National Library of Energy BETA

Sample records for tracer recoveries met

  1. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  2. Single well tracer method to evaluate enhanced recovery

    DOE Patents [OSTI]

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  3. Tracers and Tracer Interpretation | Open Energy Information

    Open Energy Info (EERE)

    Component Research and DevelopmentAnalysis Nathrop, CO 1,840,000 460,000 2,300,000 Quantum Dot Tracers for Use in Engineered Geothermal Systems Utah University of Utah Recovery...

  4. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; et al

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility atmore » an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.« less

  5. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    SciTech Connect (OSTI)

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; Maher, Kate

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ?U/?U (??U), ?U/?U activity ratio, and ?S/S (??S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The ??U in Rosita groundwater varies from 0.61 to -2.49, with a trend toward lower ??U in downgradient wells. The concurrent decrease in U(VI) concentration and ??U with an ? of 0.48 0.08 is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ?U/?U activity ratio and ??S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.

  6. ARM - Instrument - met

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmet Documentation MET : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Surface Meteorological Instrumentation (MET) Instrument Categories Surface Meteorology Picture of the ARM Mobile Facility Surface Meteorology station (MET) General Overview The ARM Surface Meteorology Systems (MET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed,

  7. Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpretation Methods (Technical Report) | SciTech Connect Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods Citation Details In-Document Search Title: Tracers and Tracer Testing: Design, Implementation, Tracer Selection, and Interpretation Methods × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  8. ARM - Datastreams - met

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmet Documentation Data Quality Plots Citation DOI: 10.5439/1025220 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MET ARM-standard Meteorological Instrumentation at Surface Active Dates 1993.06.29 - 2016.03.11 Measurement Categories Atmospheric State Originating Instrument Surface Meteorological Instrumentation (MET) Measurements Only measurements

  9. Tracers and Exploration Technologies

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

  10. INL Tracer Interpretation

    Energy Science and Technology Software Center (OSTI)

    2007-03-27

    This spreadsheet application is for tracer test analysis. The analyses are based on the first temporal moment of a tracer. The governing equations are briefly discussed, and the individual steps required of the user are outlined. A series of Excel macros written in Visual Basic calculate mean residence time, swept pore volume, and flow-storage geometry from a tracer history.

  11. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, Janet M. (Ten Mile, TN); Palumbo, Anthony V. (Oak Ridge, TN)

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  12. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  13. Category:Tracer Testing | Open Energy Information

    Open Energy Info (EERE)

    Pages in category "Tracer Testing" This category contains only the following page. T Tracer Testing Retrieved from "http:en.openei.orgwindex.php?titleCategory:TracerTe...

  14. Tracer Testing | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Tracer Testing At Coso Geothermal Area (1993) Coso Geothermal Area...

  15. ARM - Campaign Instrument - uav-altus-met

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : UAV Altus Meteorology Package (UAV-ALTUS-MET) Instrument Categories...

  16. ARM - Campaign Instrument - uav-met-otter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Meteorology from UAV-Twin Otter (UAV-MET-OTTER) Instrument Categories Airborne Observations Campaigns ARESE...

  17. Tracer airflow measurement system (TRAMS)

    DOE Patents [OSTI]

    Wang, Duo (Albany, CA)

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  18. A Tracer Test Using Ethanol as a Two-Phase Tracer and 2-Naphthalene...

    Open Energy Info (EERE)

    Tracer Test Using Ethanol as a Two-Phase Tracer and 2-Naphthalene Sulfonate as a Liquid-Phase Tracer at the Coso Geothermal Field Jump to: navigation, search OpenEI Reference...

  19. Tracer Recovery and Mixing from Two Geothermal Injection-Backflow...

    Open Energy Info (EERE)

    procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results...

  20. Daily HMS Extremes in Met Data - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Meteorological Station Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Daily HMS Extremes in Met Data Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size This table shows the daily extremes at each of the remote stations

  1. Met and Climate Data Summary Products - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Station Met and Climate Data Summary Products Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Met and Climate Data Summary Products Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The following is a list of weather

  2. Workplace Charging Success: MetLife | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife Workplace Charging Success: MetLife October 2, 2014 - 6:26pm Addthis Workplace Charging Success: MetLife MetLife is talking the "green" talk and walking the walk. The insurance company has long encouraged its policyholders to live environmentally-conscious lifestyles, and continues to embrace emerging technologies, work with green products, and utilize environmentally-friendly services. As part of their commitment to environmental sustainability, MetLife provides alternative

  3. Advancing Reactive Tracer Methods for Measuring Thermal Evolution...

    Open Energy Info (EERE)

    and interpret reactive tracer tests - Development of suitable tracers to cover a range of reservoir temperature and residence time conditions - Testing the tools and tracers in a...

  4. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal ...

  5. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  6. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the tracers from incidental reactions. We review the criteria for practical reactive tracers, which serves as the basis for experimental testing and characterization and can be used to identify other potential candidate tracers. We will also discuss the information obtainable from individual tracers, which has implications for using multiple tracers to obtain information about the thermal history of a reservoir. We will provide an update on our progress for conducting proof-of-principle tests for reactive tracers in the Raft River geothermal system.

  7. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOE Patents [OSTI]

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  8. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  9. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govAboutRecovery Act Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM and the Recovery Act Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy's Office of

  10. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the

  11. Method of dispersing particulate aerosol tracer

    DOE Patents [OSTI]

    O'Holleran, Thomas P. (Belleville, MI)

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  12. Tracer Test Interpretation Methods for Reservior Properties

    SciTech Connect (OSTI)

    Shook, George Michael

    2001-08-01

    The purpose of this project is to develop tools that can be used to interpret tracer tests and obtain estimates of reservoir and operational parameters. These tools (mostly in the form of spreadsheet applications) can be used to optimize geothermal resource management.

  13. Tracer Testing At Coso Geothermal Area (2006) | Open Energy Informatio...

    Open Energy Info (EERE)

    and two-phase tracers in fluid-depleted geothermal fields. References Mella, M.; Rose, P.; McCulloch, J.; Buck, C. (1 January 2006) A Tracer Test Using Ethanol as a...

  14. Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange.

  15. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  16. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage...

  17. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  18. Workplace Charging Challenge Partner: MetLife, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. MetLife embraces its role as a responsible corporate citizen through implementing energy management policies and investing in renewable energy projects throughout its global enterprise. As part of this commitment to environmental sustainability, MetLife provides alternative commuting options for associates, including encouraging electric vehicle adoption. As of 2014, the company

  19. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A.; Strickland, Christopher E.; Szecsody, James E.; Williams, Mark D.

    2011-04-14

    The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected to eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.

  20. Quantum Dot Tracers for Use in Engineered Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantum Dot Tracers for Use in Engineered Geothermal Quantum Dot Tracers for Use in Engineered Geothermal Quantum Dot Tracers for Use in Engineered Geothermal presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon quantum_dot_tracers_peer2013.pdf More Documents & Publications Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS) Quantum Dot Tracers for Use in Engineered Geothermal Systems Use of Tracers to Characterize

  1. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George Scott III

    2003-08-01

    Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly increase future petroleum well recoveries in the United States, onshore and offshore, and in vertical and horizontal wells.

  2. Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_033_rose.pdf More Documents & Publications Tracer Methods

  3. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY / ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear Facilities -- CPP- 601 / 640 Complex D&D Post 2012 9/30/2011 On Schedule to be Met by Expected Accelerated Completion Date (NOTE: CPP-601 is approximately 2 months ahead of schedule, CPP-640 was completed by the end of April 2010). INL - Cleanup of Surplus Nuclear Facilities -- VCO Lines under TRA-632 building 9/30/2013

  4. Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) ...

    Open Energy Info (EERE)

    tetrasulfonate compounds. Tracer analysis was conducted by a combination of liquid chromatography and ultraviolet-fluorescence spectroscopy. Mean residence time, fracture volume in...

  5. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced...

  6. Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

  7. Tracer Testing At Coso Geothermal Area (1993) | Open Energy Informatio...

    Open Energy Info (EERE)

    Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine...

  8. Advancing Reactive Tracer Methods for Measurement of Thermal...

    Office of Scientific and Technical Information (OSTI)

    Title: Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in ... result in the lowering of the temperature of the produced fluids (thermal breakthrough). ...

  9. Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    undertaken at Raft River geothermal area. References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in...

  10. Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in...

  11. Quantitative interpretation of tracer test data | Open Energy...

    Open Energy Info (EERE)

    of tracer test data Abstract Geothermal reinjection is an important part of sustainable management of geothermal resources. Reinjection started out as a method of waste-water...

  12. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics

    Broader source: Energy.gov [DOE]

    Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics presentation at the April 2013 peer review meeting held in Denver, Colorado.

  13. Metallography at the Met Lab -- The first fifty years

    SciTech Connect (OSTI)

    Lee, R.H.

    1995-12-31

    The Met Lab at the University of Chicago was established to build the world`s first nuclear reactor. The object was to see if a pile (CP-1) could be built to create a sustained chain reaction, i.e., controlled nuclear fission. New materials of the very best quality were needed and people of many skills worked together to achieve the goal as quickly as possible. This is the story of a select group of people who were scientific and engineering pioneers in this new field. Research continued at new sites on more advanced reactors and cooling systems. Many problems were encountered in the fabrication of reactor components, and metallography was a crucial method of analyzing the reactions and quality of consolidation. 1996 will be the 50th anniversary of the beginning of the National Laboratories, so it is appropriate to commemorate and recall some pioneering achievements.

  14. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  15. Caustic Recovery Technology

    Office of Environmental Management (EM)

    366, REVISON 0 Key Words: Waste Treatment Plant Sodium Recovery Electrochemical Retention: ... (E. Stevens, Manager, Solid Waste and Special Programs) ...

  16. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  17. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  18. Use of Tracers to Characterize Fractures in Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment.

  19. Real-Time Met Data from Around the Site - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real Time Met Data from Around the Site Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Real-Time Met Data from Around the Site Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size These tables show the most recent 15-minute poll from each of the remote

  20. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo

  1. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    DOE Patents [OSTI]

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  2. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  3. Fusion Welding of AerMet 100 Alloy

    SciTech Connect (OSTI)

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  4. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  5. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  6. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  7. FirstEnergy (MetEdison, Penelec, Penn Power, West Penn Power)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    First Energy as a parent company administers the energy efficiency program for Metropolitan Edition (Met-Ed), Pennsylvania Electric (Penelec), Pennsylvania Power (Penn Power), and West Penn Power. ...

  8. Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan,...

    Open Energy Info (EERE)

    the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Donald Brown, Robert DuTeaux (1997) Three Principal Results from Recent Fenton Hill Flow Testing...

  9. Quantum Dot Tracers for Use in Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To develop and demonstrate a new class of tracers„semiconductor nanoparticles(quantum dots)„that offer great promise for use in characterizing fracture networks in EGS reservoirs.

  10. Tracer testing in geothermal reservoirs | Open Energy Information

    Open Energy Info (EERE)

    geothermal reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Tracer testing in geothermal reservoirs Author PetroWiki Published PetroWiki,...

  11. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at...

  12. Tracer advection by steady groundwater flow in a stratified aquifer

    SciTech Connect (OSTI)

    Sposito, Garrison; Weeks, Scott W.

    1997-01-02

    The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.

  13. FINDING TRACERS FOR SUPERNOVA PRODUCED {sup 26}Al (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect FINDING TRACERS FOR SUPERNOVA PRODUCED {sup 26}Al Citation Details In-Document Search Title: FINDING TRACERS FOR SUPERNOVA PRODUCED {sup 26}Al We consider the cospatial production of elements in supernova explosions to find observationally detectable proxies for enhancement of {sup 26}Al in supernova ejecta and stellar systems. Using four progenitors, we explore a range of one-dimensional explosions at different energies and an asymmetric three-dimensional explosion. We find

  14. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in

    Office of Scientific and Technical Information (OSTI)

    Geothermal Reservoirs: Final Report (Technical Report) | SciTech Connect Technical Report: Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report Citation Details In-Document Search Title: Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat

  15. Unraveling DPF Degradation using Chemical Tracers and Opportunities for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extending Filter Life | Department of Energy Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs PDF icon

  16. Tracer Methods for Characterizing Fracture Stimulation in Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report | Department of Energy Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_034_pruess.pdf More

  17. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  18. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon

  19. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Information Center » Recovery Act » Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to

  20. Interpretation of Colloid-Homologue Tracer Test 10-03, Including Comparisons to Test 10-01

    SciTech Connect (OSTI)

    Reimus, Paul W.

    2012-06-26

    This presentation covers the interpretations of colloid-homologue tracer test 10-03 conducted at the Grimsel Test Site, Switzerland, in 2010. It also provides a comparison of the interpreted test results with those of tracer test 10-01, which was conducted in the same fracture flow system and using the same tracers than test 10-03, but at a higher extraction flow rate. A method of correcting for apparent uranine degradation in test 10-03 is presented. Conclusions are: (1) Uranine degradation occurred in test 10-03, but not in 10-01; (2) Uranine correction based on apparent degradation rate in injection loop in test 11-02 seems reasonable when applied to data from test 10-03; (3) Colloid breakthrough curves quite similar in the two tests with similar recoveries relative to uranine (after correction); and (4) Much slower apparent desorption of homologues in test 10-03 than in 10-01 (any effect of residual homologues from test 10-01 in test 10-03?).

  1. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  2. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  3. Manhattan Project: Seaborg and Plutonium Chemistry, Met Lab, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    Glenn T. Seaborg looks through a microscope at the world's first sample of pure plutonium, Met Lab, August 20, 1942. SEABORG AND PLUTONIUM CHEMISTRY (Met Lab, 1942-1944) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 While the Met Lab labored to make headway on pile

  4. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    ......... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ...... 6 * ...

  5. FirstEnergy (MetEdison, Penelec, Penn Power)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In order to help meet the goals established in Pennsylvania's Act 129, FirstEnergy's Pennsylvania companies (MetEdison, Penelec, and Penn Power) are providing energy efficiency incentives for a...

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  7. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 Total Federal Payments to OE Recovery Act Recipients by Month, through August 31, 2015 American Recovery and Reinvestment Act Overview PROGRAMS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 32 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning

  8. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Recovery Act With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive approximately $40 billion to foster various energy, environmental, and science programs and initiatives. As a result, the Office of Inspector General's oversight responsibilities will increase dramatically. As is the case with all Office of Inspector General work, its overarching goal is to

  9. Can Future Emissions Limits be Met with a Hybrid EGR System Alone? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Future Emissions Limits be Met with a Hybrid EGR System Alone? Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Presents application of hybrid EGR system in terms of deliverable EGR-rate, air/fuel ratio, pumping losses and fuel use, taking into account interaction between EGR and boosting technology. Control strategies and hardware optimized parameters and reduced costs. PDF icon deer08_czarnowski.pdf More Documents & Publications Control Strategy

  10. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  11. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.

  12. High upwind concentrations observed during an upslope tracer event

    SciTech Connect (OSTI)

    Ciolek, J.T. Jr.

    1993-10-01

    In February of 1991 the Rocky Flats Plant conducted twelve tracer experiments to validate an emergency response dispersion model known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985). Experimenters released 140 to 260 kilograms of inert tracer gas (sulfur hexafloride) from the plant over an 11 hour period. During each release, one hundred and sixty-five samples, most of which formed concentric rings of 8 and 16 km radius from the plant, recorded cumulative hourly concentrations of the tracer at one meter above ground level (AGL). Figure 1 contains a depiction of the sampler location, the terrain, and the meteorological stations available within the tracer study area. Brown (1991) describes the experimental setup in more detail. The subject of this paper is an event that occurred early in the fifth experiment, on February 9, 1991. In this experiment, tracer material released from 13:00 to 17:00 LST appeared both downwind and upwind of the source, with the highest concentrations upwind. During the fifth experiment, high pressure in Utah produced mostly sunny skis around Rocky Flats. For most of the day, one could find moderate (5 to 10 ms{sup {minus}1}) northerly (from the North) flow within the 700 to 500 mb level of the atmosphere (approximately 3000 to 5500 meters above Mean Sea Level (MSL)). Synoptic scale motions were isolated enough from the surface layer and heating was great enough to produce a 1 km deep upslope flow (flow from the East to the West) by late afternoon. The winds reversed and became downslope at approximately 17:30 LST.

  13. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  14. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  15. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  16. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  17. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  18. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs

  19. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  20. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  1. The American Recovery

    Energy Savers [EERE]

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  2. MetNet: Software to Build and Model the Biogenetic Lattice of Arabidopsis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wurtele, Eve Syrkin; Li, Jie; Diao, Lixia; Zhang, Hailong; Foster, Carol M.; Fatland, Beth; Dickerson, Julie; Brown, Andrew; Cox, Zach; Cook, Dianne; et al

    2003-01-01

    MetNet (http://www.botany.iastate.edu/∼mash/metnetex/metabolicnetex.html) is publicly available software in development for analysis of genome-wide RNA, protein and metabolite profiling data. The software is designed to enable the biologist to visualize, statistically analyse and model a metabolic and regulatory network map of Arabidopsis , combined with gene expression profiling data. It contains a JAVA interface to an interactions database (MetNetDB) containing information on regulatory and metabolic interactions derived from a combination of web databases (TAIR, KEGG, BRENDA) and input from biologists in their area of expertise. FCModeler captures input from MetNetDB in a graphical form. Sub-networks can be identified and interpreted usingmore » simple fuzzy cognitive maps. FCModeler is intended to develop and evaluate hypotheses, and provide a modelling framework for assessing the large amounts of data captured by high-throughput gene expression experiments. FCModeler and MetNetDB are currently being extended to three-dimensional virtual reality display. The MetNet map, together with gene expression data, can be viewed using multivariate graphics tools in GGobi linked with the data analytic tools in R. Users can highlight different parts of the metabolic network and see the relevant expression data highlighted in other data plots. Multi-dimensional expression data can be rotated through different dimensions. Statistical analysis can be computed alongside the visual. MetNet is designed to provide a framework for the formulation of testable hypotheses regarding the function of specific genes, and in the long term provide the basis for identification of metabolic and regulatory networks that control plant composition and development.« less

  3. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect (OSTI)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  4. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ActARM Recovery Act Project FAQs Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Recovery Act Project FAQs Why is ARM buying new instruments and equipment? The ARM Climate Research Facility (ARM)

  5. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  6. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  7. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  8. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  9. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  10. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  11. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon williamsbiomass2014.pdf More Documents & ...

  12. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  13. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Florida

    Broader source: Energy.gov (indexed) [DOE]

    Florida For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Guam

    Broader source: Energy.gov (indexed) [DOE]

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Indiana

    Broader source: Energy.gov (indexed) [DOE]

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Massachusetts

    Broader source: Energy.gov (indexed) [DOE]

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Michigan

    Broader source: Energy.gov (indexed) [DOE]

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Ohio

    Broader source: Energy.gov (indexed) [DOE]

    Ohio For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Oregon

    Broader source: Energy.gov (indexed) [DOE]

    Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Pennsylvania

    Broader source: Energy.gov (indexed) [DOE]

    Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    Texas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Vermont

    Broader source: Energy.gov (indexed) [DOE]

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Wisconsin

    Broader source: Energy.gov (indexed) [DOE]

    Wisconsin For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Nevada

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  5. Recovery Newsletters | Department of Energy

    Energy Savers [EERE]

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  6. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  7. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  8. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  9. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  10. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect (OSTI)

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  11. Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. The objective of this project is to develop a matrix of the smart geothermal tracer and its interpretation tools.

  12. The SEMATECH Berkeley MET pushing EUV development beyond 22-nm half pitch

    SciTech Connect (OSTI)

    Naulleau, P.; Anderson, C. N.; Backlea-an, L.-M.; Chan, D.; Denham, P.; George, S.; Goldberg, K. A.; Hoef, B.; Jones, G.; Koh, C.; La Fontaine, B.; McClinton, B.; Miyakawa, R.; Montgomery, W.; Rekawa, S.; Wallow, T.

    2010-03-18

    Microfield exposure tools (METs) play a crucial role in the development of extreme ultraviolet (EUV) resists and masks, One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET, Using conventional illumination this tool is limited to approximately 22-nm half pitch resolution. However, resolution enhancement techniques have been used to push the patterning capabilities of this tool to half pitches of 18 nm and below, This resolution was achieved in a new imageable hard mask which also supports contact printing down to 22 nm with conventional illumination. Along with resolution, line-edge roughness is another crucial hurdle facing EUV resists, Much of the resist LER, however, can be attributed to the mask. We have shown that intenssionally aggressive mask cleaning on an older generation mask causes correlated LER in photoresist to increase from 3.4 nm to 4,0 nm, We have also shown that new generation EUV masks (100 pm of substrate roughness) can achieve correlated LER values of 1.1 nm, a 3x improvement over the correlated LER of older generation EUV masks (230 pm of substrate roughness), Finally, a 0.5-NA MET has been proposed that will address the needs of EUV development at the 16-nm node and beyond, The tool will support an ultimate resolution of 8 nm half-pitch and generalized printing using conventional illumination down to 12 nm half pitch.

  13. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  14. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  15. Complex functionality with minimal computation. Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    SciTech Connect (OSTI)

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; Marvasti, Seyedehsafoura Sedigh

    2015-12-21

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.

  16. Complex functionality with minimal computation. Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; et al

    2015-12-21

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded inmore » the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.« less

  17. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  18. Energy recovery ventilator

    DOE Patents [OSTI]

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  19. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  20. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  1. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Environmental Management (EM)

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. PDF icon DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  2. First Tracer Test After Circulation in Desert Peak 27-15

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Rose, Peter

    2013-11-16

    Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.

  3. Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)

    Broader source: Energy.gov [DOE]

    Project objectives: identify tracers with sorption properties favorable for EGS applications; apply reversibly sorbing tracers to determine the fracture-matrix interface area available for heat transfer; and; explore the feasibility of obtaining fracture-matrix interface area from non-isothermal; single-well injection-withdrawal (SWIW) tests.

  4. First Tracer Test After Circulation in Desert Peak 27-15

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Rose, Peter

    Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.

  5. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. Office spreadsheet icon recoveryactfunding.xls More Documents & Publications Recovery Act Awardees June 25, 2010 Reovery Act Awardees July 22, 2011 Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program

  6. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past Opportunities » Recovery Act Recovery Act Pie chart diagram shows the breakdown of how cost-sharing funds relatedto the American Recovery and Reinvestment Act from industry participants,totaling $54 million (for a grand total of $96 million), are allocatedwithin the Fuel Cell Technologies Office, updated September 2010. Thediagram shows that $18.5 million is allocated to backup power, $9.7million is allocated to lift truck, $7.6 million is allocated to portablepower, $3.4 million is

  7. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-termatching recovery trends for laboratory and single-well tests.

  8. Manhattan Project: CP-1 Goes Critical, Met Lab, December 2, 1942

    Office of Scientific and Technical Information (OSTI)

    CP-1 GOES CRITICAL (Met Lab, December 2, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 While arrangements were proceeding for the construction of full-size plutonium production reactors, critical questions remained about their basic design. The Italian physicist

  9. The Committee met in the Columbia Room at the Holiday Inn

    U.S. Energy Information Administration (EIA) Indexed Site

    Friday, April 21, 1995 - - - The Committee met in the Columbia Room at the Holiday Inn Capitol, 550 C Street S.W., Washington, D.C., at 9:00 a.m., Timothy D. Mount, Chairman, presiding. PRESENT: TIMOTHY D. MOUNT, Chair DAVID R. BELLHOUSE CHARLES W. BISCHOFF BRENDA G. COX FAYE DUCHIN JOHN D. GRACE PHILIP HANSWER CALVIN KENT GRETA M. LJUNG JAMES L. O'BRIEN DANIEL A. RELLES BRADLEY O. SKARPNESS G. CAMPBELL WATKINS A-G-E-N-D-A Page No. Introductory Remarks, TIMOTHY MOUNT, Chairman 3 Announcement of

  10. Microsoft PowerPoint - Low Dose Update Metting 6 Dec 2012

    Office of Environmental Management (EM)

    Low Dose DOE's Low Dose R di ti R h R di ti R h Radiation Research Radiation Research Program Program g g NF Metting, Sc.D., Program Manager Nuclear Energy Advisory Committee Meeting Nuclear Energy Advisory Committee Meeting L'Enfant Plaza Hotel L'Enfant Plaza Hotel 6 December 2012 Office of Science Office of Biological and Environmental Research DOE's Low Dose Program: DOE s Low Dose Program: Is unique within the U.S. government in focusing on low dose biological research aimed at informing

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  12. EM American Recovery and Reinvestment Act Update

    Office of Environmental Management (EM)

    Recovery Act Program www.em.doe.gov 1 Thomas Johnson, Jr. Recovery Act Program Director PRESENTED TO: Environmental Management Advisory Board (EMAB) December 5, 2011 EM's Mission...

  13. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  14. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  15. Energy Recovery Inc | Open Energy Information

    Open Energy Info (EERE)

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  16. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees...

  17. Recovery and purification of ethylene

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  18. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  19. Recovery Act Funding Opportunities Webcast

    Broader source: Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  20. One Woman's Road to Recovery

    Broader source: Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  1. Resource Conservation and Recovery Act

    Broader source: Energy.gov [DOE]

    DOE Headquarters provides technical assistance and guidance on newly promulgated regulations, and coordinates the review and advocates Departmental interests regarding proposed Resource Conservation and Recovery Act (RCRA) regulatory initiatives applicable to DOE operations.

  2. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  3. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  4. FirstEnergy (Met-Ed, Penelec, Penn Power, and West Penn)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    In order to help meet the goals established in Pennsylvania's Act 129, FirstEnergy's Pennsylvania companies (MetEdison, Penelec, West Penn and Penn Power) provide energy efficiency incentives for a...

  5. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download PDF icon Caustic Recovery Technology PDF icon Summary - Caustic Recovery Technology More Documents & Publications A Ceramic membrane to Recycle Caustic Waste Processing Annual Technology Development Report 2007 System Planning for Low-Activity Waste at Hanford

  6. Environmental Tracers for Determining Water Resource Vulnerability to Climate Change

    SciTech Connect (OSTI)

    Singleton, M

    2009-07-08

    Predicted changes in the climate will have profound impacts on water availability in the Western US, but large uncertainties exist in our ability to predict how natural and engineered hydrological systems will respond. Most predictions suggest that the impacts of climate change on California water resources are likely to include a decrease in the percentage of precipitation that falls as snow, earlier onset of snow-pack melting, and an increase in the number of rain on snow events. These processes will require changes in infrastructure for water storage and flood control, since much of our current water supply system is built around the storage of winter precipitation as mountain snow pack. Alpine aquifers play a critical role by storing and releasing snowmelt as baseflow to streams long after seasonal precipitation and the disappearance of the snow pack, and in this manner significantly impact the stream flow that drives our water distribution systems. Mountain groundwater recharge and, in particular, the contribution of snowmelt to recharge and baseflow, has been identified as a potentially significant effect missing from current climate change impact studies. The goal of this work is to understand the behavior of critical hydrologic systems, with an emphasis on providing ground truth for next generation models of climate-water system interactions by implementing LLNL capabilities in environmental tracer and isotopic science. We are using noble gas concentrations and multiple isotopic tracers ({sup 3}H/{sup 3}He, {sup 35}S, {sup 222}Rn, {sup 2}H/{sup 1}H, {sup 18}O/{sup 16}O, and {sup 13}C/{sup 12}C) in groundwater and stream water in a small alpine catchment to (1) provide a snapshot of temperature, altitude, and physical processes at the time of recharge, (2) determine subsurface residence times (over time scales ranging from months to decades) of different groundwater age components, and (3) deconvolve the contribution of these different groundwater components to alpine stream baseflow. This research is showing that groundwater in alpine areas spends between a few years to several decades in the saturated zone below the surface, before feeding into streams or being pumped for use. This lag time may act to reduce the impact on water resources from extreme wet or dry years. Furthermore, our measurements show that the temperature of water when it reaches the water table during recharge is 4 to 9 degrees higher than would be expected for direct influx of snowmelt, and that recharge likely occurs over diffuse vegetated areas, rather than along exposed rock faces and fractures. These discoveries have implications for how alpine basins will respond to climate effects that lead to more rain than snow and earlier snow pack melting.

  7. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    SciTech Connect (OSTI)

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2.

  8. Tracers for monitoring the activity of sodium/glucose cotransporters in health and disease

    DOE Patents [OSTI]

    Wright, Ernest M; Barrio, Jorge R; Hirayama, Bruce A; Kepe, Vladimir

    2014-09-30

    Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with .sup.18F, .sup.123I, or .sup.124I, or free hexoses radiolabeled with .sup.18F, .sup.123I, or .sup.124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.

  9. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_nelson.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Exhaust Energy Recovery

  10. Tracer diffusion in compacted, water-saturated bentonite

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-08-04

    Compacted Na-bentonite clay barriers, widely used in theisolation of solid-waste landfills and other contaminated sites, havebeen proposed for a similar use in the disposal of high-level radioactivewaste. Molecular diffusion through the pore space in these barriers playsa key role in their performance, thus motivating recent measurements ofthe apparent diffusion coefficient tensor of water tracers in compacted,water-saturated Na-bentonites. In the present study, we introduce aconceptual model in which the pore space of water-saturated bentonite isdivided into 'macropore' and 'interlayer nanopore' compartments. Withthis model we determine quantitatively the relative contributions ofpore-network geometry (expressed as a geometric factor) and of thediffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contristivity factor) to the apparent diffusioncoefficient tensor. Our model predicts, in agreement with experiment,that the mean principal value of the apparent diffusion coefficienttensor follows a single relationship when plotted against the partialmontmorillonite dry density (mass of montmorillonite per combined volumeof montmorillonite and pore space). Using a single fitted parameter, themean principal geometric factor, our model successfully describes thisrelationship for a broad range of bentonite-water system, from dilute gelto highly-compacted bentonite with 80 percent of its pore water ininterlayer nanopores.

  11. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  12. ALPHA SPECTROMETRIC EVALUATION OF SRM-995 AS A POTENTIAL URANIUM/THORIUM DOUBLE TRACER SYSTEM FOR AGE-DATING URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D.

    2011-12-06

    Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separated and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.

  13. ARM and the Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates/Announcements Thu, 01 Sep 2011 00:00:00 +0000 http://www.arm.gov en September 2011 Thu, 01 Sep 2011 00:00:00 +0000 aa3f1e269969d96bd7b30dd7a408d745 </p> <p><strong>Final Recovery Act Milestone Complete! </strong> This month, ARM celebrates the delivery of the last few instruments for its Recovery Act investment and reports its final FY11 milestone - "Infrastructure Enhancements Complete." This closes out the

  14. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  15. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  16. 36Cl as a tracer in geothermal systems- Example from Valles Caldera...

    Open Energy Info (EERE)

    the use of chlorine-36 as a geothermal tracer. Authors F.M. Phillips, Fraser E. Goff, Francois D. Vuataz, H.W. Bentley and H.E. Gove Published Journal Geophysical Research...

  17. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers

    Office of Scientific and Technical Information (OSTI)

    of Star Formation? (Journal Article) | SciTech Connect Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation? Citation Details In-Document Search Title: Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation? We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of

  18. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers

    Office of Scientific and Technical Information (OSTI)

    of Star Formation? (Journal Article) | SciTech Connect Journal Article: Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation? Citation Details In-Document Search Title: Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation? × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  19. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  20. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  1. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  2. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1994-12-31

    The bromide anion has been used extensively as a tracer for mapping the flow of groundwater. It has proven to be both a safe and reliable groundwater tracer. The goal in this study is to find several tracing compounds with characteristics similar to the bromide anion to be used in multiple well tracing tests. Four groups of fluorinated organic acids were selected as candidates for groundwater tracers. These groups include fluorinated benzoic acids (FBA), fluorinated salicylic acids (FSA), fluorinated toluic acids (FTA), and fluorinated cinnamic acids (FCA). These compounds have been shown to move readily with the flow of water and do not adsorb to soil. They are also non-toxic. In this study, the retention of the fluorinated organic acids on to a soil column is compared to that of the bromide ion. The time required for the elution of each analyte from the soil column is measured using a UV-Vis detector. The soils consist of the light, medium, and dark tuffs used in the batch study. The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and column studies for several potential tracer compounds.

  3. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  4. Department of Energy Recovery Act Investment in Biomass Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

  5. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  6. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  7. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  8. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  9. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  10. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  11. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  12. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  13. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  14. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  15. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  16. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  17. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  18. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Savers [EERE]

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  19. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  20. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law on February 17, 2009. The Recovery Act provided DOE several billion dollars in ...

  1. WIPP Update and Status of Recovery | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    WIPP Update and Status of Recovery More Documents & Publications WIPP Recovery Information Waste Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant...

  2. EM Recovery Act Top Line Messages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Line Messages EM Recovery Act Top Line Messages The lastest Recovery Act performance related information and metrics. PDF icon EM Recovery Act Top Line Messages - April, 2013...

  3. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act Here is one compliance agreement for EM's American Recovery and Reinvestment Act Program on...

  4. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  5. NREL: Technology Deployment - Disaster Resiliency and Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disaster recovery and rebuilding opportunities to: Incorporate energy efficiency, water and fuel conservation, sustainability, and renewable energy measures into disaster...

  6. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  7. EM Recovery Act Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 690 square miles. Reducing its contaminated footprint to 241 square miles has proven to be a monumental task, and a challenge the EM

  8. Recovery Act Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act » Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. June 17, 2014 Audit Report: OAS-RA-14-04 Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office April 14, 2014 Special Report: OAS-RA-L-14-01 Allegations Regarding the Department of Energy's State Energy Program

  9. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors PDF icon deer09_nelson_1.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency

  10. Waste Heat Recovery Opportunities for Thermoelectric Generators |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. PDF icon fleurial.pdf More Documents & Publications High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

  11. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  12. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  13. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  14. State Agency Recovery Act Funding

    Energy Savers [EERE]

    Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254

  15. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    7242012 September-11 On Schedule to be Met by Expected Accelerated Completion Date. Biology Complex D&D (scope does not include the main 9207 Biology building) -- WHP 2025...

  16. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center » Recovery Act » Recovery Act SGDP Recovery Act SGDP View a Map Showing Energy Storage Projects by State View a Map Showing Energy Storage Projects by State Read more View a Map Showing Smart Grid Energy Demo Projects by State View a Map Showing Smart Grid Energy Demo Projects by State Read more View a map which combines the above two maps View the full list of selected projects The American Recovery and Reinvestment Act of 2009 (Recovery Act) - which President Obama signed

  17. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

    Broader source: Energy.gov (indexed) [DOE]

    INTERIM GUIDANCE May 12, 2010 TO: Program Office Leadership FROM: [Matt Rogers] SUBJECT: DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage This memorandum clarifies the U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. The appropriate use of the logo will serve to highlight the Recovery Act's positive impact while preventing potential misrepresentations. Signs and websites are a useful

  18. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  19. Drain-Water Heat Recovery | Department of Energy

    Office of Environmental Management (EM)

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system....

  20. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drain-Water Heat Recovery Drain-Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How...

  1. Weatherization Formula Grants - American Recovery and Reinvestment Act

    Broader source: Energy.gov (indexed) [DOE]

    (ARRA) | Department of Energy recovery_act

  2. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  3. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect (OSTI)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter estimates made.

  4. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  5. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  6. The Hanford Story: Recovery Act

    Broader source: Energy.gov [DOE]

    This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

  7. Modeling of CBM production, CO{sub 2} injection, and tracer movement at a

    Office of Scientific and Technical Information (OSTI)

    field CO{sub 2} sequestration site (Journal Article) | SciTech Connect Modeling of CBM production, CO{sub 2} injection, and tracer movement at a field CO{sub 2} sequestration site Citation Details In-Document Search Title: Modeling of CBM production, CO{sub 2} injection, and tracer movement at a field CO{sub 2} sequestration site Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane

  8. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers

    SciTech Connect (OSTI)

    Akhil Datta-Gupta

    2006-12-31

    We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have investigated the relative merits of the traditional history matching ('amplitude inversion') and a novel travel time inversion in terms of robustness of the method and convergence behavior of the solution. We show that the traditional amplitude inversion is orders of magnitude more non-linear and the solution here is likely to get trapped in local minimum, leading to inadequate history match. The proposed travel time inversion is shown to be extremely efficient and robust for practical field applications. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.

  9. Audit Report on "The Department of Energy's American Recovery and Reinvestment Act -- Florida State Energy Program"

    SciTech Connect (OSTI)

    2010-06-01

    The Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories, and the District of Columbia to support their energy priorities through the State Energy Program (SEP). The SEP provides Federal financial assistance to carry out energy efficiency and renewable energy projects that meet each state's unique energy needs while also addressing national goals such as energy security. Federal funding is based on a grant formula that takes into account population and energy consumption. The SEP emphasizes the state's role as the decision maker and administrator for the program. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP, authorizing $3.1 billion in grants. Based on existing grant formulas and after reviewing state-level plans, EERE made awards to states. The State of Florida's Energy Office (Florida) was allocated $126 million - a 90-fold increase over Florida's average annual SEP grant of $1.4 million. Per the Recovery Act, this funding must be obligated by September 30, 2010, and spent by April 30, 2012. As of March 10, 2010, Florida had expended $13.2 million of the SEP Recovery Act funds. Florida planned to use its grant funds to undertake activities that would preserve and create jobs; save energy; increase renewable energy sources; and, reduce greenhouse gas emissions. To accomplish Recovery Act objectives, states could either fund new or expand existing projects. As a condition of the awards, EERE required states to develop and implement sound internal controls over the use of Recovery Act funds. Based on the significant increase in funding from the Recovery Act, we initiated this review to determine whether Florida had internal controls in place to provide assurance that the goals of the SEP and Recovery Act will be met and accomplished efficiently and effectively. We identified weaknesses in the implementation of SEP Recovery Act projects that have adversely impacted Florida's ability to meet the goals of the SEP and the Recovery Act. Specifically: (1) Florida used about $8.3 million to pay for activities that did not meet the intent of the Recovery Act to create new or save existing jobs. With the approval of the Department, Florida used these funds to pay for rebates related to solar energy projects that had been completed prior to passage of the Recovery Act; (2) State officials did not meet Florida's program goals to obligate all Recovery Act funds by January 1, 2010, thus delaying projects and preventing them from achieving the desired stimulative economic impact. Obligations were delayed because Florida officials selected a number of projects that either required a lengthy review and approval process or were specifically prohibited. In June 2009, the Department notified Florida that a number of projects would not be approved; however, as of April 1, 2010, the State had not acted to name replacement projects or move funds to other projects; (3) Florida officials had not ensured that 7 of the 18 award requirements for Recovery Act funding promulgated by the Department had been passed down to sub-recipients of the award, as required; and, (4) Certain internal control weaknesses that could jeopardize the program and increase the risk of fraud, waste and abuse were identified in the Solar Energy System Incentives Program during our September 2009 visit to Florida. These included a lack of separation of duties related to the processing of rebates and deficiencies in the written procedures for grant managers to review and approve rebates. From a forward looking perspective, absent aggressive corrective action, these weaknesses threaten Florida's efforts to meet future Recovery Act goals. In response to our review, Florida took corrective action to incorporate the additional award requirements in sub-recipient documents. It also instituted additional controls to correct the internal control weaknesses we identified. More, however, needs to be done with respect to Department oversight. This report details the circumstances sur

  10. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  11. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  12. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    206 Unlimited Release Printed September 2014 Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data Ann R. Dallman, Vincent S. Neary Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  13. GUAM RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Guam are supporting a broad range of clean energy projects, from solar power and wind. Through these investments, Guam's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Guam to play an important role in the new energy economy of the future. PDF icon GUAM RECOVERY ACT

  14. CBFO selects Senior WIPP Recovery Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2014 CBFO selects Senior WIPP Recovery Manager Sean Dunagan, Research and Development Manager with Sandia National Laboratories, has been appointed as the Carlsbad Field Office (CBFO) Senior WIPP Recovery Manager, effective Dec. 8, 2014. He replaces Tom Teynor, who returned to Hanford to be the Federal Project Manager of the Plutonium Finishing Plant project. Directly leading and representing the Waste Isolation Pilot Plant (WIPP) Recovery Project, Mr. Dunagan will report to CBFO Manager Joe

  15. Hanford Story: Recovery Act - Questions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act - Questions The Hanford Story Hanford Story: Recovery Act - Questions Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size What did the Department of Energy and its contractors do with nearly $2 billion in stimulus funding? Why was the Department able to put the funding to use quickly? How many jobs were created by stimulus funding received at the Hanford Site? How much of the cleanup footprint of Hanford is left after projects funded by the Recovery Act

  16. Recovery Act State Memos American Samoa

    Broader source: Energy.gov (indexed) [DOE]

    American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Mariana Islands

    Broader source: Energy.gov (indexed) [DOE]

    Mariana Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos New Hampshire

    Broader source: Energy.gov (indexed) [DOE]

    Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos New Jersey

    Broader source: Energy.gov (indexed) [DOE]

    Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos New Mexico

    Broader source: Energy.gov (indexed) [DOE]

    Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos North Carolina

    Broader source: Energy.gov (indexed) [DOE]

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Puerto Rico

    Broader source: Energy.gov (indexed) [DOE]

    Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Rhode Island

    Broader source: Energy.gov (indexed) [DOE]

    Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos South Carolina

    Broader source: Energy.gov (indexed) [DOE]

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos South Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Virgin Islands

    Broader source: Energy.gov (indexed) [DOE]

    Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Washington, DC

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos West Virginia

    Broader source: Energy.gov (indexed) [DOE]

    West Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura Savannah River Nuclear Solutions, LLC M-TRT-H-00087 Rev 0 Date: 4/10/2014 Tritium Facilities Purpose * Provide detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. Agenda * New Technology * Background * Z-Bed Recovery Water Disposal * Cost Saving * Alternatives New Technology * Dry Disconnect Fittings * Double Door Transfer Container (DDTC) * Bucket (Stainless Steel ASME pressure

  11. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  12. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act Job Fair LANL sponsors Recovery Act Job Fair The fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  13. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  14. Ohio Celebrates Recovery Act Weatherization Program Performance |

    Energy Savers [EERE]

    Department of Energy Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy

  15. Enhanced Oil Recovery | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. PDF icon Fossil Energy Research Benefits - Enhanced Oil Recovery More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First Quarter,

  16. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  17. Waste Isolation Pilot Plant Recovery Plan

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  18. American Recovery & Reinvestment Act Newsletter - Issue 26

    Office of Environmental Management (EM)

    on 41 Recovery Act projects to accelerate closure of 49 underground liquid waste storage tanks and high-level nuclear waste processing. Key among SRR achievements was the...

  19. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  20. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  1. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  2. American Recovery & Reinvestment Act Newsletter - Issue 12

    Office of Environmental Management (EM)

    Idaho site. James -Tony Thompson hopes the work there will last a long time. Eric King appreciates the stability his job there provides. Thanks to Recovery Act funding,...

  3. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  4. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  5. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  6. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down ...

  7. Cost Recovery | OpenEI Community

    Open Energy Info (EERE)

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  8. American Recovery & Reinvestment Act Newsletter - Issue 4

    Office of Environmental Management (EM)

    ... Cleanup Project's capability of handling future stimulus projects, but also creates an opportunity to fill the pipeline to WIPP, which helps their Recovery Act planning," said ...

  9. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  10. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  11. Supercritical Recovery Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Recovery Systems LLC Place: Clayton, Missouri Zip: 63105 Product: Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

  12. Modified Accelerated Cost-Recovery System (MACRS)

    Broader source: Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  13. Incorporating Energy Efficiency into Disaster Recovery Efforts

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Energy Efficiency into Disaster Recovery Efforts, Call Slides and Discussion Summary, October 9, 2014.

  14. The Pace of Recovery Act Spending

    Broader source: Energy.gov [DOE]

    The Energy Department has allocated more than 90 percent of our $32 billion in Recovery Act funds to clean energy projects around the country.

  15. OE Recovery Act News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE Recovery Act News RSS March 23, 2015 Conference ... (DOE's) Office of Electricity Delivery and Energy ... and to exchange information about future challenges ...

  16. Award Selections for Industrial Technologies Program Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A chart detailling Award Selections for Industrial Technologies Program Recovery Act Funding Energy Efficient Information and Communication Technology (ICT) PDF icon Award ...

  17. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Citations for journal articles produced under the award ... and specific danger to public health or safety related to the ... A000 12 under the American Recovery and ...

  18. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  19. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  20. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  1. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  2. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  3. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  4. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    SciTech Connect (OSTI)

    Becker, Matthew W.

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or short circuiting between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetrating radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a five spot pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water elevated 30 degrees C above the formation water was circulated between two wells pairs. One well pair had been identified in hydraulic and tracer testing as well connected and the other poorly connected. Temperature rise was measured in the adjacent rock matrix using coiled fiber optic cable interrogated for temperature using a DTS. This experimental design produced over 4000 temperature measurements every hour. We found that heat transfer between the fracture and the rock matrix was highly impacted by the character of the flow field. The strongly connected wells which had demonstrated flow channelization produced heat rise in a much more limited area than the more poorly connected wells. In addition, the heat increase followed the natural permeability of the fracture rather than the induced flow field. The primary findings of this work are (1) even in a single relatively planar fracture, the flow field can be highly heterogeneous and exhibit flow channeling, (2) channeling results from a combination of fracture permeability structure and the induced flow field, and (3) flow channeling leads to reduced heat transfer. Multi-ionic tracers effectively estimate relative surface area but an estimate of ion-exchange coefficients are necessary to provide an absolute measure of specific surface area. Periodic hydraulic tests also proved a relative indicator of connectivity but cannot prove an absolute measure of specific surface area.

  5. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  6. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace041_nelson_2010_o.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Cummins Waste Heat

  7. Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_41_nelson.pdf More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery SuperTruck Program: Engine Project Review

  8. WIPP Recovery Progress | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Topic: J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site. PDF icon WIPP Update - March 25, 2015 More Documents & Publications Waste Isolation Pilot Plant Recovery Update Resuming Operations at WIPP Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan

  9. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    SciTech Connect (OSTI)

    Murphy,, E. M.; Szecsody,, J. E.; Phillips,, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating. Seven study sites on the Hanford Site have been selected, in two primary soil types that are believed to represent the extremes in recharge, the Quincy sand and the Warden silt loam. An additional background study site upwind of the Hanford facilities has been chosen at the Yakima Firing Center. Study sites at Hanford were chosen close to micrometeorology stations on downwind transects from the operational facilities. Initial testing will be done on sites that lack perennial vegetation. Six tracer techniques (total chlortde, {sup 36}Cl, {sup 3}H, nitrate, {sup 129}I, and {sup 99}Tc) will be tested on at least one site in the Quincy sand, one site in the Warden si~ loam, and the background site, to determine which combination of tracers wortks best for a given soil type. In subsequent years, additional sites will be investigated to determine the effect of vegetation on recharge estimates and on the performance of individual tracers. The use of environmental tracers is perhaps the only cost-effective method for estimating the spatial vartability of recharge at a site as large as Hanford. The tracer techniques used at Hanford have wide applicability at other and sites operated by the U.S. Department of Energy as well as at low-level radioactive waste disposal sites.

  10. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, Nagraj S; Warmack, Robert J Bruce; Radhakrishnan, Balasubramaniam; HunterJr., Jerry; Sohn, Yong Ho; Coffey, Kevin; Murch, Prof. Graeme; Belova, Irina

    2014-01-01

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627 C (523 900 K).« less

  11. Californium Recovery from Palladium Wire

    SciTech Connect (OSTI)

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratorys Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  12. American Recovery and Reinvestment Act Payments Surge Past $4 Billion

    Broader source: Energy.gov [DOE]

    EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of...

  13. Uranium at Y-12: Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and...

  14. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for...

  15. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect (OSTI)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  16. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect (OSTI)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  17. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmorestereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.less

  18. Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Fleets Aid in Superstorm Recovery to someone by E-mail Share Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Facebook Tweet about Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Twitter Bookmark Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Google Bookmark Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Delicious Rank Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Digg

  19. Recovery News Flashes | Department of Energy

    Energy Savers [EERE]

    News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to

  20. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    SciTech Connect (OSTI)

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  1. Mass transport parameters of aspen wood chip beds via stimulus-response tracer techniques

    SciTech Connect (OSTI)

    Hradil, G.; Calo, J.M.; Wunderlich, T.K. Jr. )

    1993-02-05

    A stimulus-response tracer technique has been used to characterize packed beds of untreated, as well as acid prehydrolyzed, and enzymatically hydrolyzed aspen wood chips. Glucose was used as the trace. Bulk liquid phase dispersion, interphase mass transfer, and intraparticle diffusion coefficients were determined for these materials as well as effective porosities and tortuosities. The untreated and prehydrolyzed aspen wood chips were found to have effective void fractions of ca. 0.8, while the enzymatically hydrolyzed wood chips exhibited a void fraction of 0.37. Intraparticle diffusion was approximately twice as rapid in the prehydrolyzed and enzymatically hydrolyzed wood chips as in the untreated wood chips. Also, under the current experimental conditions, intraparticle diffusional transport resistance accounted for roughly half of the total tracer pulse dispersion. It is demonstrated that stimulus-response tracer techniques can be useful and convenient probes for beds of lignocellulosic, or other porous materials, which vary in character with extent of conversion and/or treatment.

  2. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    SciTech Connect (OSTI)

    Genereux, D.; Hemond, H. . Dept. of Civil Engineering); Mulholland, P. )

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  3. Property:Heat Recovery Utility | Open Energy Information

    Open Energy Info (EERE)

    search Property Name Heat Recovery Utility Property Type Page Description The purpose of Distributed Generation heat recovery This is a property of type Page. Retrieved from...

  4. MP_recovery_act_memo__updated.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon MP_recovery_act_memo__updated.pdf More Documents & Publications Slide 1 Northern Mariana Islands Recovery Act State Memo Slide 1

  5. DOE Recovery Field Projects and State Memos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE Recovery Field Projects and State Memos Click on a state to download the recovery memo for that state. View All Maps Addthis...

  6. Faces of the Recovery Act - May Newsletter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May_Newsletter.pdf More Documents & Publications Arkansas Recovery Act State Memo Florida Recovery Act State Memo CX-002401: Categorical Exclusion Determination

  7. American Recovery and Reinvestment Act of 2009: Biomass Program Investments

    SciTech Connect (OSTI)

    2012-06-01

    This fact sheet discusses the Biomass Program's investments using Recovery Act funding, as well as make note of how Recovery Act projects are currently doing.

  8. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    Open Energy Info (EERE)

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  9. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

  10. CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...

    Office of Environmental Management (EM)

    CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

  11. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Office of Environmental Management (EM)

    Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project...

  12. Mineral Recovery Creates Revenue Stream for Geothermal Energy...

    Energy Savers [EERE]

    Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Mineral Recovery Creates Revenue Stream for Geothermal Energy Development December 1, 2015 - 8:00am...

  13. Energy Department Announces Major Recovery Act Milestone: 600...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Recovery Act Milestone: 600,000 Homes Weatherized Three Months Ahead of Schedule Energy Department Announces Major Recovery Act Milestone: 600,000 Homes Weatherized Three ...

  14. Ethanol Oil Recovery Systems EORS | Open Energy Information

    Open Energy Info (EERE)

    Systems EORS Jump to: navigation, search Name: Ethanol Oil Recovery Systems (EORS) Place: Clayton, Georgia Product: Ethanol Oil Recovery Systems (EORS), a green technology...

  15. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

  16. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty ...

  17. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt037tianderson2012o.pdf More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery...

  18. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tiarravt037anderson2010o.pdf More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery...

  19. State Assistance for Recovery Act Related Electricity Policies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance for Recovery Act Related Electricity Policies: Awards State Assistance for Recovery Act Related Electricity Policies: Awards List of State Energy Policy Awards under the...

  20. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    listing projects selected for Smart Grid Investment Grants under American Recovery and Reinvestment Act. There is a November 2011 Update to the "Recovery Act Selections for Smart...

  1. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 PDF icon mineral-webinar.pdf More Documents & ...

  2. Powerpoint Presentation: Fossil Energy R&D American Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects A...

  3. Montgomery County Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource...

  4. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs One-page factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. PDF icon...

  5. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES...

    Office of Scientific and Technical Information (OSTI)

    Reservoir Wettability and its Effect on Oil Recovery. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES; MINERALS; SURFACES; MICA; WETTABILITY We report on the...

  6. ThermoChem Recovery International Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: ThermoChem Recovery International is commercialising proprietary technology for chemical and energy recovery systems for the pulp and paper industry. References:...

  7. Synchrophasor Technologies and their Deployment in the Recovery...

    Energy Savers [EERE]

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

  8. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-firedboilers.pdf More Documents &...

  9. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  10. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  11. Hanford Information Related to the American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 2009 - Hanford Site Recovery Act of 2009 Recovery Act of 2009 Recovery Act of 2009 Hanford ARRA News Hanford Information Related to the American Recovery and Reinvestment Act of 2009 Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Recovery.gov Banner Recovery Work Updates Recovery Act Jobs Recovery.gov Prime Contractor plus Subcontractor Jobs 1 Lives Touched2 DOE Richland Operations Office 3,290 10,453 DOE Office of River Protection 424 2,953 Hanford Total

  12. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Office of Environmental Management (EM)

    84 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested...

  14. FAQs Related to the Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Recovery Act The Office of the General Counsel operates an email hotline for legal questions related to the American Recovery & Reinvestment Act (ARRA), including the...

  15. American Recovery and Reinvestment Act Payments Surge Past $5...

    Office of Environmental Management (EM)

    5 Billion American Recovery and Reinvestment Act Payments Surge Past 5 Billion More than 5 billion in Recovery Act payments are accelerating environmental cleanup PDF icon...

  16. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Savers [EERE]

    Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April ...

  17. Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treasury, Energy Surpass 1 Billion Milestone in Recovery Act Awards for Clean Energy ... in domestic renewable energy production. "This Recovery Act program is an ...

  18. Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surpass 1 Billion Milestone in Recovery Act Awards for Clean Energy Projects Treasury, ... in domestic renewable energy production. "This Recovery Act program is an ...

  19. Department of Energy Releases WIPP Recovery Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Recovery Plan outlines the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. The Waste Isolation Pilot Plant Recovery...

  20. Model Recovery Procedure for Response to a Radiological Transportation Incident

    Broader source: Energy.gov [DOE]

    This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

  1. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  2. State recovery and lockstep execution restart in a system with...

    Office of Scientific and Technical Information (OSTI)

    State recovery and lockstep execution restart in a system with multiprocessor pairing Citation Details In-Document Search Title: State recovery and lockstep execution restart in a...

  3. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil ...

  4. Under the recently passed American Recovery and Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Office of Inspector General - Recovery Act Strategy Overview Under the recently passed American Recovery and Reinvestment Act of 2009, the Department of Energy will receive...

  5. Supporting Statement: OE Recovery Act Financial Assistance Grants...

    Office of Environmental Management (EM)

    Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number ...

  6. Nanjing Green Waste Recovery Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Nanjing Green Waste Recovery Engineering Co Ltd Jump to: navigation, search Name: Nanjing Green Waste Recovery Engineering Co. Ltd Place: Nanjing, Jiangsu Province, China Zip:...

  7. U.S. Department of Energy - American Recovery & Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy - American Recovery & Reinvestment Act U.S. Department of Energy - American Recovery & Reinvestment Act Waivers Issued by DOE under the Buy American...

  8. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments...

  9. Recovery Act: Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A report detailling the Clean Coal Power initiative funded under the American Recovery and Renewal Act of 2009. Recovery Act: Clean Coal Power Initiative More Documents &...

  10. Integrated Approach to Use Natural Chemical and Isotopic Tracers to Estimate Fracture Spacing and Surface Area in EGS Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This objective of this project is to develop an innovative approach to estimate fracture surface area and spacing through interpretation of signals of natural chemical and isotopic tracers.

  11. recovery act | OpenEI Community

    Open Energy Info (EERE)

    recovery act Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 15 August, 2013 - 09:09 DOE Report Describes Progress in the Deployment of Synchrophasor...

  12. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tug from a piece of heavy equipment, the last bit of the 24th building crashed to the ground. The final building demolished under the Recovery Act program at Los Alamos...

  13. American Recovery & Reinvestment Act Newsletter - Issue 22

    Office of Environmental Management (EM)

    high-level nuclear waste processing and closure of 49 underground liquid waste storage tanks. SRR had spent nearly 124 million from the Recovery Act by early 2011. SRR's...

  14. Recovery Act Worker Update: Mike Gunnels

    ScienceCinema (OSTI)

    Tire, Brian

    2012-06-14

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  15. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura Savannah River Nuclear Solutions, LLC M-TRT-H-00087 Rev 0 Date: 4102014 Tritium Facilities...

  16. American Reinvestment Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission Loan Program PDF icon American Reinvestment Recovery Act More Documents & Publications ARRA Home Improvement Funds Application for Canton, Michigan Revolving Loan Funds and Loan Loss Reserves Revolving Loan Funds: Basics and Best Practices

  17. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  18. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect (OSTI)

    Tran, Paul

    2013-02-28

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  19. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  20. Recovery Act Reports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    INS-RA-12-01 Alleged Misuse of American Recovery and Reinvestment Act Grant Funds by the Western Arizona Council of Governments January 26, 2012 Audit Report: OAS-RA-L-12-03 The...

  1. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Energy Positive Water Resource Recovery Workshop Presentations PDF icon McCormick4-28-2015.pdf PDF icon LuthyNSF-EPA-DOELuthyworkshop4-28v2.pdf PDF icon ...

  2. American Recovery & Reinvestment Act Newsletter - Issue 27

    Office of Environmental Management (EM)

    ... liquid waste stor- age tanks at SRS. Through efficien- cies, SRR has been able to increase the number of Recovery Act activities to 41, including the purchase of the manipulators. ...

  3. American Recovery & Reinvestment Act Newsletter - Issue 8

    Office of Environmental Management (EM)

    ... Those stories range from a single mother with new hope for the future to special programs that have helped pull people from abject poverty into worthwhile jobs through the Recovery ...

  4. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  5. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  6. Recovery of minerals from US coals

    SciTech Connect (OSTI)

    Vanderborgh, N.E.

    1982-01-01

    Projections show that domestic coal will serve for the majority of energy supplies during the next decades. Thorough chemical cleaning of this coal can be accomplished in long residence time, slurry transport systems to produce high-quality fuel product. Concurrently, mineral recovery from coals will supplement existing ores. This paper describes this concept and given preliminary engineering considerations for mineral recovery during transport operations.

  7. Recovery Progress Has WIPP Poised to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e New underground fire-fighting equipment has been purchased over the past two years. Recovery Progress Has WIPP Poised to Resume Operations in 2016 The Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Nuclear Waste Partnership (NWP), the management and operations contractor for the Waste Isolation Pilot Plant (WIPP) have made significant progress in recovery efforts at WIPP following the 2014 salt haul truck fire and radiological release. This progress has the Nation's only

  8. Recovery Act: Demonstrating The Commercial Feasibility Of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana | Department of Energy Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana Recovery Act: Demonstrating The Commercial Feasibility Of Geopressured-Geothermal Power Generation At Sweet Lake Field, Cameron Parish, Louisiana Project objective: Extensive conceptual and numerical modeling of the reservoir to quantify

  9. Performance Engineering Research Center and RECOVERY. Performance

    Office of Scientific and Technical Information (OSTI)

    Engineering Research Institution SciDAC-e Augmentation. Performance enhancement (Technical Report) | SciTech Connect Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document Search Title: Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement This project concentrated on various ways to

  10. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  11. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to solar power and energy research. Through these investments, Delaware's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Delaware to play an important role in

  12. Oil recovery by nitrogen flooding. Final report

    SciTech Connect (OSTI)

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  13. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to the Ames Laboratory. Through these investments, Iowa's businesses, universities, national labs,

  14. COLORADO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, Colorado's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Colorado to play an important role in the new

  15. CONNECTICUT RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuels and geothermal energy. Through these investments, Connecticut's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Connecticut to play an

  16. Department of Energy Releases WIPP Recovery Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Releases WIPP Recovery Plan Washington, D.C. - Today, the Department of Energy (DOE) released the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP operations were suspended following an underground truck fire and a radiological release earlier this year. "Safety is our top priority," said Mark Whitney, Acting Assistant Secretary for DOE's Office

  17. Lab completes first Recovery Act cleanup project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Recovery Act cleanup Lab completes first Recovery Act cleanup project The $13 million project involved demolition of an 18,000-square-foot former nuclear fusion research facility. August 4, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits

  18. Laboratory awards final Recovery Act demolition contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act demolition contracts Laboratory awards final Recovery Act demolition contracts The two winning bidders will each demolish a portion of the remaining unused buildings at the Lab's historic Technical Area 21. April 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  19. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act Job Fair October 30, 2009 Nearly 500 seek positions, from laborers to project managers Los Alamos, New Mexico, October 30, 2009-Nearly 500 job seekers turned out for a Los Alamos National Laboratory-sponsored job fair near Española, New Mexico, on Thursday. The job fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act, as well as other Lab work. Ten of the Lab's prime

  20. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  1. Gills Onions Advanced Energy Recovery System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM MAY 17, 2011 * INDUSTRIAL * FOODSERVICE * RETAIL * GENERATED UP TO 300,000 LBS OF ONION WASTE PER DAY (TOP, TAIL AND PEEL) * WASTE BECAME UNMANAGEABLE AND COST-PROHIBITIVE * CREATED ODOR PROBLEMS, POTENTIAL GROUND WATER CONTAMINATION SOLUTION ONION WASTE TO ENERGY ADVANCED ENERGY RECOVERY SYSTEM (AERS) * CONVERTS ONION WASTE TO RENEWABLE ENERGY, ULTRA-CLEAN BIOGAS AND CATTLE FEED * MEETS OUR GOALS FOR AIR QUALITY, ZERO WASTE

  2. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2013-05-29

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  3. State Energy Program Recovery Act Evaluation

    Energy Savers [EERE]

    of a major national evaluation of the State Energy Program (SEP), under the Office of Energy Efficiency and Renewable Energy. The National Evaluation of SEP during the American Recovery and Reinvestment Act (ARRA) provides insight into the unique program that was administered by DOE in the national effort to create jobs and promote economic recovery. The National Evaluation was a multiyear, peer-reviewed, statistically robust effort led by Oak Ridge National Laboratory. The purpose of the

  4. Recovery of tritium from tritiated molecules

    DOE Patents [OSTI]

    Swansiger, W.A.

    1984-10-17

    This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

  5. OE Recovery Act Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog OE Recovery Act Blog RSS November 3, 2015 Power lines like these make up our nation's power grid -- a critical component of our national critical infrastructure. National Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation's Grid November is National Critical Infrastructure Security and Resilience Month, and our Office of Electricity (OE) is hard at work safeguarding the power grid. October 5, 2015 Recovery Act Investment Wraps Up,

  6. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect (OSTI)

    Lesperance, Ann M.

    2008-06-30

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  7. H-Canyon Recovery Crawler

    SciTech Connect (OSTI)

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and would require significant maintenance to become inspection ready. The RC traveled approximately 660 feet in the tunnel and viewed the tunnel and ceiling wall surfaces that were not blocked by existing ducts. This deployment also documented the tunnel obstacles for future inspections. Overall, the RC deployment was a success.

  8. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  9. Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-03-05

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is requiredmore » to rectify this in future configurations.« less

  10. Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-07-24

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less

  11. Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model

    SciTech Connect (OSTI)

    Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-03-05

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

  12. Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model

    SciTech Connect (OSTI)

    Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-07-24

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

  13. Subject: Calculation of Job Creating Through Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding PDF icon Subject: Calculation of Job Creating Through Recovery Act Funding More Documents & Publications Calculation of Job Creation Through DOE Recovery Act Funding EECBG Program Notice 10-07A EECBG PROGRAM NOTICE 10-07B

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. PDF icon 2003_deer_algrain.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  15. WAPA Recovery Act Implementation Appropriation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WAPA Recovery Act Implementation Appropriation WAPA Recovery Act Implementation Appropriation PDF icon Microsoft Word - PSRP May 15 2009 _WAPA Implementation Approp_ Final.docx More Documents & Publications Western Area Power Administration Borrowing Authority, Recovery Act Microsoft Word - PSRP Updates 6-25-10_v2 Bonneville Power Administration Program Specific Recovery Plan

  16. Western Area Power Administration Borrowing Authority, Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 _WAPA Borrowing Authority_ Final.docx More Documents & Publications WAPA Recovery Act Implementation Appropriation Microsoft Word - PSRP Updates 6-25-10_v2 Bonneville Power Administration Program Specific Recovery Plan

  17. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    SciTech Connect (OSTI)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute) transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.

  18. Cumulative Federal Payments to OE Recovery Act Recipients, through August

    Energy Savers [EERE]

    31, 2015 | Department of Energy Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2015. PDF icon OE ARRA Payments through August 2015 More Documents & Publications Cumulative Federal Payments to OE Recovery Act Recipients, through January 31, 2015 Cumulative Federal Payments to OE Recovery Act

  19. Recovery Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Recovery Act News News Home Featured Articles Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Recovery Act Print Text Size: A A A FeedbackShare Page recovery act logo Recovery Act Funding for the Office of Science ames Ames Laboratory Recovery Act Information Ames Laboratory has received approximately

  20. Small Business Administration Recovery Act Implementation | Department of

    Energy Savers [EERE]

    Energy Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation PDF icon Small Business Administration Recovery Act Implementation More Documents & Publications American Recovery and Reinvestment Act of 2009 Left to Our Own Devices - Financing Efficiency for Small Business and Low-Income Families (2009 Environmental Defense Fund Report) Guide to Federal Financing for

  1. Recovery Act Funds at Work | Department of Energy

    Energy Savers [EERE]

    Information Center » Recovery Act » Recovery Act Funds at Work Recovery Act Funds at Work Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Central Maine Power is producing innovations in customer services, improvements in business operations, and lessons-learned that will be used for guiding future smart grid projects. Idaho Power Company is accelerating development of

  2. Using {sup 222}Rn as a tracer of geophysical processes in underground environments

    SciTech Connect (OSTI)

    Lacerda, T.; Anjos, R. M.; Silva, A. A. R. da; Yoshimura, E. M.

    2014-11-11

    Radon levels in two old mines in San Luis, Argentina, are reported and analyzed. These mines are today used for touristic visitation. Our goal was to assess the potential use of such radioactive noble gas as tracer of geological processes in underground environments. CR-39 nuclear track detectors were used during the winter and summer seasons. The findings show that the significant radon concentrations reported in this environment are subject to large seasonal modulations, due to the strong dependence of natural ventilation on the variations of outside temperature. The results also indicate that radon pattern distribution appear as a good method to localize unknown ducts, fissures or secondary tunnels in subterranean environments.

  3. ARM - Campaign Instrument - met

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China Download Data Shouxian, Anhui, China; Mobile Facility, 2008.05.15 - 2008.12.29...

  4. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect (OSTI)

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  5. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  6. A Really Good Hammer: Quantification of Mass Transfer Using Perfluorocarbon Tracers (475th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Watson, Tom

    2012-02-15

    Brookhaven Labs perfluorocarbon tracer (PFT) technology can be viewed as a hammer looking for nails. But, according to Tom Watson, leader of the Labs Tracer Technology Group in the Environmental Research and Technology Division (ERTD), Its a really good hammer! The colorless, odorless and safe gases have a number of research uses, from modeling how airborne contaminants might move through urban canyons to help first responders plan their response to potential terrorist attacks and accidents to locating leaks in underground gas pipes. Their extremely low background level detectable at one part per quadrillion allows their transport to be easily tracked. Lab researchers used PFTs during the 2005 Urban Dispersion Program field studies in New York City, gathering data to help improve models of how a gas or chemical release might move around Manhattans tall buildings and canyons. Closer to home, scientists also used PFTs to make ventilation measurements in Bldg. 400 on the Lab site to provide data to test air flow models used in determining the effects of passive and active air exchange on the levels of indoor and outdoor air pollution, and to determine the effects of an accidental or intentional release of hazardous substances in or around buildings.

  7. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.« less

  8. American Recovery & Reinvestment Act Newsletter - Issue 6

    Office of Environmental Management (EM)

    t t e e e m m m b b b e e e r r r 2 2 2 0 0 0 0 0 0 9 9 9 ARRA Progress: Continuing to Invest in the Future Since the American Recovery and Reinvestment Act was enacted, the...

  9. Recovery Act Weekly Video: 200 West Drilling

    SciTech Connect (OSTI)

    2010-01-01

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  10. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  11. Recovery of ammonia from industrial wastewater

    SciTech Connect (OSTI)

    Marr, R. ); Koncar, M. )

    1993-07-01

    The ecological problems of ammonia and ammonium salts in wastewater, and the sources of effluents containing these two products, are discussed. Feasible separation processes and methods of recovery are reviewed, and the advantages and disadvantages of the individual processes are compared.

  12. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  13. American Recovery & Reinvestment Act Newsletter - Issue 10

    Office of Environmental Management (EM)

    1 1 1 0 0 0 M M M a a a r r r c c c h h h 8 8 8 , , , 2 2 2 0 0 0 1 1 1 0 0 0 Recovery Act Spending by the Office of Environmental Management Tops 1.3 Billion On March 1, the ...

  14. American Recovery & Reinvestment Act Newsletter - Issue 9

    Office of Environmental Management (EM)

    9 9 9 J J J a a a n n n u u u a a a r r r y y y 2 2 2 0 0 0 1 1 1 0 0 0 Recovery Act by the Office of Environmental Management Tops 1 Billion On January 19, the Office of...

  15. American Recovery & Reinvestment Act Newsletter - Issue 7

    Office of Environmental Management (EM)

    7 7 7 O O O c c c t t t o o o b b b e e e r r r 2 2 2 0 0 0 0 0 0 9 9 9 ARRA Continues to Put Your Money and Your Community to Work The American Recovery and Reinvestment Act...

  16. Disaster Resiliency and Recovery: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

  17. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  18. Resource Recovery OpportunitiesatAmericas Water Resource Recovery Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 by CH2M HILL, Inc. CH2MHILL® Resource Recovery Opportunities at America's Water Resource Recovery Facilities By Todd Williams, PE, BCEE Wastewater Global Service Team Deputy Leader Biomass 2014: Growing the Future Bioeconomy Washington, DC July 30, 2014 CH2MHILL Today  Operations on all continents  Approximately 28,000 employees  100 percent owned by our employees  Broadly diversified across multiple business sectors  US$7 billion in revenue We are an industry leader in

  19. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    SciTech Connect (OSTI)

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a large variety of experiments. PFTs are inert, nontoxic, noncombustible and nonreactive. Up to seven unique PFTs can be simultaneously released, sampled and analyzed and the technology is well suited for determining emission fluxes from large petrochemical facilities. The PFT experiment described here was designed to quantitate alkene emissions from a single petrochemical facility, but such experiments could be applied to other industrial sources or groups of sources in the Houston area.

  20. BLM to Invest Recovery Act Funds on Renewable Energy Permitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Invest Recovery Act Funds on Renewable Energy Permitting BLM to Invest Recovery Act Funds on Renewable Energy Permitting May 6, 2009 - 10:43am Addthis The Bureau of Land...

  1. Economic Impact of Recovery Act Investments in the Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available April 25, 2013 ...

  2. Secretary Chu Announces Major New Recovery Act Milestone: 300...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major New Recovery Act Milestone: 300,000 Homes Weatherized Secretary Chu Announces Major New Recovery Act Milestone: 300,000 Homes Weatherized January 19, 2011 - 12:00am Addthis ...

  3. The Recovery Act: Cutting Costs and Upping Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Recovery Act: Cutting Costs and Upping Capacity The Recovery Act: Cutting Costs and Upping Capacity August 25, 2010 - 5:56pm Addthis John Schueler John Schueler Former New ...

  4. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    of coverage area for those involved in the Recovery Act selections for Smart Grid Investment grant awards. There is a November 2011 Update to the "Recovery Act Selections for...

  5. "TRU" Success: SRS Recovery Act Prepares to Complete Shipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP "TRU" Success: SRS Recovery Act Prepares to Complete Shipment ...

  6. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 2011, Volume 2 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2011, Volume 2 No. 3 The American Recovery and...

  7. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, 2012, Volume 3 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 9, 2012, Volume 3 No. 3 The American Recovery and...

  8. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 3 2011, Volume 2 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4 The American Recovery and...

  9. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1, 2012, Volume 3 No. 4 The American Recovery...

  10. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and...

  11. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 1 2011, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 The American Recovery and...

  12. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 The American Recovery and...

  13. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4, 2010, Volume 1 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 4, 2010, Volume 1 No. 1 The American Recovery and...

  14. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and...

  15. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 2, 2012, Volume 3 No. 2 The American Recovery and...

  16. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and...

  17. The American Recovery and Reinvestment Act (ARRA) Energy Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 The American Recovery...

  18. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  19. Subcontractors complete recovery act-funded demolition under budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery act-funded demolition complete Small business subcontractors complete recovery act-funded demolition under budget Demolition completed $16 million under budget and six months ahead of schedule. April 3, 2012 Recovery Act-funded demolitions complete The Department of Energy's Office of Environmental Management allocated $212 million in Recovery Act funding to Los Alamos. Some $73 million was slated for demolition. Through cost efficiencies, the Lab added two buildings to the demolition

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. PDF icon...

  1. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  2. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Recovery Plan Waste Isolation Pilot Plant Recovery Plan This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing

  3. Secretary Chu Announces Changes to Expedite Economic Recovery Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Changes to Expedite Economic Recovery Funding Secretary Chu Announces Changes to Expedite Economic Recovery Funding February 19, 2009 - 12:00am Addthis WASHINGTON D.C. --- Two days after President Obama signed the historic American Recovery and Reinvestment Act into law, Energy Secretary Steven Chu announced a sweeping reorganization of the Department of Energy's dispersal of direct loans, loan guarantees and funding contained in the new recovery legislation. The goal of

  4. Secretary Chu Highlights Recovery Act Cleanup Progress | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cleanup Progress Secretary Chu Highlights Recovery Act Cleanup Progress March 23, 2010 - 12:00am Addthis OAK RIDGE, TENN. - Energy Secretary Steven Chu announced today that the Department's Environmental Management program has spent more than $1.5 billion in American Recovery and Reinvestment Act funds on cleanup projects around the country - 25 percent of the program's total - creating an estimated 14,400 jobs since the start of the Recovery Act. "Because of the Recovery Act,

  5. Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site |

    Office of Environmental Management (EM)

    Department of Energy Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site Recovery Act Creates Jobs, Accelerates Cleanup at DOE's Paducah Site October 26, 2011 - 8:14am Addthis Brandon Henderson checks a pump in the water treatment facility at the Paducah Gaseous Diffusion Plant. The former Recovery Act engineer now works for the U.S. Enrichment Corp. Brandon Henderson checks a pump in the water treatment facility at the Paducah Gaseous Diffusion Plant. The former Recovery

  6. DOE OIG Recovery Act Work Plan (FY 2011).xls

    Energy Savers [EERE]

    OIG Recovery Act Plan Overview OIG Name: Department of Energy Office of Inspector General OIG Broad Recovery Act Goals: The primary objective of the Office of Inspector General's oversight strategy involves the implementation of a review, evaluation, and investigation protocol designed to assist the Department of Energy in: (1) maximizing the performance and effectiveness of activities related to the Recovery Act; (2) preventing and detecting the fraudulent misuse of Recovery Act funds; and (3)

  7. Alabama Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  8. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these

  9. American Samoa Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, American Samoa's businesses, universities, non-profits, and local governments are

  10. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy.

  11. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy.

  12. Supporting Statement: OE Recovery Act Financial Assistance Grants OMB

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Number 1910-5149 | Department of Energy Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149. This statement provides additional informaton regarding the DOE request for processing of the renewal of the proposed information collection, OE Recovery Act

  13. 200,000 homes weatherized under the Recovery Act

    Broader source: Energy.gov [DOE]

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

  14. Use Feedwater Economizers for Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedwater Economizers for Waste Heat Recovery Use Feedwater Economizers for Waste Heat Recovery This tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #3 PDF icon Use Feedwater Economizers for Waste Heat Recovery (January 2012) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer

  15. Cumulative Federal Payments to OE Recovery Act Recipients, through April

    Broader source: Energy.gov (indexed) [DOE]

    30, 2014 | Department of Energy Graph of cumulative Federal Payments to OE Recovery Act Recipients, through April 30, 2014. PDF icon OE ARRA Payments through April 2014 More Documents & Publications Cumulative Federal Payments to OE Recovery Act Recipients, through March 31, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through February 28, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through May 31, 2014

  16. Sandia Energy - Upcoming Publication on Recovery Strategies for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Critical Infrastructures accepted "Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks" for publication. The paper,...

  17. Energy Positive Water Resource Recovery Workshop Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water Resource Recovery Facilities Ed McCormick, President, WEF Keynote 2: Energy-Positive Wastewater Treatment and Re-Use Dr. Dick Luthy, Director, ReNUWIt, Stanford University Panel Discussion: Achieving Energy-Positive Water Resource Recovery Facilities Tom Speth, Director, Water Supply/Resources Division,

  18. Engine System Approach to Exhaust Energy Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Approach to Exhaust Energy Recovery Engine System Approach to Exhaust Energy Recovery Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_kruiswyk.pdf More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery An Engine System Approach to Exhaust Waste Heat Recovery The Path to a 50% Thermal Efficient Engine

  19. Department of Energy Recovery Act Investment in Biomass Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to

  20. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. PDF icon deer08_gundlach.pdf More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  1. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  2. Vermont Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Recovery Act State Memo Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Vermont are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, Vermont's businesses, universities, non-profits, and local governments are creating quality jobs today and

  3. Virgin Islands Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo The American Recovery & Reinvestment Act( ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local

  4. Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuel vehicles and the Thomas Jefferson National Accelerator Facility

  5. EM Recovery Act Lessons Learned (Johnson) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson) EM Recovery Act Lessons Learned (Johnson) Presentation slides from EM ARRA Best Practices and Lessons Learned Workshop Waste Management Symposium Phoenix, AZ March 1, 2012. PDF icon EM ARRA Best Practices and Lessons Learned Workshop: Overview from Thomas Johnson, Jr., Recovery Act Program Director More Documents & Publications Info-Exch 2012 - Thomas Johnson Presentation EM Recovery Act Funding Payment Summary by Site American Recovery and Reinvestment Act Payments Surge Past $4

  6. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  7. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  8. Texas Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Texas Recovery Act State Memo Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Texas are supporting a broad range of clean energy projects, from carbon capture and storage to energy efficiency, the smart grid, solar, geothermal, and biomass projects.

  9. South Carolina Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Carolina reflect a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, as well as nearly $1.6 billion to accelerate the environmental

  10. South Dakota Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Dakota Recovery Act State Memo South Dakota Recovery Act State Memo South Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota are supporting a broad range of clean energy projects, from energy efficiency to smart grid and geothermal power. Through these investments,

  11. Rhode Island Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses,

  12. North Carolina Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Carolina Recovery Act State Memo North Carolina Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Carolina are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, North Carolina's businesses, universities, non-profits, and local governments are creating

  13. North Dakota Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture

  14. Northern Mariana Islands Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Northern Mariana Islands Recovery Act State Memo Northern Mariana Islands Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. Through these investments, Northern Mariana businesses, non-profits, and local governments are creating quality jobs today and positioning Florida to play an important role in the new energy economy of the future. PDF icon Northern Mariana Islands Recovery Act

  15. Ohio Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Ohio Recovery Act State Memo Ohio Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced batter manufacturing, biofuels, carbon capture and storage, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, Ohio's

  16. Oklahoma Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oklahoma are supporting a broad range of clean energy projects from energy efficiency and the smart grid to environmental cleanup and geothermal. Through these

  17. Oregon Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Oregon Recovery Act State Memo Oregon Recovery Act State Memo Oregon has substantial natural resources, including wind, geothermal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oregon reflect a broad spectrum of opportunities, from energy efficiency and the smart grid to advanced fuels, battery manufacturing, and geothermal and solar power.

  18. Washington Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Recovery Act State Memo Washington Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Washington are supporting a broad range of clean energy projects from energy efficiency and the smart grid to wind, biomass, and geothermal, as well

  19. West Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in West Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid, to carbon capture and storage, transportation

  20. Wisconsin Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wisconsin are supporting a broad range of clean energy projects from energy efficiency and the smart grid to alternative fuel vehicles. Through these investments, Wisconsin's