaters as a central plant alternative for small office buildings  

SciTech Connect

Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

Thies, R.M. [JDB Engineering, Inc., York, PA (United States); Bahnfleth, W. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Architectural Engineering

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network (OSTI)

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data and analysis are based on recent tests. The dehumidification subsystem processes the fresh air portion and handles the latent portion of the load. Adding the desiccant subsystem increases the gas-based coefficient of performance 40% and increases the cooling capacity 50%. Increased initial manufacturing costs are estimated at around $500/ton ($142/kW) for volume production. This cost Level is expected to reduce the total initial cost per ton compared to a system without the desiccant subsystem.

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

342

Tube Failure in Coal and Gas Fired Power Plant - Programmaster.org  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Lindsay S. W. Malloy. Abstract Scope, Tube failures in power plants are one of the main causes of forced outages, potentially costing  ...

343

Superior refining performance beyond 2000 -- Breaking traditional paradigms  

SciTech Connect

Over the last 5 years, refining companies have not performed well financially, generating returns below the cost of capital. Environmental regulations have caused the industry to invest significant amounts of capital, and while new regulations will cause the shutdown of between 500 thousand and 1.2 million barrels per day of capacity, the industry structure will remain poor and financial returns for the average player will likely be volatile, cyclical, and below the cost of capital. Based on this industry outlook, refining companies seeking superior performance will have to break the traditional paradigms and adopt world-class practices used in other industries. Changes required to significantly improve financial returns will include shifts in business strategy to accommodate growth, and development of nontraditional services, as well as initiates to dramatically reshape cost structure and improve profitability. Making the changes to become a superior performer in the refining business will require a clear vision and strong leadership at multiple levels in the organization. The transformation will also require changes in company culture and incentive plans that encourage managers to act as owners. In addition, superior performers will push accountability for results to low levels in the organization. Given the herd mentality of the oil industry, superior performers must take decisive, preemptive action to generate a substantial, competitive advantage.

Tassel, B. van [McKinsey and Co., Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

344

Migration, Wages, and Tradition: Obstacles to Entrepreneurship in East Germany ?  

E-Print Network (OSTI)

For the last decade, the East German economy has been suffering from high unemployment and low economic growth. Policy makers often point to the lack of entrepreneurship as one of East Germany’s main problems. This paper addresses the question of how East Germany’s integration into an established economy, West Germany, may have hindered a fruitful development of entrepreneurship and how this may have affected economic growth. I build a model economy that places Lucas’s [1978] span-of-control model into an overlapping-generations framework. Following Hassler and Rodríguez Mora [2000] managerial talent is defined as a combination of two factors, intelligence and entrepreneurial parental background, and growth depends on the intelligence of entrepreneurs. In East Germany, the lack of entrepreneurial parental background makes intelligence the decisive factor in occupational choice and more intelligent entrepreneurs should contribute to high growth rates. However, three key aspects of its integration into West Germany inhibit this mechanism: 1) the unrestricted mobility of East Germans to the West, 2) the policy of fixing East German wages as fractions of West German wages, and 3) the importance of family tradition for entrepreneurship in West Germany. Counterfactual experiments show that eliminating any of these three aspects leads to more entrepreneurs, less unemployment, and higher economic growth in East Germany.

Zoë Kuehn; Job Market Paper

2009-01-01T23:59:59.000Z

345

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

346

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

347

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

348

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

349

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

350

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

351

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

352

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

353

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

354

Modeling Interregional Transmission Congestion in the National Energy Modeling System  

E-Print Network (OSTI)

Rocky Mtn Ariz NM (12) Combined Cycle built in SERC (9) Theincludes all out of region combined cycle generation that iscombined with the traditional grid. • Remove the bias towards gas fired combine cycle

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-01-01T23:59:59.000Z

355

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

356

Comparisons of diffusive and advective fluxes of gas phase volatile organic compounds (VOCs) in unsaturated zones under natural conditions  

E-Print Network (OSTI)

is traditionally treated as the dominant mechanism of gas transport in unsaturated zones under natural conditions of the gas pressure are less than 5% [32], which is satisfied in natural attenuation. At the ground surface contri- bution of the advective flux is a more important concern in natural attenuation. According to Fig

Zhan, Hongbin

357

Alternatives to traditional transportation fuels 1994. Volume 1  

DOE Green Energy (OSTI)

In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

NONE

1996-02-01T23:59:59.000Z

358

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

359

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

360

Perceptions of the natural  

E-Print Network (OSTI)

This thesis takes on the difficulty of defining a clear line that connects and separates natural and artificial in a contemporary landscape. It is a proposal for a park that addresses the image and understanding of nature. ...

Filipovic, Renata, 1973-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

362

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

363

Focused natural deduction  

Science Conference Proceedings (OSTI)

Natural deduction for intuitionistic linear logic is known to be full of non-deterministic choices. In order to control these choices, we combine ideas from intercalation and focusing to arrive at the calculus of focused natural deduction. The calculus ...

Taus Brock-Nannestad; Carsten Schürmann

2010-10-01T23:59:59.000Z

364

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

365

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

366

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

367

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z

368

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

Natural gas- fired power plants comprise over 60% of capacity and almost 50% of generation.Natural gas combined cycle and combined heat and power (NGCC+CHP) plants make up 37% of the lost generation,

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

369

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Total natural gas use for power generation in the United States was down 14% during the ... High natural gas-fired generation in 2012 occurred as a result of the ...

370

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In 2012, there were 121 ... High natural gas-fired generation in 2012 occurred as a result of the lowest spot natural gas prices in a decade—in fact, ...

371

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

generation, such as a combined cycle gas turbine (CCGT),based on the cost of a combined-cycle natural gas firednew natural gas-fired combined cycle gas turbine (CCGT). The

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

372

New Hampshire Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Compressed Natural Gas 3 stations 0.3% 2013 Ethanol 0 ... Natural gas-fired generation now accounts for about one-quarter of the State’s power production.

373

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What is shale gas and why is it important? ... High natural gas-fired generation in 2012 occurred as a result of the lowest spot natural gas prices in a decade—in ...

374

Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles  

DOE Green Energy (OSTI)

Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes and other potential remediation opportunities; a discussion of how the implementation of the HRC technology eased permitting issues and other challenges of remediating groundwater contaminated with radionuclides and organics; an overview of the remedial design and installation of the design including the inputs required to design the remediation system; a summary of results achieved to date and a forecast of future results; and a discussion of future needs and lessons learned.

Scott, J.; Case, N.; Coltman, K.

2003-02-25T23:59:59.000Z

375

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

376

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

377

State and religion in contemporary Iran modernity, tradition, and political Islam (1979-2005).  

E-Print Network (OSTI)

??The title of this study raises questions about the meaning and the significance of the words 'modernity', 'tradition' and 'Political Islam' in contemporary Iran. The… (more)

Rad, Darius

2010-01-01T23:59:59.000Z

378

Design, fabrication and test on piezoelectric energy harvesters with non-traditional geometries.  

E-Print Network (OSTI)

??Unimorph piezoelectric cantilevers with non-traditional surface geometries were investigated by theoretical calculations, finite element models, and sample tests. The study shows the average output voltage… (more)

Wang, Lei, 1987-

2011-01-01T23:59:59.000Z

379

En jämförelse mellan vakuumisolering och traditionell isolering; A comparison between vacuum insulation and traditional insulation.  

E-Print Network (OSTI)

?? The purpose of this thesis is to investigate if vacuum insulation panels are a competitive alternative to traditional insulation. Vacuum insulation has been used… (more)

Gustafsson, Johanna

2012-01-01T23:59:59.000Z

380

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural ... The EIA has determined that the informational map displays here do not raise security ...

382

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

383

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

384

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

385

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

386

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

387

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

388

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

389

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

390

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

391

Student attitude and learning outcomes of multimedia computer-assisted versus traditional instruction in basketball  

Science Conference Proceedings (OSTI)

The purpose of this study was to examine the effect of multimedia computer-assisted instruction (MCAI), traditional instruction (TI), and combined instruction (CI) methods on learning the skill of shooting in basketball. Additionally, a comparison of ... Keywords: Attitude, Basketball, Cognitive learning, Instructional technology, Multimedia software, Physical education, Traditional instruction

Nicholas Vernadakis; Eleni Zetou; Efi Tsitskari; Maria Giannousi; Efthimis Kioumourtzoglou

2008-09-01T23:59:59.000Z

392

A tele-immersion environment for traditional Japanese crafting system over the Japan Gigabit Network  

Science Conference Proceedings (OSTI)

In this paper, we propose a tele-immersion environment for the traditional Japanese crafting system, which uses a highly immersive system based on a Virtual Reality (VR) environment, such as multiple Cave Automatic Virtual Environment (CAVE) ... Keywords: Japan, Japanese crafts, VR presentation, human sensibility, kansei, multimodal communication, sensitivity information processing, tele-immersion, traditional crafts, ultra high speed networks, virtual reality

Tomoyuki Ishida; Akihiro Miyakawa; Yoshitaka Shibata

2008-05-01T23:59:59.000Z

393

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

394

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

395

Natural Disasters: Some Empirical  

Science Conference Proceedings (OSTI)

Page 1. j N8SIR 74-473 Natural Disasters: Some Empirical and Economic Considerations G. Thomas Sav Buildine Economies ...

2008-03-06T23:59:59.000Z

396

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

each of the consumption sectors, excluding the industrial sector, according to BENTEK Energy Services, LLC. Moderating temperatures likely contributed to lower natural gas...

397

4. Natural Gas Statistics  

U.S. Energy Information Administration (EIA)

hydraulic fracturing, including shales and low permeability (tight) formations. Total U.S. dry natural gas reserves additions replaced 237 percent of 2007 dry

398

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013"...

399

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

400

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 3,683 billion cubic feet (Bcf) as of Friday, October 15, according to the Energy Information Administrations (EIA) Weekly Natural Gas Storage Report. The West...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

402

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

that have helped reshape the natural gas market, with particular emphasis on policy directives during the past 26 years. The linked files provided on the web site provide...

403

Natural Gas Wellhead Prices  

U.S. Energy Information Administration (EIA)

Slide 19 of 27. Price: Wellhead. Natural gas wellhead prices are projected to move up 5 percent this winter, averaging about $2.28 per Mcf during this ...

404

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of about 50 percent of natural gas production from the Gulf. (See "Other Market Trends" below for details.) Ivan's major impact on prices occurred on Monday, September 13,...

405

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Report," and the Historical Weekly Storage Estimates Database. Other Market Trends: FERC Investigates Natural Gas Wash-Trading: The Federal Energy Regulatory Commission (FERC)...

406

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

407

Natural Gas Monthly  

U.S. Energy Information Administration (EIA)

sector organizations associated with the natural gas industry. Volume and price data are presented each month for ... Tables 1 and 2 ...

408

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

409

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

410

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied… (more)

Li, Yun

2007-01-01T23:59:59.000Z

411

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

since July 27, 2004. Prices: Moderate temperatures and a favorable supply situation led to widespread declines in natural gas spot prices in the Lower 48 States since last...

412

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Release: Thursday, November 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 27, 2010) As the...

413

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010) Since...

414

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

415

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

416

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

417

Biomimetics: Lessons from Nature  

Science Conference Proceedings (OSTI)

... structural coloration, thermal insulation, self-healing, and sensory aid mechanisms are some of the examples found in nature which are of commercial interest.

418

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

419

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 5","Consumption",9,"Annual",2012,"6...

420

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",2,"Annual",1975,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301969" ,"Data 7","Consumption",11,"Annual",2012,"6...

422

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

423

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

424

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",9,"Annual",2012,"6...

425

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

426

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

427

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

428

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

429

,"Nebraska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

430

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

431

,"Ohio Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

432

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

433

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

434

,"Maryland Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

435

,"Michigan Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

436

,"Illinois Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

437

,"Kansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

438

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

439

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

440

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Minnesota Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

442

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

443

,"Tennessee Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

444

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

445

,"Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

446

,"Oklahoma Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

447

,"Washington Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

448

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

449

,"Louisiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

450

,"Utah Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

451

,"Oregon Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

452

,"Mississippi Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

453

,"Massachusetts Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

454

,"Nevada Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

455

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

456

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

457

,"Kentucky Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

458

,"Montana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

459

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

460

,"Missouri Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

462

,"Indiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

463

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

464

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

465

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

466

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Prices",8,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

467

Natural gas annual 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

468

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 6","Consumption",11,"Annual",2012,...

469

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

470

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

471

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

472

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

473

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

474

,"Illinois Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

475

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

476

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2012,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301982" ,"Data 4","Consumption",10,"Annual",2012,"6...

477

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

478

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

479

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

480

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

Note: This page contains sample records for the topic "traditionally natural gas-fired" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013" ,"Next Release...

482

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",8,"Monthly","102013","1151989" ,"Release Date:","172014"...

483

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2009 Next Release: January 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 14, 2009) In the...

484

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Iowa Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

485

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alabama Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

486

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Georgia Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

487

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Connecticut Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

488

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Colorado Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

489

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"California Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

490

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Florida Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

491

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arkansas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

492

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arizona Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

493

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

494

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Delaware Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

495

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Hawaii Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

496

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

ends up in Clarington was delivered upstream. El Paso Natural Gas Pipeline issued an Emergency Critical Operating Condition Declaration for February 2 until further notice....

497

International Natural Gas Workshop  

U.S. Energy Information Administration (EIA)

International Natural Gas Workshop U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 and a member of ...

498

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

499

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

500

Natural Cooling Retrofit  

E-Print Network (OSTI)

Substantial numbers of existing plants and buildings are found to depend solely upon Mechanical Cooling even though Natural Cooling techniques could be employed utilizing ambient air. Most of these facilities were constructed without Natural Cooling capability due to 'first cost' budget constraints when the cost and availability of energy were of little concern.

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z