Sample records for tracing aerosol impacts

  1. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

  2. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Fast, Jerome D.

    2010-07-29T23:59:59.000Z

    One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

  3. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    SciTech Connect (OSTI)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20T23:59:59.000Z

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  4. Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago

    E-Print Network [OSTI]

    O'Brien, Timothy E.

    in uncovering linear relationships between meteorology and air pollutants in Chicago and aided in determining possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution . Multivariate statistics . Principal component analysis . Trace gasses Introduction Many air

  5. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    P.M. Forster (2004), The semi-direct aerosol effect: Impactof absorbing aerosols on marine stratocumulus. Q. J .2005), Global anthropogenic aerosol direct forcing derived

  6. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract:...

  7. Boreal forests, aerosols and the impacts on clouds and climate

    E-Print Network [OSTI]

    Spracklen, Dominick

    of energy, momentum, water, carbon dioxide and other trace gas and aerosol species (figure 1). Through due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored shown in figure 2) have a dark canopy (with low albedo) that obscures the snow-covered ground (with high

  8. Aerosol cluster impact and break-up : model and implementation.

    SciTech Connect (OSTI)

    Lechman, Jeremy B.

    2010-10-01T23:59:59.000Z

    In this report a model for simulating aerosol cluster impact with rigid walls is presented. The model is based on JKR adhesion theory and is implemented as an enhancement to the granular (DEM) package within the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Modeling the interactions of small particles is relevant to a number of applications (e.g., soils, powders, colloidal suspensions, etc.). Modeling the behavior of aerosol particles during agglomeration and cluster dynamics upon impact with a wall is of particular interest. In this report we describe preliminary efforts to develop and implement physical models for aerosol particle interactions. Future work will consist of deploying these models to simulate aerosol cluster behavior upon impact with a rigid wall for the purpose of developing relationships for impact speed and probability of stick/bounce/break-up as well as to assess the distribution of cluster sizes if break-up occurs. These relationships will be developed consistent with the need for inputs into system-level codes. Section 2 gives background and details on the physical model as well as implementations issues. Section 3 presents some preliminary results which lead to discussion in Section 4 of future plans.

  9. Vertical profiles of O3, aerosols, CO and NMHCs in the Northeast Pacific during the TRACE-P and ACE-ASIA experiments

    E-Print Network [OSTI]

    McKendry, Ian

    Vertical profiles of O3, aerosols, CO and NMHCs in the Northeast Pacific during the TRACE-P and ACE April 2001. This event contained substantial CO, NMHC, and aerosol loadings and was identifiedKendry, and T. L. Anderson, Vertical profiles of O3, aerosols, CO and NMHCs in the Northeast Pacific during

  10. Distinguishing Aerosol Impacts on Climate Over the Past Century

    SciTech Connect (OSTI)

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22T23:59:59.000Z

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  11. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01T23:59:59.000Z

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.

  12. EVOLUTION OF TRACE GASES AND AEROSOLS IN THE MEXICO CITY POLLUTION OUTFLOW DURING A LONG RANGE TRANSPORT EVENT

    E-Print Network [OSTI]

    EVOLUTION OF TRACE GASES AND AEROSOLS IN THE MEXICO CITY POLLUTION OUTFLOW DURING A LONG RANGE, NY www.bnl.gov ABSTRACT Significant chemical and physical processing of the Mexico City (MC) pollutants is expected to occur as they are advected downwind over a period of several hours to days

  13. Global environmental effects of impact-generated aerosols

    SciTech Connect (OSTI)

    Covey, C.; Ghan, S.J.; Walton, J.J.; Weissman, P.R. (Lawrence Livermore National Lab., CA (USA); Jet Propulsion Lab., Pasadena, CA (USA))

    1989-02-01T23:59:59.000Z

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter'' are more severe than in nuclear winter'' because the assumed aerosol amount is large enough to intercept all sunlight falling on Earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to our GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy'' sense.

  14. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect (OSTI)

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13T23:59:59.000Z

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  15. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01T23:59:59.000Z

    Emissions from laboratory combustion of wildland fuels:range transport of combustion-derived aerosols, Science,from the laboratory combustion of wildland fuels: Particle

  16. 1 Potential impacts of Asian carbon aerosols on future US warming 2 Haiyan Teng,1

    E-Print Network [OSTI]

    -ocean fully coupled 6 climate model to investigate possible remote impacts of 7 Asian carbonaceous aerosols effect of aerosols is included) over Asia induces 15 tropospheric heating anomalies that force large.4 C warming over the eastern 18 US during winter and over most of the US during summer. 19 Such remote

  17. Microphysical effects determine macrophysical response for aerosol impacts on deep

    E-Print Network [OSTI]

    Li, Zhanqing

    cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory. The thermodynamic invigoration effect contrib- utes up to 27% of total increase in cloud cover. The overall aerosol by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness

  18. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    SciTech Connect (OSTI)

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03T23:59:59.000Z

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ({approx} 3-6 W m{sup -2} per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m{sup -2} forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring

  19. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01T23:59:59.000Z

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  20. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26T23:59:59.000Z

    Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

  1. Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols

    SciTech Connect (OSTI)

    Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

    2008-09-19T23:59:59.000Z

    Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

  2. Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia

    E-Print Network [OSTI]

    Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia on the distribution of acid rain over east Asia. A modified deflation module is designed to provide explicit, and the distribution pattern of acid rain was also altered. The annual mean pH values in northern China and Korea show

  3. Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data

    SciTech Connect (OSTI)

    Gu, Y.; Liou, K. N.; Jiang, Jonathan; Su, Hui; Liu, Xiaohong

    2012-02-15T23:59:59.000Z

    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is produced at the cloud top with smaller ice crystal size. The 500 mb omega indicates strong upward motion, which, together with the increased cooling effect, results in the increased ice water contents. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of aerosol indirect effect using a GCM in connection with A-train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily incorporated for application to any other GCMs.

  4. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect (OSTI)

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02T23:59:59.000Z

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  5. Impact of Aerosols on Tropical Cyclones: An Investigation Using Convection-permitting Model Simulation

    SciTech Connect (OSTI)

    Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, Sourav; Chen, J. P.; Cotton, William R.

    2013-07-16T23:59:59.000Z

    The role of aerosols effect on two tropical cyclones over Bay of Bengal are investigated using a convection permitting model with two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the TCs are hardly affected by the changing aerosol types, but the intensity exhibits significant sensitivity due to the change in aerosol contribution. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level which, in turn, forces the lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to other two perturbations of aerosol. All these studies show the robustness of the concept of TC weakening by storm ingestion of high concentrations of CCN. The consistency of these model results gives us confidence in stating there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian sub-continent, this study suggests pollution may be weakening TCs over the Bay of Bengal.

  6. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect (OSTI)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15T23:59:59.000Z

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  7. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S

    2013-01-01T23:59:59.000Z

    of biomass burn- ing aerosol on the monsoon circulationA. , and Rudich, Y. : Aerosol invigoration and restructuring2011. Albrecht, B. A. : Aerosols, cloud microphysics, and

  8. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    E-Print Network [OSTI]

    Menon, Surabi

    2008-01-01T23:59:59.000Z

    Cloud susceptibility and the first aerosol indirect forcing:Sensitivity to BC and aerosol concentrations. J. Geophys.of cloud droplet and aerosols number concentrations:

  9. The impact of detailed urbanscale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols

    E-Print Network [OSTI]

    forcing of anthropogenic aerosols Jason Blake Cohen,1,2 Ronald G. Prinn,1 and Chien Wang1 Received 11 model to simulate the effects of cities around the world on aerosol chemistry, physics, and radiative values of total aerosol surface concentration, the total aerosol column abundance, the aerosol optical

  10. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview

    SciTech Connect (OSTI)

    Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-02-01T23:59:59.000Z

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  11. The impact of meteorological conditions and variation in chemical composition of aerosols on regional cloud formation

    E-Print Network [OSTI]

    Creamean, Jessie Marie

    2012-01-01T23:59:59.000Z

    MISSION A Global 3D View of Aerosols and Clouds, Bulletin ofJ.H. Seinfeld, Secondary aerosol formation from atmosphericJ.H. Seinfeld, Secondary aerosol formation from atmospheric

  12. Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA Potential impacts of air pollution aerosols on precipitation that anthropogenic air pollution downwind of urban and industrial developments affects clouds microphysics

  13. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

    2013-05-20T23:59:59.000Z

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  14. A modeling study on the climate impacts of black carbon aerosols

    E-Print Network [OSTI]

    Wang, Chien.

    The role of black carbon (BC) aerosols in climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to study ...

  15. Aerosol effects on red blue ratio of clear sky images, and impact on solar forecasting

    E-Print Network [OSTI]

    Ghonima, Mohamed Sherif

    2011-01-01T23:59:59.000Z

    DIEGO Aerosol effects on Red Blue Ratio of Clear Sky Images,decision image (green: cloudy, blue: clear). The figure wasAerosol effects on Red Blue Ratio of Clear Sky Images, and

  16. Global environmental effects of impact-generated aerosols: Results from a general circulation model: Revision 1

    SciTech Connect (OSTI)

    Covey, C.; Ghan, S.J.; Walton, J.J.; Weissman, P.R.

    1989-06-01T23:59:59.000Z

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of ''nuclear winter; '' GCM-simulated climatic changes in the Alvarez-inspired scenario of ''asteroid/comet winter,'' however, are more severe than in ''nuclear winter'' because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects -- which would occur much more frequently than the Cretaceous/Tertiary event deduced by Alvarez and coworkers -- could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a ''patchy'' sense. 30 refs., 4 figs., 1 tab.

  17. Aerosol cluster impact and break-up : II. Atomic and Cluster Scale Models.

    SciTech Connect (OSTI)

    Lechman, Jeremy B.; Takato, Yoichi (State University of New York at Buffalo, Buffalo, NY)

    2010-09-01T23:59:59.000Z

    Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area of interest for a number of processes in chemical, pharmaceutical, and powder manufacturing as well as in steam-tube rupture in nuclear power plants. Developing predictive capabilities for these applications involves coupled phenomena on multiple length and timescales from the process macroscopic scale ({approx}1m) to the multi-cluster interaction scale (1mm-0.1m) to the single cluster scale ({approx}1000 - 10000 particles) to the particle scale (10nm-10{micro}m) interactions, and on down to the sub-particle, atomic scale interactions. The focus of this report is on the single cluster scale; although work directed toward developing better models of particle-particle interactions by considering sub-particle scale interactions and phenomena is also described. In particular, results of mesoscale (i.e., particle to single cluster scale) discrete element method (DEM) simulations for aerosol cluster impact with rigid walls are presented. The particle-particle interaction model is based on JKR adhesion theory and is implemented as an enhancement to the granular package in the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Additionally, as mentioned, results from atomistic classical molecular dynamics simulations are also described as a means of developing higher fidelity models of particle-particle interactions. Ultimately, the results from these and other studies at various scales must be collated to provide systems level models with accurate 'sub-grid' information for design, analysis and control of the underlying systems processes.

  18. Feasibility of the detection of trace elements in particulate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry. Feasibility of the detection of trace elements in particulate matter using online...

  19. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and

    E-Print Network [OSTI]

    distances and processing times was guided by a constantvolume balloon that was released near the power plant implications for several issues related to the impacts of power plant emissions on air quality and climate. Introduction [2] Fossilfuelfired power plants in the United States contributed 18% and 66% of the national

  20. Aerosol Retrieval Using Remote-sensed Observations

    E-Print Network [OSTI]

    Wang, Yueqing

    2012-01-01T23:59:59.000Z

    1.2 Aerosols Impacts on HumanBayesian Approach for Aerosol Retrieval Using MISR Data 2.1for Including a Richer Variety of Aerosol Compositions . 2.5

  1. Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Wagner, M. J.

    2011-08-01T23:59:59.000Z

    Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

  2. 6, 43414373, 2006 Cloud-borne aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discussions Impact of cloud-borne aerosol representation on aerosol direct and indirect effects S. J. Ghan of aerosols employ a variety of rep- resentations of such cloud-borne particles. Here we use a global aerosol- ulated aerosol, cloud and radiation fields to various approximations to the representa- tion of cloud

  3. The impact of scavenging on trace metal budgets in Puget Sound

    SciTech Connect (OSTI)

    Paulson, A.J.; Feely, R.A.; Curl, H.C. Jr.; Geiselman, T. (National Oceanic and Atmospheric Administration, Seattle, WA (USA)); Crecelius, E.A. (Battelle Marine Research Laboratory, Sequim, WA (USA))

    1988-07-01T23:59:59.000Z

    The distributions of dissolved and particulate Mn, Pb, Cu and Zn in Puget Sound, its tributaries, and its sediments were determined to illustrate the impact of scavenging reactions on trace metal budgets of a large fjordlike estuary. About 75% of the dissolved Pb discharged into the main basin of Puget Sound was scavenged from the dissolved phase. The high particulate Pb concentrations in regions of high particulate Mn concentrations and the significant correlations between Pb and Mn concentrations on suspended particles demonstrate the importance of hydrous manganese oxide phases in scavenging dissolved Pb. Since particles are effectively retained within the main basin, scavenging results in the sedimentation of about 70% of the total Pb added to the main basin. Only isolated instances of scavenging of dissolved Cu and Zn were observed and the discharge rates of dissolved Cu and Zn from known sources were equal to their rates of advective removal within the errors of the budge. The remineralization of organically-bound particulate Cu is partly responsible for its quasi-conservative behavior within the main basin of Puget Sound. The fates of Cu and Zn are controlled mainly by physical processes such as advection and settling of particles. Advection removes about 60% of the total Cu and Zn added to the main basin while 40% is deposited in the sediments of Puget Sound.

  4. Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties

    E-Print Network [OSTI]

    Qiu, Chong

    2013-02-01T23:59:59.000Z

    through sandstorm.2 Examples of anthropogenic sources are vehicle exhaust, plant emission, and construction sites. Some aerosols may have both biogenic and anthropogenic sources. For example, soot aerosols, also known as black carbon, can be produced... with an initial size of 150 nm increases slightly faster than those of soot with the initial size of 80 or 100 nm. Table 1. Properties of Fresh Soot Particles. Dp, nm mp, 10 ?16 g Dve, nm Npp a 82.4 1.47 54.1 20 101 2.34 63.2 32 155 7.77 94.3 105 a...

  5. Evaluating inter-continental transport of fine aerosols:(2) Global health impact Junfeng Liu a,*,1

    E-Print Network [OSTI]

    Mauzerall, Denise

    health on the Eurasian continent and would also benefit public health in the United States. Ã? 2009.5 to be nearly 380 thousand (K) in 2000. Approximately half of these deaths occur in the Indian subcontinent (IN), mostly due to aerosols transported from Africa and the Middle East (ME). Approximately 90K deaths

  6. Urban-scale impacts on the global-scale composition and climate effects of anthropogenic aerosols

    E-Print Network [OSTI]

    Cohen, Jason Blake

    2010-01-01T23:59:59.000Z

    A reduced form meta model has been produced to simulate the effects of physical, chemical, and meteorological processing of highly reactive trace species in hypothetical urban areas, which is capable of efficiently simulating ...

  7. Ganges valley aerosol experiment.

    SciTech Connect (OSTI)

    Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

    2011-08-01T23:59:59.000Z

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  8. Direct measurements of marine aerosols to examine the influence of biological activity, anthropogenic emissions, and secondary processing on particle chemistry

    E-Print Network [OSTI]

    Gaston, Cassandra Jayne

    2012-01-01T23:59:59.000Z

    for fog processing of individual aerosol particles, Atmos.of marine secondary organic aerosol from biogenic amines,Pacific and their impacts on aerosol hygroscopicity in the

  9. acid aerosol exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nenes, Athanasios 8 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences Websites Summary: Neutralization of soil aerosol and...

  10. aerosol particles emitted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosols scatter and absorb solar, estimates of the impact of aerosols on visibility, the solar radiation balance, and crop production is presented. 1. INTRODUCTION The attenuation...

  11. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem

    SciTech Connect (OSTI)

    Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

    2012-09-28T23:59:59.000Z

    Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

  12. Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Guilmette, Raymond A.

    2009-03-01T23:59:59.000Z

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

  13. Real-Time Measurements of Engine-Out Trace Elements: Application of a Novel Soot Particle Aerosol Mass Spectrometer for Emissions Characterization

    E-Print Network [OSTI]

    Cross, Eben Spencer

    Lubricant-derived trace element emissions are the largest contributors to the accumulation of incombustible ash in diesel particulate filters (DPF), eventually leading to filter plugging and an increase in engine fuel ...

  14. ESTIMATION OF CRACK-ARREST TOUGHNESS TRANSITION AND NDT TEMPERATURES FROM CHARPY FORCE-DISPLACEMENT IMPACT TRACES

    SciTech Connect (OSTI)

    Sokolov, Mikhail A [ORNL

    2010-01-01T23:59:59.000Z

    A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Fa values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.

  15. Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact of GeneratorImpact of

  16. Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact

    E-Print Network [OSTI]

    Russell, Lynn

    Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size stratocumulus clouds in the northeastern Pacific Ocean were analyzed to determine the effect of aerosol particles on cloud microphysical and radiative properties. Seven nighttime and two daytime cases were

  17. Nonlinear Effects of Coexisting Surface and Atmospheric Forcing of Anthropogenic Absorbing Aerosols: Impact on the South Asian Monsoon Onset

    E-Print Network [OSTI]

    Lee, Shao-Yi

    The direct radiative effect of absorbing aerosols consists of absorption-induced atmospheric heating together with scattering- and absorption-induced surface cooling. It is thus important to understand whether some of the ...

  18. 6, 42134249, 2006 Organic aerosols in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 4213­4249, 2006 Organic aerosols in the Northeastern Pacific K. K. Crahan et al. Title Page Chemistry and Physics Discussions Organics in the Northeastern Pacific and their impacts on aerosol Organic aerosols in the Northeastern Pacific K. K. Crahan et al. Title Page Abstract Introduction

  19. Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    SciTech Connect (OSTI)

    Park, Sungsu

    2014-12-12T23:59:59.000Z

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets and ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly implemented into the CAM5 as a practical parameterization, and substantially contributes to achieving the project goal. Through an intensive research for about one year, we found appropriate mathematical formulation and tried to implement it into the CAM5 PBL and activation routine as a practical parameterized numerical code. During these processes, however, the Postdoc applied for another position in Sweden, Europe, and accepted a job offer there, and left NCAR in August 2014. In Sweden, Dr. Anna Fitch is still working on this subject in a part time, planning to finalize the research and to write the paper in a near future.

  20. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03T23:59:59.000Z

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.

  1. Investigation of the Impact of Aerosols on Clouds During May 2003 Intensive Operational Period at the Southern Great Plains

    SciTech Connect (OSTI)

    Guo, H.; Penner, J.E.; Herzog, M.

    2005-03-18T23:59:59.000Z

    The effect of aerosols on the clouds, or the so-called aerosol indirect effect (AIE), is highly uncertain (Penner et al. 2001). The estimation of the AIE can vary from 0.0 to -4.8 W/m2 in Global Climate Models (GCM). Therefore, it is very important to investigate these interactions and cloud-related physical processes further. The Aerosol Intensive Operation Period (AIOP) at the Southern Great Plains (SGP) site in May 2003 dedicated some effort towards the measurement of the Cloud Condensation Nucleus concentration (CCN) as a function of super-saturation and in relating CCN concentration to aerosol composition and size distribution. Furthermore, airborn measurement for the cloud droplet concentration was also available. Therefore this AIOP provides a good opportunity to examine the AIE. In this study, we use a Cloud Resolving Model (CRM), i.e., Active Tracer High-resolution Atmospheric Model (ATHAM), to discuss the effect of aerosol loadings on cloud droplet effective radius (Re) and concentration. The case we examine is a stratiform cloud that occurred on May 17, 2003.

  2. Exploring matrix effects on photochemistry of organic aerosols

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Exploring matrix effects on photochemistry of organic aerosols Hanna Lignella,b,1 , Mallory L of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus and impacts. aerosol aging | particle viscosity | organic photochemistry Aqueous droplets and aerosol

  3. aerosols and climate : uncertainties

    E-Print Network [OSTI]

    contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

  4. Corrigendum to Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust published in Atmos. Chem. Phys., 14, 81–101, 2014

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, A.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-05-01T23:59:59.000Z

    In the paper “Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust” by J. Fan et al., wrong versions of Fig. 8 and Fig. 12 were published. Please find the correct figures below.

  5. Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber

    E-Print Network [OSTI]

    Glen, Crystal

    2012-02-14T23:59:59.000Z

    of the processes leading to SOA production under ambient gaseous and particulate concentrations as well as the impact these aerosol types have on climate is poorly understood. Although the majority of atmospheric aerosols scatter radiation either directly...

  6. Impacts of Venturi Turbulent Mixing on the Size Distribution of Sodium Chloride and Dioctyl-Phthalate Aerosols

    SciTech Connect (OSTI)

    Cheng, M.-D.; Wainman, T.; Storey, J.

    2000-08-01T23:59:59.000Z

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it.

  7. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  8. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    E-Print Network [OSTI]

    Kharol, S. K.

    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

  9. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  10. Impacts of Venturi Turbulent Mixing on the Size Distributions of Sodium Chloride and Dioctyl-Phthalate Aerosols

    SciTech Connect (OSTI)

    Cheng, M-D.

    2000-08-23T23:59:59.000Z

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results of the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10%) compared with the tail regions. This result shows that the ejector device could have a higher bin-to-bin counting uncertainty for ''soft'' particles such as DOP than for a solid dry particle like NaCl. The results suggest that it may be difficult to precisely characterize the size distribution of particles ejected from the mini-dilution system if the particle is not solid.

  11. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    E-Print Network [OSTI]

    Berg, A. R.

    Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions ...

  12. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E. (East Setauket, NY); Weber, Rodney J. (Atlanta, GA)

    2003-01-01T23:59:59.000Z

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  13. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18T23:59:59.000Z

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  14. aerosol characteristic researching: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as they have significant impacts both on localregional air pollution and global climate. Recent for Aerosol and Cloud Chemistry, Aerodyne Research, Incorporated, Billerica,...

  15. Iron Speciation and Mixing in Single Aerosol Particles from the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on...

  16. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03T23:59:59.000Z

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  17. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

    1999-01-01T23:59:59.000Z

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  18. Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows

    E-Print Network [OSTI]

    Elperin, Tov

    Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified atmospheric flows M to the turbulent diffusion, and its potential impact on aerosol distribution. This phenomenon was predicted a nondiffusive flux of aerosols in the direction of the heat flux and results in formation of long-living aerosol

  19. Aerosol Cans? -Aerosol cans use a pressurized

    E-Print Network [OSTI]

    Jia, Songtao

    WHAT TO DO WITH... Aerosol Cans? -Aerosol cans use a pressurized propellant to distribute the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition aerosol cans must be disposed of as hazardous waste. PROPER SAFETY EQUIPMENT Safety Glasses - Proper eye

  20. Spatial distribution and size evolution of particles in Asian outflow: Significance of primary and secondary aerosols during ACE-Asia

    E-Print Network [OSTI]

    volatility suggested increasing neutralization of the aerosol during growth. Size distribution measurements; KEYWORDS: ACE-Asia, TRACE-P, aerosol size distribution, nucleation, primary and secondary aerosols, condensation and coagulation Citation: Mc Naughton, C. S., et al. (2004), Spatial distribution and size

  1. URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1

    E-Print Network [OSTI]

    Boyer, Edmond

    URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1 , L. SOULHAC2 , E. FREJAFON3 , R technologique ALATA BP2, F-60550 Verneuil-en-Halatte, France. Keywords: LIDAR, URBAN AEROSOLS, MODEL, IMPACT SURVEY. INTRODUCTION The impact of particulate matters and aerosols on environment and on radiative

  2. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  3. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  4. Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA)

    E-Print Network [OSTI]

    Jeong, Gill-Ran

    The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA) is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA ...

  5. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign

    E-Print Network [OSTI]

    Li, Guohui

    In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module ...

  6. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    SciTech Connect (OSTI)

    Joyce E. Penner

    2005-03-14T23:59:59.000Z

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near-surface NO{sub x} concentrations by a factor of 2-5. These results suggest the importance of using the more accurate hybrid dynamical method in the estimates of both aerosol forcing and tropospheric ozone chemistry.

  7. Aerosols in Central California: Unexpectedly Large Contribution of Coarse Mode to Aerosol Radiative Forcing

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Pekour, Mikhail S.; Barnard, James C.

    2012-10-20T23:59:59.000Z

    The majority of previous studies dealing with effect of coarse-mode aerosols on the radiation budget have focused primary on polluted regions with substantial aerosol loadings. We reexamine this effect for a relatively "pristine" area using a unique 1-month dataset collected during recent Carbonaceous Aerosol and Radiative Effects Study (CARES). We demonstrate that the coarse-mode (supermicron) particles can contribute substantially (more than 50%) and frequently (up to 85% of time) to the total volume. In contrast to the conventional expectations that the radiative impact of coarse-mode aerosols should be small for "pristine" regions, we find that the neglecting of the large particles may lead to significant overestimation (up to 45%) of direct aerosol radiative forcing at the top-of atmosphere despite of very small aerosol optical depth (about 0.05 at 0.5 ). Our findings highlight the potential for widespread impacts of the coarse-mode aerosols on the pristine radiative properties over land and the need for more explicit inclusion of the coarse-mode aerosols in climate-related observational and model studies.

  8. Formation of ozone and growth of aerosols in young smoke plumes from biomass burning

    E-Print Network [OSTI]

    Alvarado, Matthew James

    2008-01-01T23:59:59.000Z

    The combustion of biomass is a major source of atmospheric trace gases and aerosols. Regional and global-scale models of atmospheric chemistry and climate take estimates for these emissions and arbitrarily "mix" them into ...

  9. Aerosol collection characteristics of ambient aerosol samplers

    E-Print Network [OSTI]

    Ortiz, Carlos A

    1978-01-01T23:59:59.000Z

    are contained in Appendix C. Dichotomous Sam ler The basic principle of operation of the dichotomous, Figure 9, is that aerosol particles are passed through an acceleration nozzle where the particle velocity is increased to a speed V. at the nozzle exit... AEROSOL COLLECTION CHARACTERISTICS OF AMBIENT AEROSOL SAMPLERS A Thesis by CARLOS A. ORTIZ Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978...

  10. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20T23:59:59.000Z

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  11. COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Aerosols David R. Fooshee,, Tran B. Nguyen,§, Sergey A. Nizkorodov,*,§ Julia Laskin, Alexander Laskin aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate insignificant. COBRA is not limited to atmospheric aerosol chemistry; it should be applicable to the prediction

  12. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect (OSTI)

    Smith, Steven J.; Bond, Tami C.

    2014-01-20T23:59:59.000Z

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  13. Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol

    E-Print Network [OSTI]

    Benoit, Mark David

    2013-02-06T23:59:59.000Z

    condensation nuclei CPC Cloud condensation nuclei counter e-PTFE Expanded polytetrafluoroethylene HR-ToF-AMS High-resolution time-of-flight mass spectrometer HTDMA Humidified Tandem Differential Mobility Analyzer GHG Greenhouse Gas..., but their remains a gap in research of the aging process of sea salt aerosols, their impact on a polluted environment, and their role in heterogeneous reactions of gas phase species. The evolution of sea salt aerosols in the atmosphere results from interactions...

  14. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.

    2013-02-12T23:59:59.000Z

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  15. Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms

    E-Print Network [OSTI]

    Tang, Yingjie

    2012-07-16T23:59:59.000Z

    In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

  16. aerosol content monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rings, Jrg 2008-01-01 6 The impact of aerosols on simulated ocean temperature and heat content in the 20th century Environmental Sciences and Ecology Websites Summary: The...

  17. aerosol strong acidity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nucleation theories. Citation: Erupe, M. E., et al Lee, Shan-Hu 12 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences...

  18. Modeling Atmospheric Aerosols V. Rao Kotamarthi

    E-Print Network [OSTI]

    Modeling Atmospheric Aerosols V. Rao Kotamarthi and Yan Feng Climate Research Section Environmental Science Division Argonne National Laboratory #12;Outline Atmospheric Aerosols and gas phase heterogeneous reactions Regional Scales and Atmospheric Aerosols Regional Scale Aerosols: Ganges Valley Aerosol

  19. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect (OSTI)

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01T23:59:59.000Z

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  20. Point and column aerosol radiative closure during ACE 1: Effects of particle shape and size

    E-Print Network [OSTI]

    impact the earth's climate and photo- chemistry by directly scattering and absorbing solar radia- tion these impacts [e.g., Intergovernmental Panel on Climate Change, 2001]. Because of the short temporal and spatial scales of aerosol heterogeneity, numerical models of aerosol optical behavior are required to make

  1. Crystallization Pathways of Sulfate-Nitrate-Ammonium Aerosol Particles Julie C. Schlenker and Scot T. Martin*

    E-Print Network [OSTI]

    Atmospheric aerosol particles scatter incoming solar radiation directly back to space and serve as cloud mode aerosol mass budget and signifi- cantly impact Earth's radiation budget in a cooling effect.2, in turn, significantly impacts radiative forcing and atmospheric chem- istry. For instance, given initial

  2. Experiments related to the resuspension of aerosols during hydrogen burns

    SciTech Connect (OSTI)

    Nelson, L.S.; Guay, K.P.

    1987-01-01T23:59:59.000Z

    We have performed seven ''add-on'' experiments in two large combustion facilities to investigate the capability of hydrogen burns to remove simulated structural and fission product aerosols previously deposited on small metal discs that have surfaces prototypical of those found in nuclear reactor containments. Our results suggest that hydrogen combustion provides an especially effective mechanism for removal (and, presumably, resuspension) of sedimented aerosols produced in a hypothetical nuclear reactor core-degradation or core-melting accident. The presence of condensing steam does not seem to assure adhesion of sedimented aerosols during hydrogen burns. Differences are exhibited between different surfaces as well as between types of aerosol. In-depth studies will be required to assess the impact exposure of sedimented aerosols to hydrogen burns might have on the radiological source term.

  3. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  4. 7, 55535593, 2007 Nitrate aerosols

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 5553­5593, 2007 Nitrate aerosols today and in 2030 S. E. Bauer et al. Title Page Abstract Discussions Nitrate aerosols today and in 2030: importance relative to other aerosol species and tropospheric, 5553­5593, 2007 Nitrate aerosols today and in 2030 S. E. Bauer et al. Title Page Abstract Introduction

  5. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    metals added from these aerosols to the bioassay incubationsreleased to seawater from the aerosol filters after Author4605 CHEMISTRY Atmospheric aerosol deposition CHEMISTRY

  8. Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles

    E-Print Network [OSTI]

    Beaucage, Gregory

    1 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles can range in size from molecular-scale to hundreds of microns with a typical example be synthesized by aerosol routes where precursor species are dispersed either in a vapor or in micron

  9. Modal aerosol dynamics modeling

    SciTech Connect (OSTI)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01T23:59:59.000Z

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  10. Aerosol Sampler Operations Manual

    E-Print Network [OSTI]

    Fischer, Emily V.

    -1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

  11. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect (OSTI)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13T23:59:59.000Z

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  12. Characterizing the formation of secondary organic aerosols

    SciTech Connect (OSTI)

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01T23:59:59.000Z

    Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

  13. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Paulson, S E

    2012-05-30T23:59:59.000Z

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  14. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions

    E-Print Network [OSTI]

    Luo, Chao; Zender, Charles S; Bian, Huisheng; Metzger, Swen

    2007-01-01T23:59:59.000Z

    times of tropospheric aerosols inferred from a global three-sional simulation of 210Pb aerosols. Journal of Geophysicalof sulfate and nitrate aerosol. Atmospheric Environ- ment

  15. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    E-Print Network [OSTI]

    Bauer, Susanne E.

    2010-01-01T23:59:59.000Z

    and R. Ruedy, Matrix (multiconfiguration aerosol tracker ofmixing state): An aerosol microphysical module for globalAn investigative review, Aerosol Sci. Technol. , Vol. 40,

  16. A New Aerosol Flow System for Photochemical and Thermal Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols. A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols....

  17. Characterizing the Vertical Distribution of Aerosols Over the ARM SGP Site

    SciTech Connect (OSTI)

    Richard Ferrare, Connor Flynn, David Turner

    2009-05-05T23:59:59.000Z

    This project focused on: 1) evaluating the performance of the DOE ARM SGP Raman lidar system in measuring profiles of water vapor and aerosols, and 2) the use of the Raman lidar measurements of aerosol and water vapor profiles for assessing the vertical distribution of aerosols and water vapor simulated by global transport models and examining diurnal variability of aerosols and water vapor. The highest aerosol extinction was generally observed close to the surface during the nighttime just prior to sunrise. The high values of aerosol extinction are most likely associated with increased scattering by hygroscopic aerosols, since the corresponding average relative humidity values were above 70%. After sunrise, relative humidity and aerosol extinction below 500 m decreased with the growth in the daytime convective boundary layer. The largest aerosol extinction for altitudes above 1 km occurred during the early afternoon most likely as a result of the increase in relative humidity. The water vapor mixing ratio profiles generally showed smaller variations with altitude between day and night. We also compared simultaneous measurements of relative humidity, aerosol extinction, and aerosol optical thickness derived from the ARM SGP Raman lidar and in situ instruments on board a small aircraft flown routinely over the ARM SGP site. In contrast, the differences between the CARL and IAP aerosol extinction measurements are considerably larger. Aerosol extinction derived from the IAP measurements is, on average, about 30-40% less than values derived from the Raman lidar. The reasons for this difference are not clear, but may be related to the corrections for supermicron scattering and relative humidity that were applied to the IAP data. The investigators on this project helped to set up a major field mission (2003 Aerosol IOP) over the DOE ARM SGP site. One of the goals of the mission was to further evaluate the aerosol and water vapor retrievals from this lidar system. Analysis of the aerosol and water vapor data collected by the Raman lidar during the 2003 Aerosol IOP indicated that the sensitivity of the lidar was significantly lower than when the lidar was initially deployed. A detailed analysis after the IOP of the long-term dataset demonstrated that the lidar began degrading in early 2002, and that it lost approximately a factor of 4 in sensitivity between 2002 and 2004. We participated in the development of the remediation plan for the system to restore its initial performance. We conducted this refurbishment and upgrade from May- September 2004. This remediation lead to an increase in the signal-to-noise ratio of 10 and 30 for the Raman lidar's water vapor mixing ratio and aerosol backscatter coefficient data, respectively as compared to the signal strengths when the system was first deployed. The DOE ARM Aerosol Lidar Validation Experiment (ALIVE), which was conducted during September 2005, evaluated the impact of these modifications and upgrades on the SGP Raman lidar measurements of aerosol extinction and optical thickness. The CARL modifications significantly improved the accuracy and temporal resolution of the aerosol measurements. Aerosol extinction profiles measured by the Raman lidar were also used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter-Comparison in global models (AEROCOM) (http://nansen.ipsl.jussieu.fr/AEROCOM/aerocomhome.html) project. There was a wide range in how the models represent the aerosol extinction profiles over the ARM SGP site, even though the average annual AOT represented by the various models and measured by CARL and the Sun photometer were in general agreement, at least within the standard deviations of the averages. There were considerable differences in the average vertical distributions among the models, even among models that had similar average aerosol optical thickness. Deviations between mean aerosol extinction profiles were generally small (~20-30%) for altitudes above 2 km, and grew consider

  18. 6, 11791198, 2006 Aerosols closing

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 1179­1198, 2006 Aerosols closing open Benard cells D. Rosenfeld et al. Title Page Abstract of precipitation by aerosols D. Rosenfeld1 , Y. J. Kaufman2 , and I. Koren3 1 Institute of Earth Sciences­1198, 2006 Aerosols closing open Benard cells D. Rosenfeld et al. Title Page Abstract Introduction

  19. 8, 14571503, 2008 The aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 1457­1503, 2008 The aerosol distribution in Europe V. Matthias Title Page Abstract Discussions The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model.matthias@gkss.de) 1457 #12;ACPD 8, 1457­1503, 2008 The aerosol distribution in Europe V. Matthias Title Page Abstract

  20. 5, 79658026, 2005 Simulating aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    composition, number concentration, and size distribution of the global submicrometer aerosol. The present, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and sizeACPD 5, 7965­8026, 2005 Simulating aerosol microphysics with ECHAM/MADE A. Lauer et al. Title Page

  1. VARIATION OF AEROSOL OPTICAL PROPERTIES

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    radiative forcing due to the aerosol, W m-2 FT is the solar constant, W m-2 Ac is the fractional cloud cover;APPROACH TO MODELING AEROSOL RADIATIVE EFFECTS Transport Chemistry Microphysics Removal ModelEmissions Size-distributed Composition Optical Properties Radiative Effects Optics Model Radiation Transfer Model #12;CLASSES OF AEROSOL

  2. Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model

    SciTech Connect (OSTI)

    Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

    2013-06-05T23:59:59.000Z

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

  3. Aerosol engineering: design and stability of aerosol reactors

    SciTech Connect (OSTI)

    Pratsinis, S.E.

    1985-01-01T23:59:59.000Z

    A theoretical study of the performance of aerosol reactors is presented. The goals of this study are (1) to identify the appropriate reactor types (batch, CSTR, and tubular) for production of aerosol with specific properties (for example, uniform size particles, high aerosol surface area, etc.) and (2) to investigate the effect of various process parameters on product aerosol characteristics and on the stability of operation of aerosol reactors. In all the reactors considered, the aerosol dynamics were detemined by chemical reaction, nucleation, and aerosol growth in the free molecule regime in the absence of coagulation at isothermal conditions. Formulation of the aerosol dynamics in terms of moments of the aerosol size distribution facilitated the numerical solution of the resulting systems of ordinary or partial differential equations. The stability characteristics of a continuous stirred tank aerosol reactor (CSTAR) were investigated since experimental data in the literature indicate that under certain conditions this reactor exhibits oscillatory behavior with respect to product aerosol concentration and size distribution.

  4. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect (OSTI)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30T23:59:59.000Z

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.

  5. Laboratory measurements and modeling of trace atmospheric species

    E-Print Network [OSTI]

    Sheehy, Philip M. (Philip Michael)

    2005-01-01T23:59:59.000Z

    Trace species play a major role in many physical and chemical processes in the atmosphere. Improving our understanding of the impact of each species requires a combination of laboratory exper- imentation, field measurements, ...

  6. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03T23:59:59.000Z

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  7. Aerosol collection characteristics of ambient aerosol samplers 

    E-Print Network [OSTI]

    Ortiz, Carlos A

    1978-01-01T23:59:59.000Z

    . These samplers have an effic1ency approach1ng 100 percent for particles for which the gravitational and 1nertial forces are small (less than approximately 5 um); however, for larger-sized part1cles the efficiency is quite variable and depends not only upon.... According to Agarwal, representative samples can be collected by an aerosol instrument without meeting the Davies criter1a. Raynor ( 7), with the aid of a wind tunnel, observed the effects of environmental and physical parameters on the entrance effic1...

  8. Geometrical Optics of Dense Aerosols

    SciTech Connect (OSTI)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24T23:59:59.000Z

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  9. Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols from space reflection and absorption Surface Rayleigh atmosphere #12;TOA Multiple scattering Multiple scattering Aerosol layer satellite Surface reflection and absorption Surface Rayleigh atmosphere Rayleigh atmophere Aerosol

  10. Contrasting the direct radiative effect and direct radiative forcing of aerosols

    E-Print Network [OSTI]

    Heald, Colette L.

    The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

  11. Electrostatics and radioactive aerosol behavior

    SciTech Connect (OSTI)

    Clement, C.F.

    1994-12-31T23:59:59.000Z

    Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

  12. Temporal variation of aerosol properties at a rural continental site and study of aerosol evolution through growth law analysis

    E-Print Network [OSTI]

    (direct effect) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effect). While it is widely accepted that aerosols could have significant impact on global climate, at present the magnitudes of these effects are poorly under- stood. Unlike greenhouse gases, whose radiative

  13. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  14. Optical Properties of Secondary Organic Aerosols

    E-Print Network [OSTI]

    Kim, Hwajin

    2012-01-01T23:59:59.000Z

    Paulson, S. E. ; Chung, A. Aerosol Sci. Technol. 2007 , 41,Y. G. ; Daum, P. H. J. Aerosol Sci 2008 , 39, 974-986. (32)Accurate Monitoring of Terrestrial Aerosols and Total Solar

  15. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21T23:59:59.000Z

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  16. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17T23:59:59.000Z

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  17. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    and less surface solar radiation in China from 1955 to 2000,2001 in China, and meanwhile, both surface solar radiationsolar heating greatly decreases RH in the lower troposphere for both China and

  18. Global Aerosol Health Impacts: Quantifying Uncertainties

    E-Print Network [OSTI]

    Selin, Noelle E.

    Atmospheric fine particulate matter <2.5 ?m (PM2.5) can cause cardiovasculatory and respiratory damages and mortalities. Assessing population exposure to and damages from PM2.5 is important for policy, but measurement ...

  19. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    V. Ramanathan (2008), Solar radiation budget and radiativeV. Ramanathan (2008), Solar radiation budget and radiativeapproximation for solar radiation in the NCAR Community

  20. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public ReadingResearch Nuclear Physics

  1. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

  2. Sunlight Changes Aerosols in Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Changes Aerosols in Clouds Sunlight Changes Aerosols in Clouds Released: October 20, 2011 Scientists show how sunlight alters optical, chemical properties of atmospheric...

  3. Molecular Characterization of Biomass Burning Aerosols Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

  4. Electromagnetic scattering and absorption by aerosol agglomerates

    SciTech Connect (OSTI)

    Chen, Hsingyi.

    1989-01-01T23:59:59.000Z

    Calculation of scattering and absorption by smoke aerosols is required in many applications, including characterization of atmospheric aerosols, prediction of climatic impact of smoke, evaluation of smoke effectiveness in obscuration, calculation of heat transfer from flames, and evaluation of various scenarios of nuclear winter. In this dissertation two procedures were developed to accurately make these calculations utilizing realistic models of smoke agglomerates including oriented chains and fractal geometries. First the Iterative Extended Boundary Condition Method (IEBCM) was utilized to calculate the electromagnetic (EM) scattering and absorption of elongated aerosol particles. The computation efficiency and capability of IEBCM were improved by implementing the sectioning and the segmentation procedures. The sectioning procedure resulted in improving the computational efficiency and the segmentation method made it possible to make calculations for particles with aspect ratios as high as 250. The other procedure employed the Volume Integral Equation Formulation (VIEF) to compute the EM scattering and absorption by agglomerates of complex geometries. The validity of the procedure was checked first by comparing the obtained results with those obtained from the Mie solution for a spherical object and with the IEBCM for nonspherical objects. The comparison between results showed excellent agreement and hence validated the accuracy of the VIEF. The VIEF solution was then used to make calculations for five types of fractal agglomerates of smoke aerosol particles with fractal dimensions in the range from 1.7 to 1.9. The results obtained were compared with those based on the fractal theory recently published by Berry and Percival, and some differences were observed.

  5. 6, 75197562, 2006 Simulating aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , particle number concentration and aerosol size-distribution. The model takes into account sulfate (SO4. This model system enables explicit simulations of the particle number concentration and size-distribution of aerosol dynamical processes (nucleation, condensation, coagulation) is evaluated by comparison

  6. 7, 37193761, 2007 Aerosol indirect

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects and is defined as the difference in the top-of-the-atmosphere net radiation be- tween present when either a statistical cloud cover scheme or a different aerosol emission inventory are employed. 1ACPD 7, 3719­3761, 2007 Aerosol indirect effects in ECHAM5-HAM U. Lohmann et al. Title Page

  7. 4, 75617614, 2004 Indirect aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . While the cloud albedo enhance- ment (Twomey effect) of warm clouds received most attention so far, they can15 scatter, absorb and emit thermal radiation. Thirdly aerosol particles act as cloud con properties influenced by20 aerosols (e.g. semi-direct effect, suppression of convection). Clouds themselves

  8. 7, 1268712714, 2007 Aerosols' influence

    E-Print Network [OSTI]

    Boyer, Edmond

    in the polluted cloud is due to a more efficient collection process. 1 Introduction10 The effect of aerosol). Numerous studies have addressed the effect of aerosol on marine stratocumulus clouds, due to their key role in the global radiative energy. Marine stratocumuli, bounded by strong marine boundary layer inversion, have

  9. Estimating the Radiative Forcing of Carbonaceous Aerosols over California based on Satellite and Ground Observations

    SciTech Connect (OSTI)

    Xu, Yangyang; Bahadur, R.; Zhao, Chun; Leung, Lai-Yung R.

    2013-10-04T23:59:59.000Z

    Carbonaceous aerosols have the potential to impact climate both through directly absorbing incoming solar radiation, and by indirectly affecting the cloud layer. To quantify this impact recent modeling studies have made great efforts to simulate both the spatial and temporal distribution of carbonaceous aerosols and their associated radiative forcing. This study makes the first observationally constrained assessment of the direct radiative forcing of carbonaceous aerosols at a regional scale over California. By exploiting multiple observations (including ground sites and satellites), we constructed the distribution of aerosol optical depths and aerosol absorption optical depths over California for a ten-year period (2000-2010). The total solar absorption was then partitioned into contributions from elemental carbon (EC), organic carbon (OC) and dust aerosols using a newly developed scheme. Aerosol absorption optical depth due to carbonaceous aerosols (EC and OC) at 440 nm is 50%-200% larger than natural dust, with EC contributing the bulk (70%-90%). Observationally constrained EC absorption agrees reasonably well with estimates from regional transport models, but the model underestimates the OC AAOD by at least 50%. We estimate that the TOA warming from carbonaceous aerosols is 0.7 W/m2 and the TOA forcing due to OC is close to zero. The atmospheric heating of carbonaceous aerosols is 2.2-2.9 W/m2, of which EC contributed about 80-90%. The atmospheric heating due to OC is estimated to be 0.1 to 0.4 W/m2, larger than model simulations. The surface brightening due to EC reduction over the last two decades is estimated to be 1.5-3.5 W/m2.

  10. Aerosol Science and Technology, 42:115, 2008 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 42:1­15, 2008 Copyright c American Association for Aerosol Research of a Fast-Response Aerosol Size Spectrometer Jason S. Olfert and Jian Wang Atmospheric Science Department by the mixing of the aerosol in the inlet of the instrument, which `smears' the detected aerosol over a range

  11. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

    SciTech Connect (OSTI)

    Kanniah, K. D.; Beringer, J.; Tapper, N. J.; Long, Charles N.

    2010-05-01T23:59:59.000Z

    We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptake under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.

  12. The Nearby Supernova Factory Ozone + Aerosol + Rayleigh

    E-Print Network [OSTI]

    Rayleigh + Aerosol Extinction monitor filter Auxiliary Camera CCD Spectrograph picko ff mirror Umbra

  13. Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection

    SciTech Connect (OSTI)

    Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni; Leung, Lai-Yung R.; Li, Zhanqing

    2012-05-10T23:59:59.000Z

    Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei (CCN) or ice nuclei (IN), constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported aerosol indirect forcing is negative, which does not account for aerosol-convective cloud interactions because the complex processes involved are poorly understood and represented in climate models. Here we report that aerosol indirect effect on deep convective cloud systems can lead to enhanced regional convergence and a strong top-of atmosphere (TOA) warming. Aerosol invigoration effect on convection can result in a strong radiative warming in the atmosphere (+5.6 W m-2) due to strong night-time warming, a lofted latent heating, and a reduced diurnal temperature difference, all of which could remarkably impact regional circulation and modify weather systems. We further elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions and concluded that wind shear and cloud base temperature play key roles in determining the significance of aerosol invigoration effect for convective systems.

  14. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01T23:59:59.000Z

    + ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh † , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

  15. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols. Abstract: Aerosol particles are ubiquitous in the atmosphere...

  16. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

  17. Mexico City Aerosol Analysis during MILAGRO using High Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Abstract: Submicron aerosol was analyzed during...

  18. Mexico City Aerosol Analysis during MILAGRO using High Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Abstract: Submicron aerosol was analyzed during...

  19. aerosol particles collected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saller 2002-05-07 6 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles Materials Science Websites Summary: being clouds...

  20. Analysis of fluidized beds for the simultaneous aerosol separation and heat recovery

    SciTech Connect (OSTI)

    El-Halwagi, M.M. [Auburn Univ., AL (United States)

    1993-01-01T23:59:59.000Z

    A mathematical model is developed to describe the performance of fluidized beds for the simultaneous heat recovery and aerosol separation. This new concept is analyzed in light of the various transport processes taking place within the bed. A two-phase model is developed for the system in which heat and aerosol particles are transferred from the bubble phase to the emulsion phase. In addition to aerosol separation via diffusion, interception, impaction and electrostatic precipitation, thermophoretic collection is also analyzed. The results indicate that high thermal and separation efficiencies can be obtained.

  1. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions

    E-Print Network [OSTI]

    Zender, Charles

    1 Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions Chao Luo1 , Charles S. Zender1 , Huisheng Bian2 , Swen Metzger3 Abstract We use an inorganic aerosol thermodynamic equilibrium model

  2. AERONET: The Aerosol Robotic Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  3. ScalaTrace: Tracing, Analysis and Modeling of HPC Codes at Scale

    SciTech Connect (OSTI)

    Mueller, F; Wu, X; Schulz, M; de Supinski, B; Gamblin, T

    2010-03-31T23:59:59.000Z

    Characterizing the communication behavior of large-scale applications is a difficult and costly task due to code/system complexity and their long execution times. An alternative to running actual codes is to gather their communication traces and then replay them, which facilitates application tuning and future procurements. While past approaches lacked lossless scalable trace collection, we contribute an approach that provides orders of magnitude smaller, if not near constant-size, communication traces regardless of the number of nodes while preserving structural information. We introduce intra- and inter-node compression techniques of MPI events, we develop a scheme to preserve time and causality of communication events, and we present results of our implementation for BlueGene/L. Given this novel capability, we discuss its impact on communication tuning and on trace extrapolation. To the best of our knowledge, such a concise representation of MPI traces in a scalable manner combined with time-preserving deterministic MPI call replay are without any precedence.

  4. Chapter 2: Sources and Deposition of Trace Metals 2.1 Main Sources of Atmospheric Pollution...............................................7

    E-Print Network [OSTI]

    Short, Daniel

    5 Chapter 2: Sources and Deposition of Trace Metals 2.1 Main Sources of Atmospheric Pollution distances causing regional or global pollution. Fig. 2.1: Sources of trace metals in the environment. Contamination of the atmosphere by pollutant trace metals affects the environment directly through its impact

  5. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

    2014-05-19T23:59:59.000Z

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

  6. 8, 68456901, 2008 Aerosol optical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance, Germany 2 Helmholtz Center Munich, German Research Center for Environmental Health, Institute

  7. Aerosol penetration through transport lines

    E-Print Network [OSTI]

    Dileep, V.R.

    1996-01-01T23:59:59.000Z

    to predict aerosol penetration thrush shrouded probes and transition fitting('s. Experimnents were carried Out to validate the code. The experiments were carried out for different flow rates for a particle size of IO lam aerodynamic diameter (AD...

  8. 6, 55435583, 2006 Aerosol nucleation

    E-Print Network [OSTI]

    Boyer, Edmond

    and cloud cover via the second indirect aerosol effect that would explain observed variations in global cloud cover. We esti- mate that the variation in radiative forcing resulting from a response of clouds

  9. Observations of the first aerosol indirect effect in shallow cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

    2011-02-08T23:59:59.000Z

    Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

  10. EAS/CEE 6795 Atmospheric Aerosols Fall 2011

    E-Print Network [OSTI]

    Weber, Rodney

    EAS/CEE 6795 Atmospheric Aerosols Fall 2011 Mon Wed Fri ­ 11 concepts of aerosol physics with applications to atmospheric aerosols. Text Book: Hinds, Aerosol Technology: Properties, behavior and measurement of airborne particles

  11. Global observations of desert dust and biomass burning aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning and desert dust observations from GOME and SCIAMACHY · Conclusions and Outlook #12; · Absorbing Aerosol

  12. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  13. Method for producing monodisperse aerosols

    DOE Patents [OSTI]

    Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

    1990-01-01T23:59:59.000Z

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  14. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect (OSTI)

    SCHWARTZ, S.E.

    2005-09-01T23:59:59.000Z

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  15. The effects of emission of anthropogenic chemical species on chemical and physical properties of aerosols

    SciTech Connect (OSTI)

    Lee, In Young

    1994-07-01T23:59:59.000Z

    Numerical studies have been carried out to examine the effects of chemically reactive trace gases emitted into the atmosphere on the evolution of chemical species concentrations, on the chemical composition and size distribution of airborne particles, and on optical properties of aerosols. Argonne`s chemistry module has been modified by refining the treatment of gas-to-particle conversion. The changes in size distribution and chemical composition of aerosols are calculated with consideration of heteramolecular diffusion and coagulation. Results of the 24 h real-time simulation indicate that the maximum oxidation rate of sulfur dioxide is about 0.4% h{sup {minus}1}; that the total aerosol volume increases with the increase in relative humidity by as much as 36% (due mainly to the collection of sulfuric acid embryos by preexisting particles); and that the surface area, a measure of optical depth, increases with the increase in relative humidity by as much as 27%.

  16. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema (OSTI)

    None

    2014-06-03T23:59:59.000Z

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  17. Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols

    SciTech Connect (OSTI)

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-09-25T23:59:59.000Z

    Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.

  18. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    SciTech Connect (OSTI)

    None

    2012-10-22T23:59:59.000Z

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  19. Black carbon aerosols and the third polar ice cap

    SciTech Connect (OSTI)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15T23:59:59.000Z

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  20. Aerosol Science and Technology, 43:641652, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 43:641­652, 2009 Copyright © American Association for Aerosol is the irreversibility of the hygroscopic growth fac- tor of aerosol particles. The instrument uses the hysteresis for ideal instrument performance in application to a test aerosol of fully deliquesce- able particles

  1. Aerosol Science and Technology, 43:799807, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 43:799­807, 2009 Copyright © American Association for Aerosol and Efflorescence of Potassium Salts Relevant to Biomass-Burning Aerosol Particles Evelyn J. Freney,1 Scot T. Martin mate- rial into the atmosphere. Such aerosol particles affect the climate in part because

  2. Aerosol Science and Technology, 47:9398, 2013 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Huang, Jiaxing

    Aerosol Science and Technology, 47:93­98, 2013 Copyright C American Association for Aerosol of Pt-Nanoparticles-Laden Graphene Crumples by Aerosol Spray Pyrolysis and Evaluation of aqueous chloroplatinic acid (H2PtCl6) and graphene oxide (GO) sheets via aerosol spray pyrol- ysis (ASP

  3. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals

    E-Print Network [OSTI]

    Zender, Charles

    Simulating aerosols using a chemical transport model with assimilation of satellite aerosol for simulating aerosols has been developed using a chemical transport model together with an assimilation of satellite aerosol retrievals. The methodology and model components are described in this paper

  4. Aerosol Science and Technology, 46:12391245, 2012 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Aerosol Science and Technology, 46:1239­1245, 2012 Copyright C American Association for Aerosol of Surfactants in Nanoparticles Produced by an Electrospray Aerosol Generator Amanda C. MacMillan,1 John B, USA Electrospray aerosol generators (EAGs) disperse conducting solutions into air, promptly neutralize

  5. Aerosol Science and Technology, 41:10891101, 2007 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 41:1089­1101, 2007 Copyright c American Association for Aerosol Interferometric Aerosol Absorption Spectrometry Arthur Sedlacek and Jeonghoon Lee Brookhaven National Laboratory, Atmospheric Sciences, Upton, New York, USA Aerosol light absorption still remains a difficult quantity to mea

  6. Aerosol Science and Technology, 40:97106, 2006 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 40:97­106, 2006 Copyright c American Association for Aerosol the aerosol particles, namely by vaporizing and condensing granular sodium chloride and by electrospraying materials are available for this article. Go to the publisher's online edition of Aerosol Science and Tech

  7. Aerosol Science and Technology, 46:937949, 2012 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 46:937­949, 2012 Copyright C American Association for Aerosol Distributions following Condensational Growth in Continuous Flow Aerosol Reactors as Derived from Residence Time Distributions: Theoretical Development and Application to Secondary Organic Aerosol Mikinori Kuwata and Scot T

  8. Aerosol Science and Technology, 44:11401145, 2010 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Huang, Jiaxing

    Aerosol Science and Technology, 44:1140­1145, 2010 Copyright © American Association for Aerosol-Assembly of Nanoparticles in Evaporating Aerosol Droplets: Preparation of Nanoporous Pt/TiO2 Composite Particles Hee Dong, USA Nanoporous Pt/TiO2 micro-particles were synthesized via an aerosol assisted co-assembly (AACA

  9. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    E-Print Network [OSTI]

    Shields, Laura Grace

    2008-01-01T23:59:59.000Z

    detection efficiencies of aerosol time of flight masscomposition of ambient aerosol particles. Environmentalsize dependent response of aerosol counters, Atmospheric

  10. Optimization of aerosol penetration through transport lines

    E-Print Network [OSTI]

    Wong Luque, Fermin Samuel

    1992-01-01T23:59:59.000Z

    function of Reynolds number for the aerosol transport system of Strom. Tube diameter = 15. 9 mm. 69 Figure Page 16. Comparison of model, experiments and Strom's data for aerosol penetration through the transport system of Strom. Tube diameter = 15. 9... mm, AED = 8 nm. 70 17. Comparison of model and experiments for aerosol penetration through the transport system of Strom. Tube diameter = 15. 9 mm, AED = 10 pm. . 71 18. Comparison of model, experiments and Strom's data for aerosol penetration...

  11. Trace elements in oil shale. Progress report, 1979-1980

    SciTech Connect (OSTI)

    Chappell, W R

    1980-01-01T23:59:59.000Z

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  12. 8, 7194, 2008 Sea salt aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 71­94, 2008 Sea salt aerosol refractive indices R. Irshad et al. Title Page Abstract Discussions Laboratory measurements of the optical properties of sea salt aerosol R. Irshad 1 , R. G. Grainger salt aerosol refractive indices R. Irshad et al. Title Page Abstract Introduction Conclusions

  13. 4, 20552088, 2004 Aerosol-ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni et al and Physics Discussions Aerosol-ozone correlations during dust transport episodes P. Bonasoni1 , P.bonasoni@isac.cnr.it) 2055 #12;ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni

  14. ATI TDA 5A aerosol generator evaluation

    SciTech Connect (OSTI)

    Gilles, D.A.

    1998-07-27T23:59:59.000Z

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  15. 6, 93519388, 2006 Aerosol-cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

  16. 5, 50075038, 2005 Aerosol effect on

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Physics Discussions Aerosol effect on the distribution of solar radiation over the clear-sky global oceansACPD 5, 5007­5038, 2005 Aerosol effect on solar radiation from MODIS L. A. Remer and Y. J. Kaufman the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial

  17. Biobriefcase aerosol collector

    DOE Patents [OSTI]

    Bell, Perry M. (Tracy, CA); Christian, Allen T. (Madison, WI); Bailey, Christopher G. (Pleasanton, CA); Willis, Ladona (Manteca, CA); Masquelier, Donald A. (Tracy, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2009-09-22T23:59:59.000Z

    A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

  18. Biobriefcase electrostatic aerosol collector

    DOE Patents [OSTI]

    Bell, Perry M. (Tracy, CA); Christian, Allen T. (Madison, WI); Bailey, Christopher G. (Pleasanton, CA); Willis, Ladona (Manteca, CA); Masquelier, Donald A. (Tracy, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2009-03-17T23:59:59.000Z

    A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

  19. Heat-Traced Fluid Transfer Lines

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01T23:59:59.000Z

    HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...

  20. Review of models applicable to accident aerosols

    SciTech Connect (OSTI)

    Glissmeyer, J.A.

    1983-07-01T23:59:59.000Z

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  1. Aerosol characterization study using multi-spectrum remote sensing measurement techniques.

    SciTech Connect (OSTI)

    Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew Stephen; Servantes, Brandon Lee

    2013-09-01T23:59:59.000Z

    A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

  2. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams; Greg Nash

    2004-03-01T23:59:59.000Z

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  3. Epidemic Contact Tracing via Communication Traces Katayoun Farrahi1

    E-Print Network [OSTI]

    interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data traces may be a viable option to arrest contagious outbreaks. Citation: Farrahi K, Emonet R, Cebrian M

  4. 7, 71717233, 2007 Aerosol absorption

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    black carbon refractive indices, new cloud radiative properties considering the effect of aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations radiative properties re- sults in a small global annual-mean all-sky absorption of 0.05 W m-2 and a positive

  5. Aerosol observing system platform integration and AAF instrumentation

    SciTech Connect (OSTI)

    Springston, S.; Sedlacek, A.

    2010-03-15T23:59:59.000Z

    As part of the federal government’s 2009 American Recovery and Reinvestment Act (ARRA), the U.S. DOE Office of Science allocated funds for the capital upgrade of the Atmospheric Radiation Measurement (ARM) Climate Research Facility to improve and expand observational capabilities related to cloud and aerosol properties. The ARM Facility was established as a national user facility for the global scientific community to conduct a wide range of interdisciplinary science. Part of the ARRA-funded expansion of the ARM Facility includes four new Aerosol Observing Systems (AOS) to be designed, instrumented, and mentored by BNL. The enclosures will be customized SeaTainers. These new platforms ([AMF2]: ARM Mobile Facility-2; [TWP-D]: Tropical Western Pacific at Darwin; and [MAOS-A]/[MAOS-C]: Mobile Aerosol Observing System-Aerosol/-Chemistry) will provide a laboratory environment for fielding instruments to collect data on aerosol life cycle, microphysics, and optical/physical properties. The extensive instrument suite includes both established methods and initial deployments of new techniques to add breadth and depth to the AOS data sets. The platforms are designed: (1) to have all instruments pre-installed before deployment, allowing a higher measurement duty cycle; (2) with a standardized configuration improving the robustness of data inter-comparability; (3) to provide remote access capability for instrument mentors; and (4) to readily accommodate guest instrumentation. The first deployment of the AMF2 platform will be at the upcoming StormVEx campaign held at Steamboat Springs, Colorado, October 15, 2010–March 31, 2011 while the TWP-D AOS will be stationed at the ARM Darwin site. The maiden deployments of the MAOS-A and MAOS-C platforms will be during the Ganges Valley Experiment (GVAX) scheduled for April 2011–April 2012. In addition to the ground-based AOS platforms, thee major instrument builds for the AAF are also being undertaken (new trace gas package [NO, NOx, NOy, CO, O3, and SO2]; Scanning Mobility Particle Sampler [SMPS]; and Particle into Liquid Sampler [PILS]). The current status of the AOS platforms, instrument suites, instituted QA/QC activities, projected AOS VAPs, and inlet design, as well as still-unresolved issues, will be presented.

  6. Adsorptive Stripping Voltammetric Measurements of Trace Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film Electrode. Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film...

  7. Detection of UV-absorbing aerosols using GOME and SCIAMACHY

    E-Print Network [OSTI]

    Graaf, Martin de

    Detection of UV-absorbing aerosols using GOME and SCIAMACHY Martin de Graaf KNMI #12; Outline · The Absorbing Aerosol Index: some theory · Detection of biomass burning aerosols and desert dust. -no clouds -no scattering aerosols Absorbing Aerosol Index AAI Algorithm LUT #12;GOME & SCIAMACHY

  8. DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    BALANCE Global and annual average energy fluxes in watts per square meter Schwartz, 1996, modified from;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS

  9. The role of aerosols in global in Earth energy budgets: the big questions that make

    E-Print Network [OSTI]

    Einat, Aharonov

    ;#12;Rosenfeld et al., ACP 2006 #12;The cloud cover effect provides radiative cooling #12;??? Cloud cover effect ??? #12;#12;#12;#12;#12;#12;#12;Radar Aircraft track Stevens et al: Pockets that aerosols induce through their impacts on shallow marine clouds #12;??? Cloud cover effect ??? #12

  10. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect (OSTI)

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23T23:59:59.000Z

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

  11. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical. Atmospheric aerosols have profound effects on the environment through several physicochemical processes on the respiratory and cardiovascular systems. Understanding aerosol atmospheric chemistry and its environmental

  12. Intercomparison of 14C Analysis of Carbonaceous Aerosols: Exercise 2009

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    analysis of carbonaceous aerosols: recent developments.Source apportionment of aerosols by 14 C measurements inAnalysis of Carbonaceous Aerosols Table 2a 14 C(TC) results

  13. Enhanced photolysis in aerosols: evidence for important surface effects.

    E-Print Network [OSTI]

    Nissenson, Paul; Knox, Christopher J H; Finlayson-Pitts, Barbara J; Phillips, Leon F; Dabdub, Donald

    2006-01-01T23:59:59.000Z

    irradiated for 30 s in the aerosol phase, (b) Mo(CO) 6 in 1-irradiation for both aerosols and the bulk-liquid solution.Enhanced photolysis in aerosols: evidence for important

  14. Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites

    E-Print Network [OSTI]

    Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites M I Mishchenko1 instruments suitable for aerosol remote sensing and give examples of aerosol retrievals obtained forcing directly by absorbing and reflecting sunlight, thereby cooling or heating the atmosphere

  15. Molecular Characterization of Organic Aerosols Using Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in OA, which is important for understanding chemical aging phenomena. Citation: Roach PJ, J Laskin, and A Laskin.2010."Molecular Characterization of Organic Aerosols Using...

  16. Photolytic processing of secondary organic aerosols dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processing of secondary organic aerosols dissolved in cloud droplets. Abstract: The effect of UV irradiation on the molecular composition of aqueous extracts of secondary...

  17. Quantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types

    E-Print Network [OSTI]

    Chen, Yang; Li, Qinbin; Kahn, Ralph A; Randerson, James T; Diner, David J

    2009-01-01T23:59:59.000Z

    coincident MISR and MODIS aerosol optical depths over land2003), Estimates of the spectral aerosol single scatteringalbedo and aerosol radiative effects during SAFARI 2000, J.

  18. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01T23:59:59.000Z

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  19. Synergy between Secondary Organic Aerosols and Long Range Transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between Secondary Organic Aerosols and Long Range Transport of Polycyclic Aromatic Hydrocarbons. Synergy between Secondary Organic Aerosols and Long Range Transport of Polycyclic...

  20. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Carbonaceous Aerosol Aging in Central California. Abstract: Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and...

  1. Measurements of submicron aerosols in Houston, Texas during the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. Abstract:...

  2. Building America Webinar: Sealing of Home Enclosures with Aerosol...

    Energy Savers [EERE]

    Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

  3. The dependence of ice microphysics on aerosol concentration in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. The dependence of ice microphysics on aerosol...

  4. Reduction in biomass burning aerosol light absorption upon humidificat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

  5. aerosols iii morphologic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: of aerosols. Keywords: metal waste recycling; aerosols; fire hazard; explosion hazard. 1. OVERVIEW ProductsRisks generated by the treatment of...

  6. Molecular Chemistry of Organic Aerosols Through the Application...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

  7. Comparative Analysis of Urban Atmospheric Aerosol by Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

  8. ambient aerosol concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer...

  9. ambient ultrafine aerosols: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer...

  10. aerosol flow reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPROACH TO SPACEBORN HYPERSPECTRAL OPTICAL FLOW ESTIMATION ON DUST AEROSOLS Fabian E, Canada ABSTRACT The significant role dust aerosols play in the earth's climate sys- tem and...

  11. aerosol formation durint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XI, Universit de 86 8, 68456901, 2008 Aerosol optical Physics Websites Summary: of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy...

  12. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema (OSTI)

    Ghan, Steve

    2014-06-12T23:59:59.000Z

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  13. aerosol ratio program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contribute a major portion of atmospheric aerosol mass loading 5. The estimated global annual Liou, K. N. 2 Studying Clouds and Aerosols with Lidar Depolarization Ratio and...

  14. aerosol optical thickness: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

  15. aerosol black carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

  16. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect (OSTI)

    Ghan, Steve

    2014-03-24T23:59:59.000Z

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  17. aerosol samples collected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elements analysis of aerosol samples from some CiteSeer Summary: Aerosols deposits on filters from ten Romanian towns with different kinds and levels of industrial development...

  18. aerosol size classification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006 Aerosol size Physics Websites Summary: ACPD 6, 10493-10522, 2006 Aerosol size distribution source identification T. W. Chan and M Esc Printer-friendly Version...

  19. aerosolized pentamidine effect: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  20. aerosol monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  1. aerosols radioactifs artificiels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  2. aerosolized polymerized type: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  3. aerosol concentration enrichment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  4. aerosol direct radiative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  5. aerosol biokinetics concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  6. aerosol particle analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: data analysis algorithm is presented. Our earlier algorithm assumed a monomodal aerosol size distribution, while the new algorithm allows us to partition the aerosol...

  7. aerosol radiative forcing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  8. aerosol research study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in atmospheric thermal structure, burning, bio-sources changes? 12;Aerosol microphysics: size distribution, mixing state, morphology, shape 9 Aerosol Science and Technology,...

  9. aerosol chemical composition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  10. Ice-condenser aerosol tests

    SciTech Connect (OSTI)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01T23:59:59.000Z

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  11. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01T23:59:59.000Z

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  12. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13T23:59:59.000Z

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  13. Characterization of aerosols produced by surgical procedures

    SciTech Connect (OSTI)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

    1994-07-01T23:59:59.000Z

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  14. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  15. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    SciTech Connect (OSTI)

    Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

    2005-07-01T23:59:59.000Z

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

  16. Aerosol Condensational Growth in Cloud Formation

    E-Print Network [OSTI]

    Geng, Jun

    2010-10-12T23:59:59.000Z

    A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation...

  17. 6, 32653319, 2006 Study aerosol with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 3265­3319, 2006 Study aerosol with two emission inventories and time factors A. de Meij et in Europe to two different emission inventories and temporal distribution of emissions A. de Meij 1 , M Study aerosol with two emission inventories and time factors A. de Meij et al. Title Page Abstract

  18. 5, 75777611, 2005 A look at aerosol

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 5, 7577­7611, 2005 A look at aerosol formation using data mining techniques S. Hyv and Physics Discussions A look at aerosol formation using data mining techniques S. Hyv¨onen1 , H. Junninen2 Korkeakoski, Finland 4 Department of Forest Ecology, Faculty of Agriculture and Forestry, P.O. Box 27, FIN

  19. 2, 12871315, 2002 Aerosol sources and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in climate variability and climate change studies (IPCC, 2001). Radiative forcing of natural and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime J aerosol sources in the Eastern Mediterranean5 Basin could be investigated at this location since the site

  20. 6, 1217912197, 2006 Aerosol formation in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size10 sections, which efficiently suppresses numerical diffusion. We operate removes freshly nucleated particles by coagulation. The observation of high ultrafine aerosol

  1. The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols

    SciTech Connect (OSTI)

    Wang, J.; Cubison, M. J.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

    2010-05-01T23:59:59.000Z

    Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (N{sub CCN}) are derived using Kohler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated N{sub CCN} is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, N{sub CCN} may be derived within {approx}20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall {kappa} (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its {kappa} from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their {kappa} to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, N{sub CCN} may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active photochemical environments such as Mexico City, a substantially shorter timescale during daytime for the conversion of hydrophobic POA and BC to hydrophilic particles than the 1-2 days used in some global models. The conversion time scale is substantially longer during night. Most POA and BC particles emitted during evening hours likely remain non-hygroscopic until efficiently internally mixed with secondary species in the next morning. The results also suggest that the assumed mixing state strongly impacts calculated N{sub CCN} only when POA and BC represent a large fraction of the total aerosol volume. One of the implications is that while physically unrealistic, external mixtures, which are used in many global models, may also sufficiently predict N{sub CCN} for aged aerosol, as the contribution of non-hygroscopic POA and BC to overall aerosol volume is often substantially reduced due to the condensation of secondary species.

  2. Enabling Event Tracing at Leadership-Class Scale through I/O Forwarding Middleware

    SciTech Connect (OSTI)

    Ilsche, Thomas [Technische Universitat Dresden] [Technische Universitat Dresden; Schuchart, Joseph [Technische Universitat Dresden] [Technische Universitat Dresden; Cope, Joseph [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Kimpe, Dries [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Jones, Terry R [ORNL] [ORNL; Knuepfer, Andreas [Technische Universitat Dresden] [Technische Universitat Dresden; Iskra, Kamil [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Ross, Robert [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Nagel, Wolfgang E. [Technische Universitat Dresden] [Technische Universitat Dresden; Poole, Stephen W [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Event tracing is an important tool for understanding the performance of parallel applications. As concurrency increases in leadership-class computing systems, the quantity of performance log data can overload the parallel file system, perturbing the application being observed. In this work we present a solution for event tracing at leadership scales. We enhance the I/O forwarding system software to aggregate and reorganize log data prior to writing to the storage system, significantly reducing the burden on the underlying file system for this type of traffic. Furthermore, we augment the I/O forwarding system with a write buffering capability to limit the impact of artificial perturbations from log data accesses on traced applications. To validate the approach, we modify the Vampir tracing tool to take advantage of this new capability and show that the approach increases the maximum traced application size by a factor of 5x to more than 200,000 processors.

  3. Effects of Aerosols on Autumn Precipitation over Mid-Eastern China

    SciTech Connect (OSTI)

    Chen, Siyu; Huang, J.; Qian, Yun; Ge, Jinming; Su, Jing

    2014-09-20T23:59:59.000Z

    Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Ours results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to the relatively more stable synoptic system in autumn. The impact of large-scale circulation dominated in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.

  4. Study for radionuclide transfer ratio of aerosols generated during heat cutting

    SciTech Connect (OSTI)

    Iguchi, Yukihiro; Baba, Tsutomu; Kawakami, Hiroto [Japan Nuclear Energy Safety Organization - JNES (Japan); Kitahara, Takashi; Watanabe, Atsushi [Hitachi, Ltd. (Japan); Kodama, Mitsuhiro [Nippon Nuclear Fuel Development Co., Ltd. (Japan)

    2007-07-01T23:59:59.000Z

    The metallic elements with a low melting point and high vapor pressure seemed to transfer in aerosols selectively at dismantling reactor internals using heat cutting. Therefore, the arc melting tests of neutron irradiated zirconium alloy were conducted to investigate the radionuclide transfer behavior of aerosols generated during the heat cutting of activated metals. The arc melting test was conducted using a tungsten inert gas welding machine in an inert gas or air atmosphere. The radioactive aerosols were collected by filter and charcoal filter. The test sample was obtained from Zry-2 fuel cladding irradiated in a Japanese boiling water reactor for five fuel cycles. The activity analysis, chemical composition measurement and scanning electron microscope observation of aerosols were carried out. Some radionuclides were enriched in the aerosols generated in an inert gas atmosphere and the radionuclide transfer ratio did not change remarkably by the presence of air. The transfer ratio of Sb-125 was almost the same as that of Co-60. It was expected that Sb-125 was enriched from other elements since Sb is an element with a low melting point and high vapor pressure compared with the base metal (Zr). In the viewpoint of the environmental impact assessment, it became clear that the influence if Sb-125 is comparable to Co-60. The transfer ratio of Mn-54 was one order higher compared with other radionuclides. The results were discussed on the basis of thermal properties and oxide formation energy of the metallic elements. (authors)

  5. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    SciTech Connect (OSTI)

    Metternich, P.; Georgii, H.W.; Groeneveld, K.O.

    1983-04-01T23:59:59.000Z

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  6. ARM - AOS Aerosol Properties Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACTOperations AMF2ViewersAOS Aerosol

  7. Comparative Cost Analysis of Alternative Animal Tracing Strategies Directed Toward Foot and Mouth Disease Outbreaks in the Texas High Plains

    E-Print Network [OSTI]

    Looney, John C.

    2010-07-14T23:59:59.000Z

    The primary objective of this study is to evaluate the industry impact of a hypothetical Foot and Mouth Disease (FMD) outbreak in the Texas High Plains using alternative animal tracing levels. To accomplish this objective, an epidemiological disease...

  8. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols

    SciTech Connect (OSTI)

    Dawson, Matthew L.; Varner, Mychel E.; Perraud, Veronique M.; Ezell, Michael J.; Wilson, Jacqueline M.; Zelenyuk, Alla; Gerber, Robert B.; Finlayson-Pitts, Barbara J.

    2014-12-18T23:59:59.000Z

    Aerosol particles are ubiquitous in the atmosphere and have been shown to impact the Earth’s climate, reduce visibility, and adversely affect human health. Modeling the evolution of aerosol systems requires an understanding of the species and mechanisms involved in particle growth, including the complex interactions between particle- and gas-phase species. Here we report studies of displacement of amines (methylamine, dimethylamine or trimethylamine) in methanesulfonate salt particles by exposure to a different gas-phase amine, using a single particle mass spectrometer, SPLAT II. The variation of the displacement with the nature of the amine suggests that behavior is dependent on water in or on the particles. Small clusters of methanesulfonic acid with amines are used as a model in quantum chemical calculations to identify key structural elements that are expected to influence water uptake, and hence the efficiency of displacement by gas-phase molecules in the aminium salts. Such molecular-level understanding of the processes affecting the ability of gas-phase amines to displace particle-phase aminium species is important for modeling the growth of particles and their impacts in the atmosphere.

  9. Aerosol Releases from the ICPP July 2005 FINAL REPORT

    E-Print Network [OSTI]

    Aerosol Releases from the ICPP July 2005 FINAL REPORT AEROSOL RELEASES FROM THE IDAHO CHEMICAL, Inc. July 2005 #12;Aerosol Releases from the ICPP July 2005 TABLE OF CONTENTS 1.0 Introduction ......................................... 5-1 5.1 Beta-minus Iodine Aerosol Formation Mechanism

  10. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect (OSTI)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05T23:59:59.000Z

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

  11. Characterization of the Molecular Composition of Secondary Organic Aerosols using High Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Sellon, Rachel Elizabeth

    2012-01-01T23:59:59.000Z

    in secondary organic aerosol formation from isoprene, Proc.biogenic secondary organic aerosol, J. Phys. Chem. A, 112(in secondary organic aerosol, Environ. Sci. Technol. , 41(

  12. Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHsAirborne minerals and related aerosol particles: Effects on

  13. Real time in situ detection of organic nitrates in atmospheric aerosols

    E-Print Network [OSTI]

    Rollins, Andrew W.

    2011-01-01T23:59:59.000Z

    Biogenic Secondary Organic Aerosol. J. Phys. Chem. A 2008,H. Secondary organic aerosol (SOA) formation from reactionsec- ondary organic aerosol yields. Atmospheric Chemistry

  14. Composition, sources, and formation of secondary organic aerosols from urban emissions

    E-Print Network [OSTI]

    Liu, Shang; Liu, Shang

    2012-01-01T23:59:59.000Z

    organonitrate functional groups in aerosol particles200 5.1v aerosol Chapter 3 Meteorological conditions during theSecondary organic aerosol formation from fossil fuel sources

  15. Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols, or collectively called particulate matters (PM) are ubiquitous indoor

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Editorial Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols or aerosols and their transport in built environment. The first five papers in this special issue addressed influences ozone removal and the secondary organic aerosols generation. The study from Zuraimi et al

  16. Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere

    E-Print Network [OSTI]

    Einat, Aharonov

    Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols Department of Chemical Engineering University of Patras, Greece #12;Sources of Organic AerosolSources of Organic Aerosol Primary Secondary Anthropogenic ·Gasoline ·Diesel ·Biomass burning ·Meat Cooking Biogenic

  17. Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2

    E-Print Network [OSTI]

    Tilstra, Gijsbert

    Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

  18. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios K.; Torres, Sharon G.; Hakala, J. Alexandra; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan

    2013-01-01T23:59:59.000Z

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO{sub 2} or CO{sub 2}-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO{sub 2}, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO{sub 2}. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  19. Distributed trace using central performance counter memory

    DOE Patents [OSTI]

    Satterfield, David L; Sexton, James C

    2013-10-22T23:59:59.000Z

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  20. Distributed trace using central performance counter memory

    DOE Patents [OSTI]

    Satterfield, David L.; Sexton, James C.

    2013-01-22T23:59:59.000Z

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  1. LEARNING FROM BULLYING TRACES IN SOCIAL MEDIA

    E-Print Network [OSTI]

    Zhu, Xiaojin "Jerry"

    of bullying traces collected Lady Gaga Movie: Bully #12;Questions NLP Can Help with 8 Is the post a bullying

  2. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27T23:59:59.000Z

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  3. Casimir Effect and Trace formula Andreas Wirzba

    E-Print Network [OSTI]

    Wirzba, Andreas - Helmholtz-Institut für Strahlen- und Kernphysik (HISKP)

    1 Casimir Effect and Trace formula Andreas Wirzba Institut f¨ur Kernphysik Forschungszentrum J¨ulich · · Andreas Wirzba Casimir effect and trace formula Copenhagen, 17 May 2006 #12;1 Casimir Effect and Trace formula Andreas Wirzba Institut f¨ur Kernphysik Forschungszentrum J¨ulich 1. Introduction to the Casimir

  4. The behavior of constant rate aerosol reactors

    SciTech Connect (OSTI)

    Friedlander, S.K.

    1982-01-01T23:59:59.000Z

    An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. The particle sizes of interest range from less than 10 angstrom (molecular clusters) to 10 ..mu..m. Such reactors may be operated to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol. Aerosol reactors can be characterized by three temporal or spatial zones or regions of operation for batch and flow reactors, respectively. In zone I, chemical reaction results in the formation of condensable molecular products which nucleate and form very high concentrations of small particles. The number density depends on the concentration of preexisting aerosol. Zone II is a transition region in which the aerosol number concentration levels off as a result of hetergeneous condensation by the stable aerosol. In zone III coagulation becomes sufficiently rapid to reduce the particle number concentration. There may be a zone IV in which agglomerates form.

  5. A field study on the trace metal behavior in atmospheric circulating fluidized-bed coal combustion

    SciTech Connect (OSTI)

    Lind, T.; Kauppinen, E.I.; Jokiniemi, J.K.; Maenhaut, W.

    1994-12-31T23:59:59.000Z

    Trace element behavior in atmospheric circulating fluidized-bed combustion (CFBC) of Venezuelan bituminous coal was studied by determining particle size distributions in the CFBC flue gas. The size distributions of calcium, iron, aluminium, and 21 trace elements, Sc, V, Cr, Mn, Co, Ni, Zn, Ga, As, Se, Sr, Cd, Sb, Cs, Ba, La, Ce, Sm, Lu, Pb, and Th, in the size range 0.01--70{micro}m, were determined by collecting aerosols with a low-pressure impactor-cyclone sampling train from the flue gases of an 80-MW(th) CFBC boiler upstream of the electrostatic precipitator. The collected samples were analyzed gravimetrically and with instrumental neutron activation analysis (INAA), particle-induced X-ray emission analysis (PIXE), and inductively coupled plasma mass spectrometry (ICP-MS). The number size distributions of the aerosols were determined with a differential electrical mobility method in the size range 0.01--0.8 {micro}m. In the ultrafine particle mode, i.e., D{sub p} < 0.1 {micro}m, the CFBC number concentrations varied strongly during the experiments, being one to two orders of magnitude lower than those observed in pulverized coal combustion. For all of the elements studied, 75% or more were found in particles larger than 5{micro}m. None of the studied elements showed significant vaporization and subsequent chemical surface reaction or condensation in the CFBC. The Sr, Se, V, Zn, Ga, Cs, Ba, La, Sm, Lu, and Th size distributions resembled those of aluminium, suggesting their occurrence in aluminosilicate-rich particles in the fly ash. The association of the trace elements with aluminium in the fly ash particles may result from reactions of the trace elements with the aluminosilicate mineral particles inside the burning coal particles, or their initial occurrence in association with these minerals.

  6. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14T23:59:59.000Z

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  7. Trace Explosive Detection Using Nanosensors

    SciTech Connect (OSTI)

    Senesac, Larry R [ORNL; Thundat, Thomas George [ORNL

    2008-01-01T23:59:59.000Z

    Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

  8. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19T23:59:59.000Z

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  9. A shrouded probe aerosol sampling cyclone

    E-Print Network [OSTI]

    Little, Stewart Craig

    1992-01-01T23:59:59.000Z

    AED at three different flow rates. The results would then be interpolated to give the needed flow rate value. The collection efficiency of the cyclone was characterized by the approach of generating liquid aerosols containing an analytical tracer... was neutralized by passing the aerosol flow through a chamber which contained a 10 mCi krypton 85 line source. Aerosol size produced by this apparatus depends on the concentration of the non-volatile solute, the size of the orifice, and the frequency applied...

  10. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01T23:59:59.000Z

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  11. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We the microphysical properties of clouds [Lubin and Vogelmann, 2006]. Deposition of BC onto snow and ice changes

  12. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01T23:59:59.000Z

    roemerianus). We also burned kudzu (Pueraria lobata), ancommon reed, hickory, kudzu, needlegrass rush, rhododendron,included ‘leafy’ fuels such as kudzu, turkey oak, sagebrush,

  13. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01T23:59:59.000Z

    primarily focused on agricultural waste [Jenkins et al. ,emissions from these agricultural wastes have attractedpectinata). Two agricultural waste products that are burned

  14. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect (OSTI)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Zelenyuk, Alla; Earle, Michael; MacDonald, A. M.; Liu, Peter S.; Leaitch, W. R.

    2014-03-06T23:59:59.000Z

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 ?m (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm?3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 ?m) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface.

  15. Aerosol Best Estimate Value-Added Product

    SciTech Connect (OSTI)

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19T23:59:59.000Z

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  16. 5, 90399063, 2005 Arctic aerosol effect

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiation Measurement (ARM) data, we find surface cloud radiative forcing (SCRF) is -22 W/m 2 for shortwave. If aerosols are taken into account, the SCRF has been increased during winter while15 negative SCRF has been

  17. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, C.; Wagener, R.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; Wehrli, C.; Stohl, A.; Mazzola, M.; Lanconelli, C.; Vitale, V.; Stebel, K.; Aaltonen, V.; de Leeuw, G.; Rodriguez, E.; Herber, A. B.; Radionov, V. F.; Zielinski, T.; Petelski, T.; Sakerin, S. M.; Kabanov, D. M.; Xue, Y.; Mei, L.; Istomina, L.; Wagener, R.; McArthur, B.; Sobolewski, P. S.; Kivi, R.; Courcoux, Y.; Larouche, P.; Broccardo, S.; Piketh, S. J.

    2015-01-01T23:59:59.000Z

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.

  18. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, C.; Wagener, R.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; et al

    2015-01-01T23:59:59.000Z

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i)more »a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less

  19. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28T23:59:59.000Z

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  20. Apparatus for sampling and characterizing aerosols

    DOE Patents [OSTI]

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11T23:59:59.000Z

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  1. Aerosol fabrication methods for monodisperse nanoparticles

    DOE Patents [OSTI]

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21T23:59:59.000Z

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  2. Development of plutonium aerosol fractionation system 

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

  3. Development of plutonium aerosol fractionation system

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    microns), inhalation accidents occurring during maintenance operations can be expected to result in long term retention of 20% to 30% of the inhaled aerosol. Thind"' performed experiments over a span of one year to observe the consistency...DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August...

  4. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01T23:59:59.000Z

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  5. aerosol properties in-canopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosol, cloud condensation nuclei, water accommodation coefficient, organic of aerosol size distribution, chemical composition and cloud condensation nuclei (CCN) concentration...

  6. Trace Holdings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower StationTown ofTown ofTown ofTrace Holdings Jump to:

  7. Deposition of biological aerosols on HVAC heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Walker, Ian

    2001-09-01T23:59:59.000Z

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  8. Modeling the impacts of biomass burning on air quality in and around Mexico City

    E-Print Network [OSTI]

    Lei, W.

    The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire ...

  9. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06T23:59:59.000Z

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  10. AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL

    E-Print Network [OSTI]

    AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL SPECIATION MONITOR Yin-Nan Lee1 , Fan Mei1 , Stephanie DeJong1 , Anne Jefferson2 1 Atmospheric Sciences Division, Brookhaven National Lab, Upton, NY 2 CIRES, University of Colorado, Boulder, CO

  11. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  12. Direct and semidirect aerosol effects of southern African biomass burning aerosol

    E-Print Network [OSTI]

    Wood, Robert

    radiative effects associated with increased low cloud cover dominate over a weaker positive allsky direct 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers

  13. Prediction of rainwater acidity using trace element concentrations

    SciTech Connect (OSTI)

    Vong, R.J.; Peterson, R.E. (Univ. of Washington, Seattle (USA))

    1988-09-01T23:59:59.000Z

    It is of interest to be able to estimate the contribution of an anthropogenic emission source to downwind rainwater chemistry. The authors here consider the closure of a large copper smelter which operated in a region where background and other emission sources should contribute smaller amounts of atmospheric sulfur than the smelter. An additional simplification existed in that meteorology associated with rain was relatively well known and consistent. A field experiment was conducted in the winters of 1985 and 1986 to collect rainwater at sites upwind and downwind of the Tacoma, Washington smelter. The smelters SO{sub 2} emissions, their conversion to SO{sub 4}= via three oxidants (O{sub 3}, H{sub 2}O{sub 2}, and O{sub 2} - Fe catalyzed reactions), diffusion, transport, and aerosol/gas scavenging previously have been estimated while adjusting model parameters until the predictions fit the rainwater data. To take advantage of the unique experimental design afforded by the closure of the smelter, statistical analysis was performed on NO{sub 3}-, SO{sub 4}(xs)= (excess of seasalt), and pH data; analysis of variance (ANOVA) confirmed that the smelter had a significant (p < .01) influence on rainwater pH and SO{sub 4}(xs). The analysis presented here extends the ANOVA by applying a multivariate regression technique to new data for trace element concentrations for the same rain samples. To predict rainwater acidity, they derive fingerprints from trace element data, identify a source or process related to that fingerprint, and compare the predicted contributions for pre- and post- closure samples.

  14. Project AIRSTREAM: Trace gas final report

    SciTech Connect (OSTI)

    Leifer, R.

    1992-12-01T23:59:59.000Z

    The results of 10 years of sampling for trace gases in the upper troposphere and lower stratosphere are presented. These samples were collected under the auspices of the Atomic Energy Commission (AEC), the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE). Almost 1000 whole air samples were collected during the years 1973 to 1983 under Project AIRSTREAM. Project AIRSTREAM was part of the Environmental Measurements Laboratory's (EML, at that time called the Health and Safety Laboratory/HASL) research effort to investigate the impact of the injection of radionuclides and stable compounds into the stratosphere. One or more of the following compounds were analyzed: CCl[sub 3]F, CCl[sub 2]F[sub 2], CCl[sub 4], N[sub 2]O, SF[sub 6], CO[sub 2], CH[sub 4], CH[sub 3]CCl[sub 3], and COS. Details of the Project's quality assurance program are discussed. Also included in the report are two-dimensional plots of the concentration of CCl[sub 3]F and a complete tabulation of the data.

  15. Project AIRSTREAM: Trace gas final report

    SciTech Connect (OSTI)

    Leifer, R.

    1992-12-01T23:59:59.000Z

    The results of 10 years of sampling for trace gases in the upper troposphere and lower stratosphere are presented. These samples were collected under the auspices of the Atomic Energy Commission (AEC), the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE). Almost 1000 whole air samples were collected during the years 1973 to 1983 under Project AIRSTREAM. Project AIRSTREAM was part of the Environmental Measurements Laboratory`s (EML, at that time called the Health and Safety Laboratory/HASL) research effort to investigate the impact of the injection of radionuclides and stable compounds into the stratosphere. One or more of the following compounds were analyzed: CCl{sub 3}F, CCl{sub 2}F{sub 2}, CCl{sub 4}, N{sub 2}O, SF{sub 6}, CO{sub 2}, CH{sub 4}, CH{sub 3}CCl{sub 3}, and COS. Details of the Project`s quality assurance program are discussed. Also included in the report are two-dimensional plots of the concentration of CCl{sub 3}F and a complete tabulation of the data.

  16. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

  17. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. For the combination of both test stands, the round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the much larger flow rates and equipment that would be required. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

  18. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

  19. Environmental radiation safety: source term modification by soil aerosols. Interim report

    SciTech Connect (OSTI)

    Moss, O.R.; Allen, M.D.; Rossignol, E.J.; Cannon, W.C.

    1980-08-01T23:59:59.000Z

    The goal of this project is to provide information useful in estimating hazards related to the use of a pure refractory oxide of /sup 238/Pu as a power source in some of the space vehicles to be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere, and to impact with the earth's surface without releasing any plutonium, the possibility that such an event might produce aerosols composed of soil and /sup 238/PuO/sub 2/ cannot be absolutely excluded. This report presents the results of our most recent efforts to measure the degree to which the plutonium aerosol source term might be modified in a terrestrial environment. The five experiments described represent our best effort to use the original experimental design to study the change in the size distribution and concentration of a /sup 238/PuO/sub 2/ aerosol due to coagulation with an aerosol of clay or sandy loam soil.

  20. Traces on Module Categories over Fusion Categories

    E-Print Network [OSTI]

    Gregor Schaumann

    2015-01-27T23:59:59.000Z

    We consider traces on module categories over pivotal fusion categories which are compatible with the module structure. It is shown that such module traces characterise the Morita classes of special haploid symmetric Frobenius algebras. Moreover, they are unique up to a scale factor and they equip the dual category with a pivotal structure. This implies that for each pivotal structure on a fusion category over the complex numbers there exists a conjugate pivotal structure defined by the canonical module trace.

  1. Impact of anthropogenic absorbing aerosols on clouds and precipitation

    E-Print Network [OSTI]

    to the climate system. On the other hand, the atmospheric heating and surface cooling introduced progresses* Chien Wang *Reprinted from Atmospheric Research, 122: 237­249 Copyright © 2013 with kind. Being data-driven, the Program uses extensive Earth system and economic data and models to produce

  2. Impact of aerosols on convective clouds and precipitation

    E-Print Network [OSTI]

    on the Science and Policy of Global Change combines cutting-edge scientific research with independent policy are a critical factor in the atmospheric hydro- logical cycle and radiation budget. As a major agent for clouds

  3. Shortwave Radiative Impacts from Aerosol Effects on Marine Shallow Cumuli

    E-Print Network [OSTI]

    Zuidema, Paquita

    is because of the cloud radiation Bony & Dufresne, 2005 #12;ultimately we'll want global (satellite indirect effects, 1) what is the relative radiative importance of cloud microphysical versus macrophysical effects matter to the fluxes for small&thicker clouds) 3D ICA #12;what is the relative radiative

  4. ARM - Publications: Science Team Meeting Documents: Impacts of aerosols and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArctic Facility forofCloudthe ECMWF Forecastclouds

  5. Aerosol Simulations by LLNL IMPACT and Comparisons with Field Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting forForcing During

  6. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    SciTech Connect (OSTI)

    Mahowald, Natalie [Cornell University; Rothenberg, D. [Cornell University; Lindsay, Keith [National Center for Atmospheric Research (NCAR); Doney, Scott C. [Woods Hole Oceanographic Institution; Moore, Jefferson Keith [University of California, Irvine; Randerson, James T. [University of California, Irvine; Thornton, Peter E [ORNL; Jones, C. D. [Hadley Center, Devon, England

    2011-02-01T23:59:59.000Z

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  7. Results and code predictions for ABCOVE (aerosol behavior code validation and evaluation) aerosol code validation: Test AB6 with two aerosol species. [LMFBR

    SciTech Connect (OSTI)

    Hilliard, R K; McCormack, J C; Muhlestein, L D

    1984-12-01T23:59:59.000Z

    A program for aerosol behavior code validation and evaluation (ABCOVE) has been developed in accordance with the LMFBR Safety Program Plan. The ABCOVE program is a cooperative effort between the USDOE, the USNRC, and their contractor organizations currently involved in aerosol code development, testing or application. The second large-scale test in the ABCOVE program, AB6, was performed in the 850-m/sup 3/ CSTF vessel with a two-species test aerosol. The test conditions simulated the release of a fission product aerosol, NaI, in the presence of a sodium spray fire. Five organizations made pretest predictions of aerosol behavior using seven computer codes. Three of the codes (QUICKM, MAEROS and CONTAIN) were discrete, multiple species codes, while four (HAA-3, HAA-4, HAARM-3 and SOFIA) were log-normal codes which assume uniform coagglomeration of different aerosol species. Detailed test results are presented and compared with the code predictions for seven key aerosol behavior parameters.

  8. Geothermal: Sponsored by OSTI -- Trace metal characterization...

    Office of Scientific and Technical Information (OSTI)

    Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorpotion analysis. Annual progress report...

  9. Aerosol beam-focus laser-induced plasma spectrometer device

    DOE Patents [OSTI]

    Cheng, Meng-Dawn (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  10. iDirector with Alex Laskin: Atmospheric aerosols | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alex Laskin: Atmospheric aerosols iDirector with Alex Laskin: Atmospheric aerosols Released: September 03, 2014 iDirector with Alex Laskin iDirector interview with EMSL scientist...

  11. Application of computational fluid dynamics to aerosol sampling and concentration

    E-Print Network [OSTI]

    Hu, Shishan

    2009-05-15T23:59:59.000Z

    An understanding of gas-liquid two-phase interactions, aerosol particle deposition, and heat transfer is needed. Computational Fluid Dynamics (CFD) is becoming a powerful tool to predict aerosol behavior for related design work. In this study...

  12. aerosol deposition method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and remotely sensed aerosol observations. William D. Collins; Phillip J. Rasch; Brian E. Eaton; Boris V. Khattatov; Jean-francois Lamarque; C. Zender 2001-01-01 43 Ambient aerosol...

  13. The seasonality of aerosol properties in Big Bend National Park

    E-Print Network [OSTI]

    Allen, Christopher Lee

    2007-04-25T23:59:59.000Z

    ), to characterize the seasonal variability of the Big Bend regions aerosol optical properties. Mass extinction efficiencies and relative humidity scattering enhancement factors were calculated for both externally and internally mixed aerosol populations for all size...

  14. Development of the Captive Aerosol Growth and Evolution Chamber System

    E-Print Network [OSTI]

    Antonietti, Carlos G

    2014-08-28T23:59:59.000Z

    The Captive Aerosol Growth and Evolution (CAGE) Chamber System is an tool designed to study the evolution of aerosols under conditions identical or similar to those of the surrounding environment. Our motivation was to quantify the sensitivity...

  15. aerosol particle penetration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the subsequent aerosol penetration performance through these tubes were conducted for a aerosol particle size range of 5 nm to 20 nm and a flow rate range of 28 Lmin to 169.9...

  16. Aerosols generated by spills of viscous solutions and slurries

    SciTech Connect (OSTI)

    Ballinger, M Y; Hodgson, W H

    1986-12-01T23:59:59.000Z

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 ..mu..m, and the geometric standard deviation ranged from 3.8 to 28.0.

  17. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  18. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    E-Print Network [OSTI]

    Robock, Alan

    aerosols can potentially result in an increase in acid deposition. [4] Acid rain has been studiedSulfuric acid deposition from stratospheric geoengineering with sulfate aerosols Ben Kravitz,1 Alan limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2

  19. Volume 8 No.1 -Summer 2011 Science & Aerosols

    E-Print Network [OSTI]

    Chen, Ying

    Volume 8 No.1 - Summer 2011 1 Science & Aerosols How advances in spectroscopy may change climate clues to galaxy formation 04Science & Aerosols How advances in spectroscopy may change climate science. No university buildings were injured in the making of this photo! #12;Volume 8 No.1 - Summer 2011 5 &aerosols

  20. SUNLIGHT TRANSMISSION THROUGH DESERT DUST AND MARINE AEROSOLS: DIFFUSE LIGHT

    E-Print Network [OSTI]

    SUNLIGHT TRANSMISSION THROUGH DESERT DUST AND MARINE AEROSOLS: DIFFUSE LIGHT CORRECTIONS TO SUN transmission through desert dust and marine aerosols: Diffuse light corrections to Sun photometry 2004; published 27 April 2004. [1] Desert dust and marine aerosols are receiving increased scientific

  1. Export of Asian pollution during two cold front episodes of the TRACE-P experiment

    E-Print Network [OSTI]

    Palmer, Paul

    Export of Asian pollution during two cold front episodes of the TRACE-P experiment C. Mari how these cyclonic systems have impacted the export of pollution out of the Asian continent. We of pollution are met during flight 13 (i.e., the occurrences of the warm conveyor belt near the source regions

  2. Can aerosols be trapped in open flows?

    E-Print Network [OSTI]

    Rafael D. Vilela; Adilson E. Motter

    2008-01-22T23:59:59.000Z

    The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are consistent with the assumption that such finite-size particles always escape in open chaotic advection. Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the absence and presence of gravitational effects, and both when the dynamics of the fluid particles is hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices in the flow and is predicted to happen for realistic particle-fluid density ratios.

  3. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect (OSTI)

    Tang, I.N.

    1999-11-01T23:59:59.000Z

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  4. CADS:Cantera Aerosol Dynamics Simulator.

    SciTech Connect (OSTI)

    Moffat, Harry K.

    2007-07-01T23:59:59.000Z

    This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

  5. Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M

    SciTech Connect (OSTI)

    Kirkevag, A.; Iversen, T.; Seland, O.; Hoose, C.; Kristjansson, J. E.; Struthers, H.; Ekman, A. M.; Ghan, Steven J.; Griesfeller, Jan; Nilsson, E. D.; Schulz, M.

    2013-02-08T23:59:59.000Z

    The objective of this study is to document and evaluate recent changes and updates to the module for aerosols and aerosol–cloud–radiation interactions in the atmospheric module CAM4-Oslo of the core version of the Norwegian Earth System Model (NorESM), NorESM1-M. Particular attention is paid to the role of natural organics, sea salt, and mineral dust in determining the gross aerosol properties as well as the anthropogenic contribution to these properties and the associated direct and indirect radiative forcing. The aerosol module is extended from earlier versions that have been published, and includes life-cycling of sea salt, mineral dust, particulate sulphate, black carbon, and primary and secondary organics. The impacts of most of the numerous changes since previous versions are thoroughly explored by sensitivity experiments. The most important changes are: modified prognostic sea salt emissions; updated treatment of precipitation scavenging and gravitational settling; inclusion of biogenic primary organics and methane sulphonic acid (MSA) from oceans; almost doubled production of land-based biogenic secondary organic aerosols (SOA); and increased ratio of organic matter to organic carbon (OM/OC) for biomass burning aerosols from 1.4 to 2.6. Compared with in situ measurements and remotely sensed data, the new treatments of sea salt and dust aerosols give smaller biases in near-surface mass concentrations and aerosol optical depth than in the earlier model version. The model biases for mass concentrations are approximately unchanged for sulphate and BC. The enhanced levels of modeled OM yield improved overall statistics, even though OM is still underestimated in Europe and overestimated in North America. The global anthropogenic aerosol direct radiative forcing (DRF) at the top of the atmosphere has changed from a small positive value to ?0.08 W m?2 in CAM4-Oslo. The sensitivity tests suggest that this change can be attributed to the new treatment of biomass burning aerosols and gravitational settling. Although it has not been a goal in this study, the new DRF estimate is closer both to the median model estimate from the AeroCom intercomparison and the best estimate in IPCC AR4. Estimated DRF at the ground surface has increased by ca. 60%, to ?1.89 W m?2. We show that this can be explained by new emission data and omitted mixing of constituents between updrafts and downdrafts in convective clouds. The increased abundance of natural OM and the introduction of a cloud droplet spectral dispersion formulation are the most important contributions to a considerably decreased estimate of the indirect radiative forcing (IndRF). The IndRF is also found to be sensitive to assumptions about the coating of insoluble aerosols by sulphate and OM. The IndRF of ?1.2 W m?2, which is closer to the IPCC AR4 estimates than the previous estimate of ?1.9 W m?2, has thus been obtained without imposing unrealistic artificial lower bounds on cloud droplet number concentrations.

  6. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    regions consistent with the global mean statistics. However, the effective cloud particle radius showedA study of the direct and indirect effects of aerosols using global satellite data sets of aerosol between aerosol and cloud parameters derived from satellite remote sensing for evaluating the radiative

  7. Aerosol-measurement techniques developed for nuclear-reactor-accident simulations

    SciTech Connect (OSTI)

    Novick, V.J.

    1989-01-01T23:59:59.000Z

    The purpose of this research is to investigate and develop techniques for sampling aerosols from a high temperature, high pressure environment. As such, much of this research can be applied to any high temperature, high pressure sampling problem. There are four parts that must be considered in any reactor sampling system: First, the sampling tip is important from the standpoint of (1) representatively sampling the ambient particles, (2) withstanding the high temperatures in the near core region, (3) rapidly reducing the temperature of the sampled gas without causing severe thermophoretic losses or condensing gases onto existing aerosols. The second part of the system is the aerosol transport. The dynamics that must be considered include diffusion, thermophoresis, setting and impaction. The third part involves the collection or analysis of the aerosols. Finally, the ability to control the flow rate through the sampling system affects the first three parts. All four areas are analyzed theoretically for general applications. Experiments were performed on various aspects of the problem that were not dealt with by other researchers or were specific to the experiments performed in the Loss of Fluid Test (LOFT) reactor and the Power Burst Facility (PBF) reactor. Specifically this work includes (1) sampling tip analysis, (2) experimental and theoretical aerosol transport analysis, (3) the development and testing of a new multistage virtual impactor, (4) the analysis and development of a new method of measuring particle concentration using series light extinction cells, and (5) analysis and experimentally determined capabilities and usefulness of a flow control system for experimentally decreasing pressures and changing argon-steam-hydrogen gas compositions.

  8. Apparatus for sampling and characterizing aerosols

    DOE Patents [OSTI]

    Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

    1986-01-01T23:59:59.000Z

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  9. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24T23:59:59.000Z

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  10. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    E-Print Network [OSTI]

    Kroll, Jesse

    In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

  11. Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2

    SciTech Connect (OSTI)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    1986-01-01T23:59:59.000Z

    The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) and ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models.

  12. Aerosol Science and Technology, 44:329338, 2010 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Dabdub, Donald

    for Photochemical and Thermal Studies of Tropospheric Aerosols Michael J. Ezell,1 Stanley N. Johnson,1 Yong Yu,2 V of the UCI Physical Sciences Machine Shop; and J¨org Meyer of the UCI Chemistry Department Glassblow- ing

  13. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene

    SciTech Connect (OSTI)

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16T23:59:59.000Z

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of ?-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  14. Status of the ORNL Aerosol Release and Transport Project

    SciTech Connect (OSTI)

    Adams, R.E.

    1985-01-01T23:59:59.000Z

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment is being studied. Recent activities in the ORNL Aerosol Release and Transport Project include studies of (1) the thermal hydraulic conditions existing during Nuclear Safety Pilot Plant (NSPP) aerosol tests in steam-air environments, (2) the thermal output and aerosol mass generation rates for plasma torch aerosol generators, and (3) the influence of humidity on the shape of agglomerated aerosols of various materials. A new Aerosol-Moisture Interaction Test (AMIT) facility was prepared at the NSPP site to accommodate the aerosol shape studies; several tests with Fe/sub 2/O/sub 3/ aerosol have been conducted. In addition to the above activities a special study was conducted to determine the suitability of the technique of aerosol production by plasma torch under the operating conditions of future tests of the LWR Aerosol Containment Experiments (LACE) at the Hanford Engineering Development Laboratory. 3 refs., 2 figs., 7 tabs.

  15. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    parameters on mineral aerosol mobilization, transport, andand L. Kiehl (2003), Mineral aerosol and cloud interactions,for paleoclimate, in Dust Aerosols, Loess Soils and Global

  16. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    E-Print Network [OSTI]

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J; Sioutas, C.

    2008-01-01T23:59:59.000Z

    between in-situ, real-time aerosol photoemis- sion intensityconcentration in combustion aerosols, Water, Air, Soilin-use commercial aircraft, Aerosol Sci. Tech. , 39(8), 799–

  17. A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID

    E-Print Network [OSTI]

    Hohaus, T.

    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

  18. The sensitivity of a coupled atmospheric-oceanic model to variations in the albedo and absorptivity of a stratospheric aerosol layer

    SciTech Connect (OSTI)

    Walsh, K.; Pittock, A.B. (Commonwealth Scientific and Industrial Research Organization, Victoria (Australia))

    1990-06-20T23:59:59.000Z

    Considerable uncertainty exists regarding the precise physical parameters of a smoke or aerosol cloud that would be injected into the lower stratosphere by a catastrophic event such as a nuclear war, a major volcanic eruption, or an asteroid impact. In this paper, the sensitivity of the sea surface temperature of a one-dimensional coupled atmospheric-oceanic model to variations in the albedo and absorptivity of an aerosol cloud introduced into the lower stratosphere is examined. Zonally averaged results are produced for two latitudes in the southern hemisphere. The temperature response of the oceans to forcings by a cloud with realistic aerosol properties is examined, with particular emphasis on the impact on the surface climate on time scales of 6 months to 2 years.

  19. Attachment of radon progeny to cigarette-smoke aerosols

    SciTech Connect (OSTI)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01T23:59:59.000Z

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

  20. Results from simulated upper-plenum aerosol transport and aerosol resuspension experiments

    SciTech Connect (OSTI)

    Wright, A.L.; Pattison, W.L.

    1984-01-01T23:59:59.000Z

    Recent calculational results published as part of the Battelle-Columbus BMI-2104 source term study indicate that, for some LWR accident sequences, aerosol deposition in the reactor primary coolant system (PCS) can lead to significant reductions in the radionuclide source term. Aerosol transport and deposition in the PCS have been calculated in this study using the TRAP-MELT 2 computer code, which was developed at Battelle-Columbus; the status of validation of the TRAP-MELT 2 code has been described in an Oak Ridge National Laboratory (ORNL) report. The objective of the ORNL TRAP-MELT Validation Project, which is sponsored by the Fuel Systems Behavior Research Branch of the US Nuclear Regulatory Commission, is to conduct simulated reactor-vessel upper-plenum aerosol deposition and transport tests. The results from these tests will be used in the ongoing effort to validate TRAP-MELT 2. The TRAP-MELT Validation Project includes two experimental subtasks. In the Aerosol Transport Tests, aerosol transport in a vertical pipe is being studied; this geometry was chosen to simulate aerosol deposition and transport in the reactor-vessel upper-plenum. To date, four experiments have been performed; the results from these tests are presented in this paper. 7 refs., 4 figs., 4 tabs.

  1. Calibration of the On-Line Aerosol Monitor (OLAM) with ammonium chloride and sodium chloride aerosols

    SciTech Connect (OSTI)

    Brockmann, J.E.; Lucero, D.A.; Romero, T. [Sandia National Labs., Albuquerque, NM (United States); Pentecost, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1993-12-01T23:59:59.000Z

    The On-Line Aerosol Monitor (OLAM) is a light attenuation device designed and built at the Idaho National Engineering Laboratory (INEL) by EG&G Idaho. Its purpose is to provide an on-line indication of aerosol concentration in the PHEBUS-FP tests. It does this by measuring the attenuation of a light beam across a tube through which an aerosol is flowing. The OLAM does not inherently give an absolute response and must be calibrated. A calibration has been performed at Sandia National Laboratories` (SNL) Sandia Aerosol Research Laboratory (SARL) and the results are described here. Ammonium chloride and sodium chloride calibration aerosols are used for the calibration and the data for the sodium chloride aerosol is well described by a model presented in this report. Detectable instrument response is seen over a range of 0.1 cm{sup 3} of particulate material per m{sup 3} of gas to 10 cm{sup 3} of particulate material per m{sup 3} of gas.

  2. Group Report: Connections between Aerosol Properties

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    14 Group Report: Connections between Aerosol Properties and Forcing of Climate S.E. XMWRZ, Rapporteur F.ARNOLD,J.-p.BLANCHET,PA. DURKEE, D.J.HOFMANN,W.A. HOPPEL, M.D. KING, A.A. LACE, T. NAKAJIMA

  3. Uncertainties and Frontiers in Aerosol Research

    E-Print Network [OSTI]

    ;Transport Power Industry Biomass burning Residential Human activity Perspective Aerosol Sources (rather than, Mixing, Chemistry, Climate) Climate Effects Resource: AeroCom, an international model intercomparison of fossil fuel (coal, oil, diesel, gasoline), domestic wood burning, forest fires #12;Natural sources

  4. 8, 32273285, 2008 Aerosol DRE in Po

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in turn reducing cloud cover by heating the lower atmosphere (the semi-direct effect, Hansen et al., 1997 Chemistry and Physics Discussions Aerosol direct radiative effect in the Po Valley region derived from direct radiative effect (ADRE) affecting the Po Valley and the adjacent North Adriatic Sea is studied

  5. Group Report: Connections between Aerosol Properties

    E-Print Network [OSTI]

    increases absorption of solar radiation in clouds. The net effect is expected to be enhancement of shortwave effect and causes surface warming. Absorption of solar or thermal radiation within the atmospheric column after cloud evaporation. 3. Indirect effects ofaerosols on heterogeneous atmospheric chemistry. Aerosol

  6. Method for remote detection of trace contaminants

    DOE Patents [OSTI]

    Simonson, Robert J.; Hance, Bradley G.

    2003-09-09T23:59:59.000Z

    A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.

  7. Infrared near-field spectroscopy of trace explosives using an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade...

  8. Workshop on L-functions and Trace Formula

    E-Print Network [OSTI]

    Ali Altug, Columbia University: Trace formula beyond endoscopy and analytic number theory. I will talk about trace formula and analytic number theory, and how ...

  9. atom trap trace: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors Physics Websites Summary: An atom trap trace analysis system for measuring...

  10. Aerosolcloudprecipitation interactions. Part 1. The nature and sources of cloud-active aerosols

    E-Print Network [OSTI]

    Rutledge, Steven

    Aerosol­cloud­precipitation interactions. Part 1. The nature and sources of cloud-active aerosols M Available online 13 March 2008 Keywords: aerosol precipitation CCN emissions clouds Atmospheric aerosol the chemical composition of aerosols, their microphysical properties, and the factors that enable them to act

  11. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

    2013-01-01T23:59:59.000Z

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  12. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect (OSTI)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21T23:59:59.000Z

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

  13. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    SciTech Connect (OSTI)

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.

    2013-11-01T23:59:59.000Z

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom ?, SSA) during the AE days in each season and may cause severe climate implications over Ganges Basin with further consequences on atmospheric heating, cloud microphysics, monsoon rainfall and melting of Himalayan glaciers.

  14. Privacy Vulnerability of Published Anonymous Mobility Traces

    E-Print Network [OSTI]

    2010-07-07T23:59:59.000Z

    Sep 20, 2010 ... locations of real users leading to the public availabilities of many such traces through .... infer the private information. ... are open to observations in public spaces. Hence, the ..... value is called the entropy rate of the process X.

  15. RESTRICTED-TRACE APPROXIMATION FOR NUCLEAR ANTIFERROMAGNETISM

    E-Print Network [OSTI]

    Boyer, Edmond

    1353 RESTRICTED-TRACE APPROXIMATION FOR NUCLEAR ANTIFERROMAGNETISM M. GOLDMAN and G. SARMA Service to predict several properties of nuclear antiferromagnetic structures : sublattice magnetization of nuclear dipolar magnetic ordering, either antiferromagnetic or ferromagnetic, has been reported

  16. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01T23:59:59.000Z

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  17. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15T23:59:59.000Z

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  18. Recent activities in the Aerosol Generation and Transport Program

    SciTech Connect (OSTI)

    Adams, R.E.

    1984-01-01T23:59:59.000Z

    General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and the mixed U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam.

  19. Modeling the formation of boron carbide particles in an aerosol flow reactor

    SciTech Connect (OSTI)

    Xiong, Y.; Pratsinis, S.E. (Dept. of Chemical Engineering, Center for Aerosol Processes, Univ. of Cincinnati, Cincinnati, OH (United States)); Weimer, A.W. (Ceramics and Advanced Materials Research, Dow Chemical U.S.A., Midland, MI (United States))

    1992-11-01T23:59:59.000Z

    In this paper the formation of submicron crystals of boron carbide (B[sub 4]C) by coagulation and sintering by the rapid carbothermal reduction of intimately mixed carbon-boron oxide powders in an aerosol flow reactor at temperatures above the boiling point of boron oxide is investigated. High heating rates (10[sup 5] K/s) force rapid evaporation of boron oxide and suboxides from the precursor powder, resulting in its rupture and formation of boron carbide molecular clusters that grow to macroscopic particles by coagulation. Consequently, the formation and growth of B[sub 4]C particles are described by simultaneous interparticle collision and coalescence using a two-dimensional particle-size distribution model that traces the evolution of both size and shape characteristics of the particles through their volume and surface area. In addition to the coagulation term, the governing population balance equation includes a coalescence contribution based on B[sub 4]C sintering law.

  20. Secondary Organic Aerosol Formation From the Heterogeneous Chemistry of Isoprene-Derived Epoxides: Implications for Air Quality, Climate and Public Health

    E-Print Network [OSTI]

    Lin, Qiao

    through aerosol-cloud interactions, and is associated with adverse effects on human health. Globally Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel.5 µm) impacts Earth's climate directly through scattering/absorbing solar radiation and indirectly

  1. Trace element analysis of Texas lignite

    E-Print Network [OSTI]

    Mahar, Sean

    1982-01-01T23:59:59.000Z

    or in the planning stages, Near surface lignite re- sources are estimated to be 21 billion metric tons in Texas, while deep basin reserves are estimated at 31 billion metric tons. Near (3] surface reserves alone could fulfill Texas' electrical needs for 100 years... for environmental and health concerns trace element characterization of lignites is important. A needed avenue of research is charact- erization of trace element pathways in lignite fired power plants. :hat is to say what percentage of a certain element...

  2. Source identification of lead pollution in the atmosphere of Shanghai City by analyzing single aerosol particles (SAP)

    SciTech Connect (OSTI)

    Wang, J.; Guo, P.; Li, X. [and others] [and others

    2000-05-15T23:59:59.000Z

    A new method combining the pattern recognition (PR) technique with micro-PIXE spectrum was used for direct assessment of lead pollution in the atmosphere of Shanghai City. Single aerosol particles (SAP) of PM{sub 10} (<10 {micro}m) were analyzed using the nuclear microprobe. Every particle is characterized with its micro-PICE spectrum, which can be considered its fingerprint. The PR technique was applied to trace a lead contaminated aerosol particle back to its source. The discrimination of different pollutant sources was enhanced with investigating the individual aerosol particles. The results showed that the lead contamination from automobile exhaust should not be neglected. The lead concentration with low level was detected in most unleaded gasoline particles; however, the highest lead level of 1,500 ppm was found in one of them. Furthermore, four other main pollutant sources contributing to the lead contamination in the Shanghai atmosphere were clearly identified by this method. They are the cement industry, the coal combustion, the oil combustion, and the metallurgic industry. Some other unidentified particles suggested that some more lead emitters might also exist in Shanghai.

  3. Real-time detection of ambient aerosols using photothermal interferometry: Folded Jamin interferometer

    E-Print Network [OSTI]

    Real-time detection of ambient aerosols using photothermal interferometry: Folded Jamin of instrumentation that can directly measure ambient aerosol absorption through photothermal interferometry. The hallmark of this approach is its ability to directly measure aerosol absorption without interference from

  4. Local Environmental Pollution Strongly Influences Culturable Bacterial Aerosols at an Urban Aquatic Superfund Site

    E-Print Network [OSTI]

    Uriarte, Maria

    Local Environmental Pollution Strongly Influences Culturable Bacterial Aerosols at an Urban Aquatic Information ABSTRACT: In polluted environments, when microbial aerosols originate locally, species composition of the aerosols should reflect the polluted source. To test the connection between local environmental pollution

  5. FOSSIL ENERGY, CO2, CLIMATE CHANGE, AND THE AEROSOL PROBLEM Stephen E. Schwartz

    E-Print Network [OSTI]

    been masked by the aerosol cooling forcing. Allowable future CO2 emissions so as not to commit of the greenhouse gas forcing due to cooling forcing by tropospheric aerosols; as aerosols, unlike CO2, are short

  6. Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones

    E-Print Network [OSTI]

    Lee, Keun-Hee

    2012-02-14T23:59:59.000Z

    precipitation even in the weakest hurricane. When comparing the model performance between aerosol indirect and direct effect by ensemble experiments, the adjustment time of the circulation due to modification of the aerosol radiative forcing by aerosol layers...

  7. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    E-Print Network [OSTI]

    Quaas, Johannes

    2010-01-01T23:59:59.000Z

    such as cloud contamination or 3D radiation effects (Loebeffect relationship behind the aerosol – cloud/radiationradiation resulting in the “aerosol direct effect”. Hy- drophilic aerosols can serve as cloud

  8. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    E-Print Network [OSTI]

    Quaas, Johannes

    2010-01-01T23:59:59.000Z

    such as cloud contamination or 3D radiation effects (Loebeffect relationship behind the aerosol – cloud/radiationradiation resulting in the “aerosol direct effect”. Hy- drophilic aerosols can serve as cloud

  9. MELCOR aerosol transport module modification for NSSR-1

    SciTech Connect (OSTI)

    Merrill, B.J.; Hagrman, D.L.

    1996-03-01T23:59:59.000Z

    This report describes modifications of the MELCOR computer code aerosol transport module that will increase the accuracy of calculations for safety analysis of the International Thermonuclear Experimental Reactor (ITER). The modifications generalize aerosol deposition models to consider gases other than air, add specialized models for aerosol deposition during high speed gas flows in ducts, and add models for resuspension of aerosols that are entrained in coolants when these coolants flash. Particular attention has been paid to the adhesion of aerosol particles once they are transported to duct walls. The results of calculations with the modified models have been successfully compared to data from Light Water Reactor Aerosol Containment Experiments (LACE) conducted by an international consortium at Hanford, Washington.

  10. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25T23:59:59.000Z

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  11. The trace formula The Langevin process in R

    E-Print Network [OSTI]

    Herrmann, Samuel

    The trace formula The Langevin process in R Symmetric spaces and the Malliavin calculus and the trace formula Jean-Michel Bismut Universit´e Paris-Sud, Orsay `A la m´emoire de Paul Malliavin Jean-Michel Bismut The Malliavin calculus and the trace formula #12;The trace formula The Langevin process in R

  12. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Davidovits, Paul

    2011-12-10T23:59:59.000Z

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no-cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

  13. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect (OSTI)

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14T23:59:59.000Z

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  14. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  15. Stackable differential mobility analyzer for aerosol measurement

    DOE Patents [OSTI]

    Cheng, Meng-Dawn (Oak Ridge, TN); Chen, Da-Ren (Creve Coeur, MO)

    2007-05-08T23:59:59.000Z

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  16. A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere

    SciTech Connect (OSTI)

    Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

    2006-04-18T23:59:59.000Z

    An understanding of the mechanisms and kinetics of aerosol formation and ozone production in the troposphere is currently a high priority because these phenomena are recognized as two major effects of energy-related air pollution. Atmospheric aerosols are of concern because of their effect on visibility, climate, and human health. Equally important, aerosols can change the chemistry of the atmosphere, in dramatic fashion, by providing new chemical pathways (in the condensed phase) unavailable in the gas phase. The oxidation of volatile organic compounds (VOCs) and inorganic compounds (e.g., sulfuric acid, ammonia, nitric acid, ions, and mineral) can produce precursor molecules that act as nucleation seeds. The U.S. Department of Energy (DOE) Atmospheric Chemistry Program (ACP) has identified the need to evaluate the causes of variations in tropospheric aerosol chemical composition and concentrations, including determining the sources of aerosol particles and the fraction of such that are of primary and secondary origin. In particular, the ACP has called for a deeper understanding into aerosol formation because nucleation creates substantial concentrations of fresh particles that, via growth and coagulation, influence the Earth's radiation budget. Tropospheric ozone is also of concern primarily because of its impact on human health. Ozone levels are controlled by NOx and by VOCs in the lower troposphere. The VOCs can be either from natural emissions from such sources as vegetation and phytoplankton or from anthropogenic sources such as automobiles and oil-fueled power production plants. The major oxidant for VOCs in the atmosphere is the OH radical. With the increase in VOC emissions, there is rising concern regarding the available abundance of HOx species needed to initiate oxidation. Over the last five years, there have been four field studies aimed at initial measurements of HOx species (OH and HO? radicals). These measurements revealed HOx levels that are two to four times higher than expected from the commonly assumed primary sources. Such elevated abundances of HOx imply a more photochemically active troposphere than previously thought. This implies that rates of ozone formation in the lower region of the atmosphere and the oxidation of SO? can be enhanced, thus promoting the formation of new aerosol properties. Central to unraveling this chemistry is the ability to assess the photochemical product distributions resulting from the photodissociation of by-products of VOC oxidation. We propose to use state-of-the-art theoretical techniques to develop a detailed understanding of the mechanisms of aerosol formation in multicomponent (mixed chemical) systems and the photochemistry of atmospheric organic species. The aerosol studies involve an approach that determines homogeneous gas-particle nucleation rates from knowledge of the molecular interactions that are used to define properties of molecular clusters. Over the past several years we developed Dynamical Nucleation Theory (DNT), a novel advance in the theoretical description of homogeneous gas-liquid nucleation, and applied it to gas-liquid nucleation of a single component system (e.g., water). The goal of the present research is to build upon these advances by extending the theory to multicomponent systems important in the atmosphere (such as clusters containing sulfuric acid, water, ions, ammonia, and organics). In addition, high-level ab initio electronic structure calculations will be used to unravel the chemical reactivity of the OH radical and water clusters.

  17. aerosols influencing atmospheric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn,...

  18. aerodyne aerosol mass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent measurements of fine particle volume or particle-into-liquid sampler (PILS) ion chromatography measurements for 3 field campaigns with different dominant aerosol...

  19. aerosol particle concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique University of California eScholarship Repository Summary: Real-...

  20. aerosol particle charger: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction The Universal Serial Bus (USB) port Allen, Jont 9 New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry...

  1. aerosol mass spectrometer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004. The concentration of a species Zhang, Qi 8 Development of a thermal desorption chemical ionization mobility mass spectrometer for the speciation of ultrafine aerosols. Open...

  2. aerosol particles generated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique University of California eScholarship Repository Summary: Real-...

  3. aerosol retrieval validation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    off the coast of Chile and Peru, where aerosol-cloud interactions are important to the energy balance (15), and limitations in current observing and modeling capabilities...

  4. aerosol detection equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel, Rosenfeld 464 Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties Energy Storage, Conversion and Utilization Websites...

  5. Atmospheric Aerosol Chemistry, Climate Change, and Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosols, or OA, containing nitrogen- containing organic compounds (NOC) and only carbon, hydrogen, and oxygen (CHO). They uncovered a new method for investigating OA that may lead...

  6. The Time Evolution of Aerosol Size Distribution Over the Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size Distribution Over the Mexico City Plateau. The Time Evolution of Aerosol Size Distribution Over the Mexico City Plateau. Abstract: As part of the MILAGRO field campaign, the...

  7. aerosol mass spectrometry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry MIT - DSpace Summary: Four hydroxynitrates (R(OH)R'ONO2) representative of...

  8. aerosol assisted chemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Simulating Aerosols Using a Chemical Transport Model with Assimilation of...

  9. aerosol particle formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Introduction 2 Current models tend to under-predict secondary organic aerosol (SOA Weber, Rodney 3 Modeling particle formation during low-pressure silane oxidation: Detailed...

  10. aerosol characterization system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Desert dust aerosol age characterized by massage tracking of tracers...

  11. ambient fine aerosols: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Chemical characterization of the ambient organic aerosol soluble in water:...

  12. aerosol chemical characteristion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Simulating Aerosols Using a Chemical Transport Model with Assimilation of...

  13. aerosol characterization experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 8 Desert dust aerosol age characterized by massage tracking of tracers...

  14. aerosol generation characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Desert dust aerosol age characterized by massage tracking of tracers...

  15. aerosol monitor development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris May 2003John Matthews Monitoring the Aerosol Phase Function University of New Mexico 12;AstroParticles & Atmosphere, Paris May 2003John Matthews 12;AstroParticles &...

  16. aerosol challenge model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to...

  17. aircraft exhaust aerosol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window Location on a King Air 200 Aircraft:aerosol.atmos.und.edu) Objective A Raytheon Beechcraft King Air 200 aircraft has been used to obtain Condensation Particle...

  18. Behavior of aerosols in a steam-air environment

    SciTech Connect (OSTI)

    Adams, R.E.; Tobias, M.L.; Longest, A.W.

    1985-01-01T23:59:59.000Z

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment is being studied in the Nuclear Safety Pilot Plant (NSPP) which is located at the Oak Ridge National Laboratory (ORNL). The program plan for the NSPP aerosol project provides for the study of the behavior, within containment, of simulated LWR accident aerosols emanating from fuel, reactor core structural materials, and from concrete-molten core materials interactions. The aerodynamic behavior of each of these aerosols was studied individually to establish its characteristics; current experiments involve mixtures of these aerosols to establish their interaction and collective behavior within containment. Tests have been conducted with U/sub 3/O/sub 8/ aerosols, Fe/sub 2/O/sub 3/ aerosols, and concrete aerosols in an environment of either dry air (relative humidity (RH) less than 20%) or steam-air (relative humidity (RH) approximately 100%) with aerosol mass concentration being the primary experimental variable.

  19. Influence of moisture on the behavior of aerosols

    SciTech Connect (OSTI)

    Adams, R.E.; Longest, A.W.; Tobias, M.L.

    1986-01-01T23:59:59.000Z

    The behavior of aerosols assumed to be characteristic of those generated during light water reactor (LWR) accident sequences and released into containment has been studied in the Nuclear Safety Pilot Plant (NSPP) located at the Oak Ridge National Laboratory (ORNL). It has been observed that in a saturated steam-air environment a change occurs in the shape of aerosol agglomerates of U/sub 3/O/sub 8/ aerosol, Fe/sub 2/O/sub 3/ aerosol, and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosol from branched-chain to spherical, and that the rate of reduction in the airborne aerosol mass concentration is increased relative to the rate observed in a dry atmosphere. The effect of a steam-air environment on the behavior of concrete aerosol is different. The shape of the agglomerated concrete aerosol is intermediate between branched-chain and spherical and the effect on the rate of reduction in airborne mass concentration appears to be slight. In a related project the shape of an agglomerated Fe/sub 2/O/sub 3/ aerosol was observed to change from branched-chain to spherical at, or near, 100% relative humidity.

  20. LWR aerosol containment experiments (LACE) program and initial test results

    SciTech Connect (OSTI)

    Muhlestein, L.D.; Hilliard, R.K.; Bloom, G.R.; McCormack, J.D.

    1983-11-01T23:59:59.000Z

    Objectives of the test program are to demonstrate, at large-scale, inherent radioactive aerosol retention behavior for postulated high consequence LWR accident situations, and to provide a data base to be used for aerosol behavior and thermal hydraulic computer code validation. The LACE program is being performed in two phases. The first phase is scoping studies of aerosol retention for a containment by pass sequence (Event V). The second phase considers three accident situations where significant inherent aerosol retention could considerably reduce the calculated consequences of the postulated accidents.

  1. Aerosol behavior experiments on light water reactor primary systems

    SciTech Connect (OSTI)

    Rahn, F.J.; Collen, J.; Wright, A.L.

    1988-05-01T23:59:59.000Z

    The results of three experimental programs relevant to the behavior of aerosols in the primary systems of light water reactors (LWRs) are presented. These are the Large-Scale Aerosol Transport Test programs performed at the Marviken test facility in Sweden, parts of the LWR Aerosol Containment Experiments (LACE) performed at the Hanford Engineering Development Laboratory, and the TRAP-MELT validation project performed at Oak Ridge National Laboratory. The Marviken experiments focused on the behavior of aerosols released from fuel and structural materials in a damaged core. Data on the transport of these aerosols and their physical characteristics were obtained in five experiments that simulated LWR primary systems. The LACE program data include results from the containment bypass accident tests, which focused on aerosol transport in pipes. The TRAP-MELT validation project data include results from two types of experiments: (a) aerosol transport tests to investigate aerosol wall plateout in a vertical pipe geometry and (b) aerosol resuspension tests to provide a data base from which analytical models can be developed. Typical results from these programs are presented and discussed.

  2. alkali sulfate aerosol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical transport model and comparison with observations integrals over the aerosol size distribution when only the lower-order moments of the distribution are known...

  3. aerosol main physical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass light-scattering efficiencies were calculated from both an averaged aerosol size distribution and from distributions modified to reflect the effects of cloud. These...

  4. aerosol monitors including: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical ... Ridley, David Andrew 33...

  5. aerosols nanometriques application: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass light-scattering efficiencies were calculated from both an averaged aerosol size distribution and from distributions modified to reflect the effects of cloud. These...

  6. aerosols teresa application: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass light-scattering efficiencies were calculated from both an averaged aerosol size distribution and from distributions modified to reflect the effects of cloud. These...

  7. aerosol cfd model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdistributions, called modes....

  8. analysis od aerosol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    closely. The retrieval produces a tighter fit to the RSS data. Climatologies Aerosol size distribution climatology used in GISS GCM does not agree with observations Liu et...

  9. aerosol bolus dispersion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a significant scientific risk. Even the optimal altitude of injection and aerosol size distribution are poorly known. Past attention focused on guns and airplanes as means...

  10. aerosol particles originating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdistributions, called modes....

  11. acidic sulfate aerosols: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical transport model and comparison with observations integrals over the aerosol size distribution when only the lower-order moments of the distribution are known...

  12. aerosol spray method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weber, Rodney 24 Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud Environmental...

  13. aerosol infection model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdistributions, called modes....

  14. atmospheric aerosol emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gases, and sulfate aerosols are predicted to raise global temperatures via the "greenhouse effect" (IPCC, 1996), growing emissions of SO2Interactions Among Emissions, Atmospheric...

  15. atmospheric aerosols basic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of atmospheric aerosol. Aplin, KL 2012-01-01 13 1. Introduction The atmospheric greenhouse effect is the basic mechanism Environmental Sciences and Ecology Websites Summary: 1....

  16. Aerosols, Clouds, and Climate Change Stephen E. Schwartz

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    in atmospheric carbon dioxide associated with fossil fuel combustion. Briefly the options are mitigation work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous

  17. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect (OSTI)

    Worsnop, Douglas R.

    2001-06-01T23:59:59.000Z

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  18. Optimizing I/O Forwarding Techniques for Extreme-Scale Event Tracing

    SciTech Connect (OSTI)

    Ilsche, Thomas [Technische Universitat Dresden] [Technische Universitat Dresden; Schuchart, Joseph [Technische Universitat Dresden] [Technische Universitat Dresden; Cope, Joseph [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Kimpe, Dries [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Jones, Terry R [ORNL] [ORNL; Knuepfer, Andreas [Technische Universitat Dresden] [Technische Universitat Dresden; Iskra, Kamil [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Ross, Robert [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Nagel, Wolfgang E. [Technische Universitat Dresden] [Technische Universitat Dresden; Poole, Stephen W [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Programming development tools are a vital com- ponent for understanding the behavior of parallel applica- tions. Event tracing is a principal ingredient to these tools, but new and serious challenges place event tracing at risk on extreme-scale machines. As the quantity of captured events increases with concurrency, the additional data can over- load the parallel file system and perturb the application be- ing observed. In this work we present a solution for event tracing on extreme-scale machines. We enhance an I/O for- warding software layer to aggregate and reorganize log data prior to writing to the storage system, significantly reduc- ing the burden on the underlying file system. Furthermore, we introduce a sophisticated write buffering capability to limit the impact. To validate the approach, we employ the Vampir tracing toolset using these new capabilities. Our re- sults demonstrate that the approach increases the maximum traced application size by a factor of 5x to more than 200,000 processes.

  19. Trace-element geochemistry of coal resource development related to environmental quality and health

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  20. SciTech Connect: Results and code predictions for ABCOVE aerosol...

    Office of Scientific and Technical Information (OSTI)

    Results and code predictions for ABCOVE aerosol code validation - Test AB5 Citation Details In-Document Search Title: Results and code predictions for ABCOVE aerosol code...

  1. E-Print Network 3.0 - aerosol load study Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions... reserved. Keywords: India; Aerosol loading; Aerosol forcing; MODIS; TOMS; Remote sensing 1. Introduction... heating effect on the earth surface and in turn...

  2. E-Print Network 3.0 - aerosol robotic network Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ), AERONET--A federated instrument network and data archive for aerosol characterization, Remote Sens... Period examining aerosol properties and radiative ... Source: Brookhaven...

  3. aerosol source-receptor relationships: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  4. Characterization of ambient aerosol composition and formation mechanisms and development of quantification methodologies utilizing ATOFMS

    E-Print Network [OSTI]

    Qin, Xueying

    2007-01-01T23:59:59.000Z

    cloud coverage as a consequence of aerosol heating effect after absorbing solar radiation.effects of aerosols can cause cooling since clouds reflect the incoming solar radiation

  5. Clustering of Aerosols in Atmospheric Turbulent Flow

    E-Print Network [OSTI]

    T. Elperin; N. Kleeorin; M. A. Liberman; V. L'vov; I. Rogachevskii

    2007-02-15T23:59:59.000Z

    A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed applications of the analyzed effects to the dynamics of aerosols and droplets in the atmospheric turbulent flow.

  6. TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001

    SciTech Connect (OSTI)

    SCHWARTZ,S.E.; LUNN,P.

    2001-03-01T23:59:59.000Z

    The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

  7. Investigation into Spectral Parameters as they Impact CPV Module Performance

    SciTech Connect (OSTI)

    Muller, M.; Marion, B.; Kurtz, S.; Rodriguez, J.

    2011-03-01T23:59:59.000Z

    The CPV industry is well aware that performance of triple junction cells depends on spectral conditions but there is a lack of data quantifying this spectral dependence at the module level. This paper explores the impact of precipitable water vapor, aerosol optical depth (AOD), and optical air mass on multiple CPV module technologies on-sun in Golden, CO.

  8. Direct climate effect of black carbon in China and its impact on dust storms

    E-Print Network [OSTI]

    Liou, K. N.

    Click Here for Full Article Direct climate effect of black carbon in China and its impact on dust aerosols in China, particularly black carbon (BC), is the primary reason for precipitation and temperature, W. Chen, and H. Liao (2010), Direct climate effect of black carbon in China and its impact on dust

  9. Tracing Noble Gas Radionuclides in the Environment

    E-Print Network [OSTI]

    P. Collon; W. Kutschera; Z. -T. Lu

    2004-02-11T23:59:59.000Z

    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA).

  10. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect (OSTI)

    Dr. Timothy Onasch

    2009-09-09T23:59:59.000Z

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

  11. Trace fossil assemblages in selected shelf sandstones

    E-Print Network [OSTI]

    Locke, Kathleen Ann

    1983-01-01T23:59:59.000Z

    and decreasing marine 1nfluence. Individual trace fossil types are more abundant and show a greater d1versity 1n the delta-margin facies; several large, vert1cal crab(?) burrows are P ascot a d th bi g is do 1 t d by ~Ohio o h In the shelf sequences, mostly... ~Zoo h os, f d ly i th iddl -to. outer and outer shelf sequences. Continued study of trace fossils should provide more specific information than the general shelf locations described above. ACKNOWLEDGEMENTS The completion of this thesis marks...

  12. Trace element analysis of Texas lignite 

    E-Print Network [OSTI]

    Mahar, Sean

    1982-01-01T23:59:59.000Z

    . Gluskoter, and N. F. Shimp: Occurence and Distribution of Potentiall Volatile Trace Elements in Coal. Illinois State Geological Survey. Urbana, IL. (July, 1974). 39 [26] Andren, A. W. , D. H. Klein, and Y. Talmi: Selenium in Coal- Fired Plant Emissions.... Envir. Sci. and Tech. , 9:856, (Sept. , 1975). [27] Gluskoter, H. J. , R. R. Ruch, W. G. Miller, R. A. Cahill, G. B. Breher and J, K. Kuhn: Trace Elements in Coal: Occur- rence and Distribution. Illinois State Geological Sur- vey. Urbane, Illinois...

  13. aerosol ratio test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosol ratio test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Effect of mineral dust aerosol...

  14. Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill

    E-Print Network [OSTI]

    Toohey, Darin W.

    Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill Nicole ONeill - ATOC 3500 and aerosol composition of air over the Deepwater Horizon oil spill in the Gulf of Mexico. · The lightest chemicals in the oil evaporated within hours, as scientists expected them to do. What they didn't expect

  15. Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions

    E-Print Network [OSTI]

    the emissions of monoterpenes and the oxidation and gas-particle partitioning of their products. Here we into the aerosol phase. · Concentrations of individual products which partition between the gas and aerosol phases-limonene which is emitted in large quantities from a range of vegetation types e.g. d-limonene is the major

  16. The effect of roughness on aerosol deposition in tubes

    E-Print Network [OSTI]

    Chavez, Mario Cesar

    1997-01-01T23:59:59.000Z

    Experimental measurements of simulated roughness within tubes and the subsequent aerosol penetration performance through these tubes were conducted for a aerosol particle size range of 5 nm to 20 nm and a flow rate range of 28 L/min to 169.9 L...

  17. Effects of operating conditions on a heat transfer fluid aerosol

    E-Print Network [OSTI]

    Sukmarg, Passaporn

    2000-01-01T23:59:59.000Z

    fluids are used as hot liquids at elevated pressures. If loss of containment does occur, the liquid will leak under pressure and may disperse as a fine aerosol mist. Though it has been recognized that aerosol mists can explode, very little is known about...

  18. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect (OSTI)

    Hallock, K.A.; Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cass, G.R. (California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science)

    1992-05-01T23:59:59.000Z

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  19. Deposition of Biological Aerosols on HVAC Heat Exchangers

    E-Print Network [OSTI]

    LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

  20. CLOUD PHYSICS From aerosol-limited to invigoration

    E-Print Network [OSTI]

    Napp, Nils

    CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

  1. Absorption cross-section 139 Accumulation mode, of aerosol 146

    E-Print Network [OSTI]

    Jacob, Daniel J.

    133, 151 residence times 153 size distributions 144 Air composition 2 molecular weight 4, 6 Albedo 122 dioxide Coagulation (aerosol) 146 Column model 32 Conditional unstability 56 Continuity equation 75261 INDEX A Absorption cross-section 139 Accumulation mode, of aerosol 146 Acetaldehyde (CH3CHO

  2. Laboratory Measurements of Sea Salt Aerosol Refractive Index

    E-Print Network [OSTI]

    Oxford, University of

    . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.5 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Sea Salt AerosolsLaboratory Measurements of Sea Salt Aerosol Refractive Index Thesis submitted for the degree

  3. AT631, Spring 2011 Introduction to Atmospheric Aerosols

    E-Print Network [OSTI]

    species partitioning between gas/aerosol phases 30 R LAB 10: Cloud condensation nuclei measurements April and their relationship to visibility and climate; · aerosol hygroscopicity and relationship to cloud formation; · gas of pertinent data and analysis and interpretation of these data. Each student will be asked to complete

  4. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  5. CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES

    E-Print Network [OSTI]

    of the uncertainty of the indirect effect arises from incomplete ability to describe changes in cloud properties. Keywords - Climate. aerosols. clouds, radiation INTRODUcnON In recent years awareness has increased of enhancement of scanering of radiation by aerosols in clear (cloud-free) air; a portion of the scattered

  6. BNL -65518-AB UNCERTAINTIES IN CLIMATE FORCING BY ANTHROPOGENIC AEROSOLS

    E-Print Network [OSTI]

    the earth radiation budget and climate by scattering and absorbing shortwave radiation (direct effect), by modifying cloud shortwave and longwave optical properties (indirect effect), and by modifying cloud of these aerosols, as well as determination of the radiative influence of a specified well characterized aerosol

  7. Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval

    E-Print Network [OSTI]

    ) of the AVHRR (Advanced Very High Resolution Radiometer) is typically between 0.06 and 0.15, while the RMSE between t = 0.1 and t = 0.8. The Department of Energy research satellite instrument, the Multispectral aerosol radiative forcing are known, the predictions of future global warming may remain unacceptably high

  8. Aerosol Science and Technology, 47:818830, 2013 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    chemical components are affected by in-canopy chemistry, vertical gradients in gas-particle Received 17 secondary organic aerosol (SOA) emitted. During BEARPEX-07, rapid in- canopy oxidation caused rapid SOA, and thermal shifts in gas-particle partitioning. Wet deposition was estimated to be an order of magnitude

  9. Cloud cover increase with increasing aerosol absorptivity: A counterexample to the conventional semidirect aerosol effect

    E-Print Network [OSTI]

    humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due are expected to have a similar effect. Citation: Perlwitz, J., and R. L. Miller (2010), Cloud cover increase

  10. Trace metals in sediments of coastal Siberia 

    E-Print Network [OSTI]

    Esnough, Teresa Elizabeth

    1996-01-01T23:59:59.000Z

    For the work described in this thesis, a total of 218 samples from 104 cores from the East Siberian, Laptev, Kara, and Pechora Seas and the Ob and Yenisei Rivers were analyzed for the trace metals Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Sb, and Zn...

  11. Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Trace elements and Polycyclic Aromatic Hydrocarbons (PAHs) in snow and ice sampled at Colle designed, built and tested. Melt water from inner part of ice core section was pumped to an ICP-SFMS and ICP-OES. Melt water from outer section was on-line extracted by solid-phase cartridges for semi

  12. Background Concentrations of Trace Metals in

    E-Print Network [OSTI]

    Ma, Lena

    of Florida State University System of Florida FLORIDA CENTER FOR SOLID AND HAZARDOUS WASTE MANAGEMENT 2207 NW for evaluating land application of non-hazardous waste materials and monitoring the mobility of trace metals from 8,000 archived samples. l To validate the sampling protocol used by the Florida Cooperative Soil

  13. Trace metals in sediments of coastal Siberia

    E-Print Network [OSTI]

    Esnough, Teresa Elizabeth

    1996-01-01T23:59:59.000Z

    For the work described in this thesis, a total of 218 samples from 104 cores from the East Siberian, Laptev, Kara, and Pechora Seas and the Ob and Yenisei Rivers were analyzed for the trace metals Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Sb, and Zn...

  14. Light Absorption by Secondary Organic Aerosol from ?-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity

    SciTech Connect (OSTI)

    Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25T23:59:59.000Z

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of ?-pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of ?-pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from ?-pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

  15. Method of dispersing particulate aerosol tracer

    DOE Patents [OSTI]

    O'Holleran, Thomas P. (Belleville, MI)

    1988-01-01T23:59:59.000Z

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  16. Study of Aerosol Indirect Effects in China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0s ALAMOS SCIENTIFIC LABORATORY ofAerosol

  17. Aerosol Remote Sealing System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting forForcing During Spring-SummerAerosol

  18. Sensitivity study of the residue method for the detection of aerosols from space-borne sensors

    E-Print Network [OSTI]

    Stoffelen, Ad

    Sensitivity study of the residue method for the detection of aerosols from space-borne sensors Martin de Graaf April 2002 #12;Sensitivity study of the residue method for the detection of aerosols from of aerosol parameters on residue 3 2.1 Standard aerosol and atmosphere parameters

  19. Satellite observations of the seasonal cycles of absorbing aerosols in Africa

    E-Print Network [OSTI]

    Graaf, Martin de

    Satellite observations of the seasonal cycles of absorbing aerosols in Africa related to monsoon system and aerosol loading is studied using multi-year satellite observations of UV-absorbing aerosols and rain gauge measurements. The seasonal variation of the aerosol distribution is clearly linked

  20. Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing state in the retrieval algorithms

    E-Print Network [OSTI]

    Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing the sensitivity of the calculated optical properties of urban aerosols to (1) hygroscopicity and (2) internal of satellite retrievals of aerosol optical thickness (t) and aerosol effective radius (reff). State

  1. Global observations of UV-absorbing aerosols from ERS-2/GOME Data

    E-Print Network [OSTI]

    Graaf, Martin de

    Global observations of UV-absorbing aerosols from ERS-2/GOME Data Martin de Graaf Piet Stammes Absorbing Aerosol Index ­ Theory GOME AAI results Conclusions & Outlook #12; Absorbing Aerosol Index; Rayleigh (multiple) scattering clouds aerosols surface Top Of Atmosphere incoming radiation outgoing

  2. Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using

    E-Print Network [OSTI]

    Hahn, David W.

    the vaporization dynamics of individual aerosol particles, such as thermophoretic forces and vapor expulsion. Since

  3. Global observations and spectral characteristics of desert dust and biomass burning aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Global observations and spectral characteristics of desert dust and biomass burning aerosols M. de (UV) absorbing aerosols, mainly desert dust and biomass burning aerosols. The AAI is not an aerosol quantity, but a radiation difference in the UV. Its main advantages are its insensitivity to scattering

  4. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently- induced cloud changes, and 1 3 is due to aerosol direct radiative effect. cloud cover cloud height understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect

  9. Effect of coal type, residence time, and combustion configuration on the submicron aerosol composition and size distribution from pulverized coal combustion

    SciTech Connect (OSTI)

    Linak, W.P.

    1985-01-01T23:59:59.000Z

    Pulverized samples of Utah bituminous, Beulah (North Dakota) low Na lignite, Deulah high Na lignite and Texas (San Miguel) lignite coals were burned at a rate of 2.5 kg/hr in a laboratory furnace under various (overall fuel lean) combustion conditions. Particle size distributions (PSD) and size segregated particle filter samples were taken at various positions within the convection section. Temperature and gas concentrations were measured throughout. The evolution of the submicron PSD within the convection section for the four coals was similar, although the location of the initial particle mode at the convection section inlet varied with coal type. While stage combustion of the Utah bituminous coal had a variable effect on the volume of submicron aerosol produced, staged combustion of two of the three lignites (Beulah low Na and Texas) caused a definite increase in the submicron aerosol volume. Chemical analysis of the size segregated particle samples show the trace elements, As, Pb, Zn, and the major elements, Na and K to be enriched in the submicron aerosol. Auger depth profiles show these small particles to be comprised of a core enriched in Fe, Si, Ca and Mg and surface layers enriched in Na and K. These results point to a mechanism of homogeneous nucleation of low vapor pressure species followed by successive layering of progressively more volatile species. Volatile species are enriched in the submicron aerosol due to the large surface areas provided. Modeling efforts show that while coagulation may be the dominant mechanism to describe the aerosol evolving within the convection section, it cannot be used solely to predict the PSD. Another mechanism, presumably surface area dependent growth (condensation) must be included.

  10. CCN Activity of Organic Aerosols Observed Downwind of Urban Emissions during CARES

    SciTech Connect (OSTI)

    Mei, Fan; Setyan, Ari; Zhang, Qi; Wang, J. X.

    2013-12-17T23:59:59.000Z

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (kCCN) with diameter from 100 to 170 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low kCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived kCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (korg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of korg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from kCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O:C were compared to results from previous studies. Overall, the relationships between korg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between korg and f44, the relationship between korg and O:C exhibits more significant differences among different studies, suggesting korg may be better parameterized using f44. A least squares fit yielded korg = 2.10 (±0.07) × f44 ?0.11 (±0.01) with the Pearson R2 value of 0.71. One possible explanation for the stronger correlation between korg and f44 is that the m/z 44 signal (mostly contributed by the CO+2 ion) is more closely related to organic acids, which may dominate the overall korg due to their relatively high water solubility and hygroscopicity.

  11. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    SciTech Connect (OSTI)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-01-01T23:59:59.000Z

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using EMEP measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic, showing a good agreement, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne LIDAR measurements. Evaluating the regional impacts in the Arctic of this event in terms of aerosol vertical structure, we find that during the 4 day presence of these aerosols in the lower European Arctic (< 75° N), biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~1.5 km) and higher altitudes (~4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface. The European plumes sampled during POLARCAT-France were transported over the region of springtime snow cover in Northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top of atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m?², peaking at +3.3 W m?² at noon over Scandinavia and Finland.

  12. Are the TRACE-P measurements representative of the western Pacific during March 2001?

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    TRACE-P measurements representative of the western PacificTHE TRACE- P MEASUREMENTS REPRESENTATIVE? Pierce, R. B. , etTRACE-P measurements representative of the western Pacific

  13. Aerosol behavior in a steam-air environment

    SciTech Connect (OSTI)

    Adams, R.E.; Tobias, M.L.; Petrykowski, J.C.

    1984-01-01T23:59:59.000Z

    The behavior of aerosols assumed to be characteristic of those generated during accident sequences and released into containment is being studied in the Nuclear Safety Pilot Plant (NSPP). Observation on the behavior of U/sub 3/O/sub 8/ aerosol, Fe/sub 2/O/sub 3/ aerosol, concrete aerosol, and various mixtures of these aerosols in a dry air environment and in a steam-air environment within the NSPP vessel are reported. Under dry conditions, the aerosols are agglomerated in the form of branched chains; the aerodynamic mass median diameter (AMMD) of the U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/ and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosols ranged between 1.5 and 3..mu..m while that of the concrete aerosol was about 1 ..mu..m. A steam-air environment, which would be present in LWR containment during and following an accident, causes the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosols to behave differently from that in a dry atmosphere; the primary effect is an enhanced rate of removal of the aerosol from the vessel atmosphere. Steam does not have a significant effect on the removal rate of a concrete aerosol. Electron microscopy showed the agglomerated U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and mixed U/sub 3/O/sub 8/-Fe/sub 2/O/sub 3/ aerosols to be in the form of spherical clumps of particles differing from the intermingled branched chains observed in the dry air tests; the AMMD was in the range of 1 to 2 ..mu..m. Steam had a lesser influence on the physical shape of the concrete aerosol with the shape being intermediate between branched chain and spherical clumps. 9 figures.

  14. 12.479 Trace-Element Geochemistry, Fall 2006

    E-Print Network [OSTI]

    Frey, Frederick August

    Focuses on element distribution in rocks and minerals using data obtained from natural and experimental systems. Emphasizes models describing trace-element partitioning and applications of trace-element geochemistry to ...

  15. 12.479 Trace-Element Geochemistry, Spring 2009

    E-Print Network [OSTI]

    Frey, Frederick

    The emphasis of this course is to use Trace Element Geochemistry to understand the origin and evolution of igneous rocks. The approach is to discuss the parameters that control partitioning of trace elements between phases ...

  16. A graphics architecture for ray tracing and photon mapping 

    E-Print Network [OSTI]

    Ling, Junyi

    2005-11-01T23:59:59.000Z

    and spatial locality, as well as eliminating unnecessary random memory accesses. A high level abstraction of the combined ray tracing and photon mapping streaming pipeline is introduced. Based on this abstraction, an e?cient ray tracing and photon...

  17. Steam Tracing...New Technologies for the 21st Century

    E-Print Network [OSTI]

    Pitzer, R. K.; Barth, R. E.; Bonorden, C.

    For decades, steam tracing has been an accepted practice in the heating of piping, vessels, and equipment. This paper presents recent product innovations such as "burn-safe" and "energy efficient" steam tracing products. For the many applications...

  18. Application of the Supported Fluorescent Probe Proxyl Fluorescamine to the Measurement of Free Radicals in Cigarette Smoke and Secondary Organic Aerosols

    E-Print Network [OSTI]

    Sleiman, Mohamad

    2013-01-01T23:59:59.000Z

    in Flushing, New York. Aerosol Science and Technology 2007,in combustion aerosols. Environmental Research 2007, 103,of secondary organic aerosol: Current and emerging issues.

  19. Ambient methods and apparatus for rapid laser trace constituent analysis

    DOE Patents [OSTI]

    Snyder, Stuart C. (Idaho Falls, ID); Partin, Judy K. (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID); Jeffery, Charles L. (Blackfoot, ID)

    2002-01-01T23:59:59.000Z

    A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.

  20. Parameter exploration of optically trapped liquid aerosols

    E-Print Network [OSTI]

    D. R. Burnham; P. J. Reece; D. McGloin

    2010-06-24T23:59:59.000Z

    When studying the motion of optically trapped particles on the $\\mu s$ time scale, in low viscous media such as air, inertia cannot be neglected. Resolution of unusual and interesting behaviour not seen in colloidal trapping experiments is possible. In attempt to explain the phenomena we use power spectral methods to perform a parameter study of the Brownian motion of optically trapped liquid aerosol droplets concentrated around the critically damped regime. We present evidence that the system is suitably described by a simple harmonic oscillator model which must include a description of Fax\\'{e}n's correction, but not necessarily frequency dependent hydrodynamic corrections to Stokes' law. We also provide results describing how the system behaves under several variables and discuss the difficulty in decoupling the parameters responsible for the observed behaviour. We show that due to the relatively low dynamic viscosity and high trap stiffness it is easy to transfer between over- and under-damped motion by experimentally altering either trap stiffness or damping. Our results suggest stable aerosol trapping may be achieved in under-damped conditions, but the onset of deleterious optical forces at high trapping powers prevents the probing of the upper stability limits due to Brownian motion.