Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tracing Aerosol Impacts on South Asian Monsoons | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights » 2013 Science Highlights » 2013 » Tracing Aerosol Impacts on South Asian Monsoons Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) News & Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: sc.ber@science.doe.gov More Information » September 2013 Tracing Aerosol Impacts on South Asian Monsoons The effect of pollution aerosols on monsoons. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo

2

Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago  

E-Print Network (OSTI)

possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution studies involve collection and anal- ysis of atmospheric aerosols and concurrent meteorol- ogy) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations

O'Brien, Timothy E.

3

An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling  

SciTech Connect

One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

Qian, Yun; Gustafson, William I.; Fast, Jerome D.

2010-07-29T23:59:59.000Z

4

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

5

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

6

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network (OSTI)

Aerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 to

Menon, Surabi

2008-01-01T23:59:59.000Z

7

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network (OSTI)

of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases...

Benoit, Mark David

2013-02-06T23:59:59.000Z

8

Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank  

Science Journals Connector (OSTI)

......Characterisation and dissolution of depleted uranium aerosols produced during impacts...Aerosols produced during impacts of depleted uranium (DU) penetrators against the...Characterisation and dissolution of depleted uranium aerosols produced during impacts......

V. Chazel; P. Gerasimo; V. Debouis; P. Laroche; F. Paquet

2003-07-01T23:59:59.000Z

9

Distinguishing Aerosol Impacts on Climate Over the Past Century  

SciTech Connect

Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

2008-08-22T23:59:59.000Z

10

Emissions of trace gases and aerosols during the open combustion of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions of trace gases and aerosols during the open combustion of biomass Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Title Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Publication Type Journal Article Year of Publication 2009 Authors McMeeking, Gavin R., Sonia M. Kreidenweis, Stephen Baker, Christian M. Carrico, Judith C. Chow, Jeffrey Collett L. Jr., Wei Min Hao, Amanda S. Holden, Thomas W. Kirchstetter, William C. Malm, Hans Moosmuller, Amy P. Sullivan, and Cyle E. Wold Journal Journal of Geophysical Research Volume 114 Abstract We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO4 2, NO3, Cl, Na+, K+, and NH4 + generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

11

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

12

A Satellite-Based Parameter to Monitor the Aerosol Impact on Convective Clouds  

Science Journals Connector (OSTI)

A method to monitor the aerosol impact on convective clouds using satellite data is presented. The impacts of forest fires and highly polluting megacities on cloud precipitation formation processes are quantified by the vertical extent above ...

Itamar M. Lensky; Ron Drori

2007-05-01T23:59:59.000Z

13

Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Study of MFRSR-Derived Parameters of Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR Network Aerosol Retrievals with MODIS Aerosol Product The network of Multi-filter Rotating Shadowband Radiometers (MFRSRs) at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) site consists of 21 instrument sites

14

Distinguishing Aerosol Impacts on Climate over the Past Century  

Science Journals Connector (OSTI)

Aerosol direct (DE), indirect (IE), and black carbonsnow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosolclimate simulations in the Goddard Institute for Space Studies General Circulation Model ...

Dorothy Koch; Surabi Menon; Anthony Del Genio; Reto Ruedy; Igor Alienov; Gavin A. Schmidt

2009-05-01T23:59:59.000Z

15

Climate Impacts of Biomass Burning Aerosols: Constraining the Chemicophysical Properties of Fresh and Aged Particles.  

E-Print Network (OSTI)

??Biomass burning is one of the largest contributors of particles and trace gases to the atmosphere. This work focuses on constraining the impacts that biomass (more)

Giordano, Michael

2014-01-01T23:59:59.000Z

16

Urban Aerosol Impacts on Downwind Convective Storms SUSAN C. VAN DEN HEEVER AND WILLIAM R. COTTON  

E-Print Network (OSTI)

Urban Aerosol Impacts on Downwind Convective Storms SUSAN C. VAN DEN HEEVER AND WILLIAM R. COTTON. 2004; Givati and Rosenfeld 2004; Molders and Olson 2004; Jirak and Cotton 2006); 2) increased surface

Collett Jr., Jeffrey L.

17

The impact of biogenic carbon emissions on aerosol absorption inMexico City  

SciTech Connect

In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

2009-02-24T23:59:59.000Z

18

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network (OSTI)

Figure 8a). The IE cooling increases snow/ice by about 10% (Their cooling e?ect on surface temperatures promotes ice androw), cooling from the aerosol DE increases snow/ice cover

Koch, Dorothy

2009-01-01T23:59:59.000Z

19

Impact of aerosols on convective clouds and precipitation  

E-Print Network (OSTI)

: Massachusetts Institute of Technology 77 Massachusetts Avenue, E19-411 Cambridge, MA 02139 (USA) Location to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current

20

Adjoint model sensitivities for aerosol health impacts analysis and decision support tools  

E-Print Network (OSTI)

attribution of PM2.5 related mortality From fossil fuel SO2 (25,638) From fossil fuel NOx (19,816) SourceAdjoint model sensitivities for aerosol health impacts analysis and decision support tools Daven K on impacts on human health - develop high-resolution maps of source influences - integrate results

Jacob, Daniel J.

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing  

SciTech Connect

Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energys (DOEs) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-11-01T23:59:59.000Z

22

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL  

E-Print Network (OSTI)

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL, OX1 3PU, UK 2: Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell://www.iup.uni-bremen.de/sciamachy/ · ESA (A)ATSR World Fire Atlas: http://dup.esrin.esa.it/ionia/wfa/index.asp · MODIS Fire and Thermal

Oxford, University of

23

Impact of the 2011 southern US drought on ground-level fine aerosol concentration in summertime  

Science Journals Connector (OSTI)

This study investigates the impacts of the 2011 severe drought in the southern United States (U.S.) on ground-level fine aerosol (PM2.5) concentrations in the summer. The changes in surface concentrations and planetary boundary layer (PBL) budget ...

Yuxuan Wang; Yuanyu Xie; Libao Cai; Wenhao Dong; Qianqian Zhang; Lin Zhang

24

PARAGON - An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions  

SciTech Connect

Aerosols exert myriad influences on the Earth?s environment and climate and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. Currently, the aerosol community lacks the necessary tools and infrastructure to reap maximum scientific benefit from a vast array of observed and modeled data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. A sustained, long-term program also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system can only be achieved through a multidisciplinary, interagency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of effort required, we present a set of recommendations dealing with data interoperability, integration, synergy, summarization and mining, model evaluation, calibration and validation, augmentation of surface and in situ measurements, advances in passive and active remote sensing, and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality.

Diner, David J.; Ackerman, Thomas P.; Anderson, Theodore L.; Bosenberg, Jens; Braverman, Amy J.; Charlson, Robert J.; Collins, William D.; Davies, Roger; Holben, B. N.; Hostetler, Chris A.; Kahn, Ralph A.; Martonchik, John V.; Menzies, Robert T.; Miller, Mark A.; Ogren, J. A.; Penner, Joyce E.; Rasch, P; Schwartz, Stephen E.; Seinfeld, John H.; Stephens, Graeme L.; Torres, Omar; Travis, Larry D.; Wielicki, Bruce A.; Yu, Bin

2004-10-01T23:59:59.000Z

25

Impact of Aerosols on Tropical Cyclones: An Investigation Using Convection-permitting Model Simulation  

SciTech Connect

The role of aerosols effect on two tropical cyclones over Bay of Bengal are investigated using a convection permitting model with two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the TCs are hardly affected by the changing aerosol types, but the intensity exhibits significant sensitivity due to the change in aerosol contribution. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level which, in turn, forces the lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to other two perturbations of aerosol. All these studies show the robustness of the concept of TC weakening by storm ingestion of high concentrations of CCN. The consistency of these model results gives us confidence in stating there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian sub-continent, this study suggests pollution may be weakening TCs over the Bay of Bengal.

Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, Sourav; Chen, J. P.; Cotton, William R.

2013-07-16T23:59:59.000Z

26

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

27

Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis  

SciTech Connect

Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3N, 73E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

2010-10-01T23:59:59.000Z

28

Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol  

E-Print Network (OSTI)

by diesel-fueled mobile sources and from the numerous coal- fired industries and power generation stations August thru 11 September 2006) with a number of gas and aerosol instru- ments deployed to measure air and power plants, with emissions rich in reactive volatile organic compounds (VOCs) and NOX [Ryerson et al

29

A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone  

Science Journals Connector (OSTI)

Aerosols influence cloud and precipitation development in complex ways due to myriad feedbacks at a variety of scales from individual clouds through entire storm systems. This paper describes the implementation, testing, and results of a newly ...

Gregory Thompson; Trude Eidhammer

2014-10-01T23:59:59.000Z

30

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network (OSTI)

aerosols from fossil fuel, bio fuel and biomass sources) andof natural gas to replace bio fuels, etc. ) than that forTotal (fossil- and bio fuel, biomass) Direct forcing (W m )

Menon, Surabi

2008-01-01T23:59:59.000Z

31

Environmental impact assessment of radionuclides and trace elements at the Kurday U mining site, Kazakhstan  

Science Journals Connector (OSTI)

The Kurday uranium mining site in Kazakhstan operated from 1954 to 1965 as part of the USSR nuclear weapon programme. To assess the environmental impact of radionuclides and trace elements associated with the Kurday mining site, field expeditions were performed in 2006. In addition to in situ gamma and 220Rn dose rate measurements, sampling included at site fractionation of water as well as sampling of water, fish, sediment, soils and vegetation. The concentrations of U and associated trace metals were enriched in the Pit Lake and in the artesian water (U exceeding the WHO guideline value for drinking water), and decreased downstream from the mining area. Uranium, As, Mo and Ni were predominantly present as mobile low molecular mass species in waters, while a significant proportion of Cr, Mn and Fe were associated with colloids and particles. Due to oxidation of divalent iron in the artesian ground water upon contact with air, Fe served as scavenger for other elements, and peak concentrations of U-, Ra-isotopes, As and Mn were seen. Most radionuclides and trace elements were contained in minerals in soils and sediments, and good correlations were obtained between U and As, Cd, Mo and 226Ra. Based on sequential extractions, a significant fraction of U, Pb and Cd could be considered mobile. Radioactive particles carrying significant amount of trace metals may represent a hazard during strong wind events. The transfer of radionuclides and metals from soils or sediments to water was in general low. The Kd levels varied with the element in question, ranging from 0.5 to 3נ102L/kg d.w. for 238U being relatively mobile, 103 for 226Ra, As, Cd, Ni, to 104L/kg d.w. for Cu, Cr and Pb being rather inert The transfer of radionuclides and metals from soils to vegetation (TF) was low, while higher if the transfer to vegetation, especially underwater mosses, occurred via water (e.g., BCF 37L/kg w.w. for 238U and 3נ103L/kg w.w. for 226Ra). The transfer of Cd, Pb and As from water to fish liver (BCF) was rather high, showing \\{BCFs\\} in the range of 102103L/kg w.w., and may, if eaten, represent a health risk. Furthermore, the high Hg level in fish filet reaching 0.3mg/kg w.w. muscle and the tendency of biomagnification call for dietary restrictions. Total gamma and Rn dose rate to man amounted to about 6mSv/y, while the highest calculated dose rate for non-human species based on the ERICA Assessment Tool were obtained in aquatic plants, with calculated mean doses of 700 ?Gy/hr, mostly due to the U exposure. Overall, it is concluded that measures such as restricted access to the Pit Lake as well as dietary restrictions with respect to drinking water and intake of fish should be taken to reduce the environmental risk to man and biota.

B. Salbu; M. Burkitbaev; G. Strmman; I. Shishkov; P. Kayukov; B. Uralbekov; B.O. Rosseland

2013-01-01T23:59:59.000Z

32

Supporting Information for Impact of Chlorine Emissions from Sea-Salt Aerosol on Coastal Urban Ozone  

E-Print Network (OSTI)

DIOXIDE H2O2 HYDROGEN PEROXIDE NH3 AMMONIA NIT AEROSOL NITRATE SO2 SULFUR DIOXIDE SO3 SULFUR TRIOXIDE OSD extensions* NO NITRIC OXIDE NO2 NITROGEN DIOXIDE O3 OZONE HONO NITROUS ACID HNO3 NITRIC ACID HNO4 PERNITRIC ACID N2O5 NITROGEN PENTOXIDE NO3 NITRATE RADICAL HO2 HYDROPEROXY RADICAL CO CARBON MONOXIDE CO2 CARBON

Dabdub, Donald

33

Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds  

Science Journals Connector (OSTI)

...cycle extremes like droughts and floods (19). The risk of droughts...the risk of both droughts and floods could be higher due...122 . 24 Rosenfeld D ( 2008 ) Flood or drought: How do aerosols...Natl. Cent. for Atmos. Res. Boulder, CO ). 28 Korolev AV Mazin...

Jiwen Fan; L. Ruby Leung; Daniel Rosenfeld; Qian Chen; Zhanqing Li; Jinqiang Zhang; Hongru Yan

2013-01-01T23:59:59.000Z

34

Indonesian wildfires of 1997: Impact on tropospheric chemistry B. N. Duncan,1  

E-Print Network (OSTI)

of 1997 released large amounts of trace gases and aerosols (e.g., $130 Tg of carbon monoxide (CO)) from a study of this burning event, including sensitivity simulations, to estimate the impacts of the trace gas Track Scanning Radiometer (ATSR) World Fire Atlas as surrogates for biomass burning. The model captures

Mickley, Loretta J.

35

Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties  

E-Print Network (OSTI)

) and chemical reactions (oxidation of particles by gas-phase oxidants and heterogeneous reactions between gas molecules and particles).5 For example, when initially formed, soot particles are hydrophobic and fractal in morphology, with low effective density... particles have a ? value of 1.0; whereas fractal ones will have ? > 1.0. Measurements of Aerosol Optical Properties The optical system consisted of a commercial integrating Nephelometer (Model 3563, TSI) and a CRDS connected in series.20 The particles...

Qiu, Chong

2013-02-01T23:59:59.000Z

36

BNL | Aerosol Lifecycle IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Aerosol Life Cycle IOP The primary objectives that make up the Aerosol Life Cycle IOP can be broken down into three categories: Scientific; Logistical; and GVAX preparation. Scientific Objectives The science goals are to conduct intensive aerosol observations in a region exposed to anthropogenic, biogenic, and marine emissions with atmospheric processing times depending on air mass trajectories and time of day. Take advantage of new instruments in the MAOS (e.g., SP2, HR-PTRMS, ACSM, Trace Gas Suite, PASS-3, Aethelometer, UHSAS). Within this broad umbrella are embedded three main foci: Aerosol light absorption: How does the aerosol mass absorption coefficient (absorption per unit mass of BC) vary with atmospheric processing? Do observations agree with a shell-core model?

37

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 OctNov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

38

Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk  

SciTech Connect

The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

39

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

40

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

SciTech Connect

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

2012-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

aerosols | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

42

Nonlinear Effects of Coexisting Surface and Atmospheric Forcing of Anthropogenic Absorbing Aerosols: Impact on the South Asian Monsoon Onset  

E-Print Network (OSTI)

The direct radiative effect of absorbing aerosols consists of absorption-induced atmospheric heating together with scattering- and absorption-induced surface cooling. It is thus important to understand whether some of the ...

Lee, Shao-Yi

43

Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1  

SciTech Connect

The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets and ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly implemented into the CAM5 as a practical parameterization, and substantially contributes to achieving the project goal. Through an intensive research for about one year, we found appropriate mathematical formulation and tried to implement it into the CAM5 PBL and activation routine as a practical parameterized numerical code. During these processes, however, the Postdoc applied for another position in Sweden, Europe, and accepted a job offer there, and left NCAR in August 2014. In Sweden, Dr. Anna Fitch is still working on this subject in a part time, planning to finalize the research and to write the paper in a near future.

Park, Sungsu

2014-12-12T23:59:59.000Z

44

Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust  

SciTech Connect

Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.

Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

2014-01-03T23:59:59.000Z

45

AEROgui: A graphical user interface for the optical properties of aerosols  

Science Journals Connector (OSTI)

Atmospheric aerosols have an uncertain effect on climate, and serious impact on human health. The uncertainty in the aerosols role on climate has several sources. First, aerosols present a great spatial and temporal variability. The spatial variability ...

R. Pedrs; J.L. Gmez-Amo; C.R. Marcos; M.P. Utrillas; S. Ganda; F. Tena; J.A. Martinez Lozano

46

aerosols and climate : uncertainties  

E-Print Network (OSTI)

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

47

Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical Atlantic and West African Climate by Direct and Semidirect Effects  

Science Journals Connector (OSTI)

A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the ...

Salil Mahajan; Katherine J. Evans; John E. Truesdale; James J. Hack; Jean-Franois Lamarque

2012-12-01T23:59:59.000Z

48

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Journals Connector (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

49

ARM - Measurement - Trace gas concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsTrace gas concentration govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Trace gas concentration The amount per unit volume of trace gases other than carbon dioxide, ozone and water vapor, typically measured in conjunction with in situ aerosol measurements, e.g. carbon monoxide, nitrogen oxides, sulfur dioxide. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO : Carbon Monoxide Mixing Ratio System

50

Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides  

E-Print Network (OSTI)

We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

Kharol, S. K.

51

The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America  

E-Print Network (OSTI)

Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions ...

Berg, A. R.

52

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

53

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

54

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

55

Inter-annual Tropospheric Aerosol Variability in Late Twentieth Century and its Impact on Tropical Atlantic and West African Climate by Direct and Semi-direct Effects  

SciTech Connect

A new high-resolution (0.9$^{\\circ}$x1.25$^{\\circ}$ in the horizontal) global tropospheric aerosol dataset with monthly resolution is generated using the finite-volume configuration of Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the latter part of twentieth century. The surface emissions dataset is constructed from Coupled Model Inter-comparison Project (CMIP5) decadal-resolution surface emissions dataset to include REanalysis of TROpospheric chemical composition (RETRO) wildfire monthly emissions dataset. Experiments forced with the new tropospheric aerosol dataset and conducted using the spectral configuration of CAM4 with a T85 truncation (1.4$^{\\circ}$x1.4$^{\\circ}$) with prescribed twentieth century observed sea surface temperature, sea-ice and greenhouse gases reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the inter-annual timescales. Regression analyses over tropical Atlantic and Africa reveal that increasing dust aerosols can cool the North African landmass and shift convection southwards from West Africa into the Gulf of Guinea in the spring season in the simulations. Further, we find that increasing carbonaceous aerosols emanating from the southwestern African savannas can cool the region significantly and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present day aerosols can shift the ITCZ southwards over the tropical Atlantic and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR); Mahajan, Salil [ORNL; Lamarque, J-F [University Center for Atmospheric Research

2012-01-01T23:59:59.000Z

56

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

57

E-Print Network 3.0 - aerosols apports du Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: Regional Impact of Inter-Continental Aerosol Transport Leona Charles*a,b , Barry Grossa, Fred... to study the interaction of aerosols in the PBL with long range...

58

Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA)  

E-Print Network (OSTI)

The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA) is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA ...

Jeong, Gill-Ran

59

Preliminary simulations of planned experiments to study the impact of trace gases on the capacity of the Weyburn-Midale field to store carbon dioxide  

SciTech Connect

The CO{sub 2} stream injecting into the Weyburn-Midale field can be generally classified as a reducing stream with residual H{sub 2}S and low-molecular weight hydrocarbons. The composition of the CO{sub 2} gas stream from the Dakota Gasification Company is reported to be 95% CO{sub 2}, 4% hydrocarbons, and 1% H{sub 2}S by volume (Huxley 2006). In addition to the H{sub 2}S introduced at the injection wells, significant concentrations of H{sub 2}S are thought to have been produced in-situ by sulfate reducing bacteria from previous water floods for enhanced oil production. Produced gas compositions range in H{sub 2}S concentrations from 1 to 6 volume percent. The produced gas, including the trace impurities, is re-injected into the field. Although there is no evidence for inorganic reduction of SO{sub 4}{sup 2-} to H{sub 2}S at the Weyburn-Midale field, Sitchler and Kazuba (2009) suggest that SO{sub 4}{sup 2-} can be inorganically reduced to elemental sulfur in highly reducing environments based on a natural analog study of the Madison Formation in Wyoming. They propose that elevated concentrations of CO{sub 2} dissolve anhydrite to produce the sulfate that is then reduced. Oxidizing CO{sub 2} streams with residual O{sub 2} and SO{sub 2} typical of streams captured from oxyfuel and post combustion processes are not presently an issue at the Weyburn-Midale field. However it is possible that the oxidizing CO{sub 2} streams may be injected in the future in carbonate reservoirs similar to the Weyburn-Midale field. To date there are few modeling and experimental studies that have explored the impact of impurity gases in CO{sub 2} streams targeted for geologic storage (Gale 2009). Jacquemet et al (2009) reviewed select geochemical modeling studies that explored the impact of SO{sub 2} and H{sub 2}S impurities in the waste streams (Gunter et al., 2000, Knauss et al., 2005, Xu et al., 2007). These studies collectively show that SO{sub 2} significantly reduces the pH when oxidized to H{sub 2}SO{sub 4} causing enhanced dissolution of carbonate minerals and some sulfate mineral precipitation. Low pH results in higher mineral solubility and faster dissolution rates and is thought to enhance porosity and permeability near the injection well when trace amounts of SO{sub 2} is injected with CO{sub 2}. The impact of H{sub 2}S on storage reservoir performance appears to more subtle. Knauss et al (2005) report no significant impacts of injection of CO{sub 2} gas streams with and without H{sub 2}S (1 M Pascal H{sub 2}S + 8.4 M Pascal CO{sub 2}) in simulations of CO{sub 2} storage in the Frio sandstone formation. Geochemical reactions for H{sub 2}S impurities include enhance field alkalinity and reaction with iron bearing minerals that may delay breakthrough of H{sub 2}S relative to CO{sub 2}. Emberley et al. (2005) report that half of the alkalinity measured at monitoring wells at the Weyburn-Midale field is due to HS{sup -}. Schoonen and Xu (2004) report that H{sub 2}S can be sequestered as pyrite in sandstones and carbonates by dissolving iron hydroxides and iron-bearing clays. Similarly, Gunter et al (2000) propose the that siderite converts to iron sulfides when it is reacted with H{sub 2}S. The geochemical reactions between H{sub 2}S and iron bearing minerals together with the high solubility of H{sub 2}S relative to CO{sub 2} may contribute to the delayed break though of H{sub 2}S in experiments. A few core flood experiments have shown that the injection of supercritical CO{sub 2} into carbonate aquifers has the potential to significantly alter the porosity in the absence of trace gases such as SO{sub 2} and H{sub 2}S. Luquot and Gouze (2009) documented a 2% porosity increase in carbonate cores when rock-water interactions were transport limited and solution concentrations were closer to equilibrium and a 4% porosity increase when rock-water interactions were reaction limited and solution compositions were further from equilibrium. Similarly Le Guen et al (2007) used x-ray micro-tomography and geochemistry to show that porosity signific

Carroll, S; Hao, Y

2009-11-13T23:59:59.000Z

60

Contamination sources of PCDD/Fs, dioxin-like PCBs, PAHs and trace metals in sediments of high and low impacted transboundary rivers (Belgium-France).  

E-Print Network (OSTI)

1 Contamination sources of PCDD/Fs, dioxin-like PCBs, PAHs and trace metals in sediments of high hydrocarbons (PAHs), dioxins (PCDD/Fs and dioxin-like PCBs) and trace metals have been assessed in sediment from pyrolytic (combustion) origin. For the PCDD/Fs and dioxin-like PCBs we compared the fingerprint

Boyer, Edmond

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

Mroz, E.J.; Olivares, J.; Kok, G.

1996-04-01T23:59:59.000Z

62

Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning  

E-Print Network (OSTI)

Physics and Chemistry Abstract The combustion of biomass is a major source of atmospheric trace gasesFormation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning by Matthew and Planetary Sciences #12;Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning

63

HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols  

Science Journals Connector (OSTI)

...emissions to human activity or natural processes, in a variety...new features of trace gas and aerosol emissions...surface fluxes of trace gases and aerosols. 2. HIAPER...sensor drift. The quantum cascade laser spectrometer (QCLS...CO2 sensor using an IR gas analyser (IRGA), which...

2011-01-01T23:59:59.000Z

64

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

65

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

66

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

67

Improved solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

68

Linearity of Climate Response to Increases in Black Carbon Aerosols  

Science Journals Connector (OSTI)

The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4SOM) ...

Salil Mahajan; Katherine J. Evans; James J. Hack; John E. Truesdale

2013-10-01T23:59:59.000Z

69

Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms  

E-Print Network (OSTI)

In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

Tang, Yingjie

2012-07-16T23:59:59.000Z

70

DISSERTATION THE OPTICAL, CHEMICAL, AND PHYSICAL PROPERTIES OF AEROSOLS AND  

E-Print Network (OSTI)

AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Biomass burning is a major source of trace BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Submitted by Gavin R. McMeeking Department of Atmospheric Science PROPERTIES OF AEROSOL AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS BE ACCEPTED

Pierce, Jeffrey

71

Geothermal: Sponsored by OSTI -- The Potential Impacts on Aquatic...  

Office of Scientific and Technical Information (OSTI)

The Potential Impacts on Aquatic Ecosystems from the Release of Trace Elements in Geothermal Fluids...

72

Long-term Statistics of Continental Cumuli: Does Aerosol Trigger Cumulus Variability?  

SciTech Connect

Atmospheric aerosols may control the formation, maintenance, and dissipation of cumuli by changing their microphysics. Recent observational and modeling results exist both in support and against strong potential impacts of aerosol [1-3]. Typically, the aerosol impact on water clouds has been investigated for regions with high aerosol loading and/or large atmospheric moisture [4]. Can we provide observational evidence of the aerosol-cloud relationship for a relatively dry continental region with low/moderate aerosol burden? To address this question, we revisit the aerosol-cloud relationship at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. In comparison with highly polluted regions, the SGP site is characterized by relatively small-to-moderate aerosol loading. Also, moisture content is small-to-moderate (compared to marine and coastal regions) for the SGP site. Because cumulus clouds have important impacts on climate forcing estimations [5] and are susceptible to aerosol effects [6], we focus on fair-weather cumuli (FWC) and their association with aerosol concentration and other potentially important factors. This association is investigated using a new 8-year aerosol and cloud climatology (2000-2007) developed with collocated and coincident surface and satellite observations.

Kassianov, Evgueni I.; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Turner, David D.

2009-02-01T23:59:59.000Z

73

ARM - Measurement - Aerosol absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

74

ARM - Measurement - Aerosol concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

75

Carbonaceous Aerosols and Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

and absorption of light by aerosols. At the ground sites, a new Humidigraph, a Cloud Condensation Nuclei Counter, a Scanning Mobility Particle Sizer, and an upgraded 915-MHz...

76

Indirect and Semi-Direct Aerosol Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

77

Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?  

SciTech Connect

Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-06-17T23:59:59.000Z

78

Experiments related to the resuspension of aerosols during hydrogen burns  

SciTech Connect

We have performed seven ''add-on'' experiments in two large combustion facilities to investigate the capability of hydrogen burns to remove simulated structural and fission product aerosols previously deposited on small metal discs that have surfaces prototypical of those found in nuclear reactor containments. Our results suggest that hydrogen combustion provides an especially effective mechanism for removal (and, presumably, resuspension) of sedimented aerosols produced in a hypothetical nuclear reactor core-degradation or core-melting accident. The presence of condensing steam does not seem to assure adhesion of sedimented aerosols during hydrogen burns. Differences are exhibited between different surfaces as well as between types of aerosol. In-depth studies will be required to assess the impact exposure of sedimented aerosols to hydrogen burns might have on the radiological source term.

Nelson, L.S.; Guay, K.P.

1987-01-01T23:59:59.000Z

79

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer (OSTI)

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

80

Supplementary material: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol: Part 2-composition, hygroscopicity and  

E-Print Network (OSTI)

Supplementary material: On the impacts of phytoplankton-derived organic matter on the properties Artificial seawater without exudate Natural seawater+nutrients medium SWP with Phaeocystis exudate: OC NaCl theory Artificial seawater without exudate Natural seawater+nutrients medium SWP with E. Huxleyi

Meskhidze, Nicholas

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds Gijs de Boer, Tempei Hashino, Edwin W. Eloranta and Gregory J. Tripoli The University of Wisconsin - Madison (1) Introduction (1) Introduction Mixed-phase stratiform clouds are commonly observed at high latitudes (Shupe et al., 2006; de Boer et al., 2009a). These clouds significaly impact the atmospheric radiative

82

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network (OSTI)

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

83

Traces of fission products in southeast Spain after the Fukushima nuclear accident  

Science Journals Connector (OSTI)

Traces of 131I, 134Cs and 137Cs were measured after the Fukushima nuclear accident between 23 March and 13 April 2011 in southeast Spain. The movement of the radioactive cloud toward southeast Spain was reconstructed based on the backward and forward trajectory cluster analyses. Polar maritime air masses which had originated over North America transported the radioactive plume toward the southeast Spain. Aerosols, rainwater, vegetables and cheese were analyzed to determine the radioactive risk. The highest concentrations of 131I, 134Cs and 137Cs in air samples were 2.630.12mBq/m3; 0.100.03mBq/m3; 0.090.02mBq/m3, respectively. After precipitation on April 3rd, the maximum concentrations of 131I, 134Cs and 137Cs were detected in rainwater samples, 1.100.16mBq/L; 0.0220.003mBq/L; 0.050.03mBq/L, respectively. As a consequence, 131I was transferred to the human food chain, and found in chard and goat cheese, 0.970.20Bq/kg and 0.520.08Bq/kg, respectively. The traces of 131I, 134Cs and 137Cs detected in the different samples were so low, that there is no impact on human health or the environment in Spain after the Fukushima nuclear accident.

F. Piero Garca; M.A. Ferro Garca

2012-01-01T23:59:59.000Z

84

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

85

A World-wide Stratospheric Aerosol Layer  

Science Journals Connector (OSTI)

...Massachusetts An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Measurements...Abstract. An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Meas-urements...

Christian E. Junge; Charles W. Chagnon; James E. Manson

1961-05-12T23:59:59.000Z

86

Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model  

SciTech Connect

Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

2014-05-13T23:59:59.000Z

87

Characterizing the formation of secondary organic aerosols  

SciTech Connect

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

88

EMSL - trace metals  

NLE Websites -- All DOE Office Websites (Extended Search)

trace-metals en Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. http:www.emsl.pnl.govemslwebpublications...

89

Mobile Climate Observatory for Atmospheric Aerosols in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosols in India Atmospheric Aerosols in India Nainital, India, was the site chosen for deployment of a portable climate research laboratory to study how aerosols impact clouds and energy transfer in the atmosphere. The well-being of hundreds of millions of residents in northeastern India depends on the fertile land around the Ganges River, which is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Any disturbance to the monsoon rains could threaten the population. In the same region, increased industrial activities due to economic growth are releasing small aerosol particles, such as soot and dust, that absorb and scatter sunlight and thus can change cloud formation processes and the heat distribution in the atmosphere. Such changes could greatly increase or

90

Laboratory measurements and modeling of trace atmospheric species  

E-Print Network (OSTI)

Trace species play a major role in many physical and chemical processes in the atmosphere. Improving our understanding of the impact of each species requires a combination of laboratory exper- imentation, field measurements, ...

Sheehy, Philip M. (Philip Michael)

2005-01-01T23:59:59.000Z

91

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment ?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

92

Contrasting the direct radiative effect and direct radiative forcing of aerosols  

E-Print Network (OSTI)

The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

Heald, Colette L.

93

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

94

Jankovic Aerosol Characterization.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization, Characterization, Aerosol Characterization, Interpretation, and Interpretation, and Application of Data Application of Data NSRC Symposium NSRC Symposium July 8, 2008 John Jankovic, CIH CIH Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences Aerosol Characterization, Interpretation, and Aerosol Characterization, Interpretation, and Application of Data Application of Data Department of Energy (DOE) Nanoscale Science Research Centers (NSRC) developing Approach to Nanomaterial ES&H - The CNMS Approach * Establish Exposure Control Guideline (ECG) - Characterize Aerosol * Collect and interpret data * Assign Process to a Control Band Aerosol Particle Characterization * Size distribution (geometric mean and geometric standard deviation related to either mass, surface, or number)

95

Building Energy Software Tools Directory: TRACE 700  

NLE Websites -- All DOE Office Websites (Extended Search)

700 700 TRACE 700 logo. Trane's TRACE 700 software - the latest version of Trane Air Conditioning Economics - brings the algorithms recommended by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) to the familiar Windows operating environment. Use it to assess the energy and economic impacts of building-related selections such as architectural features, comfort-system design, HVAC equipment selections, operating schedules, and financial options. Flexible data entry, coupled with multiple views and "drag-and-drop" load assignments, simplify the modeling process and help you identify optimal zoning and plant configurations. Compare up to four alternatives for a single project by modeling various air distribution and mechanical

96

A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation  

SciTech Connect

The impact of anthropogenic aerosol on the East Asian summer monsoon (EASM) is investigated with NCAR CAM5, a state-of-the-art climate model with aerosols direct and indirect effects. Results indicate that anthropogenic aerosol tends to cause a weakened EASM with a southward shift of precipitation in East Asia mostly by its radiative effect. Anthropogenic aerosol induced surface cooling stabilizes the boundary layer, suppresses the convection and latent heat release in northern China, and reduces the tropospheric temperature over land and land-sea thermal contrast, thus leading to a weakened EASM. Meanwhile, acting as cloud condensation nuclei (CCN), anthropogenic aerosol can significantly increase the cloud droplet number concentration but decrease the cloud droplet effective radius over Indochina and Indian Peninsulas as well as over southwestern and northern China, inhibiting the precipitation in these regions. Thus, anthropogenic aerosol tends to reduce Southeast and South Asian summer monsoon precipitation by its indirect effect.

Jiang, Yiquan; Liu, Xiaohong; Yang, Xiuqun; Wang, Minghuai

2013-05-01T23:59:59.000Z

97

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

fossil fuel, biofuel and biomass combustion, organic carbonincomplete combustion of fossil fuel and biomass burning. BCof incomplete combustion of fossil fuels and biomass, black

Zhu, Aihua

2010-01-01T23:59:59.000Z

98

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

99

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 912 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 612 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundancein the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

100

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Aerosol Observing System (AOS) Handbook  

SciTech Connect

The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earths radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

Jefferson, A

2011-01-17T23:59:59.000Z

102

Experimental study of nuclear workplace aerosol samplers  

E-Print Network (OSTI)

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

103

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

104

Two-Column Aerosol Project  

NLE Websites -- All DOE Office Websites (Extended Search)

help find the answer, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod...

105

ARM Cloud Aerosol Precipitation Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Observation CAS Cloud Aerosol Spectrometer CCN Cloud Condensation Nuclei CIP Cloud Imaging Probe CPC Condensation Particle Counter CSPHOT Cimel sunphotometer CVI...

106

Molecular Characterization of Biomass Burning Aerosols Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

107

ARM - Publications: Science Team Meeting Documents: Effects of Aerosol Size  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Aerosol Size Distribution and Vertical Profile on the Effects of Aerosol Size Distribution and Vertical Profile on the Polarization in the Oxygen A-Band Duan, Minzheng State University of New York at Albany Min, Qilong State University of New York at Albany A vector radiative transfer code with successive order of scattering method was used to simulate the high-resolution polarization spectra in the oxygen A-band. The effects of aerosol size distribution and vertical profile on the radiance and polarization at the top and bottom of the atmosphere were analyzed. The impacts of instrument specification on information content are also analyzed. Polarized radiances were dominated (>95%) by the first and second orders of scattering. The contributions of scattering from different levels to the TOA and surface observation are analyzed. The

108

ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsGanges Valley Aerosol Experiment (GVAX) govCampaignsGanges Valley Aerosol Experiment (GVAX) Campaign Links Science Plan AMF India Deployment Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ganges Valley Aerosol Experiment (GVAX) 2011.06.13 - 2012.03.31 Website : http://www.arm.gov/sites/amf/pgh/ Lead Scientist : V. Rao Kotamarthi Description The Ganges valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoon. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers could be immense. Recent satellite-based measurements have indicated that

109

4, 58315854, 2004 Fluorescing aerosol  

E-Print Network (OSTI)

released by combustion into the atmosphere absorbs radiation and therefore heats the climate counteracting such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores) or by combustion processes (soot), or they form in situ by gas to particle conversion, like sulphate aerosol. While

Paris-Sud XI, Université de

110

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

111

CGC Trace Species Partitioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Trace Species Partitioning as Affected Trace Species Partitioning as Affected by Cold Gas Cleanup Conditions: A Thermodynamic Analysis February 10, 2011 DOE/NETL-2011/1503 T r ace Species P ar titioning at C old G as C leanup C onditions Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

112

Parallel Seismic Ray Tracing  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . 27 3.4.1 Rotated Take-Off Angle Mesh . . . . . . . . . . . . . . . . . . 28 3.4.2 Rotated Cubed Sphere Mesh . . . . . . . . . . . . . . . . . . . 29 3.4.3 Ray Tube Interpolation . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Theoretical Model..., the ray parameters are defined as ?1 = ?(declination), ?2 = ?(azimuth), and ?3 = ?(travel-time). (b) Suppose we have a unit cube centered at the source point, then a ray can be traced from the source point through an evenly discretized point on the face...

Jain, Tarun K

2013-12-09T23:59:59.000Z

113

Observations of the first aerosol indirect effect in shallow cumuli  

SciTech Connect

Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

2011-02-08T23:59:59.000Z

114

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

115

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

116

Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

117

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning Paulo Artaxo, Henrique M. J. Barbosa, Luciana V. Rizzo, Joel F. Brito, Elisa T. Sena, Glauber G. Cirino, and  

E-Print Network (OSTI)

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts Paulo Particles and Large Scale Biomass Burning Impacts Paulo Artaxoa , Henrique M. J. Barbosa a , Luciana V visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large

Barbosa, Henrique

118

Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols  

Science Journals Connector (OSTI)

Widespread biomass burning in the tropics has been identi fied as a major source of trace gases and particulate matter to the atmosphere (1?3). ... Corpus?Christi ... The largest primary source contributors to fine particle mass concns. in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions form food cooking and wood smoke, with smaller contributions from tire dust, plant fragments, a natural gas combustion aerosol, and cigarette smoke. ...

Matthew P. Fraser; Kalyan Lakshmanan

2000-09-22T23:59:59.000Z

119

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant  

NLE Websites -- All DOE Office Websites (Extended Search)

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Title Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Publication Type Journal Article LBNL Report Number LBNL-42414 Year of Publication 2001 Authors Modera, Mark P., Olivier Brzozowski, François Rémi Carrié, Darryl J. Dickerhoff, William W. Delp, William J. Fisk, Ronnen M. Levinson, and Duo Wang Journal Energy & Buildings Volume 34 Start Page Chapter Pagination 705-714 Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m2 per year (1 kWh/ft2). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol particles to exit the system is through the leaks. The key to the technology is to keep the particles suspended within the airstream until they reach the leaks, and then to have them leave the airstream and deposit on the leak sites. The principal finding from this field study was that the aerosol technology is capable of sealing the leaks in a large commercial building duct system within a reasonable time frame. In the first building, 66% of the leakage area was sealed within 2.5 hours of injection, and in the second building 86% of the leakage area was sealed within 5 hours. We also found that the aerosol could be blown through the VAV boxes in the second building without impacting their calibrations or performance. Some remaining questions are (1) how to achieve sealing rates comparable to those experienced in smaller residential systems; and (2) what tightness level these ducts systems can be brought to by means of aerosol sealing.

120

X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)  

ScienceCinema (OSTI)

This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

None

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Constraining cloud lifetime effects of aerosols using A-Train satellite observations  

SciTech Connect

Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S{sub pop}), is a good measure of the liquid water path response to aerosol perturbation ({lambda}), as both Spop and {lambda} strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. S{sub pop} in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing (SWCF) over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of S{sub pop} and to examine S{sub pop} in high-resolution models.

Wang, Minghuai; Ghan, Steven J.; Liu, Xiaohong; Ecuyer, Tristan L.; Zhang, Kai; Morrison, H.; Ovchinnikov, Mikhail; Easter, Richard C.; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

2012-08-15T23:59:59.000Z

122

Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols  

SciTech Connect

Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80E but decreases east of it.

Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

2012-09-25T23:59:59.000Z

123

Aerosol-Based Duct Sealing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Aerosol-Based Duct Sealing Technology During the past five years, research has quantified the impacts of residential duct system leakage on HVAC energy consumption and peak electricity demand. A typical house with ducts located in the attic or crawlspace wastes approximately 20% of heating and cooling energy through duct leaks and draws approximately 0.5 KW more electricity during peak cooling periods. A 1991 study indicated that sealing leaks could save close to one Quadrillion Btus per year. (see also Commercializing a New Technology) Because the major cost of sealing leaks in existing air distribution systems is the labor for the location and sealing process, reducing the labor could greatly improve the cost-effectiveness of such a retrofit. Field studies of duct sealing programs performed by HVAC contractors show

124

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

125

ARM - Evaluation Product - Organic Aerosol Component VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsOrganic Aerosol Component VAP ProductsOrganic Aerosol Component VAP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP 2011.01.08 - 2012.03.24 Site(s) SGP General Description Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties. This deficiency represents a large source of uncertainty in the quantification of aerosol direct and indirect effects and the prediction of future climate change. The Organic Aerosol Component (OACOMP) value-added product (VAP) uses

126

ARM - Field Campaign - Fall 1997 Aerosol IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

127

Reflective Aerosols and the Greenhouse Effect  

Science Journals Connector (OSTI)

The contributions of atmospheric aerosols to add to either a climate-warming effect or climate-cooling effect depend on the chemical composition of the aerosol and the local environment. The best estimation is...

Kathryn E. Kautzman

2014-07-01T23:59:59.000Z

128

Antiviral therapy with small particle aerosols  

Science Journals Connector (OSTI)

The generation and use of small particle aqueous aerosols (1.23 m aerodynamic mass median diameter, GSD=2.0 m) containing ribavirin is described. Administered via aerosol, ribavirin will be deposited rather ...

V. Knight; B. Gilbert

1988-12-01T23:59:59.000Z

129

E-Print Network 3.0 - airborne aerosol prediction Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles of aerosol extinction and optical depth Evaluate predictions from aerosol transport... aerosol measurements. Comparison of AOT ... Source: Brookhaven National...

130

Trace elements in oil shale. Progress report, 1979-1980  

SciTech Connect

The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

Chappell, W R

1980-01-01T23:59:59.000Z

131

Biobriefcase electrostatic aerosol collector  

DOE Patents (OSTI)

A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

Bell, Perry M. (Tracy, CA); Christian, Allen T. (Madison, WI); Bailey, Christopher G. (Pleasanton, CA); Willis, Ladona (Manteca, CA); Masquelier, Donald A. (Tracy, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

2009-03-17T23:59:59.000Z

132

Biobriefcase aerosol collector  

DOE Patents (OSTI)

A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

Bell, Perry M. (Tracy, CA); Christian, Allen T. (Madison, WI); Bailey, Christopher G. (Pleasanton, CA); Willis, Ladona (Manteca, CA); Masquelier, Donald A. (Tracy, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

2009-09-22T23:59:59.000Z

133

2, 20952131, 2002 Below-cloud aerosol  

E-Print Network (OSTI)

). In addition, the understanding of wet removal processes remains crucial in local and regional pollutionACPD 2, 2095­2131, 2002 Below-cloud aerosol removal C. Andronache Title Page Abstract Introduction-cloud aerosol removal by rainfall for observed aerosol size distributions C. Andronache Boston College, Chestnut

Paris-Sud XI, Université de

134

6, 93519388, 2006 Aerosol-cloud  

E-Print Network (OSTI)

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

135

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

136

ARM - Measurement - Aerosol optical properties  

NLE Websites -- All DOE Office Websites (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

137

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

138

Heat-Traced Fluid Transfer Lines  

E-Print Network (OSTI)

This paper discusses basic considerations in designing a heat tracing system using either team or electrical tracing. Four basic reasons to heat trace are dealt with: water freeze protection, chemical freeze protection, viscosity maintenance...

Schilling, R. E.

1984-01-01T23:59:59.000Z

139

Tracing Geothermal Fluids  

SciTech Connect

Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

Michael C. Adams; Greg Nash

2004-03-01T23:59:59.000Z

140

Review of models applicable to accident aerosols  

SciTech Connect

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM - Publications: Science Team Meeting Documents: Impacts of...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of New York at Albany The impact of aerosols and clouds on CO2 uptake and water use efficiency at Harvard Forest has been studied by using collocated turbulent flux...

142

Carbon-Specific Analysis of Humic-like Substances in Atmospheric Aerosol and Precipitation Samples  

Science Journals Connector (OSTI)

6-9 This means that HULIS have an impact on the hygroscopicity and the cloud condensation nuclei formation potential of the atmospheric aerosol and are, therefore, of climatic relevance. ... Journal of Geophysical Research, [Atmospheres] (2000), 105 (D16), 20697-20706 CODEN: JGRDE3 ISSN:. ... solvents, and recovery from spiked rain water, were included. ...

Andreas Limbeck; Markus Handler; Bernhard Neuberger; Barbara Klatzer; Hans Puxbaum

2005-10-11T23:59:59.000Z

143

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [UAST -Aerosol Science and Technology  

E-Print Network (OSTI)

://www.informaworld.com/smpp/title~content=t713656376 Impact of Airflow Characteristics on Particle Resuspension from Indoor Surfaces Catherine Mukai on Particle Resuspension from Indoor Surfaces',Aerosol Science and Technology,43:10,1022 -- 1032 To link Resuspension from Indoor Surfaces Catherine Mukai, Jeffrey A. Siegel, and Atila Novoselac Department of Civil

Siegel, Jeffrey

144

High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonenew  

E-Print Network (OSTI)

and measured reaction products in the monomer product range. Introduction Atmospheric aerosols impact local air of both monomeric (m/z o 300) and oligomeric (m/z 4 300) condensed products of oxidation. A combination by previous studies. The isomerization reactions yield numerous products with a progressively increasing

Nizkorodov, Sergey

145

CHARACTERIZING THE INFLUENCE OF ANTHROPOGENIC EMISSIONS AND TRANSPORT VARIABILITY ON SULFATE AEROSOL CONCENTRATIONS AT MAUNA  

E-Print Network (OSTI)

CONCENTRATIONS AT MAUNA LOA OBSERVATORY Sulfate aerosol in the atmosphere has substantial impacts on human health confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N

Pierce, Jeffrey

146

Trace 700 | Open Energy Information  

Open Energy Info (EERE)

Trace 700 Trace 700 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Trace 700 Agency/Company /Organization: Trane Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Technology characterizations Resource Type: Software/modeling tools Website: www.trane.com/Commercial/Dna/View.aspx?i=1136 References: http://www.trane.com/Commercial/Dna/View.aspx?i=1136 Detailed HVAC design tool. Can provide heating and cooling load calculation, system sizing, and energy use. A fairly thorough understanding of HVAC is necessary to use this tool. Tool Summary LAUNCH TOOL Name: Trace 700 Agency/Company /Organization: Trane Phase: Create a Vision, Determine Baseline, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

147

Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation  

SciTech Connect

Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2011-11-23T23:59:59.000Z

148

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

149

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

150

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

151

Autonomous microexplosives subsurface tracing system final report.  

SciTech Connect

The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

2004-04-01T23:59:59.000Z

152

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

153

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

particles from the combustion of biomass fuels. Environ.range transport of biomass combustion aerosols. Environ.during the open combustion of biomass in the laboratory, J.

Qi, Li

2010-01-01T23:59:59.000Z

154

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

155

The Two-Column Aerosol Project Definitions TCAP Educational  

NLE Websites -- All DOE Office Websites (Extended Search)

What's the big deal about aerosols? The Two-Column Aerosol Project Definitions TCAP Educational Outreach Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate...

156

Reduction in biomass burning aerosol light absorption upon humidificat...  

NLE Websites -- All DOE Office Websites (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

157

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

158

Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties of orographically induced clouds and how do these depend on dynamics, thermodynamics, and aerosol microphysics? * What is the role of aerosols and changing cloud...

159

Molecular Chemistry of Organic Aerosols Through the Application...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

160

Optical, physical, and chemical properties of springtime aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Earth-Ocean Interac-ons Basin-Scale Impacts & Processes  

E-Print Network (OSTI)

Earth-Ocean Interac-ons Basin-Scale Impacts & Processes Joseph Resing (JISAO ocean. Volcanic erup6ons, glacial flour. Submarine Hydrothermal and Volcanic -Hydrothermal ac-vity and trace nutrient Fe -Hydrothermal ac-vity and trace nutrient

162

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer (OSTI)

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

163

Analysis of Aerosol Indirect Effects in California Coastal Stratus and Fog  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Aerosol Indirect Effects in California Coastal Stratus and Fog Analysis of Aerosol Indirect Effects in California Coastal Stratus and Fog Miller, Mark Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Bartholomew, Mary Jane Brookhaven National Laboratory Daum, Peter Brookhaven National Laboratory Dunn, Maureen Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Liu, Yangang Brookhaven National Laboratory Vogelmann, Andrew Brookhaven National Laboratory Andrews, Betsy NOAA/CMDL Ogren, John NOAA/CMDL Turner, David University of Wisconsin-Madison Category: Field Campaigns Impacts of aerosol indirect effects are considered too uncertain for inclusion in reports issued by the Intergovernmental Panel on Climate Change. A major reason for this uncertainty is an insufficient physical

164

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.  

SciTech Connect

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

2005-07-01T23:59:59.000Z

165

T-720: Blue Coat Director HTTP Trace Processing Flaw Permits Cross-Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Blue Coat Director HTTP Trace Processing Flaw Permits 0: Blue Coat Director HTTP Trace Processing Flaw Permits Cross-Site Scripting Attacks T-720: Blue Coat Director HTTP Trace Processing Flaw Permits Cross-Site Scripting Attacks September 19, 2011 - 8:45am Addthis PROBLEM Blue Coat Director HTTP Trace Processing Flaw Permits Cross-Site Scripting Attacks. PLATFORM: All versions of Director prior to 5.5.2.3 are vulnerable. ABSTRACT: A vulnerability was reported in Blue Coat Director. A remote user can conduct cross-site scripting attacks. reference LINKS: Blue Coat Advisories ID: SA62 SecurityTracker Alert ID: 1026061 Blue Coat Director 510 Blue Coat SGME 5 IMPACT ASSESSMENT: Medium Discussion: An attacker can use the HTTP TRACE method to echo malicious script back to the client as part of a Cross Site Scripting (XSS) attack. No

166

V-011: IBM Tivoli Monitoring Web Server HTTP TRACE/TRACK Support Lets  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: IBM Tivoli Monitoring Web Server HTTP TRACE/TRACK Support 1: IBM Tivoli Monitoring Web Server HTTP TRACE/TRACK Support Lets Remote Users Obtain Potentially Sensitive Information V-011: IBM Tivoli Monitoring Web Server HTTP TRACE/TRACK Support Lets Remote Users Obtain Potentially Sensitive Information October 26, 2012 - 6:00am Addthis PROBLEM: IBM Tivoli Monitoring Web Server HTTP TRACE/TRACK Support Lets Remote Users Obtain Potentially Sensitive Information PLATFORM: Software version: 6.2.3, 6.2.3.1 ABSTRACT: A vulnerability was reported in IBM Tivoli Monitoring. REFERENCE LINKS: IBM Support Document: 1614003 IBM Support Portal SecurityTracker Alert ID: 1027692 IMPACT ASSESSMENT: High DISCUSSION: A remote user may be able to conduct HTTP TRACE and HTTP TRACK attacks to access sensitive information from the HTTP headers.

167

BNL | Mobile Aerosol Observing System (MAOS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Aerosol Observing System (MAOS) Mobile Aerosol Observing System (MAOS) The Mobile Aerosol Observing System (MAOS) is a platform and instrument suite for Intensive Operation Periods (IOPs) to conduct in situ measurements of aerosols and their precursors. MAOS is part of the ARM Climate Research Facility. Physically MAOS is contained in two 20' SeaTainers custom adapted to provide a sheltered laboratory environment for operators and instruments even under harsh conditions. The two structures are designated MAOS-A and MAOS-C for Aerosol and Chemistry respectively. Although independent, with separate data systems, inlets and power distribution, the two structures are normally a single operating unit. The two enclosures comprising MAOS are designed for rapid deployment. All components (except for the Radar Wind Profiler) are transported internally

168

The Opposed Migration Aerosol Classifier (OMAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Opposed Migration Aerosol Classifier (OMAC) The Opposed Migration Aerosol Classifier (OMAC) Speaker(s): Harmony Gates Date: February 22, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Melissa Lunden A new differential mobility classifier will be described. The instrument classifies aerosol particles in a channel flow between porous (or screen) electrodes. The aerosol enters the channel parallel to the porous electrodes, while a larger, particle-free cross-flow enters through one of the porous electrode. A potential difference between electrodes causes the charged aerosol particles to migrate upstream against the cross-flow. Only particles whose upward migration velocity balances the cross flow will be transmitted along the path of the classifier. Simulations of the OMAC show that it should give the same resolution at the traditional

169

Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects  

SciTech Connect

To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

2013-06-05T23:59:59.000Z

170

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

171

Specifying API Trace Birthmark by Abstract Interpretation  

Science Journals Connector (OSTI)

API trace birthmark is a major class of software birthmarks, where API sequences are defined as software birthmarks to ... , an abstract interpretation-based method for specifying API trace birthmark is proposed ...

Ying Zeng; Fenlin Liu; Jian Chen; Bin Yan

2013-01-01T23:59:59.000Z

172

Distributed trace using central performance counter memory  

DOE Patents (OSTI)

A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

Satterfield, David L; Sexton, James C

2013-10-22T23:59:59.000Z

173

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network (OSTI)

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

174

Privacy vulnerability of published anonymous mobility traces  

Science Journals Connector (OSTI)

Mobility traces of people and vehicles have been collected and published to assist the design and evaluation of mobile networks, such as large-scale urban sensing networks. Although the published traces are often made anonymous in that the true identities ... Keywords: mobility traces, privacy, security and protection

Chris Y. T. Ma; David K. Y. Yau; Nung Kwan Yip; Nageswara S. V. Rao

2013-06-01T23:59:59.000Z

175

Ray Tracing JELLO Brand Paul S. Heckbert  

E-Print Network (OSTI)

Ray Tracing JELL­O ® Brand Gelatin Paul S. Heckbert Dessert Foods Division Pixar San Rafael, CA ABSTRACT Ray tracing has established itself in recent years as the most general image synthesis algorithm for ray tracing Jell­O ® brand gelatin. We believe the method may have application to other brands

Treuille, Adrien

176

Point-to-curve ray tracing  

Science Journals Connector (OSTI)

Point-to-curve ray tracing is an attempt at dealing with multiplicity of solutions to a generic boundary-value problem of ray tracing. In a point-to-curve tracing (P2C) the input parameters of the boundary-value....

Andrzej Hanyga

1996-01-01T23:59:59.000Z

177

Point-to-curve Ray Tracing  

Science Journals Connector (OSTI)

Point-to-curve ray tracing is an attempt at dealing with multiplicity of solutions to a generic boundary-value problem of ray tracing. In a point-to-curve tracing (P2C) the input parameters of the boundary-value....

Andrzej Hanyga

1996-01-01T23:59:59.000Z

178

E-Print Network 3.0 - aerosol chemical composition Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol on Clouds Summary: chemical composition and mixing stateTime-Resolved Aerosol Collector CCSEMEDX (ASP) Single particle... Sizer CCN spectrum Aerosol absorptionDRI...

179

E-Print Network 3.0 - aerosol number distributions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

inorganic composition PILS-IC Summary: 3563 nephelometers Aerosol number concentration CNC (TSI 3010, 3025) Aerosol size distribution DMA... and APS Non-volatile aerosol size...

180

E-Print Network 3.0 - aerosol jet system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

-controlled laminar aerosol jets and their application for studying aerosol combustion processes Author(s): Shoshin Y... 2002 Times Cited: 6 48. Title: Exhaust aerosol of a...

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

182

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

183

Time-and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes  

E-Print Network (OSTI)

Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications), Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications] Atmospheric aerosols have important adverse impacts on human health [Dockery et al., 1993; Pope et al., 2002

Jimenez, Jose-Luis

184

Phosphorus associations in aerosols: What can they tell us about P bioavailability? L.D. Anderson a,  

E-Print Network (OSTI)

with anthropogenic sources such as Zn and Ni and the extractable water soluble P fraction. This suggests Sequential extraction Solubility Phosphorus (P) in aerosols can originate from multiple sources (mineral dust, organic matter and P adsorbed on particle surfaces. These associations will greatly impact the solubility

Paytan, Adina

185

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

emissions during biomass combustion: Controlling factors andfrom smoldering combustion of biomass measured by open-pathduring the open combustion of biomass in the laboratory

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

186

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

common reed (phragmites australis), wiregrass (Aristidafasciculatum Phragmites australis Pseudotsuga menziesii Ilex

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

187

Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol  

SciTech Connect

The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

2014-06-17T23:59:59.000Z

188

Modeling the impacts of biomass burning on air quality in and around Mexico City  

E-Print Network (OSTI)

The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire ...

Lei, W.

189

A decadal satellite analysis of the origins and impacts of smoke in Colorado  

E-Print Network (OSTI)

We analyze the record of aerosol optical depth (AOD) measured by the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite in combination with surface PM[subscript 2.5] to investigate the impact ...

Val Martin, M.

190

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

191

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

192

ARM - Measurement - Aerosol particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

193

BNL | Two-Column Aerosol Program (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

194

NASA's Aerosol-Cloud-Ecosystems (ACE) Mission  

Science Journals Connector (OSTI)

Plans for NASAs Aerosol-Cloud-Ecosystem (ACE) mission is described. Recommended by Earth Science Decadal Survey in 2007, ACE is nominally planned for a 2021 launch. ACE is...

Starr, David O'C

195

Aerosol Best Estimate Value-Added Product  

SciTech Connect

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

196

ARM - Field Campaign - Aerosol Life Cycle IOP at BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Life Cycle IOP at BNL govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations to Head for India Related Campaigns Aerosol Life Cycle: Chemical Ionization Mass Spectrometer - CIMS 2011.07.10, Lee, OSC Aerosol Life Cycle: HR-ToF-AMS 2011.06.15, Zhang, OSC Aerosol Life Cycle: ARM Mobile Facility 2 Aerosol Observing System 2011.06.15, Sedlacek, OSC Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10, Hallar, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle IOP at BNL 2011.06.01 - 2011.08.31 Lead Scientist : Arthur Sedlacek For data sets, see below.

197

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

198

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov elewis@bnl.gov MOMENTS FROM MEASUREMENTS As each of the measured quantities is linear in the size distribution dn/dr, it is possible to construct linear combinations of measurements that yield

199

Aerosol fabrication methods for monodisperse nanoparticles  

DOE Patents (OSTI)

Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

Jiang, Xingmao; Brinker, C Jeffrey

2014-10-21T23:59:59.000Z

200

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of plutonium aerosol fractionation system  

E-Print Network (OSTI)

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

202

Measurement of gas/water uptake coefficients for trace gases active in the marine environment  

SciTech Connect

Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

Davidovits, P. (Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. (Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics)

1992-02-01T23:59:59.000Z

203

Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar; WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which then can be entrained into the growing boundary layer the subsequent day.

Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

2012-02-17T23:59:59.000Z

204

Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.

Fast J. D.; Springston S.; GustafsonJr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

2012-02-17T23:59:59.000Z

205

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network (OSTI)

from 1890 to 1995 for no GHG increase ( top) and includingTop row is for experiments without GHG changes and bottomexperiments include changing GHG. Global [Arctic, 64-90N

Koch, Dorothy

2009-01-01T23:59:59.000Z

206

Aerosol Simulations by LLNL IMPACT and Comparisons with Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

matter and black carbon (BC), are mainly emitted from biomass burning and fossil fuel combustion. As shown in Figure 2, biomass burning sources are dominant in south America,...

207

Deposition of biological aerosols on HVAC heat exchangers  

SciTech Connect

Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

Siegel, Jeffrey; Walker, Ian

2001-09-01T23:59:59.000Z

208

E-Print Network 3.0 - aerosol microphysical characteristics Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

new particle formation, aerosol microphysical evolution, three-dimensional transport, and wet... of aerosol microphysical properties. Some of ... Source: Brookhaven...

209

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

210

Small-Scale Spray Releases: Initial Aerosol Test Results  

SciTech Connect

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width length) 0.3 5 to 2.74 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

2012-11-01T23:59:59.000Z

211

Small-Scale Spray Releases: Initial Aerosol Test Results  

SciTech Connect

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. For the combination of both test stands, the round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width length) 0.3 5 to 2.74 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the much larger flow rates and equipment that would be required. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

2013-05-29T23:59:59.000Z

212

Large-Scale Spray Releases: Initial Aerosol Test Results  

SciTech Connect

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width length) 0.3 5 to 2.74 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

2012-12-01T23:59:59.000Z

213

Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model  

SciTech Connect

Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

Mahowald, Natalie [Cornell University; Rothenberg, D. [Cornell University; Lindsay, Keith [National Center for Atmospheric Research (NCAR); Doney, Scott C. [Woods Hole Oceanographic Institution; Moore, Jefferson Keith [University of California, Irvine; Randerson, James T. [University of California, Irvine; Thornton, Peter E [ORNL; Jones, C. D. [Hadley Center, Devon, England

2011-02-01T23:59:59.000Z

214

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

215

Accelerated Ray Traced Animations Exploiting Temporal Coherence.  

E-Print Network (OSTI)

??Ray tracing is a well-know technique for producing realistic graphics. However, the time necessary to generate images is unacceptably long. When producing the many frames (more)

Baines, Darwin Tarry

2005-01-01T23:59:59.000Z

216

Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal Combustion Waste  

E-Print Network (OSTI)

, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare high levels of selenium and may be useful bioindicators in agricultural and coal ash-impacted habitats

Hopkins, William A.

217

``Designing Lagrangian experiments to measure regional-scale trace gas fluxes''  

E-Print Network (OSTI)

``Designing Lagrangian experiments to measure regional-scale trace gas fluxes'' J. C. Lin,1 C gas fluxes at the land surface is essential for understanding the impact of human activities as they travel over the landscape. Successful Lagrangian experiments depend critically on forecasts of air parcel

218

DOE research on atmospheric aerosols  

SciTech Connect

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

219

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

220

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Atmospheric Aerosol Optical Properties in the Persian Gulf  

Science Journals Connector (OSTI)

Aerosol optical depth measurements over Bahrain acquired through the ground-based Aerosol Robotic Network (AERONET) are analyzed. Optical depths obtained from ground-based sun/sky radiometers showed a pronounced temporal trend, with a maximum ...

Alexander Smirnov; Brent N. Holben; Oleg Dubovik; Norm T. O'Neill; Thomas F. Eck; Douglas L. Westphal; Andreas K. Goroch; Christophe Pietras; Ilya Slutsker

2002-02-01T23:59:59.000Z

222

Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China  

DOE Data Explorer (OSTI)

In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

223

Layered Video Coding Offset Distortion Traces for Trace-Based Evaluation of Video Quality after  

E-Print Network (OSTI)

Layered Video Coding Offset Distortion Traces for Trace-Based Evaluation of Video Quality after@kom.aau.dk Abstract-- Currently available video traces for scalable en- coded video with more than one layer are a convenient repre- sentation of the encoded video for the evaluation of networking mechanisms. The video

Reisslein, Martin

224

Layered Video Coding Offset Distortion Traces for Trace-Based Evaluation of Video Quality after  

E-Print Network (OSTI)

1 Layered Video Coding Offset Distortion Traces for Trace-Based Evaluation of Video Quality after video traces for scalable encoded video with more than one layer are a convenient representation of the encoded video for the evaluation of networking mechanisms. The video distortion (RMSE) or quality (PSNR

Reisslein, Martin

225

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Journals Connector (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

226

Nonequilibrium atmospheric secondary organic aerosol formation and growth  

Science Journals Connector (OSTI)

...Mexico City area are shown...inorganic atmospheric aerosols...2005 ) A large organic aerosol source...photochemical and thermal studies of...Characteristic Group FrequenciesTables and...particle thermal speed...phase-equilibrium in the atmospheric system: Aerosol...Support, Non-U.S...Determination by plasma-based...implications for atmospheric chemistry...2002) A thermal disso-ciation...

Vronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; Yong Yu; M. Lizabeth Alexander; Alla Zelenyuk; Dan Imre; Wayne L. Chang; Donald Dabdub; James F. Pankow; Barbara J. Finlayson-Pitts

2012-01-01T23:59:59.000Z

227

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network (OSTI)

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 µg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

228

Project of Aerosol Optical Depth Change in South America  

E-Print Network (OSTI)

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

229

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network (OSTI)

AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD IPCC AR4 (2007) 3210-1-2 Forcing, W m-2 CO2 CH4 CFCs N2O Long Lived Greenhouse Gases Tropospheric;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL

Schwartz, Stephen E.

230

Ambient measurements of light-absorption by agricultural waste burning organic aerosols  

Science Journals Connector (OSTI)

Absorption properties (absorption ngstrom exponent and mass absorption efficiency) of agricultural waste burning organic aerosols (AWB-OA) and their impact on total absorption were investigated in Cairo (Egypt) during the post-harvest rice straw burning autumn season. At 370nm, AWB-OA were found to account for more than 25% of total absorption on average for the period of study (and for ?50% during intense biomass burning events), pointing out the major role potentially played by such particles on light absorption at short wavelengths. The absorption exponent obtained for AWB-OA (?3.5) is consistent with values previously reported for biomass burning brown carbon. In addition, AWB-OA were found to exhibit high mass absorption efficiencies at the near ultraviolet/mid-visible regions (e.g. 3.21.6m2g?1 at 370nm and 0.80.4m2g?1 at 520nm). Such findings clearly illustrate the need to take light absorption by organic aerosols into account for a better estimate of the radiative impact of biomass burning aerosols.

Olivier Favez; Stphane C. Alfaro; Jean Sciare; Hlne Cachier; Magdy M. Abdelwahab

2009-01-01T23:59:59.000Z

231

Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses  

SciTech Connect

The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

232

Seven Data Sets Released from LBA Carbon Dynamics and Trace Gas Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sets Released from LBA Carbon Dynamics and Trace Gas Teams Data Sets Released from LBA Carbon Dynamics and Trace Gas Teams The ORNL DAAC and the LBA DIS announce the release of four data sets from the Carbon Dynamics teams and three data sets from the Trace Gas and Aerosol Fluxes science teams, components of the LBA-ECO Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil . Data set prepared by A.C. de Araujo, J.P.H.B. Ometto, A.J. Dolman, B. Kruijt, M.J. Waterloo and J.R. Ehleringer. This data set reports delta 13C/12C results for leaf tissues and atmospheric carbon dioxide (CO2), delta 15N/14N ratios for leaf tissue, and leaf carbon and nitrogen concentrations along a topographical gradient in old-growth forests near Manaus, Amazonas, Brazil. Also included are coincident

233

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

234

Aerosol Science and Technology, 41:202216, 2007 Copyright c American Association for Aerosol Research  

E-Print Network (OSTI)

processes, such as con- densation, coagulation, gas-to-particle conversion (Reid et al. 1998), and particle Aerosol size distribution is, along with particle refractive in- dex and shape, one of important

235

A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements  

SciTech Connect

Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

Brown, G.S. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

1990-08-01T23:59:59.000Z

236

Understanding Brown Carbon Aerosols and Their Role in Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown Carbon Aerosols Brown Carbon Aerosols Tiny aerosol particles in the atmosphere are a possible cause of climate change. Among the many contributors to climate change are aerosols in the atmosphere. These tiny particles suspended in the air come from many sources, some natural and some man-made. Some aerosols are organic (containing carbon), while others are inorganic (such as sea salt and sulfates). Most aerosols reflect sunlight, and some also absorb it. Many of these nanoparticles have severe health effects in addition to climate effects. Human activities that produce aerosols include transportation, industry, and agriculture. Black carbon particles (a component of soot) originating from combustion processes have been known for some time to absorb sunlight and warm the

237

Response of California temperature to regional anthropogenic aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

238

Effects of aerosol and horizontal inhomogeneity on the broadband albedo of marine stratus: Numerical simulations  

SciTech Connect

Recent estimates of the effect of increasing of anthropogenic sulfate aerosol on the radiative forcing of the atmosphere have indicated that its impact may be comparable in magnitude to the effect from increases in CO{sub 2}. Much of this impact is expected from the effects of the aerosol on cloud microphysics and the subsequent impact on cloud albedo. A solar broadband version of a 2D radiative transfer model was used to quantify the impact of enhanced aerosol concentrations and horizontal inhomogeneity on the solar broadband albedo of marine stratus. The results of the radiative transfer calculations indicated that in unbroken marine stratus clouds the net horizontal transport of photons over a domain of a few kilometers was nearly zero, and the domain-average broadband albedo computed in a 2D cross section was nearly identical to the domain average calculated from a series of independent pixel approximation (IPA) calculations of the same cross section. However, the horizontal inhomogeneity does affect the cloud albedo compared to plane-parallel approximation (PPA) computations due to the nonlinear relationship between albedo and optical depth. The reduction in cloud albedo could be related to the variability of the distribution of log (cloud optical depth). These results extend the finding of Cahalan et al. to broadband solar albedos in a more realistic cloud model and suggest that accurate computation of domain-averaged broadband albedos in unbroken (or nearly unbroken) marine stratus can be made using IPA calculations with 1D radiative transfer models. Computations of the mean albedo over portions of the 3D RAMS domain show the relative increase in cloud albedo due to a 67% increase in the boundary-layer average CCN concentration was between 6% and 9%. The effects of cloud inhomogeneity on the broadband albedo as measured from the PPA bias ranged from 3% to 5%. 25 refs., 8 figs., 4 tabs.

Duda, D.P.; Stephens, G.L.; Stevens, B.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)] [Colorado State Univ., Fort Collins, CO (United States)

1996-12-15T23:59:59.000Z

239

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

240

Source Apportionment of Carbonaceous Aerosols using  

E-Print Network (OSTI)

are different than the collection of particles from water Filtration has high efficiency for all sizes Size Condensation Nuclei (CCN) Human health Carbonaceous aerosol implicated as important for toxicity and adverse of particulate matter Again, agreement between these two approaches would give a high level of confidence

Einat, Aharonov

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Photophoretic levitation of engineered aerosols for geoengineering  

Science Journals Connector (OSTI)

...W. Keith Energy and Environmental...space-based solar scattering...The salient advantage of sulfate aerosols...instrument. Disadvantages of sulfates...concentrating solar power systems...higher energy than molecules...solving the energy balance equation...ratio of solar-spectrum to thermal-spectrum...two of the disadvantages of stratospheric...

David W. Keith

2010-01-01T23:59:59.000Z

242

Modeling Semivolatile Organic Aerosol Mass Emissions from  

E-Print Network (OSTI)

in diluted diesel and wood combustion exhaust are interpreted using a two-component absorptive with dilution of both wood smoke and diesel exhaust can be described by two lumped compounds in roughly equal. Introduction Sources of organic aerosol such as diesel engines and wood stoves emit semivolatile organic

Stanier, Charlie

243

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

244

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

245

3, 59195976, 2003 The nitrate aerosol  

E-Print Network (OSTI)

ACPD 3, 5919­5976, 2003 The nitrate aerosol field over Europe M. Schaap et al. Title Page Abstract of Utrecht, Institute of Marine and Atmospheric Science, PO Box 80005, 3508 TA, Utrecht, The Netherlands 2, The Netherlands 3 Netherlands Energy Research Foundation (ECN), PO Box 1, 1755 LE Petten, The Netherlands 4 Joint

Paris-Sud XI, Université de

246

Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube Nanoelectrode Array. Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube...

247

Infrared near-field spectroscopy of trace explosives using an...  

NLE Websites -- All DOE Office Websites (Extended Search)

spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum...

248

Linearity of Climate Response to Increases in Black Carbon Aerosols  

SciTech Connect

The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

249

Indirect radiative forcing by ion-mediated nucleation of aerosol  

SciTech Connect

A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

2012-12-03T23:59:59.000Z

250

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

251

UNDERSTANDING THE INFLUENCES OF ATMOSPHERIC AEROSOLS ON CLIMATE AND CLIMATE CHANGE  

E-Print Network (OSTI)

.ecd.bnl.gov/steve BOB BRAWDY / AP #12;OVERVIEW Aerosol influences on climate and climate change Earth's energy balance remarks #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern

Schwartz, Stephen E.

252

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

253

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

254

CP-violating CFT and trace anomaly  

E-Print Network (OSTI)

It is logically possible that the trace anomaly in four dimension includes the Hirzebruch-Pontryagin density in CP violating theories. Although the term vanishes at free conformal fixed points, we realize such a possibility in the holographic renormalization group and show that it is indeed possible. The Hirzebruch-Pontryagin term in the trace anomaly may serve as a barometer to understand how much CP is violated in conformal field theories.

Yu Nakayama

2012-01-17T23:59:59.000Z

255

Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report  

SciTech Connect

Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

Davidovits, P. [Boston Coll., Chestnut Hill, MA (United States). Dept. of Chemistry; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

1992-02-01T23:59:59.000Z

256

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

257

Aerosol Modeling at LLNL - Our capability, results, and perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

258

ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Cumulus Humilis Aerosol Process Study (CHAPS) 7 Cumulus Humilis Aerosol Process Study (CHAPS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead Scientist : Carl Berkowitz For data sets, see below. Description The primary goal of this campaign was to characterize and contrast freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus, FWC) and to use these observations to address how below-cloud and above-cloud aerosol optical and cloud nucleating properties differ downwind of a mid-size city relative to similar aerosols in air less affected by emissions. The observations from this campaign can also be used to aid in the development and evaluation of parameterizations of the

259

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Journals Connector (OSTI)

The Georgia Institute of TechnologyGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

260

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network (OSTI)

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Composition analyses of size-resolved aerosol samples taken from aircraft downwind of Kuwait, Spring 1991  

SciTech Connect

Analyses are reported for eight aerosol samples taken from the National Center for Atmospheric Research Electra typically 200 to 250 km downwind of Kuwait between May 19 and June 1, 1991. Aerosols were separated into fine (D{sub p} < 2.5 {mu}m) and coarse (2.5 < D{sub p} 10 {mu}m) particles for optical, gravimetric, X ray and nuclear analyses, yielding information on the morphology, mass, and composition of aerosols downwind of Kuwait. The mass of coarse aerosols ranged between 60 and 1971 {mu}g/m{sup 3} and, while dominated by soil derived aerosols, contained considerable content of sulfates and salt (NaCl) and soot in the form of fluffy agglomerates. The mass of fine aerosols varied between 70 and 785 {mu}g/m{sup 3}, of which about 70% was accounted for via compositional analyses performed in vacuum. While most components varied greatly from flight to flight, organic matter and fine soils each accounted for about 1/4 of the fine mass, while salt and sulfates contributed about 10% and 7%, respectively. The Cl/S ratios were remarkably constant, 2.4 {+-} 1.2 for coarse particles and 2.0 {+-} 0.2 for fine particles, with one flight deleted in each case. Vanadium, when observed, ranged from 9 to 27 ng/m{sup 3}, while nickel ranged from 5 to 25 ng/m{sup 3}. In fact, fine sulfates, vanadium, and nickel occurred in levels typical of Los Angeles, California, during summer 1986. The V/Ni ratio, 1.7 {+-} 0.4, was very similar to the ratios measured in fine particles from combusted Kuwaiti oil, 1.4 {+-} 0.9. Bromine, copper, zinc, and arsenic/lead were also observed at levels between 2 and 190 ng/m{sup 3}. The presence of massive amounts of fine, typically alkaline soils in the Kuwaiti smoke plumes significantly modified their behavior and probably mitigated their impacts, locally and globally. 16 refs., 1 fig., 3 tabs.

Cahill, T.A.; Wilkinson, K. [Univ. of California, Davis, CA (United States); Schnell, R. [National Center for Atmospheric Research, Boulder, CO (United States)

1992-09-20T23:59:59.000Z

262

Priorities for In-situ Aerosol Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Priorities for In-situ Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization * Accuracy and precision - need well-understood error bars * Algorithm comparisons * Closure studies * Facilities for method testing - aircraft time Methods * Inlets - shattering/splashing - location on airplane - passing efficiency - inletless analyzers/samplers * Packaging - modular/portable "pods" for multiple a/c

263

Aerosol and graphitic carbon content of snow  

SciTech Connect

Snow samples from southern New Mexico, west Texas, Antarctica, and Greenland were analyzed for aerosol and graphitic carbon. Graphitic carbon contents were found to be between 2.2 and 25 ..mu..g L/sup -1/ of snow meltwater; water-insoluble aerosol content varied between 0.62 and 8.5 mg L/sup -1/. For comparison, two samples of Camp Century, Greenland, ice core, having approximate ages of 4,000 and 6,000 years, were also analyzed. Ice core graphitic carbon contents were found to be 2.5 and 1.1 ..mu..g L/sup -1/. copyrightAmerican Geophysical Union 1987

Chy-acute-accentlek, P.; Srivastava, V.; Cahenzli, L.; Pinnick, R.G.; Dod, R.L.; Novakov, T.; Cook, T.L.; Hinds, B.D.

1987-08-20T23:59:59.000Z

264

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

265

Aerosol generation and entrainment model for cough simulations.  

E-Print Network (OSTI)

??The airborne transmission of diseases is of great concern to the public health community. The possible spread of infectious disease by aerosols is of particular (more)

Ersahin, Cem.

2007-01-01T23:59:59.000Z

266

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

267

Method of Preparing Super-Concentrated Jets From Dense Aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael J. Hay, Ernest J. Valeo, and Nathaniel J. Fisch This is improvement in aerodynamic focusing of dilute aerosol suspensions. All previous work on this subject has...

268

ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties during the winter-spring transition. Opportunity to investigate fire and automobile emission interactions with biogenic aerosols will also harnessed MAOS will be...

269

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements  

Science Journals Connector (OSTI)

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements ... diesel engines have received increasing attention due to their potential health effects. ...

Tero Lhde; Topi Rnkk; Annele Virtanen; Tanja J. Schuck; Liisa Pirjola; Kaarle Hmeri; Markku Kulmala; Frank Arnold; Dieter Rothe; Jorma Keskinen

2008-12-09T23:59:59.000Z

270

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

modifications reduced but could not eliminate these adverse effects. The Raman lidar water vapor (aerosol extinction) measurements produced by these modified algorithms were,...

271

aerosol influenza transmission: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

and Information Sciences Websites Summary: . In preliminary work, we used artificial neural networks (ANNs) to construct global aerosol predictors by learningIntegration...

272

E-Print Network 3.0 - aerosol particle size Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: of aerosol over many orders-of-magnitude of particle size range, from subcritical clusters on the molecular... to modeling aerosol dynamics under conditions of new...

273

E-Print Network 3.0 - aerosol modeling decadal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geosciences 8 Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: The challenge in investigating links Summary: in the aerosol-monsoon...

274

E-Print Network 3.0 - aerosol radiative forcing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

No. DE- Summary: : WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE Stephen E. Schwartz... of radiative forcing of climate change by aerosols,...

275

E-Print Network 3.0 - aerosols nanometriques application Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

is studying how aerosol particles affect everything from Summary: of aerosol particles on climate change, public health, and renewable energy applications. In particular, he......

276

E-Print Network 3.0 - aerosol lung inhalation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosolized by means... is aerosolized upon inhalation by utilizing the ... Source: Groningen, Rijksuniversiteit - Centre for Ecological and Evolutionary Studies, Department of...

277

E-Print Network 3.0 - aerosol condensation model Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science Collection: Environmental Sciences and Ecology 8 DETERMINING AEROSOL RADIATIVE FORCING AT ARM SITES Summary: OF AEROSOL DIRECT FORCING By linear model and by...

278

E-Print Network 3.0 - aerosol code comparisons Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Ecology 4 Estimates of global radiative forcing derived from the GlobAEROSOL dataset Summary: -sky direct aerosol radiative forcing. The Edwards and Slingo (1996)...

279

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network (OSTI)

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX, (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

280

E-Print Network 3.0 - aerosols harbor diverse Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud & Aerosol Process Group CSDESRLNOAA Presented at: NIST... Aerosol Metrology for Climate Workshop 15th March, 2011 12;Deposition Snow Darkens and Warms BC...

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - aerosol light absorption Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND Summary: population centers were used to calculate the aerosol forcing due to light scattering and absorption. Directly... , NY www.bnl.gov ABSTRACT Aerosols influence...

282

Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE...  

Office of Science (SC) Website

The data have revealed that large aerosols in this region absorb a greater amount of light than expected. The Science Aerosol particles in the atmosphere may absorb solar...

283

E-Print Network 3.0 - aerosol atmospheric interactions Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Climate Summary: order estimates of aerosol-climate interaction But... only Earth System Models can include all... of the interactions (in theory at least) 12;Aerosols <>...

284

E-Print Network 3.0 - alkali sulfate aerosol Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Formation during... " and "Mechanism of Alkali Sulfate Aerosols Formation during Biomass Combustion" describe the development... the ... Source: Ris National Laboratory...

285

E-Print Network 3.0 - atmospheric aerosol size Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for about ten percent of all aerosols in the atmosphere. We... , can actually absorb solar energy and warm the atmosphere. Atmospheric aerosols are very important... by...

286

Trace Element Analysis | Open Energy Information  

Open Energy Info (EERE)

Trace Element Analysis Trace Element Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Trace Element Analysis Details Activities (8) Areas (8) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Reconstructing the fluid circulation of a hydrothermal system Thermal: Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / element Median Estimate (USD): 18.001,800 centUSD 0.018 kUSD 1.8e-5 MUSD 1.8e-8 TUSD / element High-End Estimate (USD): 106.0010,600 centUSD 0.106 kUSD 1.06e-4 MUSD 1.06e-7 TUSD / element

287

Ray tracing of Jovian kilometric radiation  

SciTech Connect

Results of computer ray tracing of Jovian kilometric from 56.2 kHz to 1 MHz in a model Jovian magnetosphere with an Io torus are presented. Ray tracing calculations indicate that the Io torus presents a propagation barrier to the radiation and that the Jovian kilometric radiation must be generated in the L-O mode from a source near Jupiter on field lines passing through the Io torus. One effect of the Io torus is to refract the rays away from the magnetic equator forming a shadow zone at radial distances beyond the torus. In general, at radial distances greater than 10 Jovian radii, as the wave frequency increases (>200 kHz) so does the magnetic latitude of the shadow zone. These and other features of the ray tracing calculations are in good qualitative agreement with the observations from the plasma wave receiver and planetary radio astronomy experiment on board both Voyager 1 and 2.

Green, J.L.; Gurnett, D.A.

1980-01-01T23:59:59.000Z

288

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

289

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex real-world aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

290

Trace fossil assemblages in selected shelf sandstones  

E-Print Network (OSTI)

with progradation of the delta. The presence of trace fossils throughout the section, as compared to the lack of burrows in the upper unit of the True Watt A-1 section, can be attributed to the marginal location of the deposits. Santa Fe 13 and Santa Fe 10... with progradation of the delta. The presence of trace fossils throughout the section, as compared to the lack of burrows in the upper unit of the True Watt A-1 section, can be attributed to the marginal location of the deposits. Santa Fe 13 and Santa Fe 10...

Locke, Kathleen Ann

2012-06-07T23:59:59.000Z

291

Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size  

SciTech Connect

During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

2009-03-01T23:59:59.000Z

292

Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval  

E-Print Network (OSTI)

, New Mexico, USA Michael Mishchenko Goddard Institute for Space Studies, NASA, New York, New York, USA between t = 0.1 and t = 0.8. The Department of Energy research satellite instrument, the Multispectral [Hobbs et al., 1997]. The aerosols' direct effect involves their interaction with solar and terrestrial

293

CLOUD PHYSICS From aerosol-limited to invigoration  

E-Print Network (OSTI)

CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

Napp, Nils

294

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network (OSTI)

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

295

Climatology of aerosol optical depth in northcentral Oklahoma: 19922008  

E-Print Network (OSTI)

of aerosol models; for identification of aerosols from spe- cific events (e.g., the Central American fires Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most dimming; that is, the decrease in solar radiation reaching Earth's surface. Additionally, the wavelength

296

Tracing compressed curves in triangulated surfaces  

Science Journals Connector (OSTI)

A simple path or cycle in a triangulated surface is normal if it intersects any triangle in a finite set of arcs, each crossing from one edge of the triangle to another. We describe an algorithm to "trace" a normal curve in O(min set{X, n2log ... Keywords: computational topology, geodesics, normal coordinates

Jeff Erickson; Amir Nayyeri

2012-06-01T23:59:59.000Z

297

Amounts of Trace Elements in Marine Cephalopods  

Science Journals Connector (OSTI)

......Amounts of Trace Elements in Marine Cephalopods T. Ueda * M. Nakahara...H. Suzuki ** * Division of Marine Radioecology, National Institute...Power Reactor and Nuclear Fuel Development Cooperation, Tokyo...Co and Cs in 5 species of marine cephalopods were determined......

T. Ueda; M. Nakahara; T. Ishii; Y. Suzuki; H. Suzuki

1979-12-01T23:59:59.000Z

298

Determination of vertical profiles of aerosol extinction, single scatter  

NLE Websites -- All DOE Office Websites (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

299

ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots Related Campaigns MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study 2005.07.07, Coulter, AMF MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01, Berkowitz, AMF MASRAD - Aerosol Optical Properties 2005.06.29, Strawa, AMF MASRAD:Sub-Micron Aerosol Measurements 2005.06.20, Wang, AMF MASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign 2005.06.02, Wiscombe, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : MArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP 2005.03.14 - 2005.09.14 Website : http://www.arm.gov/sites/amf/pye/ Lead Scientist : Mark Miller

300

Aerosol Retrievals under Partly Cloudy Conditions: Challenges and Perspectives  

SciTech Connect

There are lots of interesting and intriguing features of aerosols near clouds many of which can be quite engaging, as well being useful and climate-related. Exploring aerosol with the aid of the remote sensing, in situ observations and numerical modeling has piqued our curiosity and led to improve insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals of important climate properties and outlines their fruitful connections to other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating the inverse problems in the context of the passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation includes a basis in the inverse problem theory, reviews available approaches and discusses their applications to partly cloudy situations. Potential synergy of observations and model simulations is described as well.

Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; Flynn, Connor J.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Atmospheric aerosol monitoring at the Pierre Auger Observatory  

SciTech Connect

For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

2005-07-01T23:59:59.000Z

302

Optimization of aerosol penetration through transport lines  

E-Print Network (OSTI)

, F is the numerical reading from the fluorometer , L is the liquid volume of the measured (23) solution, 8 is the testing time for each filter, and V is the filter flow rate during the sample period. Penetration, P, of aerosol through... defined maxima on the penetration versus Reynolds number (or flow rate, since the diameter is constant for a given tube) curves for each tube size. Also, in order to observe an optimum tube diameter , a (10) fixed flow rate of 86 L/min was tested for a...

Wong Luque, Fermin Samuel

2012-06-07T23:59:59.000Z

303

A shrouded probe aerosol sampling cyclone  

E-Print Network (OSTI)

the air stream. In the present design, three concentric shrouds and a probe will be attached to the entrance of the cyclone. The shroud concept was first used in an aircraft-horne sampling device for collecting tropospheric aerosol particles... by A. R. McFarland and S. A. Batterman. College Station, Texas: 1989. 5. Strauss, W. and S. J. Nainwaring: Air Pollution. London, Baltimore, Maryland: Edward Arnold, 1984. pp. 95-96. 6. Moore, N. E. , and A. R. NcFarland: Stairmand-Type Sampling...

Little, Stewart Craig

2012-06-07T23:59:59.000Z

304

Method of dispersing particulate aerosol tracer  

DOE Patents (OSTI)

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

305

Light Absorption by Secondary Organic Aerosol from ?-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity  

SciTech Connect

It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of ?-pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of ?-pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from ?-pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

2013-10-25T23:59:59.000Z

306

Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere  

E-Print Network (OSTI)

;Carnegie Mellon University Smog Chamber Air supply Computer Temperature control Clean air 10 m3 Teflon spectrometer Aerosol mass spectrometerOzone monitor Air supply Computer Temperature control Clean air 10 m3 on temperature Hevap also needed Assumes no interactions among organic aerosol species or with inorganics. #12

Einat, Aharonov

307

Beryllium Carcinogenesis. I. Inhalation Exposure of Rats to Beryllium Sulfate Aerosol  

Science Journals Connector (OSTI)

...aerosol at a mean atmospheric concentration of...aerosol at a mean atmospheric concentration of...in the drinking water) for 2 weeks...a glass aerosol generator, with an airflow...chamber, distilled water was disseminated...aerosol generation, atmospheric concentration control...

Andrew L. Reeves; Daniel Deitch; and Arthur J. Vorwald

1967-03-01T23:59:59.000Z

308

Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number  

Science Journals Connector (OSTI)

...remainder of the map to the...distributions for mass, number, composition...such as vertical velocity and aerosol composition...updated aerosol mass for each compound...aerosols in trade wind cumulus observed by...spectrum of updraft velocities and the internally...Starting from aerosol mass (M) and number...

Pablo E. Saide; Gregory R. Carmichael; Scott N. Spak; Patrick Minnis; J. Kirk Ayers

2012-01-01T23:59:59.000Z

309

spectra from size-resolved particle samples col-lected from the Southeastern Aerosol Visibility  

E-Print Network (OSTI)

and acrolein aerosols. We believe that these transformations are due to acid-catalyzed heterogeneous reac

Bishop, James K.B.

310

E-Print Network 3.0 - atmospheric trace element Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: 6 2.0 Sources and Deposition of Trace Metals Trace elements enter the atmosphere via both natural... 5 Chapter 2: Sources and Deposition of Trace Metals...

311

T-720: Blue Coat Director HTTP Trace Processing Flaw Permits...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Blue Coat Director HTTP Trace Processing Flaw Permits Cross-Site Scripting Attacks T-720: Blue Coat Director HTTP Trace Processing Flaw Permits Cross-Site Scripting Attacks...

312

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the worlds first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STARs spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

313

Sulfate aerosols and polar stratospheric cloud formation  

SciTech Connect

Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

Tolbert, M.A. (Univ. of Colorado, Boulder, CO (United States))

1994-04-22T23:59:59.000Z

314

CARES Helps Explain Secondary Organic Aerosols  

ScienceCinema (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-06-02T23:59:59.000Z

315

Effect of Microbial Activity on Trace Element Release from Sewage  

E-Print Network (OSTI)

Effect of Microbial Activity on Trace Element Release from Sewage Sludge S H A B N A M Q U R E S H in mobilization of trace elements from land-applied wastewater sludge is not well-defined. Our study examined-effective management alternative. Unfor- tunately, sewage sludge also contains potentially toxic trace elements

Walter, M.Todd

316

Procedure for Cleaning Bottles for Trace Metal Analysis Initial cleaning  

E-Print Network (OSTI)

Procedure for Cleaning Bottles for Trace Metal Analysis Initial cleaning: Supplies LDPE 60ml bottles (nalgene) ACS grade Hydrochloric acid Trace metal grade nitric acid Day 1 1. Submerge 60ml bottles for up to three uses) 2. Rinse 3x in milli-q (DI) water 3. Fill bottles with 2% trace metal grade nitric

Paytan, Adina

317

Trace and ultratrace metals in bottled waters: Survey of sources worldwide and comparison with refillable metal bottles  

Science Journals Connector (OSTI)

Bottled waters from diverse natural and industrial sources are becoming increasingly popular worldwide. Several potentially harmful trace metals (Ag, Be, Li, Ge, Sb, Sc, Te, Th, U) are not monitored regularly in such waters. As a consequence, there is extremely limited data on the abundance and potential health impacts of many potentially toxic trace elements. Containers used for the storage of bottled waters might also increase trace metal levels above threshold limits established for human consumption by the EPA or WHO. Applying strict clean room techniques and sector field ICPMS, 23 elements were determined in 132 brands of bottled water from 28 countries. In addition, leaching experiments with high purity water and various popular metal bottles investigated the release of trace metals from these containers. The threshold limits for elements such as Al, Be, Mn and U in drinking water were clearly exceeded in some waters. Several bottled waters had Li concentrations in the low mg/L range, a level which is comparable to blood plasma levels of patients treated against manic depression with Li-containing drugs. The rate of release of trace metals from metal bottles assessed after 13days was generally low, with one exception: Substantial amounts of both Sb and Tl were released from a commercially available pewter pocket flask, exceeding international guidelines 5- and 11-fold, respectively. Trace metal levels of most bottled waters are below guideline levels currently considered harmful for human health. The few exceptions that exist, however, clearly reveal that health concerns are likely to manifest through prolonged use of such waters. The investigated coated aluminium and stainless steel bottles are harmless with respect to leaching of trace metals into drinking water. Pocket flasks, in turn, should be selected with great care to avoid contamination of beverages with harmful amounts of potentially toxic trace metals such as Sb and Tl.

Michael Krachler; William Shotyk

2009-01-01T23:59:59.000Z

318

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

319

Removal of trace olefins from aromatic hydrocarbons  

SciTech Connect

A process is described for treating a hydrocarbon process stream by converting trace quantities of olefinic impurities to nonolefinic hydrocarbons. The process comprises contacting the process stream, which contains trace olefins in an amount of from about 50 to about 2000 as measured by Bromine Index and at least 80% by weight of aromatic and naphthenic hydrocarbons having from 6 to 20 carbon atoms per molecule, at reaction conditions which ensure liquid phase operation with a solid catalyst composite comprising a crystalline aluminosilicate zeolite and a refractory inorganic oxide. A catalytic olefin-consuming alkylation reaction then produces an essentially olefinfree product stream with approximately the same quantity and distribution of aromatic and naphthenic hydrocarbons as contained in the process stream.

Sachtler, J.W.A.; Barger, P.T.

1989-01-03T23:59:59.000Z

320

Improve reformer operation with trace sulfur removal  

SciTech Connect

Modern bimetallic reforming catalysts typically have feed specifications for sulfur of 0.5 to 1 wppm in the reformer naphtha carge. Sulfur in the raw naphtha is reduced to this level by naphtha hydrotreating. While most naphtha hydrotreating operations can usually obtain these levels without substantial problems. It is difficult to obtain levels much below 0.5 to 1 wppm with this process. Revamp of a constrained existing hydrotreater to reduce product sulfur slightly can be extremely costly typically entailing replacement or addition of a new reactor. At Engelhard the authors demonstrated that if the last traces of sulfur remaining from hydrotreating can be removed, the resulting ultra-low sulfur feed greatly improves the reformer operation and provides substantial economic benefit to the refiner. Removal of the remaining trace sulfur is accomplished in a simple manner with a special adsorbent bed, without adding complexity to the reforming operation.

McClung, R.G.; Novak, W.J.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Trace analysis of atmospheric organic bases  

E-Print Network (OSTI)

analysis of atmospheric organic bases were investigated; the study included (1) the analysis of submarine charcoal filter bed samples for nitrogen bases and (2) the use of metallic tetraphenylporphines (TPP) as specific adsorbents for atmospheric... gas chromatography (GC) and GC-mass spectrometry (GC-MS). The isolation procedure provided acceptable reproducibi lity in the determination of trace amounts of nitrogen bases in the submarine environment. Several metallic TPP adsorbents were...

Clark, Dwayne C.

2012-06-07T23:59:59.000Z

322

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Trace elements and alkaliTrace elements and alkali  

E-Print Network (OSTI)

elements in fossil - and waste-derived fuelsTrace elements in fossil - and waste-derived fuels Coal Peat Heavy fuel oil Pet coke MSW RDF Wood Waste wood Waste paper Scrap tyres Sew. sludge Hg 0.02-3 ~0.07 .153 Behaviour of trace elements in coalBehaviour of trace elements in coal combustion flue gasescombustion flue

Zevenhoven, Ron

323

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

324

Aerosol mass spectrometry systems and methods  

DOE Patents (OSTI)

A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

Fergenson, David P.; Gard, Eric E.

2013-08-20T23:59:59.000Z

325

Discrimination between thin cirrus and and tropospheric aerosol using  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrimination between thin cirrus and and tropospheric aerosol using Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs frequently in the tropics, and is often difficult to distinguish from tropospheric aerosol on the basis of temporal variations in ground based measurements, since both can be rather spatially uniform. In this study we investigate their discrimination by combining data from three instruments at the Darwin Atmospheric Radiation and Cloud Station (ARCS): the Cimel sun photometer (CSP), the micropulse lidar (MPL), and the total sky imager (TSI). The study was carried out over the dry season of 2005, with the usual widespread burning of tropical savanna leading to extensive smoke plumes. It is shown that the locus of data in

326

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: Snowfall govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment 2014.02.01 - 2014.04.30 Lead Scientist : Dmitri Moisseev Description The snowfall measurement campaign, which will take place during AMF2 deployment in Finland, will focus on understanding snowfall microphysics and characterizing performance of surface based snowfall measurement instruments. This will be achieved by combining triple frequency (X, Ka, W -band) radar observations of vertical structure of the precipitation,

327

PNNL-MILAGRO Aerosol Modeling in Mexico | Open Energy Information  

Open Energy Info (EERE)

PNNL-MILAGRO Aerosol Modeling in Mexico PNNL-MILAGRO Aerosol Modeling in Mexico Jump to: navigation, search Name PNNL-MILAGRO Aerosol Modeling in Mexico Agency/Company /Organization Pacific Northwest National Laboratory Topics Co-benefits assessment Resource Type Dataset, Maps Website http://www.pnl.gov/atmospheric Country Mexico UN Region Latin America and the Caribbean References PNNL-MILAGRO Aerosol Modeling in Mexico[1] "MILGARO surface data includes measurements from Supersites, RAMA (Red Automatica de Monitoreo Atmosferico), Mobile, and Other sites. A description of each site type follows along with a plot of the site locations. Supersites Supersites provide detailed atmospheric chemistry and meteorological measurements; these sites included: T0 (located at the Instituto Mexicano

328

A New Assessment of the Aerosol First Indirect Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

New Assessment of the Aerosol First Indirect Effect New Assessment of the Aerosol First Indirect Effect Shao, Hongfei Florida State University Liu, Guosheng Florida State University Category: Aerosols The aerosol first indirect effect is known to cool the Earth radiatively. However, its magnitude is very uncertain; large discrepancies exist among the observed values published in the literature. In this study, we first survey the published values of those parameters used for describing the first indirect effect. By analyzing the discrepancies among these values, we show that the first indirect effect has been overestimated by many investigators due to an improper parameter being used. Therefore, we introduce a more meaningful parameter to measure this effect. We estimated the first indirect effect using the new parameter based on observational

329

Effects of operating conditions on a heat transfer fluid aerosol  

E-Print Network (OSTI)

are made over ranges of temperature, pressure and orifice diameters. Aerosol drop size distributions of a HTF are measured by a non-intrusive method of analysis using a Malvern Laser Diffraction Particle Analyzer (Malvern laser). The Malvern laser employs...

Sukmarg, Passaporn

2012-06-07T23:59:59.000Z

330

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

331

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

332

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

333

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

334

Application of computational fluid dynamics to aerosol sampling and concentration  

E-Print Network (OSTI)

, FLUENT 6 is used to analyze the performance of aerosol sampling and concentration devices including inlet components (impactors), cyclones, and virtual impactors. The ? ? k model was used to predict particle behavior in Inline Cone Impactor (ICI) and Jet...

Hu, Shishan

2009-05-15T23:59:59.000Z

335

Pressure-flow reducer for aerosol focusing devices  

DOE Patents (OSTI)

A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

2008-04-22T23:59:59.000Z

336

MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4  

SciTech Connect

The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

Kmetyk, L.N.

1991-09-01T23:59:59.000Z

337

Effects of aerosols on deep convective cumulus clouds  

E-Print Network (OSTI)

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed...

Fan, Jiwen

2009-05-15T23:59:59.000Z

338

Continuous air monitor for alpha-emitting aerosol particles  

SciTech Connect

A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

McFarland, A.R.; Ortiz, C.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

339

Chemical Composition and Cloud Nucleation Ability of Marine Aerosol  

E-Print Network (OSTI)

This study is focused on the chemical composition and cloud nucleation ability of marine aerosol based on two cruise researches over Pacific Ocean and North Atlantic Ocean respectively. Implications of CLAW hypothesis and the factors influencing its...

Deng, Chunhua

2013-12-12T23:59:59.000Z

340

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network (OSTI)

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atmospheric Aerosol Chemistry, Climate Change, and Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

607 Atmospheric Aerosol Chemistry, Climate Change, and Air Quality An EMSL Science Theme Advisory Panel Workshop Workshop Date: January 30, 2013 Prepared for the U.S. Department of...

342

ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsShortwave Radiation and Aerosol Intensive Observation govCampaignsShortwave Radiation and Aerosol Intensive Observation Periods Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Shortwave Radiation and Aerosol Intensive Observation Periods 1998.08.03 - 1998.08.28 Lead Scientist : Warren Wiscombe For data sets, see below. Summary Wednesday, August 5, 1998: IOP Opening Activities: The IOP updates for the Shortwave/Aerosol/BDRF will be composed from notes taken during briefing sessions lead by Don Cahoon and company each night at the Marland Mansion in Ponca City. IOP Status as of 8/4/98 Weather forecasts indicate that cloudy conditions will prevail for the next few days. The Helicopter is on standby for clear sky conditions. Model output indicates clear sky's may move in later this week.

343

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

344

Non-intrusive characterization of heat transfer fluid aerosol formation  

E-Print Network (OSTI)

providing an ignition source for the fine aerosol droplets. TI&e Malvern Laser Diffraction Particle Analyzer RING DIODE ARRAY DETECTOR BEAM EXPANDER/ SPATIAL FILTER HE- NE LASER FOURIER TRANSFORM LENS Figure II-Z. Diffraction particle analyzer... providing an ignition source for the fine aerosol droplets. TI&e Malvern Laser Diffraction Particle Analyzer RING DIODE ARRAY DETECTOR BEAM EXPANDER/ SPATIAL FILTER HE- NE LASER FOURIER TRANSFORM LENS Figure II-Z. Diffraction particle analyzer...

Krishna, Kiran

2012-06-07T23:59:59.000Z

345

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

346

On modification of global warming by sulfate aerosols  

SciTech Connect

There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

Mitchell, J.F.B.; Johns, T.C. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1997-02-01T23:59:59.000Z

347

Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated spray releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not accurately represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate of droplets suspended in a test chamber and droplet size distribution from a range of prototypic sprays. A novel test method was developed to allow measurement of sprays from small to very large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the aerosol generation rate increases with increasing the orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 ?m and increases the release fraction below this droplet size.

Gauglitz, Phillip A.; Mahoney, Lenna A.; Schonewill, Philip P.; Bontha, Jagannadha R.; Blanchard, Jeremy; Kurath, Dean E.; Daniel, Richard C.; Song, Chen

2013-03-05T23:59:59.000Z

348

Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem  

SciTech Connect

We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.

Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve; Allan, James D.; Zaveri, Rahul A.; Fast, Jerome D.; Hodnebrog, Oivind; Denier van der Gon, Hugo; McFiggans, Gordon

2014-11-08T23:59:59.000Z

349

Aerosol penetration of leak pathways : an examination of the available data and models.  

SciTech Connect

Data and models of aerosol particle deposition in leak pathways are described. Pathways considered include capillaries, orifices, slots and cracks in concrete. The Morewitz-Vaughan criterion for aerosol plugging of leak pathways is shown to be applicable only to a limited range of particle settling velocities and Stokes numbers. More useful are sampling efficiency criteria defined by Davies and by Liu and Agarwal. Deposition of particles can be limited by bounce from surfaces defining leak pathways and by resuspension of particles deposited on these surfaces. A model of the probability of particle bounce is described. Resuspension of deposited particles can be triggered by changes in flow conditions, particle impact on deposits and by shock or vibration of the surfaces. This examination was performed as part of the review of the AP1000 Standard Combined License Technical Report, APP-GW-GLN-12, Revision 0, 'Offsite and Control Room Dose Changes' (TR-112) in support of the USNRC AP1000 Standard Combined License Pre-Application Review.

Powers, Dana Auburn

2009-04-01T23:59:59.000Z

350

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

351

Generated Aerosols: X-ray Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

of any inorganic in the particles. When particles are collected in an impactor, lower viscosity particles will flatten more upon impaction and will be thinner (for a given size)...

352

Direct measurements of marine aerosols to examine the influence of biological activity, anthropogenic emissions, and secondary processing on particle chemistry  

E-Print Network (OSTI)

from a low-speed marine diesel engine, Aerosol Sci. Tech. ,from a low-speed marine diesel engine, Aerosol Sci. Tech. ,

Gaston, Cassandra Jayne

2012-01-01T23:59:59.000Z

353

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect

We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: ? Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. ? Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. ? Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

2011-05-24T23:59:59.000Z

354

Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.  

SciTech Connect

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2006-10-01T23:59:59.000Z

355

Combustion aerosols formed during burning of radioactively contaminated materials: Experimental results  

SciTech Connect

Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Radioactive aerosols generated by fires were investigated in experiments in which combustible solids and liquids were contaminated with radioactive materials and burned. Uranium in powder and liquid form was used to contaminate five fuel types: polychloroprene, polystyrene, polymethylmethacrylate, cellulose, and a mixture of 30% tributylphosphate (TBP) in kerosene. Heat flux, oxygen concentration, air flow, contaminant concentration, and type of ignition were varied in the experiments. The highest release (7.1 wt %) came from burning TBP/kerosene over contaminated nitric acid. Burning cellulose contaminated with uranyl nitrate hexahydrate liquid gave the lowest release (0.01 wt %). Rate of release and particle size distribution of airborne radioactive particles were highly dependent on the type of fuel burned.

Halverson, M.A.; Ballinger, M.Y.; Dennis, G.W.

1987-03-01T23:59:59.000Z

356

Trace element content of magnetohydrodynamic coal combustion effluents  

Science Journals Connector (OSTI)

Trace element contents from effluents of a simulated coal-fired magnetohydrodynamic (MHD) combustion process have been determined using thermal neutron activation analysis techniques. The quality control consi...

M. S. Akanni; V. O. Ogugbuaja; W. D. James

1983-01-01T23:59:59.000Z

357

The Effects of Trace Contaminants on Catalytic Processing of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing of Biomass-Derived Feedstocks . Abstract: Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to...

358

Towards a Ubiquitous Semantics of Interaction: phenomenology, scenarios and traces  

E-Print Network (OSTI)

Towards a Ubiquitous Semantics of Interaction: phenomenology, scenarios and traces Alan Dix does not attempt to address the whole question, but focuses on a phenomenological semantics

Dix, Alan

359

Organic Aerosol Formation from Photochemical Oxidation of Diesel Exhaust in a Smog Chamber  

Science Journals Connector (OSTI)

Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary ...

Emily A. Weitkamp; Amy M. Sage; Jeffrey R. Pierce; Neil M. Donahue; Allen L. Robinson

2007-09-11T23:59:59.000Z

360

Comparison of Carbonaceous Aerosols in Tokyo before and after Implementation of Diesel Exhaust Restrictions  

Science Journals Connector (OSTI)

Comparison of Carbonaceous Aerosols in Tokyo before and after Implementation of Diesel Exhaust Restrictions ... (5)?Albert, R. E. Comparative carcinogenic potencies of particulates from diesel engine exhausts, coke oven emissions, roofing tar aerosols and cigarette smoke. ...

Naomichi Yamamoto; Atsushi Muramoto; Jun Yoshinaga; Ken Shibata; Michio Endo; Osamu Endo; Motohiro Hirabayashi; Kiyoshi Tanabe; Sumio Goto; Minoru Yoneda; Yasuyuki Shibata

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - aerosol lidar profilometer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

CLASIC Summary: Lidar RH Changes in aerosol properties and RH near clouds Airborne NASA LaRC HSRL, ARM SGP ground... ) RamanLidar RelativeHumidityRamanLidar Aerosol Extensive...

362

The Evolution of the Physicochemical Properties of Aerosols in the Atmosphere  

E-Print Network (OSTI)

campaign investigated the evolution of the physicochemical properties of the Asian aerosol plume after 3 to 7 days of transport. The Asian aerosol within the free troposphere exhibited a bimodal growth distribution roughly 50 percent of the time. The more...

Tomlinson, Jason

2011-02-22T23:59:59.000Z

363

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza,  

E-Print Network (OSTI)

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza, , L. Gundersona , M.J. Haya , E. Merinob-density aerosol focusing for 1µm silica spheres. Preliminary results recover previous findings on aerodynamic

364

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network (OSTI)

properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types...

Lee, Yong Seob

2006-08-16T23:59:59.000Z

365

E-Print Network 3.0 - aerosolized red tide Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

characteristics of desert dust and biomass burning aerosols Summary: in the right panel of Fig. 6. The aerosol scenes spectra are drawn in green, the clear sky scenes in...

366

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

E-Print Network (OSTI)

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

Rosenfeld, Daniel

367

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valds

2009-02-01T23:59:59.000Z

368

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network (OSTI)

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

369

Investigation of the aerosol-cloud interaction using the WRF framework  

E-Print Network (OSTI)

In this dissertation, a two-moment bulk microphysical scheme with aerosol effects is developed and implemented into the Weather Research and Forecasting (WRF) model to investigate the aerosol-cloud interaction. Sensitivities of cloud properties...

Li, Guohui

2009-05-15T23:59:59.000Z

370

E-Print Network 3.0 - aerosol flame deposition Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: aerosol flame deposition Page: << < 1 2 3 4 5 > >> 1 Flame aerosol nano-technology has been developed to preparation of thin and defect-free porous membrane...

371

Mechanisms of aerosol-forced AMOC variability in a state of the art climate model  

E-Print Network (OSTI)

with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model

372

The Sensitivity of a Numerically Simulated Idealized Squall Line to the Vertical Distribution of Aerosols  

Science Journals Connector (OSTI)

Changes in the aerosol number concentration are reflected by changes in raindrop size and number concentration that ultimately affect the strength of cold pools via evaporation. Therefore, aerosol perturbations can potentially alter the balance ...

Zachary J. Lebo

2014-12-01T23:59:59.000Z

373

Tracing The Largest Seasonal Migration on Earth  

E-Print Network (OSTI)

It is estimated that over 3.6 billion passengers are travelling during the Chinese Spring Festival travel season. They leave their working cities and return their hometowns to enjoy annual family time, and back to cities after the holiday. In this study, with the massive location-based data collected from millions of smartphone users, we propose a novel method to trace the migration flow and explore the migration patterns of Chinese people. From the temporal perspective, we explore the migration trend over time during a 34-days period, about half a month before and after the Spring Festival. From the spatial perspective, the migration directions and routes are estimated and quantified, and the migration flow is visualized. The spatial range of influence of developed regions could be reflected with the destinations of migration, the migration destinations and originations have obvious characteristic of geographical proximity.

Wang, Xianwen; Mao, Wenli; Hu, Zhigang; Gu, Li

2014-01-01T23:59:59.000Z

374

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

375

Aerosol Data Sources and Their Roles within PARAGON  

SciTech Connect

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote-sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected in the near future. Emphasis must be given to combining remote sensing, in situ, active and passive observations, and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture having sufficient detail to address current climate-forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal.

Kahn, Ralph A.; Ogren, J. A.; Ackerman, Thomas P.; Bosenberg, Jens; Charlson, Robert J.; Diner, David J.; Holben, B. N.; Menzies, Robert T.; Miller, Mark A.; Seinfeld, John H.

2004-10-01T23:59:59.000Z

376

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

377

E-Print Network 3.0 - arctic aerosol burden Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and surface... generally exhibits low aerosol ... Source: National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Atmopsheric Chemistry and...

378

E-Print Network 3.0 - aerosol generation characterization Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: , Brookhaven National Laboratory: "Characterization of Aerosol Organic Matter: Detection, Formation and Optical... : "Atmospheric Formation, Transformation, and...

379

E-Print Network 3.0 - aerosol biokinetics concentrations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

380

Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods  

Energy.gov (U.S. Department of Energy (DOE))

Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES  

E-Print Network (OSTI)

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES: WHY ARE THE MODELS SO of Energy under Contract No. DE-AC02-98CH10886. #12;PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW will present a study of the properties of ammoniated sulfate aerosols ((NH4)2SO4, NH4HSO4, and in- between

382

REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS  

E-Print Network (OSTI)

understanding of the key processes that govern the aerosol size distribution: · Gas-to-particle conversion--conversion, suspensions of solid or liquid particles, are an important multi- phase system. Aerosols scatter and absorb retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes

383

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network (OSTI)

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

384

Insect Trace Fossil Associations in Paleosols: The Coprinisphaera Ichnofacies  

Science Journals Connector (OSTI)

...Namibia Sossus Sand (Khommabes Car-bonates) Late Pleistocene...from the Pleistocene Khommabes Car-bonates of Namibia are not...1993, Trace fossils from a Car-boniferous turbiditic lake...1985, Trace fossils from the Panther Member, Star Point Formation...

JORGE F. GENISE; M. GABRIELA MNGANO; LUIS A. BUATOIS; JOS H. LAZA; MARIANO VERDE

385

Evaluating regional emission estimates using the TRACE-P observations  

E-Print Network (OSTI)

Evaluating regional emission estimates using the TRACE-P observations G. R. Carmichael,1 Y. Tang,1. Wang,6 D. R. Blake,7 E. Atlas,8 A. Fried,8 B. Potter,9 M. A. Avery,10 G. W. Sachse,10 S. T. Sandholm,11 the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction

Clarke, Antony

386

Reasoning by Assumption: Formalisation and Analysis of Human Reasoning Traces  

E-Print Network (OSTI)

for the traces acquired in experiments undertaken. 1 Introduction Practical reasoning processes are often not limited to single reasoning steps, but extend to traces or trajectories of a number of interrelated by assumption'. This (non-deductive) practical reasoning pattern in- volves a number of interrelated reasoning

Treur, Jan

387

Looking For Traces of Pharmaceuticals in Drinking Water  

E-Print Network (OSTI)

Looking For Traces of Pharmaceuticals in Drinking Water By Daniel D. Snow, Ph.D. Director traces of drugs in the public drinking water supplies of 24 major U.S. metropolitan areas. This has in drinking water supplies is not new, but the classes of contaminants being tested for are. Pharmaceuticals

Nebraska-Lincoln, University of

388

Surface based remote sensing of aerosol-cloud interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface based remote sensing of aerosol-cloud interactions Surface based remote sensing of aerosol-cloud interactions Feingold, Graham NOAA/Environmental Technology Laboratory Frisch, Shelby NOAA/Environmental Technology Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties We will present an analysis of the effect of aerosol on clouds at the Southern Great Plains ARM site. New methods for retrieving cloud droplet effective radius with radar (MMCR), multifilter rotating shadowband radiometer (MFRSR), and microwave radiometer (MWR) will be discussed. Relationships based on adiabatic clouds will be used to constrain retrievals. We will investigate the use of a range of proxies for cloud condensation nuclei, ranging from surface measurements of light scattering and accumulation mode number concentration, to lidar-measured extinction or

389

ARM - Evaluation Product - Aerosol Optical Depths from SASHE  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAerosol Optical Depths from SASHE ProductsAerosol Optical Depths from SASHE Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Aerosol Optical Depths from SASHE Site(s) PVC SGP General Description The Shortwave Array Spectroradiometer Hemispheric (SASHE) is a ground-based instrument that measures both direct and diffuse shortwave irradiance. In this regard, the instrument is similar to the multifilter rotating shadowband radiometer (MFRSR)-an instrument that has been in the ARM Facility stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SASHE provides hyperspectral measurements from about 350 nm to 1700 nm at a wavelength resolution from 1 to several nanometers, while the MFRSR only

390

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

2414 2414 1 Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles M. P. Modera, O. Brzozowski ** , F. R. Carrié * , D. J. Dickerhoff, W. W. Delp, W. J. Fisk, R. Levinson, D. Wang Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m 2 per year (1 kWh/ft 2 ). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol

391

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

392

Lognormal Size Distribution Theory for Deposition of Polydisperse Aerosol Particles  

SciTech Connect

The moments method of the lognormal size distribution theory was applied to the deposition equation of a radioactive aerosol within a liquid-metal fast breeder reactor for analysis of postulated accidents. The deposition coefficient of Crump and Seinfeld was utilized to represent the Brownian and turbulent diffusions and the gravitational sedimentation. The deposition equation was converted into a set of three ordinary differential equations. This approach takes the view point that the size distribution of an aerosol is represented by a time-dependent lognormal size distribution function during the deposition process. Numerical calculations have been performed, and the results were found to be in good agreement with the exact solution. The derived model for aerosol deposition is convenient to use in a numerical general dynamic equation solution routine based on the moments method, where nucleation, condensation, coagulation, and deposition need to be solved simultaneously.

Park, S.H.; Lee, K.W. [Kwangju Institute of Science and Technology (Korea, Republic of)

2000-07-15T23:59:59.000Z

393

Aerosols and Clouds: In Cahoots to Change Climate  

ScienceCinema (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-06-02T23:59:59.000Z

394

ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAerosol Retrievals from ARM SGP MFRSR Data ProductsAerosol Retrievals from ARM SGP MFRSR Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data 2000.01.01 - 2000.12.31 Site(s) SGP General Description The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670

395

Economic Impacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts Annual federal research budget 399.4 million American Recovery and Reinvestment stimulus an additional 8,000 Employees * Total 1,945 * Living in Fox Valley or western...

396

Airborne measurements of carbonaceous aerosols in southern Africa during  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne measurements of carbonaceous aerosols in southern Africa during Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Title Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Publication Type Journal Article LBNL Report Number LBNL-50880 Year of Publication 2003 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research - Atmospheres Keywords black carbon, evolved gas analysis, light absorption, organic carbon, positive sampling artifact, SAFARI Abstract Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18±0.06) is lower than that of samples collected in the regional haze (0.25±0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

397

On surface temperature, greenhouse gases, and aerosols: models and observations  

SciTech Connect

The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1995-10-01T23:59:59.000Z

398

AEROSOLS AND CLIMATE THE SCIENTIFIC BASIS  

E-Print Network (OSTI)

to address two major pollutants that have an impact on warming: black soot and tropospheric ozone. Both are proven health hazards. Reducing both would not only address climate change, but also dramatically improve people's health. " #12;#12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per

Schwartz, Stephen E.

399

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

Postma, Arlin K. (Halfway, OR)

1986-01-01T23:59:59.000Z

400

Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol  

SciTech Connect

The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

John A. Ogren

2010-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Flattening coefficient of aerosols collected on treated slides  

E-Print Network (OSTI)

collected from oleic acid and DOP (dioctylphthalate) aerosols, The microscope slides were made oilphobic by immersion in a widely used fluorocarbon sur- factant (NYE BAR Type CT 2X or 3' Co. Chemical FC-721). The mean value of F f' or oleic acid... was found to be 1. 338, and for DOP, 1. 354. There is no apparent variation of F with particle diameter for aerosols in the 2. 7-29. 1 um range. The slightly lower value of F for oleic acid suggests that the contact angle of oleic acid with respect...

Olan-Figueroa, Excel

2012-06-07T23:59:59.000Z

402

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

Postma, A.K.

1984-09-07T23:59:59.000Z

403

Larval Behavior and Natural Trace Element Signatures as Indicators of Crustacean Population Connectivity  

E-Print Network (OSTI)

variability in an atlas of trace element signatures forin creating a trace element atlas, our results show thatstage to create a trace element atlas in 2009 (Table 4.2),

Miller, Seth Haylen

2011-01-01T23:59:59.000Z

404

Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?  

Science Journals Connector (OSTI)

Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground...

Ansmann, Albert

2006-01-01T23:59:59.000Z

405

Interactive Visualization of Modeled Atmospheric Trace Constituents Carmen M. Benkovitz  

E-Print Network (OSTI)

the effects of the emissions of Popocatepetl volcano, located near Mexico City. The effects of stronger of the Brookhaven National Laboratory Chemical Transport Model (CTM) of sulfate in the atmosphere. The visualization on climate. Anthropogenic activities affect the aerosol content of the atmosphere. Anthropogenic emissions

406

Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study  

SciTech Connect

The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short-lived shallow cumuli.

Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

2013-02-07T23:59:59.000Z

407

TAO: Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact Impact Home Download Documentation Publications Referencing TAO Impact Who We Are Acknowledgements License Contact Us Research and Publications that make use of TAO Dressed TDDFT study of low-lying electronic excited states in selected linear polyenes and diphenylopolyenes, Mazur, G., Makowski, M., Włodarczyk, R., and Aoki, Y., International Journal of Quantum Chemistry, 111, 4, 819--825, 2011. BibTeX Secondary thermal cracks in EGS: a variational approach, Bourdin, B., Knepley, M., and Maurini, C., Proceedings of the 34th annual meeting of the Geothermal resources council, 2010. BibTeX Adaptive Real-Time Bioheat Transfer Models for Computer Driven MR-guided Laser Induced Thermal Therapy, Fuentes, D., Feng, Y., Elliott, A., Shetty, A., McNichols, R. J., Oden, J. T., and Stafford, R. J., IEEE Trans. Biomed. Eng., 5, 1024--1030, 2010. BibTeX

408

Water content and morphology of sodium chloride aerosol particles  

E-Print Network (OSTI)

to explain the H2O content. The model in which the NaCl particles contain pockets of aqueous NaCl solution was found to be most consistent with the spectroscopic observations. The relevance of salt particle morphology and water content to atmospheric aerosol...

Weis, David D.; Ewing, George E.

1999-09-20T23:59:59.000Z

409

HEMISPHERIC-SCALE CHEMICAL AND MICROPHYSICAL AEROSOL MODEL  

E-Print Network (OSTI)

Dignon Bates/Lamb DRY DEPOSITION Wesely WET DEPOSITION Berkowitz/Hales CHEMISTRY Gas Aqueous SO2 + OH [OH dependent Size Resolved Wesely WET DEPOSITION Berkowitz/Hales CHEMISTRY Gas Phase Aqueous Phase SO2 AEROSOL;Anthropogenic Anthropogenic #12;by Production Mechanism Gas phase Aqueous Phase Primary October 15, 1986 at 6 UT

Schwartz, Stephen E.

410

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16T23:59:59.000Z

411

Building America Webinar: Sealing of Home Enclosures with Aerosol Particles  

Energy.gov (U.S. Department of Energy (DOE))

This webinar was presented by research team Building Industry Research Alliance (BIRA), and provided information about a project that uses existing aerosol duct sealing technology to seal the entire building enclosure in order to achieve greater airtightness and energy and cost savings.

412

LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA  

SciTech Connect

The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

2011-09-14T23:59:59.000Z

413

An overview of geoengineering of climate using stratospheric sulphate aerosols  

Science Journals Connector (OSTI)

...prior to mixing with turbine bypass air, through...and infrastructure development effort needed to...sulphate aerosol strategy is imperfect. The...with greenhouse gases. Furthermore...reductions in greenhouse gas emissions must take...geoengineering mitigation strategy occurring in the...

2008-01-01T23:59:59.000Z

414

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES  

E-Print Network (OSTI)

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES STEPHEN E. SCHWARTZ Environmental in cloud-free conditions and indirectly, by increasing concentratiol1S of cloud droplets thereby enhancing cloud shortwave reflectivity. These effecls are thought to be significant in the context of changes

415

AT631, Spring 2011 Introduction to Atmospheric Aerosols  

E-Print Network (OSTI)

. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, 2006AT631, Spring 2011 Introduction to Atmospheric Aerosols Tuesdays 9-9:50 AM, 212B ACRC Wednesdays, Lab, 1-4 PM, ACB 10 Instructor: Prof. Sonia Kreidenweis Atmospheric Chemistry Bldg., Room 19 491

416

Correction to Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect

In the paper Hyperspectral aerosol optical depths from TCAP flights by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2014-02-16T23:59:59.000Z

417

E-Print Network 3.0 - atmospheric trace gas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Physics Discussions Trace gas measurements from... ., Rinsland, C. P., Stiller, G. P., and Zander, R.: On the assessment and uncertainty of atmospheric trace gas......

418

Halocarbon and Other Atmospheric Trace Species (HATS) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Halocarbon and Other Atmospheric Trace Species (HATS) Halocarbon and Other Atmospheric Trace Species (HATS) Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Halocarbon and Other Atmospheric Trace Species (HATS) Dataset Summary Description The general mission of the Halocarbons and other Atmospheric Trace Species group is to quantify the distributions and magnitudes of sources and sinks for atmospheric nitrous oxide (N2O) and halogen containing compounds. HATS utilizes numerous types of platforms, including ground-based stations, towers, ocean vessels, aircraft, and balloons, to accomplish its mission. For a detailed mission statement, consult our FAQ. Tags {"nitrous oxide","sulfur hexaflouride",CFC-11,CFC-12,CFC-113,CCl4,CH3CCl3,CH3Cl,halon-1211,HCFC-22,HCFC-142b,halocarbons,chromatograph,aircraft,balloons,vessels,ships,towers,"natural resources",environment,air,"GHG "}

419

Time Series of Trace Element Concentrations Calculated from  

E-Print Network (OSTI)

a). A total of 120 samples were collected at sites within the Bay, outside the Golden Gate receives many waste water discharges, especially in areas south of the Dumbarton Bridge, that contain trace

420

A graphics architecture for ray tracing and photon mapping  

E-Print Network (OSTI)

Recently, methods were developed to render various global illumination e?ects with rasterization GPUs. Among those were hardware based ray tracing and photon mapping. However, due to current GPU??s inherent architectural limitations, the e...

Ling, Junyi

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A study on some trace elements in Chilean seafood  

Science Journals Connector (OSTI)

Levels of essential and toxic trace elements in six marine species greatly in demand in the international market (canned pink clams, razor clams, clams, king crab, sardines, and frozen albacore tuna fish) were...

N. Gras; L. Munoz; M. Thieck

1993-03-01T23:59:59.000Z

422

Complex ray tracing study of electron cyclotron resonance heating  

Science Journals Connector (OSTI)

In the up-to-date ray tracing study of electron cyclotron resonance heating (ECRH) of fusion plasmas, energy absorption ... side of the tokamak plasmas approach the electron cyclotron resonance surface step by st...

Liu Hongxiu; Zhao Changlin

1986-03-01T23:59:59.000Z

423

Understanding reservoir mechanisms using phase and component streamline tracing  

E-Print Network (OSTI)

explored. The power and utility of the phase and component streamlines have been demonstrated using synthetic examples and two field cases. The new formulation of streamline tracing provides additional information about the reservoir drive mechanisms...

Kumar, Sarwesh

2009-05-15T23:59:59.000Z

424

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

425

Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay  

SciTech Connect

Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

Anheier, Norman C.; Bushaw, Bruce A.

2010-08-11T23:59:59.000Z

426

The Fidelity and Trace Norm Distances for Quantifying Coherence  

E-Print Network (OSTI)

We investigate the coherence measures induced by fidelity and trace norm, based on the recent proposed coherence quantification in [Phys. Rev. Lett. 113, 140401, 2014]. We show that the fidelity of coherence does not in general satisfy the monotonicity requirement as a measure of coherence under the subselection of measurements condition. We find that the trace norm of coherence can act as a measure of coherence for qubit case and some special class of qutrits.

Lian-He Shao; Zhengjun Xi; Heng Fan; Yongming Li

2014-10-30T23:59:59.000Z

427

Technique for identifying, tracing, or tracking objects in image data  

DOE Patents (OSTI)

A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

Anderson, Robert J. (Albuquerque, NM); Rothganger, Fredrick (Albuquerque, NM)

2012-08-28T23:59:59.000Z

428

FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations  

SciTech Connect

The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (1020 km) until 510 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

Koch, D

2011-03-20T23:59:59.000Z

429

Solar Coronal Structures and Stray Light in TRACE  

E-Print Network (OSTI)

Using the 2004 Venus transit of the Sun to constrain a semi-empirical point-spread function for the TRACE EUV solar telescope, we have measured the effect of stray light in that telescope. We find that 43% of 171A EUV light that enters TRACE is scattered, either through diffraction off the entrance filter grid or through other nonspecular effects. We carry this result forward, via known-PSF deconvolution of TRACE images, to identify its effect on analysis of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the effect of visible haze in the TRACE 171A images, enhances bright features, and reveals that the smooth background component of the corona is considerably less bright (and hence much more rarefied) than commonly supposed. Deconvolution reveals that some prior conlclusions about the Sun appear to have been based on stray light in the images. In particular, the diffuse background "quiet corona" becomes consistent with hydrostatic support of the coronal plasma; feature contrast is greatly increased, possibly affecting derived parameters such as the form of the coronal heating function; and essentially all existing differential emission measure studies of small features appear to be affected by contamination from nearby features. We speculate on further implications of stray light for interpretation of EUV images from TRACE and similar instruments, and advocate deconvolution as a standard tool for image analysis with future instruments such as SDO/AIA.

C. E. DeForest; P. C. H. Martens; M. J. Wills-Davey

2008-08-29T23:59:59.000Z

430

Metal contamination of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River and environmental impact due to Utapete gas flare station, Nigeria  

Science Journals Connector (OSTI)

Inter-seasonal studies on the trace metal load of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River were conducted between 2003 and 2004. The impact of anthropogenic activities especially...

Nsikak U. Benson; Usoro M. Etesin

2008-09-01T23:59:59.000Z

431

MeTAGeM-Trace: Improving trace generation in model transformation by leveraging the role of transformation models  

Science Journals Connector (OSTI)

Abstract In the context of Model-Driven Engineering (MDE), generation of traces can be automated using the implicit traceability relationships contained in any model transformation. Besides, if transformations are developed adopting a Model-Driven Engineering (MDE) approach, i.e. promoting the role of models and the level of automation, model transformation will benefit from the promised advantages of MDE in terms of less costly software development while reducing the inherent complexity of coding model transformations. To put these ideas into practice, this work introduces MeTAGeM-Trace, the first prototype of an EMF-based toolkit for the MDD of model-to-model transformations which supports trace generation, i.e. it allows developing model transformations that produce not only the corresponding target models, but also a trace model between the elements of the source and target models involved in the transformation.

lvaro Jimnez; Juan M. Vara; Vernica A. Bollati; Esperanza Marcos

2015-01-01T23:59:59.000Z

432

Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes  

SciTech Connect

The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

1989-09-01T23:59:59.000Z

433

The technical basis for air pathway assessment of resuspended radioactive aerosols: LLNL experiences at seven sites around the world  

SciTech Connect

There is a large uncertainty in quantifying the inhalation pathway and the aerosol emission rate in human health assessments of radioactive-contamination sites. The need for site-specific assessments led to formation of our team of specialists at LLNL, who have participated in numerous field campaigns around the world. Our goal was to obtain all the information necessary for determining potential human exposures and to estimate source terms for turbulent transport of the emissions during both normal and disturbed soil conditions. That is, measurements were made of the key variables to quantify the suspended aerosols at the actual contamination sites, but different scenarios for habitation, site management, and site cleanup were included. The most notable locations of these site-investigations were the Marshall Islands (Bikini, Enewetak, and Rongelap), Nevada Test Site (GMX, Little Feller, Palanquin, and Plutonium Valley), Tonopah (Nevada--site of Roller Coaster), Savannah River Lab (South Carolina--H-Area site), Johnston Island (cleanup of rocket-impact site), Chernobyl (Ukraine--grass field end sandy beach sites near Nuclear Power Plant Unit 4), and Palomares (Spain--site of aircraft accident). This discussion will review the variables quantified, methods developed, general results, uncertainty of estimations, and recommendations for future research that are a result of our experience in these field studies.

Shinn, J.H.

1993-09-01T23:59:59.000Z

434

An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a  

NLE Websites -- All DOE Office Websites (Extended Search)

An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a Decade of Observations at a Mid-Continental Site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Category: Aerosols Continuing observations of aerosol and cloud optical property have been made using MFRSR and MWR at the ARM SGP site since 1993. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We have correlated an "aerosol index" computed from clear-sky observations of MFRSR with cloud droplet mean effective radius to study the

435

Use of Aeronet Aerosol Retrievals to Calculate Clear-Sky Irradiance at the Surface  

NLE Websites -- All DOE Office Websites (Extended Search)

AERONET Aerosol Retrievals to AERONET Aerosol Retrievals to Calculate Clear-Sky Irradiance at the Surface G. L. Schuster National Aeronautics and Space Administration Langley Research Center Hampton, Virginia O. Dubovik National Aeronautics and Space Administration Goddard Space Flight Center Laboratory for Terrestrial Physics Greenbelt, Maryland Motivation The worldwide aerosol robotic network (AERONET) of ground-based radiometers was developed (in part) as a satellite validation tool (Holben et al. 1998). These sites utilize spectral sky-scanning radiometers, providing more information for aerosol retrievals than conventional sunphotometer measurements. The use of the almucantar sky radiance scans in conjunction with the aerosol optical thicknesses are the basis of the AERONET Dubovik retrievals, which provide the aerosol size

436

ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 2006.03.03 - 2006.03.28 Lead Scientist : Jeffrey Gaffney For data sets, see below. Description A 4-week field campaign was conducted in and downwind of Mexico City during March 2006. The Megacity Aerosol eXperiment - MEXico City (MAX-MEX) characterized aerosol formation and changes in aerosol composition, size distribution, light scattering coefficient, absorption coefficient, optical depth, soot-specific absorption, and radiative fluxes at selected vertical and horizontal locations in the outflow from a well-characterized urban core. Detailed analyses were made of the meteorological conditions during

437

Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of  

NLE Websites -- All DOE Office Websites (Extended Search)

Importance of Iron Mineralogy to Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of the most important elements to life. Despite its paramount importance and relative abundance, dissolved iron concentrations are often very low, in part due to the formation of very stable iron minerals in most oxidizing environments. Since soluble iron is available to living organisms, iron deficiencies are widespread, and the factors that influence

438

Enhancement factors for resuspended aerosol radioactivity: Effects of topsoil disturbance  

SciTech Connect

The enhancement factor for airborne radionuclides resuspended by wind is defined as the ratio of the activity density (Bq g{sup {minus}1}) in the aerosol to the activity density in the underlying surface of contaminated soil. Enhancement factors are useful for assessment of worst-case exposure scenarios and transport conditions, and are one of the criteria for setting environmental standards for radioactivity in soil. This paper presents results of experimental studies where resuspension of {sup 239}Pu was measured when air concentrations were equilibrated to the soil surface. Enhancement factors were observed for several types of man-made disturbances (bulldozer-blading, soil raking, vacuum-cleaning) and natural disturbances (springtime thaw, soil-drying, wildfire). For some cases, enhancement factors are compared over range of geographical locations (Bikini Atoll, California, Nevada, and South Carolina). The particle-size distributions of aerosol activity are compared to particle-size distributions of the underlying soil.

Shinn, J.H.

1991-11-01T23:59:59.000Z

439

Economic Impact Reporting Framework  

E-Print Network (OSTI)

Economic Impact Reporting Framework 2007/08 November 2008 #12;#12;Economic Impact Reporting Framework 2007/08 #12;STFC Economic Impact Reporting Framework 2007/08 Contents: Introduction..............................................................................................................................................2 1: Overall Economic Impacts

440

Economic Impact Reporting Framework  

E-Print Network (OSTI)

Economic Impact Reporting Framework 2008/09 #12;#12;Economic Impact Reporting Framework 2008/09 #12;STFC Economic Impact Reporting Framework 2008/09 Contents: Introduction..............................................................................................................................................2 1: Overall Economic Impacts

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laboratory Testing of Aerosol for Enclosure Air Sealing  

SciTech Connect

Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

Harrington, C.; Modera, M.

2012-05-01T23:59:59.000Z

442

Aerosol nucleation in coal-fired power-plant plumes  

Science Journals Connector (OSTI)

New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations particularly near source regions with implications for human health and climate. In order to resolve the formation and growth of particles in these plumes we have integrated TwO-Moment Aerosol Sectional (TOMAS) microphysics in the System for Atmospheric Modelling (SAM) a large-eddy simulation/cloud-resolving model (LES/CRM). We have evaluated this model against aircraft observations for three case studies and the model reproduces well the major features of each case. Using this model we have shown that meteorology and background aerosol concentrations can have strong effects on new-particle formation and growth in coal-fired power-plant plumes even if emissions are held constant. We subsequently used the model to evaluate the effects of SO 2 and NOx pollution controls on newparticle formation in coal-fired power-plant plumes. We found that strong reductions in NOx emissions without concurrent reductions in SO 2 emissions may increase new-particle formation due to increases in OH formation within the plume. We predicted the change in new-particle formation due to changes in emissions between 1997 and 2010 for 330 coal-fired power plants in the US and we found a median decrease of 19% in new-particle formation. However the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO 2 emissions in each plant. More extensive plume measurements for a range of emissions of SO 2 and NOx and in varying background aerosol conditions are needed however to better quantify these effects.

2013-01-01T23:59:59.000Z

443

Vertical and horizontal fluxes of selected radionuclides and trace metals off the coast of southern California  

SciTech Connect

The overall objective of our research, within the structure of the CaBS program, is to understand the transport pathways and mass balances of some metabolically-active and inactive chemical species in the Santa Monica/San Pedro (SM/SP) Basin. Our focus is to examine selected trace metals and radionuclides in seawater, sediment trap material, and bottom sediments. Knowledge of the inventories, fluxes, and routes of these nuclides and metals in or among these reservoirs should lead to a cogent model for these elements in SM/SP Basin, which in turn should shed light on the fate and effects of energy-related by-products in a coastal region impacted by intense human activities. 4 figs., 3 tabs.

Huh, C.-A.

1990-01-01T23:59:59.000Z

444

Thermophoresis and its thermal parameters for aerosol collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermophoresis and its thermal parameters for aerosol collection Thermophoresis and its thermal parameters for aerosol collection Title Thermophoresis and its thermal parameters for aerosol collection Publication Type Journal Article Year of Publication 2007 Authors Huang, Zhuo, Michael G. Apte, and Lara A. Gundel Journal U.S. Department of Energy Journal of Undergraduate Research Volume 7 Pagination 37-42 Abstract The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25µm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised

445

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

446

Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap  

SciTech Connect

We present aerosol-derived alloy powders as a uniquely useful platform for studying the contribution of the metal phase to multifunctional supported catalysts. Multimetallic heterogeneous catalysts made by traditional methods are usually nonhomogenous while UHV-based methods, such as mass selected clusters or metal vapor deposited on single crystals, lead to considerably more homogeneous, well-defined samples. However, these well-defined samples have low surface areas and do not lend themselves to catalytic activity tests in flow reactors under industrially relevant conditions. Bimetallic alloy powders derived by aerosol synthesis are homogeneous and single phase and can have surface areas ranging 1-10 m2/g, making them suitable for use in conventional flow reactors. The utility of aerosol-derived alloy powders as model catalysts is illustrated through the synthesis of single phase PdZn which was used to derive the specific reactivity of the L10 tetragonal alloy phase for methanol steam reforming. Turnover frequencies on unsupported PdZn were determined from the experimentally determined metal surface area to be 0.21 molecules of methanol reacted per surface Pd at 250 C and 0.06 molecules of CO oxidized to CO2 per surface Pd at 185 C. The experimentally measured activation energies for MSR and CO-oxidation on PdZn are 48 and 87 kJ/mol, respectively.

Halevi, Barr; Peterson, Eric; DelaRiva, Andrew; Jeroro, E.; Lebarbier, Vanessa MC; Wang, Yong; Vohs, John M.; Kiefer, Boris; Kunkes, Edward L.; Havecker , Michael; Behrens, Malte; Schlogl, Robert; Datye, Abhaya K.

2010-09-03T23:59:59.000Z

447

Source terms for plutonium aerosolization from nuclear weapon accidents  

SciTech Connect

The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

Stephens, D.R.

1995-07-01T23:59:59.000Z

448

Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying the Aerosol Indirect Effect Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models G. Feingold National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Lane Rutgers University Camden, New Jersey Q.-L. Min Atmospheric Sciences Research Center State University of New York Albany, New York Introduction The effect of aerosols on cloud microphysical and radiative properties (the "indirect effect") has the greatest uncertainty of all known climate-forcing mechanisms. Increases in aerosol concentrations result in higher concentrations of cloud condensation nuclei (CCN), increased cloud droplet concentrations, and smaller droplet sizes (Twomey 1974). A possible secondary effect is the suppression of rainfall.

449

E-Print Network 3.0 - aerosol mass spectrometry Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

used in health effects studies by aerosol mass spectrometry Wingen, L... and heats of sublimation using atmospheric solids analysis probe mass spectrometry (ASAP-MS) Bruns E......

450

Ultraclean Two-Stage Aerosol Reactor for Production of Oxide-Passivated Silicon Nanoparticles for Novel  

E-Print Network (OSTI)

as an aerosol by pyrolysis of silane3 or disilane4 or by thermal evaporation of Si.5 In studies of Si

Atwater, Harry

451

E-Print Network 3.0 - aerosol measurements importance Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

38 Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: The challenge in investigating links Summary: for the importance of...

452

Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California  

E-Print Network (OSTI)

of scale, in Air Pollution and Health in Rapidly Developingfor particulate air pollution health standards, Aerosolfor particulate air pollution health standards, Aerosol

Shields, Laura Grace

2008-01-01T23:59:59.000Z

453

NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles  

Science Journals Connector (OSTI)

An airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The...

Browell, E V; Carter, A F; Shipley, S T; Allen, R J; Butler, C F; Mayo, M N; Siviter, J H; Hall, W M

1983-01-01T23:59:59.000Z

454

E-Print Network 3.0 - aerosol program program Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

CHAPSCLASIC Summary: Observations of Cloud-Aerosol Halos During CHAPSCLASIC Funded by NASA HQ Science Mission... Directorate Radiation Sciences Program Funded by Department of...

455

E-Print Network 3.0 - ammonium nitrate aerosols Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

ON MINERAL DUSTS: CRYSTALLINE OR AQUEOUS? Summary: 02138, USA Keywords: Phase transition; Atmospheric Aerosols; Ammonium sulfate; Ammonium nitrate... that of ammonium...

456

Evolution of the optical properties of biomass-burning aerosol during the 2003 southeast Australian bushfires  

Science Journals Connector (OSTI)

During January and February 2003, drought conditions led to major bushfires across southeast Australia, causing considerable damage. We have examined aerosol optical depth (AOD) data...

Radhi, Majed; Box, Michael A; Box, Gail P; Gupta, Pawan; Christopher, Sundar A

2009-01-01T23:59:59.000Z

457

E-Print Network 3.0 - atmospheric aerosol limb Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Influence... Aerosols play an important role in our planet's dynamic ... Source: Jet Propulsion Laboratory, Machine Learning Systems Group Collection: Computer Technologies...

458

Do biomass burning aerosols intensify drought in equatorial Asia during El Nio?  

E-Print Network (OSTI)

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

459

E-Print Network 3.0 - aerosol features biomass Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

features biomass Search Powered by Explorit Topic List Advanced Search Sample search results for: aerosol features biomass Page: << < 1 2 3 4 5 > >> 1 Global observations and...

460

E-Print Network 3.0 - atmospheric aerosol processes Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Applied Science Collection: Environmental Sciences and Ecology 3 Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements...

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - aerosol detection equipment Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

<< < 1 2 3 4 5 > >> 1 Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground-based measurements Summary: Assessing Goddard Institute...

462

SAGE II long-term measurements of stratospheric and upper tropospheric aerosols  

SciTech Connect

The Stratospheric Aerosol and Gas Experiment (SAGE) II solar occultation instrument has been making measurements on stratospheric aerosols and gases continually since October 1984. Observations from the SAGE II instrument provide a valuable long-term data set for study of the aerosol in the stratosphere and aerosol and cloud in the upper troposphere. The period of observation covers the decay phase of material injected by the El Chichon volcanic eruption in 1982, the years 1988--1990 when stratospheric aerosol levels approached background levels, and the period after the eruption of Mount Pinatubo in 1991. The Mount Pinatubo eruption caused the largest perturbation in stratospheric aerosol loading in this century, with effects on stratospheric dynamics and chemistry. The SAGE II data sequence shows the global dispersion of aerosols following the Mount Pinatubo eruption, as well as the changes occurring in stratospheric aerosol mass and surface area. The downward transfer of stratospheric aerosols into the upper troposphere following the earlier eruption of El Chichon is clearly visible. Estimates have been made of the amount of volcanic material lying in the upper troposphere and the way in which this varies with latitude and season.

Wang, P.H.; Kent, G.S. [Science and Technology Corp., Hampton, VA (United States); McCormick, M.P.; Thomason, L.W. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Div.

1995-12-31T23:59:59.000Z

463

E-Print Network 3.0 - aerosol deposition method Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the ocean and the dynamic nature of aerosol inputs, this topic... alteration during transport). Before we can reliably model ... Source: Paytan, Adina - Department of Earth...

464

E-Print Network 3.0 - atmospheric aerosol aggregates Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

are also directly associated with reduction in visibility and with long-range transport... for atmospheric aerosols is their association ... Source: Brookhaven National...

465

E-Print Network 3.0 - aerosol depletion test Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

depletion test Search Powered by Explorit Topic List Advanced Search Sample search results for: aerosol depletion test Page: << < 1 2 3 4 5 > >> 1 Supervolcanoes General feedback...

466

E-Print Network 3.0 - aerosolized brain natriuretic Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

brain natriuretic Search Powered by Explorit Topic List Advanced Search Sample search results for: aerosolized brain natriuretic Page: << < 1 2 3 4 5 > >> 1 JOURNAL OF EXPERIMENTAL...

467

E-Print Network 3.0 - assessing aerosol retention Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

optical properties in the vicinity of biologically active... regions of the ocean. Detection of aerosol signal associated with the ocean ecosystem will provide Source:...

468

March 14, 2011 NIST Aerosol Metrology Workshop Optical Properties: The Global  

E-Print Network (OSTI)

are difficult without involving satellite measurements Correspondence with satellite measurements require. Improved regional forecasts of both weather and air quality #12;GAW Aerosol Lidar Observation Network

469

E-Print Network 3.0 - aerosol assisted chemical Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Chemical... Element Methods, Aerosols, Air Pollution Modeling, ... Source: Consortium for Fossil Fuel Science, C1 Chemistry Program Collection: Fossil Fuels 36...

470

E-Print Network 3.0 - annually occurring aerosol Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Radiative Transfer Encyclopedia of Atmospheric Science Summary: system. Naturally occurring aerosols reflect some of the incident solar radiation back to space before... in...

471

Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols  

Science Journals Connector (OSTI)

... The global model that I used was GATOR-GCMM, which treated gas, aerosol, radiative, meteorological and transport processes (see Supplementary ...

Mark Z. Jacobson

2001-02-08T23:59:59.000Z

472

Year Report (FY 2000) Evaluation of uncertainties in satellite retrievals of aerosol  

E-Print Network (OSTI)

. Third Year Statement of Work 1. Construct clean aerosol data sets for the Mauna Loa (Hawaii), and Cheeka retrievals to the observed variability of ae

473

E-Print Network 3.0 - aerosol wastes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Schwartz Proc. Aerosols and Atmospheric Optics Radiation Balance... and Visual Air Quality, Snowbird, UT, Sept. 26-30, pp. 403-409, Air and Waste Management Association... ,...

474

Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California  

E-Print Network (OSTI)

of levoglucosan in biomass combustion aerosol by high-and differences in biomass combustion smoke under differentwere unique to biomass combustion. Finally, the relative

Shields, Laura Grace

2008-01-01T23:59:59.000Z

475

E-Print Network 3.0 - aerosol properties in-canopy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

in-canopy Page: << < 1 2 3 4 5 > >> 1 Quantitative Assessments of Radiative and Optical Properties of Marine Biogenic Aerosol PI: N. Meskhidze (NCSU) Summary: Quantitative...

476

E-Print Network 3.0 - aerosol monitoring Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Dodd Way, Atlanta, GA, 30332, U.S.A. Abstract. Atmospheric aerosols scatter and absorb solar Source: Bergin, Mike - Schools of Civil and Environmental Engineering & Earth and...

477

E-Print Network 3.0 - aerosol size classification Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Spectroradiometer observations: Top-of-atmosphere albedo change Summary: Panel on Climate Change, 2007. Aerosol particles have a variety of shapes, sizes, and...

478

E-Print Network 3.0 - atmospheric aerosol characterisation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and... of the U.S. Department of Energy under Contract No....

479

E-Print Network 3.0 - atmospheric aerosols basic Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIZE DISTRIBUTION Brookhaven National Laboratory is a multi... analyzers due to its speed and ability to detect aerosol particles smaller than 100 nm in diameter ... Source:...

480

Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia  

SciTech Connect

Biomass burning is a major source of aerosols and air pollutants during the springtime in Southeast Asia. At Lulin mountain background station (elevation 2862 m) in Taiwan, the concentrations of carbon monoxide (CO), ozone (O3) and particulate matter particles with diameter less than 10 ?m (PM10), were measured around 150-250 ppb, 40-60 ppb, and 10-30?g/m3, respectively at spring time (February-April) during 2006 and 2009, which are about 2~3 times higher than those in other seasons. Observations and simulation results indicate that the higher concentrations during the spring time are clearly related to biomass burning plumes transported from the Indochina Peninsula of Southeast Asia. The spatial distribution of high aerosols optical depth (AOD) were identified by the satellite measurement and Aerosol Robotic Network (AERONET) ground observation, and could be reasonably captured by the WRF-Chem model during the study period of 15-18 March, 2008. AOD reached as high as 0.8-1.0 in Indochina ranging from 10 to 22N and 95 to 107E. Organic carbon (OC) is a major contributor of AOD over Indochina according to simulation results. The contributor of AOD from black carbon (BC) is minor when compared with OC over the Indochina. However, the direct absorption radiative forcing of BC in the atmosphere could reach 35-50 W m-2, which is about 8-10 times higher than that of OC. The belt shape of radiation reduction at surface from Indochina to Taiwan could be as high 20-40 W m-2 during the study period. The implication of the radiative forcing from biomass burning aerosols and their impact on the regional climate in East Asia is our major concern.

Lin, Chuan-Yao; Zhao, Chun; Liu, Xiaohong; Lin, Neng-Huei; Chen, Wei-Nei

2014-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "tracing aerosol impacts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Trace element fingerprinting of ancient Chinese gold with femtosecond laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Trace element fingerprinting of ancient Chinese gold with femtosecond laser Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation-inductivity coupled mass spectrometry Title Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation-inductivity coupled mass spectrometry Publication Type Journal Article Year of Publication 2009 Authors Brostoff, Lynn B., Jhanis J. Gonzalez, Paul Jett, and Richard E. Russo Journal Journal of Archeological Science Volume 36 Start Page 461 Issue 2 Pagination 461-466 Date Published 02/2009 Keywords Ancient gold, femtosecond, la-icp-ms, Trace element Abstract In this collaborative investigation, femtosecond laser ablation-inductively coupled mass spectrometry (LA-ICP-MS) was applied to the study of a remarkable group of ancient Chinese gold objects in the Smithsonian's Freer Gallery of Art and Arthur M. Sackler Gallery. Taking advantage of the superior ablation characteristics and high precision of a femtosecond 266 nm Ti:sapphire laser at Lawrence Berkeley National Laboratory, major, minor and trace element concentrations in the gold fragments were quantified. Results validate use of femtosecond LA-ICP-MS for revealing ''fingerprints'' in minute gold samples. These fingerprints allow us to establish patterns based on the association of silver, palladium and platinum that support historical, technical and stylistic relationships, and shed new light on these ancient objects.

482

Tracing the At-Risk Oral Mucosa Field with Autofluorescence: Steps Toward Clinical Impact  

Science Journals Connector (OSTI)

...imaging uses higher-energy light to excite specific...they re-emit lower-energy light that makes up the...autofluorescence and appears as a dark brown to black region...An intriguing early discovery was that this technology...particularly in the darker areas, where small changes...

Catherine F. Poh; Calum E. MacAulay; Lewei Zhang; and Miriam P. Rosin

2009-05-01T23:59:59.000Z

483

A new research aircraft for the documentation of the impacts of pollution  

NLE Websites -- All DOE Office Websites (Extended Search)

A new research aircraft for the documentation of the impacts of pollution A new research aircraft for the documentation of the impacts of pollution aerosols on clouds and precipitation Axisa, Duncan SOAR Collins, Don Texas A&M University Rosenfeld, Daniel Woodley, William Category: Radiation The importance of aircraft in situ measurements is well demonstrated by the progress that these data helped to achieve over the last two decades. Advances were quite spectacular over this period both in aircraft capabilities and in the instrumentation carried by them. Through the years new aircraft probe designs have evolved. These improvements provide an extended and overlapping size range of cloud particles and accumulation mode aerosol measurements. Improved electronics provide better resolution, particle sizing and accurate particle concentrations. Seeding Operations &

484

The impact of meteorological conditions and variation in chemical composition of aerosols on regional cloud formation  

E-Print Network (OSTI)

Snyder, J.J. Schauer, R.E. Peltier, R.J. Weber, S.M. Murphy,Hecobian, O. Vargas, R.E. Peltier, A.T.C. Hanks, L.G. Huey,A.M. Middlebrook, R.E. Peltier, A. Sullivan, D.S. Thomson,

Creamean, Jessie Marie

2012-01-01T23:59:59.000Z

485

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network (OSTI)

2030 A1B emissions from bio-fuel and transportation sourcesand a simulation where bio-fuel and transportation sourcesin transportation and bio-fuel based carbonaceous emissions

Menon, Surabi

2008-01-01T23:59:59.000Z

486

Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation  

E-Print Network (OSTI)

climate sensitivity in the Hadley Centre climate model, J.and Clement, A. : Has the Hadley cell been strength- eningA. J. : On the link between Hadley circulation changes and

Tosca, M. G; Randerson, J. T; Zender, C. S

2013-01-01T23:59:59.000Z

487

Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds  

Science Journals Connector (OSTI)

...Research and Forecasting (WRF) model (27). More...water vapor mixing ratio, wind components U (solid...column are the zonal (U) wind shears calculated as (Maximum...Universal Time (UTC) and Local Standard Time (LST...Fig. 1) and vertical wind shear is relatively...

Jiwen Fan; L. Ruby Leung; Daniel Rosenfeld; Qian Chen; Zhanqing Li; Jinqiang Zhang; Hongru Yan

2013-01-01T23:59:59.000Z

488

Impact of aerosols present in Titan's atmosphere on the CASSINI radar experiment  

E-Print Network (OSTI)

of interest for Titan: liquid methane, liquid mixture of methane-ethane, water ice and light hydrocarbon ices. This chemistry results in the production of a great diversity of hydrocarbons and nitriles in the stratosphere-visible-NIR wavelengths. It is also possible that lighter hydrocarbons or nitriles diffuse downwards and condense

Boyer, Edmond

489

Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber  

E-Print Network (OSTI)

, heterogeneous surface reactions, cloud processing, and gas-to-particle partitioning through the formation of secondary organic aerosol (SOA) by organic gases (Pankow 1994). Moreover, SOA has been linked to adverse health effects as they typically contain... 1985; Ng et al. 2006; Presto et al. 2005; Saathoff et al. 2003). Such classes include cycloalkenes, aromatic hydrocarbons, and terpenes, most of which are cyclic compounds. When these compounds undergo atmospheric oxidation, 3 they produce first-generation...

Glen, Crystal

2012-02-14T23:59:59.000Z

490

Chemical and Physical Properties of Atmospheric Aerosols (a) A Case Study in the Unique Properties of Agricultural Aerosols (b) The Role of Chemical Composition in Ice Nucleation during the Arctic Spring  

E-Print Network (OSTI)

dataset is reported for these physical and chemical properties of agricultural aerosols appropriate for use in a site-specific emission inventory. The emission rate and transport of the aerosols are also discussed. In addition, mixing ratios of total...

<