National Library of Energy BETA

Sample records for tra transport ev

  1. Compilation of TRA Summaries

    Energy Savers [EERE]

    and Immobilization Plant (WTP) Pretreatment Facility at Hanford March 2007 TRA-4 K Basins Sludge Treatment Process at Hanford August 2007 TRA-5 Savannah River Site Tank 48H Waste ...

  2. EV-13

    Office of Legacy Management (LM)

    ?a/71 2.z=' 1. lg EV-13 Notification of Xced for So!?e Form of Reoedial Action, in Ikyo Ca~;~op., Los Alanos, New Mexico s. lkycrs, HEI-90 4 EV/IXT has dctcrnincd that portions of Szyo Ca~yor? aztr contapAnat& vith radioactive residue as a result of activities conducteiI for the ku!hsttzi F r- sider this -n...lnecr I?istrict and ntornic Lncrg Cocaissio2. vc con- site to be low priority as potential e!xp,osw'c rates to the general putilic are relatively low under the p&en: Enclosed in

  3. Compilation of TRA Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRA Summaries Compilation of TRA Summaries A compilation of all TRA Summaries PDF icon Compilation of TRA Summaries More Documents & Publications K Basins Sludge Treatment Process Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment Report

  4. Global EV Outlook | Open Energy Information

    Open Energy Info (EERE)

    Find Another Tool FIND TRANSPORTATION TOOLS Key takeaways and insights include landscape analysis of electric vehicle (EV) stocksales and charging station deployment....

  5. EV Everywhere Grand Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New non-rare earth magnet/motor designs? Workplace Charging Challenge? HOV Access for EV's

  6. EV Everywhere Battery Workshop: Setting the Stage for the EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge Presentation given ...

  7. EV Everywhere: Stakeholder Solution Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Everywhere: Stakeholder Solution Center EV Everywhere: Stakeholder Solution Center EV Everywhere focuses on increasing the use and adoption of plug-in electric vehicles (also known as electric cars or EVs). In addition to educating consumers, the Department of Energy (DOE) is committed to providing resources to stakeholders to help them increase their readiness for EVs and pave the way to electrified transportation. All stakeholders can request free EV Everywhere decals in the form of bumper

  8. AVTA: The EV Project

    Broader source: Energy.gov [DOE]

    The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations.  It also...

  9. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This ...

  10. EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power

    Broader source: Energy.gov (indexed) [DOE]

    Electronics and Electric Machines) Workshop Agenda | Department of Energy Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL PDF icon agenda_ed.pdf More Documents & Publications EV Everywhere Grand Challenge Kick-Off EV Everywhere Grand Challenge - Battery Workshop Agenda EV Everywhere - Charge to Breakout Sessions

  11. EV Everywhere and DOE Priorities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    we must claim its promise..." Official White House Photo by Lawrence Jackson Workplace Charging Challenge 5 EV Everywhere Grand Challenge EV Everywhere Goal Enable the U.S. to...

  12. Preliminary Technology Readiness Assessment (TRA) for the Calcine

    Energy Savers [EERE]

    Disposition Project Volume 1 (CDP) | Department of Energy 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Full Document and Summary Versions are available for download PDF icon Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) PDF icon Summary - Preliminary TRA of the Calcine Disposition Project More Documents & Publications Compilation of TRA Summaries Preliminary Technology

  13. Preliminary Technology Readiness Assessment (TRA) for the Calcine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Project Volume 1 (CDP) | Department of Energy Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Full Document and Summary Versions are available for download PDF icon Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) PDF icon Summary - Preliminary TRA of the Calcine Disposition

  14. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Breakout Session Report | Department of Energy next-generation_li-ion_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Overview and Progress of the Batteries for Advanced Transportation Technologies

  15. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  16. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging ...

  17. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  18. EV Everywhere Challenge Battery Workshop

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  19. Synergy EV | Open Energy Information

    Open Energy Info (EERE)

    trucks and industrial vehicles. It has received support from Environmental Business Cluster, a California-based incubator. References: Synergy EV1 This article is a stub. You...

  20. About EV Everywhere | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    About EV Everywhere EV Everywhere is the umbrella effort of the U.S. Department of Energy (DOE) to increase the adoption and use of plug-in electric vehicles (EVs). EV Everywhere...

  1. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Broader source: Energy.gov (indexed) [DOE]

    Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL PDF icon agendaed.pdf More Documents & Publications ...

  2. EV Everywhere: Text Version of Share Your EV Story Video

    Broader source: Energy.gov [DOE]

    This is a text version of the Share Your EV Story video, which features interviews with drivers of electric vehicles who work at the Department of Energy and its national laboratories sharing their experiences.

  3. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Guide | Department of Energy Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. PDF icon Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange

  4. EV Solar Products | Open Energy Information

    Open Energy Info (EERE)

    Solar Products Jump to: navigation, search Logo: EV Solar Products Name: EV Solar Products Address: 2655 N. Highway 89 Place: Chino Valley, Arizona Zip: 86323 Sector: Solar...

  5. EV Everywhere: Get Connected! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Read and watch other people's experiences with EVs and share your own. Benefits of Electric Vehicles Benefits of Electric Vehicles Discover how EV are the smartphones of...

  6. How Do The EV Project Participants Feel About Their EVS?

    SciTech Connect (OSTI)

    Francfort, James E.

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle (BEV) or Chevrolet Volt extended range electric vehicle (EREV) and were among the first to explore this new electric drive technology. Collectively, BEV, EREV, and plug-in hybrid electric vehicles (PHEVs) are called plug-in electric vehicles (PEVs). The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.

  7. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking EV and HEV Technologies Tim Burress Oak Ridge National Laboratory 2014 U.S. DOE Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting June 17 th , 2014 Project ID: APE006 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Start - FY04 * Finish - Ongoing * Integrating custom ORNL inverter-motor-controller with OEM components. - Optimizing controls for non-linear motors throughout operation range. *

  8. EV Everywhere Grand Challenge Blueprint

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued

  9. EV Everywhere: 2012 Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: 2012 Workshops EV Everywhere: 2012 Workshops The Department developed the EV Everywhere Blueprint using feedback from a series of workshops across the country and a public Request for Information. The workshops, held in the summer and fall of 2012, brought together experts from industry, academia, state and local government, and other stakeholder organizations. EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI The EV Everywhere Grand

  10. EV Everywhere Grand Challenge Blueprint

    Broader source: Energy.gov [DOE]

    Recognizing that vehicle electrification is an essential part of our countrys "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to enable plug-in electric vehicles (PEVs) that are as affordable and convenient for the American family as gasoline-powered vehicles by 2022. This "Blueprint" provides an outline for the Department of Energy's (DOE) technical and deployment goals for electric vehicles over the next five years. DOE will pursue these targets in cooperation with a host of public and private partners.

  11. About EV Everywhere | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About EV Everywhere About EV Everywhere About EV Everywhere EV Everywhere is the umbrella effort of the U.S. Department of Energy (DOE) to increase the adoption and use of plug-in electric vehicles (EVs). EV Everywhere was launched as one of a series of Clean Energy Grand Challenges that set ambitious, far-reaching, national goals that will help the U.S. become more energy secure and environmentally sustainable. Announced by President Obama in March 2012, the goal of the initiative is to enable

  12. Summary - Preliminary TRA of the Calcine Disposition Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment (TRA) is tric-based process a CDP y Office of E he Calci ar ssued ic with ste o on e and late For he ss gy nd in listed o be 4) * * * * * * * * Th am * * Sig ava rev ...

  13. EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge | Department of Energy Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge Presentation given at the EV Everywhere Grand Challenge: Battery Workshop by EERE Assistant Secretary David Danielson on July 26, 2012 at the Doubletree O'Hare, Chicago, Illinois. PDF icon 2 Danielson EV Everywhere Battery presentation [Read-Only].pdf More Documents & Publications EV

  14. EV Everywhere Logo Contest Federal Register Notice

    Broader source: Energy.gov [DOE]

    This is a copy of the notice submitted to the Federal Register for the EV Everywhere logo contest. This document, concerning the EV Everywhere logo contest is an action issued by the Department of...

  15. CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...

    Open Energy Info (EERE)

    CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no posts in this category. Syndicate...

  16. AVTA: ARRA EV Project Overview

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following document describes the context of the EV Project, which partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  17. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ...

  18. AVTA: ARRA EV Project Annual Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports summarize charging behavior of drivers that participated in the EV Project, which deployed 14,000 Level 2 PEV chargers and 300 fast chargers.

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  1. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  3. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupareportoutcaci.pdf More Documents & Publications EV Everywhere...

  4. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  5. EV Everywhere Grand Challenge - Battery Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    7252012 EV Everywhere Grand Challenge -- Battery Workshop Thursday, July 26, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the...

  6. EV Everywhere: Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For information on workplace charging, please see the Workplace Charging Challenge's website. For technical questions about research and development on EVs, please contact a ...

  7. Workplace Charging Challenge Partners: EV Connect | Department...

    Office of Environmental Management (EM)

    Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Fast Facts Joined the Workplace Charging ...

  8. EV Everywhere: Charging on the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EV Models Saving Money Vehicle Charging EV Benefits EV Stories EV Basics Most ... Most public charging uses Level 2 or DC fast-charge electric vehicle supply equipment ...

  9. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2_danielson_caci.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge

  10. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and ...

  11. Hawaii Gets 'EV Ready' | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's

  12. EV Everywhere News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Everywhere News EV Everywhere News EV Everywhere aims to have the U.S. become the first nation in the world to produce plug-in electric vehicles (PEVs) that are as affordable for the average American family as 2012's gasoline-powered vehicles by 2022. EV Everywhere is supported by the Vehicle Technologies Office, which regularly shares news from our research, development and deployment efforts focusing on PEVs. Learn more about what is going on in community readiness through the PEV Community

  13. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to the three types above, wireless charging uses an electro-magnetic field to transfer electricity to an EV without a cord. The Department of Energy is supporting ...

  14. EV Everywhere - Charge to Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    Name or Ancillary Text eere.energy.gov EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24,...

  15. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Broader source: Energy.gov (indexed) [DOE]

    3_davis_caci.pdf More Documents & Publications EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Grand Challenge - Charge to the Breakout Groups

    2_danielson_caci.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand

  16. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3_davis_caci.pdf More Documents & Publications EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Grand Challenge - Charge to the Breakout Groups

  17. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  18. Alternative Fuels Data Center: San Diego Leads in Promoting EVs

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Twitter Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Google Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Delicious Rank Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Digg Find More places to share

  19. EV Everywhere Grand Challenge - Charge to the Breakout Groups | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy - Charge to the Breakout Groups EV Everywhere Grand Challenge - Charge to the Breakout Groups Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. PDF icon 7_howell_b.pdf More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Grand Challenge - Battery Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric

  20. How much are Chevrolet Volts in The EV Project driven in EV Mode?

    SciTech Connect (OSTI)

    John Smart

    2013-08-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

  1. Smart Grid EV Communication Module | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electric vehicles (EVs) is the long period of time required to recharge EV batteries. While regular alternating current (AC) charging systems are sufficient for...

  2. Panasonic EV Energy Co Ltd PEVE | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Panasonic EV Energy Co., Ltd (PEVE) Place: Kosai, Shizuoka, Japan Zip: 431-0452 Sector: Vehicles Product: Panasonic EV Energy develops, manufactures and...

  3. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications EV Everywhere Battery Workshop: Preliminary Target-Setting Framework EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior

  4. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the...

  5. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery ...

  6. EV Everywhere Grand Challenge - Battery Workshop attendees list...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Battery Workshop attendees list Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree ...

  7. Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge

    Broader source: Energy.gov [DOE]

    The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

  8. Vehicle Technologies Office Merit Review 2014: Benchmarking EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2014 ...

  9. Vehicle Technologies Office Merit Review 2015: Benchmarking EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2015 ...

  10. EV Everywhere Framing Workshop Report Out & Lessons Learned ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 ...

  11. Hunan Copower EV Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Copower EV Battery Co Ltd Jump to: navigation, search Name: Hunan Copower EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and...

  12. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion ...

  13. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries ...

  14. EV Everywhere Batteries Workshop - Pack Design and Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report EV Everywhere Batteries ...

  15. EV Everywhere Workshop: Traction Drive Systems Breakout Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workshop: Traction Drive Systems Breakout Group Report Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric ...

  16. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Electric Motors and Critical Materials EV Everywhere - Charge ...

  17. Control Strategies for Electric Vehicle (EV) Charging Using Renewables...

    Office of Scientific and Technical Information (OSTI)

    Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage Citation Details In-Document Search Title: Control Strategies for Electric Vehicle (EV) ...

  18. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    SciTech Connect (OSTI)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected trips with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.

  19. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore » with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  20. EV Everywhere Grand Challenge - Battery Workshop Agenda | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Agenda for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon agenda_b.pdf More Documents & Publications EV Everywhere Grand Challenge - Charge to the Breakout Groups EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Kick-Off

  1. EV Everywhere Grand Challenge Overview Presentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. PDF icon 2-danielson.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Overview

  2. AVTA: ARRA EV Project Vehicle Placement Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  3. How Do The EV Project Participants Feel about Charging Their EV at Home?

    SciTech Connect (OSTI)

    Francfort, James E.

    2015-02-01

    Key Observations from the Survey of the EV Project Participants; In June 2013, 72% of EV Project participants were very satisfied with their home charging experience; 21% of participants relied totally on home charging for all of their charging needs; Volt owners relied more on home charging than Leaf owners, who reported more use of away-from-home charging; 74% of participants reported that they plug in their plug-in electric vehicle (PEV) every time they park at home. Others plugged in as they determined necessary to support their driving needs; 40% of participants reported that they would not have or are unsure that in June 2013 whether they would have purchased an alternating current (AC) Level 2 electric vehicle supply equipment (EVSE) for home charging if it had not been provided by The EV Project; and 61% of participants reported that The EV Project incentive was very important or important in their decision to obtain a PEV.

  4. Workplace Charging Challenge Partner: EV Connect | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Connect Workplace Charging Challenge Partner: EV Connect Workplace Charging Challenge Partner: EV Connect Joined the Challenge: January 7, 2015 Headquarters: Los Angeles, CA Charging Location: Los Angeles, CA Domestic Employees: 20 EV Connect develops and produces electric vehicle charging solutions. Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Meet Challenge Partners

  5. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  6. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and

    Office of Scientific and Technical Information (OSTI)

    Local Storage (Conference) | SciTech Connect Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage Citation Details In-Document Search Title: Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant

  7. Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Across the State Rhode Island EV Initiative Adds Chargers Across the State to someone by E-mail Share Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Facebook Tweet about Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Twitter Bookmark Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Google Bookmark Alternative Fuels Data Center: Rhode Island EV Initiative Adds

  8. Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Success Seattle Rideshare Fleet Adds EVs, Enjoys Success to someone by E-mail Share Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Facebook Tweet about Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Twitter Bookmark Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Google Bookmark Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Delicious Rank Alternative

  9. EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out |

    Broader source: Energy.gov (indexed) [DOE]

    Grand Challenge | Department of Energy by EERE Assistant Secretary David Danielson on July 26, 2012 at the Doubletree O'Hare, Chicago, Illinois. PDF icon 2 Danielson EV Everywhere Battery presentation [Read-Only].pdf More Documents & Publications EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Introduction for Electric Drive Workshop Department of Energy

    Group B breakout session presentation for the EV Everywhere Grand

  10. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. PDF icon 7_howell_b.pdf More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Grand Challenge - Battery Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Design | Department of Energy

    Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX

  11. EV Everywhere Grand Challenge Kick-Off | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 1_danielson_ed.pdf More Documents & Publications EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Overview EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge

    Agenda for the

  12. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  13. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  14. AVTA: ARRA EV Project Overview Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the EV Project, which partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  15. Alternative Fuels Data Center: Rolling Down the Arizona EV Highway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rolling Down the Arizona EV Highway to someone by E-mail Share Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Facebook Tweet about Alternative Fuels Data...

  16. EV Everywhere Battery Workshop Introduction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1_sandalow_b.pdf More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Battery and Electric Drive Awardee List from American Recovery and Reinvestment Act funding

  17. EV Everywhere Workshop: Traction Drive Systems Breakout Group Report |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 7a_marlino_ed.pdf More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Framing Workshop - Report Out & Lessons Learned Traction Drive Systems Breakout

  18. Driving Progress Through the EV Everywhere Utility Partnership | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Driving Progress Through the EV Everywhere Utility Partnership Driving Progress Through the EV Everywhere Utility Partnership December 14, 2015 - 4:37pm Addthis Assistant Secretary Danielson spoke about the importance of stakeholder collaboration to realize the goals of EV Everywhere. | Photo courtesy of Ameren Corporation Assistant Secretary Danielson spoke about the importance of stakeholder collaboration to realize the goals of EV Everywhere. | Photo courtesy of Ameren

  19. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  20. Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Events Oregon Boosts EV Adoption Through Popular Electric Vehicle Events to someone by E-mail Share Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Facebook Tweet about Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Twitter Bookmark Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Google Bookmark Alternative Fuels Data

  1. EV Everywhere Batteries Workshop - Materials Processing and Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Report | Department of Energy beyond_lithium_ion_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report EV Everywhere Grand Challenge - Charge to the Breakout Groups Breakout Session Report | Department of Energy

    manufacturing_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next

  2. EV Everywhere Grand Challenge - Battery Workshop attendees list |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. PDF icon companies_in_attendance_b.pdf More Documents & Publications EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Introduction for Electric Drive Workshop

  3. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Broader source: Energy.gov (indexed) [DOE]

    Electric Machines) Workshop | Department of Energy List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL PDF icon companies_in_attendance_ed.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere Grand Challenge - Battery Workshop attendees

  4. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Workshop Attendence List | Department of Energy Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon companies_in_attendance_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop - Backsplash EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda EV

  5. EV Everywhere Framing Workshop - Report Out & Lessons Learned | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy - Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge : Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 2_davis_ed.pdf More Documents & Publications EV Everywhere Framing Workshop

  6. EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout

    Broader source: Energy.gov (indexed) [DOE]

    Session Report | Department of Energy pack_design_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report

  7. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 4_ward_b.pdf More Documents & Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere Grand Challenge Kick-off Parameters and Analysis

  8. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Introduction | Department of Energy Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon 1_sandalow_caci.pdf More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand Challenge Blueprint

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Broader source: Energy.gov (indexed) [DOE]

    Charging Infrastructure Group D Breakout Report | Department of Energy d_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out

  10. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  11. How Do The EV Project Participants Feel About Charging Their EV Away From Home?

    SciTech Connect (OSTI)

    Francfort, James E.

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle or Chevrolet Volt extended-range electric vehicle and were among the first to explore this new electric drive technology. Collectively, battery electric vehicles, extended-range electric vehicles, and plug-in hybrid electric vehicles are called PEVs. The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.

  12. Crystal structures of the F and pSLT plasmid TraJ N-terminal regions reveal similar homodimeric PAS folds with functional interchangeability

    SciTech Connect (OSTI)

    Lu, Jun; Wu, Ruiying; Adkins, Joshua N.; Joachimiak, Andrzej; Glover, Mark

    2014-09-16

    In the F-family of conjugative plasmids, TraJ is an essential transcriptional activator of the tra operon that encodes most of the proteins required for conjugation. Here we report for the first time the X-ray crystal structures of the TraJ N-terminal regions from the prototypic F plasmid (TraJF11-130) and from the Salmonella virulence plasmid pSLT (TraJpSLT 1-128). Both proteins form similar homodimeric Per-ARNT-Sim (PAS) fold structures. Mutational analysis reveals that the observed dimeric interface is critical for TraJF transcriptional activation, indicating that dimerization of TraJ is required for its in vivo function. An artificial ligand (oxidized dithiothreitol) occupies a cavity in the TraJF dimer interface, while a smaller cavity in corresponding region of the TraJpSLT structure lacks a ligand. Gas chromatography/mass spectrometry-electron ionization analysis of dithiothreitol-free TraJF suggests indole may be the natural TraJ ligand; however, disruption of the indole biosynthetic pathway does not affect TraJF function. Heterologous PAS domains from pSLT and R100 TraJ can functionally replace the TraJF PAS domain, suggesting that TraJ allelic specificity is mediated by the region C-terminal to the PAS domain.

  13. Promoting a Green Economy through Clean Transportation Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives EV Community ...

  14. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  15. Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about benchmarking EV and HEV technologies. PDF icon ape006_burress_2014_p.pdf More Documents & Publications Benchmarking State-of-the-Art Technologies Vehicle

  16. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Broader source: Energy.gov (indexed) [DOE]

    Consumer Acceptance Group A Breakout Report | Department of Energy a_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group B Breakout Report

  17. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Broader source: Energy.gov (indexed) [DOE]

    Consumer Acceptance and Public Policy Group C Breakout Report | Department of Energy on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_c_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group B Breakout Report EV Everywhere Grand Challenge: Consumer Acceptance and Charging

  18. EV Everywhere Framing Workshop Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Challenge : Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 2_davis_ed.pdf More Documents & Publications EV Everywhere Framing Workshop

    at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. PDF icon 1-sandalow.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction

  19. Enhancing Earned Value (EV) Analysis Using Project Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Reporting System (PARS II) - Road Show Presentation Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting System (PARS II) - Road Show Presentation This ...

  20. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Broader source: Energy.gov (indexed) [DOE]

    setting EV Everywhere technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled...

  1. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  2. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ion Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Power Electronics and Thermal Management Breakout Session

  3. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Energy Storage work Read Vehicle Technologies Office success stories Watch this Energy 101 video to learn how electric vehicles work The EV Everywhere Grand ...

  4. EnEV AIR GmbH | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 78056 Product: Specialises in project planning of centrally designed ventilation systems with integral heat recovery. References: EnEV-AIR GmbH1 This article...

  5. Li ion Motors Corp formerly EV Innovations Inc | Open Energy...

    Open Energy Info (EERE)

    Vegas, Nevada Zip: 89110 Sector: Vehicles Product: Las Vegas - based manufacturer of lithium-powered plug-in vehicles. References: Li-ion Motors Corp (formerly EV Innovations...

  6. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...

    Broader source: Energy.gov (indexed) [DOE]

    Workshop: Preliminary Target-Setting Framework Jacob Ward, Vehicle Technologies Senior Analyst July 24, 2012 Doubletree-Rosemont, Chicago, IL For this Analysis, Three "EV "...

  7. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  8. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  9. EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report

    Broader source: Energy.gov [DOE]

    Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  10. Vehicle Technologies Office Merit Review 2014: EV Project: Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells ...

  11. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov (indexed) [DOE]

    Chicago, IL For this Analysis, Three "EV " Scenarios 1. PHEV40 - reduces battery size while removing range issues, but involves the higher cost of two powertrains 2....

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop- Backsplash

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  13. Vehicle Technologies Office Merit Review 2015: EV - Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV - smart grid research & interoperability activities. PDF icon...

  14. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Energy Savers [EERE]

    Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the ...

  15. EV Everywhere Grand Challenge Road to Success | Department of...

    Energy Savers [EERE]

    Initial progress report for EV Everywhere. The report highlights the significant cost reduction in batteries this year, which will enable increased PEV affordability for consumers. ...

  16. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of ...

  17. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Energy Savers [EERE]

    Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Introduction for Electric Drive Workshop Presentation given by EERE Assistant Secretary David Danielson at ...

  18. DOE Field Operations Program EV and HEV Testing

    SciTech Connect (OSTI)

    Francfort, James Edward; Slezak, L. A.

    2001-10-01

    The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

  19. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures

    Broader source: Energy.gov [DOE]

    As with conventional vehicles, the efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies substantially based on driving conditions and habits. Using the economy mode, avoiding hard braking, using accessories wisely, and observing the speed limit will help EV drivers maximize their all-electric range.

  20. EV Everywhere: Saving on Fuel and Vehicle Costs

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (also known as electric cars or EVs) can save you money, with much lower fuel costs on average than conventional gasoline vehicles. Electricity prices are lower and more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle.

  1. EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 3_ward_ed.pdf More Documents & Publications EV Everywhere Battery Workshop: Preliminary Target-Setting Framework EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior

  2. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Broader source: Energy.gov (indexed) [DOE]

    Session Report | Department of Energy 9b_traction_drive_systems_ed.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Power Electronics and Thermal Management Breakout Session

  3. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  4. Celebrate EV Everywhere by Sharing Your Electric Vehicle Story | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Celebrate EV Everywhere by Sharing Your Electric Vehicle Story Celebrate EV Everywhere by Sharing Your Electric Vehicle Story September 15, 2015 - 11:00am Addthis Explore this infographic to see how the Energy Department is revving up the electric vehicle market through the EV Everywhere Grand Challenge. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Explore this infographic to see how the Energy Department is revving up the

  5. EV Everywhere: Electric Vehicle Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stories EV Everywhere: Electric Vehicle Stories Drivers of electric vehicles who work at DOE and its national laboratories share their experiences. Read the text version. One of the biggest drivers of people purchasing a plug-in electric vehicle (also known as an electric car or EV) is hearing about it from a family member, friend, co-worker or neighbor. Now with the help of new EV Everywhere decals you can further spread the word about the nationwide effort to drive the transition to

  6. EV Everywhere: Find Electric Vehicle Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find Electric Vehicle Models EV Everywhere: Find Electric Vehicle Models Search Car: Year: -- ALL -- Make: -- ALL -- Market Class: -- ALL -- All-Electric Range: Min -- ALL -- 10 miles 20 miles 30 miles 40 miles 50 miles 60 miles 70 miles 80 miles 90 miles 100 miles 110 miles 120 miles 130+ miles Gasoline Back-Up Available: -- ALL -- No Yes Reset To find out if a plug-in electric vehicle (EV) will work for you, use the menus to the left to sort the available EV models on the market by year, make,

  7. EV Community Readiness projects: New York City and Lower Hudson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community Readiness projects: New York City and ...

  8. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Cell Materials and Design for 300 Mile Range EVs Yimin Zhu, PDPI OneD Material, LLC (former Nanosys Energy Storage) Palo Alto, California June 16 20, 2014 DOE Vehicle ...

  9. Earned Value (EV) Analysis and Project Assessment & Reporting...

    Office of Environmental Management (EM)

    staff to the Secretary of Energy will have easy access to the same data. EarnedValue-EV-AnalysisProjectAssessmentReportingSystem-PARS IIPresentationJanuary2013.pdf More...

  10. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Broader source: Energy.gov (indexed) [DOE]

    David Danielson, Assistant Secretary of Energy, EERE 8:55-9:05 AM RESULTS FROM INITIAL FRAMING WORKSHOP Patrick Davis, DOE EERE Vehicle Technologies Program 9:05-9:25 AM THE EV...

  11. EV Everywhere Framing Workshop - Report Out & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... driven" is still vague - EVs should not just be a replacement product, they need value added components eere.energy.gov Summary and Lessons Learned * Need to emphasize the need ...

  12. EV Everywhere Grand Challenge - Battery Workshop attendees list

    Broader source: Energy.gov (indexed) [DOE]

    Battery Workshop Thursday, July 26, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the energy storage goals of the EV Everywhere...

  13. EV Everywhere Grand Challenge Introduction for Electric Drive Workshop

    Broader source: Energy.gov [DOE]

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  14. Aggregated Purchasing and Workplace Charging Can Drive EV Market...

    Energy Savers [EERE]

    Charging Can Drive EV Market Growth November 24, 2014 - 11:06am Addthis Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain ...

  15. Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (PARS II) - Road Show Presentation | Department of Energy Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting System (PARS II) - Road Show Presentation Enhancing Earned Value (EV) Analysis Using Project Assessment & Reporting System (PARS II) - Road Show Presentation This presentation was provided by the DOE Office of Project Management Oversight and Assessments (formerly DOE Office of Acquisition and Project Management) in January 2013. It is about the

  16. EV-Smart Grid Interoperability Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Electric Vehicles & Batteries » EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the Challenge! Join the Challenge! The Workplace Charging Challenge aims to achieve a tenfold increase in the number of U.S. employers offering workplace charging by 2018. Read more University Campuses Charge Up University Campuses Charge Up America's higher education institutions are at the forefront of workplace charging. Read more Want More Workplace Charging

  17. EV Everywhere: Tax Credits and Other Incentives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving on Fuel and Vehicle Costs » EV Everywhere: Tax Credits and Other Incentives EV Everywhere: Tax Credits and Other Incentives Jurisdiction: All Federal Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio

  18. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout

    Broader source: Energy.gov (indexed) [DOE]

    This is a copy of the notice submitted to the Federal Register for the EV Everywhere logo contest. This document, concerning the EV Everywhere logo contest is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the

  19. GIZ Transport & Mobility Compass | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Global EV Outlook Pay-As-You-Drive Pricing in British Columbia GIZ Sourcebook Module 5f: Adapting Urban Transport to Climate...

  20. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  1. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  2. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  3. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact

    SciTech Connect (OSTI)

    Wei, B.; Zhang, Y.; Wang, X. Lu, D.; Lu, G. C.; Hutton, R.; Zou, Y.; Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 ; Zhang, B. H.; Tang, Y. J.

    2014-03-28

    The fragmentation of CH{sub 4}{sup 2+} dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH{sub 4}{sup 2+} dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH{sub 2}{sup +}, H{sup +}, and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH{sub 4}{sup 2+} dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.

  4. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect (OSTI)

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  5. Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth November 24, 2014 - 11:06am Addthis Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain Class 5 bucket truck at the White House event on November 18, 2014. The truck, which is owned by Pacific Gas and Electric (PG&E), features up to 40 miles of all-electric range and

  6. EXHIBIT IV DOE/EV-0003/29 ORNL-5734

    Office of Legacy Management (LM)

    v EXHIBIT IV - DOE/EV-0003/29 ORNL-5734 Radiological Survey of the Former Kellex Research Facility, Jersey City, New Jersey 6. A. Berven H. W. Dickson W. A. Goldsmith W. M. Johnson W. D. Cottrell R. W. Doane F. F. Haywood M. T. Ryan W. H. Shinpaugh DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W.

  7. Monthly EV Sales Shatter Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records September 25, 2013 - 3:51pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 1/20/15. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Learn More About Electric Vehicles To find out how much you can save at the pump by

  8. EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

    Broader source: Energy.gov (indexed) [DOE]

    Energy Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 3_davis_b.pdf More Documents & Publications EV Everywhere Framing Workshop - | Department of Energy

    by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 5_howell_b.pdf More Documents & Publications PHEV Battery Cost Assessment Overview of Battery R&D Activities

  9. Synthesis of Transient Climate Evolution of the last 21-kyr (SynTraCE-21)

    SciTech Connect (OSTI)

    Zhengyu Liu

    2011-05-06

    Climate evolution in the last 21,000 years provides critical observations for testing state-of-the-art climate models on the simulation of climate evolution and abrupt climate changes. Proxy evidences and new modeling activities have led to rapid advances in our understanding of climate change for this past time period. This funding helps to support the first international SynTraCE-21k workshop at Mount Hood, Oregon from 10-13 October, 2010.

  10. DOE and the Department of Transportation Announce Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extensive experience in transportation electrification and alternative fuel vehicle fleet deployment through the DOE SMART Mobility consortium, EV Everywhere, and Clean Cities. ...

  11. EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging

    Broader source: Energy.gov [DOE]

    Today, Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson welcomed NASCAR and Sprint to the growing list of employers participating in the EV Everywhere Workplace Charging Challenge to help build the nation’s plug-in electric vehicle charging infrastructure.

  12. Observations from The EV Project in Q4 2013

    SciTech Connect (OSTI)

    John Smart

    2014-02-01

    This is a summary report for The EV Project 4th quarter 2013 reports. It describes electric vehicle driver driving and charging behavior observed in Q4. It is the same report as the previously approved/published Q3 2013 report, only the numbers have been updated. It is for public release and does not have limited distribution.

  13. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  14. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  15. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  16. AVTA: ARRA EV Project Electric Grid Impact Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following report describes lessons learned about the impact on the electrical grid from the EV Project. The EV Project partnered with city, regional and state governments, utilities, and other organizations in 16 cities to deploy about 14,000 Level 2 PEV chargers and 300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. This research was conducted by Idaho National Laboratory.

  17. AVTA: ARRA EV Project Residential Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of residential chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  18. AVTA: ARRA EV Project Public Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of public chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  19. Cascades from nu_E above 1020 eV

    SciTech Connect (OSTI)

    Klein, Spencer R.

    2004-12-21

    At very high energies, the Landau-Pomeranchuk-Migdal effect reduces the cross sections for electron bremsstrahlung and photon e{sup +}e{sup -} pair production. The fractional electron energy loss and pair production cross sections drop as the energy increases. In contrast, the cross sections for photonuclear interactions grow with energy. In solids and liquids, at energies above 10{sup 20} eV, photonuclear reactions dominate, and showers that originate as photons or electrons quickly become hadronic showers. These electron-initiated hadronic showers are much shorter (due to the absence of the LPM effect), but wider than purely electromagnetic showers would be. This change in shape alters the spectrum of the electromagnetic and acoustic radiation emitted from the shower. These alterations have important implications for existing and planned searches for radiation from u{sub e} induced showers above 10{sup 20} eV, and some existing limits should be reevaluated.

  20. AVTA: ARRA EV Project Chevrolet Volt Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 2,600 plug-in hybrid electric Chevrolet Volts deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  1. AVTA: ARRA EV Project Nissan Leaf Data Summary Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 5,700 all-electric Nissan Leafs deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  2. BEV Charging Behavior Observed in The EV Project for 2013

    SciTech Connect (OSTI)

    Brion D. Bennett

    2014-01-01

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  3. Observations from The EV Project in Q3 2013

    SciTech Connect (OSTI)

    John Smart

    2013-12-01

    This is a brief report that summarizes results published in numerous other reports. It describes the usage of electric vehicles and charging units in the EV Project over the past 3 months. There is no new data or information provided in this report, only summarizing of information published in other reports (which have all been approved for unlimited distribution publication). This report will be posted to the INL/AVTA website for viewing by the general public.

  4. EV Everywhere Framing Workshop Report Out & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Patrick B. Davis, Program Manager Vehicle Technologies Program EV Everywhere Framing Workshop Report Out & Lessons Learned eere.energy.gov Topic Date Location Kick-Off Framing Workshop June 21 Dearborn, MI Electric Drive Components July 24-25 Chicago, IL Advanced Batteries July 26 Chicago, IL Consumer Behavior and Charging Infrastructure July 31 - Aug 1 Los Angeles, CA Lightweight Vehicles and Structures TBD TBD * 5 workshops this summer * Framing document * Draft: Facilitate

  5. Intelligent Vehicle Charging Benefits Assessment Using EV Project Data

    SciTech Connect (OSTI)

    Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

    2013-12-01

    PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

  6. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  7. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models ... EV Everywhere is a Clean Energy Grand Challenge to enable plug-in electric vehicles (PEVs) ...

  8. EV-Smart Grid Interoperability Centers in Europe and the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and...

  9. EV-Smart Grid Interoperability Centers in Europe and the United States |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and the European Commission's Joint Research Centre (JRC) are providing a venue for global industry-government cooperation that is focused on the joint development of EV standards and test procedures. PDF icon es_ev-smartgrid-ctrs

  10. EV Everywhere Grand Challenge Kick-off Parameters and Analysis | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. PDF icon 4-jake.pdf More Documents & Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior

  11. Advances in Transportation Technologies | Department of Energy

    Office of Environmental Management (EM)

    Transportation Technologies Advances in Transportation Technologies PDF icon Advances in Transportation Technologies More Documents & Publications TEC Working Group Topic Groups Rail Archived Documents Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms Analysis of maximizing the Synergy between PHEVs/EVs and PV

  12. EV Everywhere Framing Workshop Report Out & Lessons Learned | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 3_davis_b.pdf More Documents & Publications EV Everywhere Framing Workshop -

  13. eGallon: Understanding the Cost of Driving EVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the

  14. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  15. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  16. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  17. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  18. New EV Everywhere Logo is Ready for the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Logo is Ready for the Road New EV Everywhere Logo is Ready for the Road November 6, 2015 - 1:17pm Addthis The brand-new logo for EV Everywhere, the effort to encourage the adoption of plug-in electric vehicles. The Energy Department ran a contest to choose a logo, and the winning design was submitted by Brian Marquis. The brand-new logo for EV Everywhere, the effort to encourage the adoption of plug-in electric vehicles. The Energy Department ran a contest to choose a logo, and the

  19. Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Low Temperature Sodium-Sulfur Grid Storage and EV Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report

    Broader source: Energy.gov [DOE]

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  1. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    SciTech Connect (OSTI)

    David Rohrbaugh; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  2. EnEV AIR GmbH founders | Open Energy Information

    Open Energy Info (EERE)

    EnEV-AIR GmbH founders Place: Villingen-Schwenningen, Germany Product: Investor in German eNev-AIR GmbH. References: EnEV-AIR GmbH founders1 This article is a stub. You can...

  3. Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging

    SciTech Connect (OSTI)

    Don Scoffield; Shawn Salisbury; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  4. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and

    Broader source: Energy.gov (indexed) [DOE]

    Consumer Behavior | Department of Energy Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon 4_ward_caci.pdf More Documents & Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

  5. The origin of 2.7?eV blue luminescence band in zirconium oxide

    SciTech Connect (OSTI)

    Perevalov, T. V. Zhuravlev, K. S.; Gritsenko, V. A.; Gulyaev, D. V.; Aliev, V. S.; Yelisseyev, A. P.

    2014-12-28

    The luminescence spectra of non-stoichiometric zirconium oxide film series with different oxygen vacancies' concentrations show the blue photoluminescence band centered near a 2.7?eV peak. There is a broad band at 5.2?eV in the luminescence excitation spectrum for blue emission. The ab-initio quantum-chemical calculation gives a peak in the optical absorption at 5.1?eV for the oxygen vacancy in cubic ZrO{sub 2}. It was concluded that the 2.7?eV blue luminescence excited near 5.2?eV in a zirconium oxide film is associated with the oxygen vacancy.

  6. Dual baseline search for muon neutrino disappearance at 0.5 eV2 < Delta m2 < 40 eV2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δ'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  7. Vehicle Technologies Office Merit Review 2015: EV- Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV - smart grid...

  8. Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  10. Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about benchmarking EV...

  11. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  12. Vehicle Technologies Office Merit Review 2014: EV Project Data & Analytic Results

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV project data ...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  14. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV-smart grid...

  15. Finished genome assembly of Yersinia pestis EV76D and KIM 10v

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Shannon L.; Minogue, Timothy D.; Daligault, Hajnalka E.; Wolcott, Mark J.; Teshima, Hazuki; Coyne, Susan R.; Davenport, Karen W.; Jaissle, James G.; Chain, Patrick S.

    2015-09-17

    In this study, we sequenced the completed genome of Yersinia pestis EV76D and KIM 10v, two genomes used as references in assay development, to improved high-quality draft status.

  16. DOE Announces Webinars on Funding for Small Clean Energy Businesses, the EV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Everywhere Workplace Charging Challenge and More | Department of Energy Funding for Small Clean Energy Businesses, the EV Everywhere Workplace Charging Challenge and More DOE Announces Webinars on Funding for Small Clean Energy Businesses, the EV Everywhere Workplace Charging Challenge and More December 14, 2015 - 5:45pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean

  17. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    SciTech Connect (OSTI)

    Angel, G.C.; Samson, J.A.R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  18. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  19. EV-131

    Office of Legacy Management (LM)

    31 Removal of Gillman iiell, Unfwrsity of California, Ecrkeley, California from the Formerly Utflized Sites Remedial Action Program (FUSRAPj S. Meyers, NE-30 This is in response to your memorandum of March 26, 1980, relative to the removal of Gillman Ball, Univcrs'lty of California, Berkeley, California from the Formerly Utilized Sites Remedial Action Program. As we now undcr- stand the sittlation, SAN has indicated that the site in question is covered under an exfsting license and,

  20. Charging Up with the Electric Drive Transportation Association | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charging Up with the Electric Drive Transportation Association Charging Up with the Electric Drive Transportation Association May 20, 2014 - 4:51pm Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar drives a Chevrolet Spark EV during the Electric Drive Transportation Association conference in Indianapolis, Indiana on May 20, 2014. The conference brings together industry leaders who are advancing electric vehicle technologies and

  1. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect (OSTI)

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  2. Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric

    Office of Scientific and Technical Information (OSTI)

    Redshift Survey (Journal Article) | SciTech Connect Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey Citation Details In-Document Search Title: Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey We present a new limit of (95% CL) on the sum of the neutrino masses assuming a flat {Lambda}CDM cosmology. This relaxes slightly to and when quasinonlinear scales are removed and w{ne}-1, respectively. These are derived from a

  3. EV Everywhere: Saving on Fuel and Vehicle Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 * 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon

  4. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    SciTech Connect (OSTI)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  5. Dissociative Electron Attachment to Carbon Dioxide via the 8.2 eV Feshbach resonance

    SciTech Connect (OSTI)

    Slaughter, Dan; Adaniya, Hidihito; Rescigno, Tom; Haxton, Dan; Orel, Ann; McCurdy, Bill; Belkacem, Ali

    2011-08-17

    Momentum imaging experiments on dissociative electron attachment (DEA) to CO{sub 2} are combined with the results of ab initio calculations to provide a detailed and consistent picture of the dissociation dynamics through the 8.2 eV resonance, which is the major channel for DEA in CO{sub 2}. The present study resolves several puzzling misconceptions about this system.

  6. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  7. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect (OSTI)

    John Smart

    2013-09-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  8. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es025_zhang_2011_p.pdf More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  9. EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    EV Everywhere is a Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

  10. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  11. EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Impact of Fast Charging on Life of EV Batteries (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Fast Charging on Life of EV Batteries Jeremy Neubauer 2 , Eric Wood 2 , Evan Burton 2 , Kandler Smith 2 , Ahmad A. Pesaran 1 1 (corresponding author) National Renewable Energy Laboratory, Golden, Colorado, ahmad.pesaran@nrel.gov 2 National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/PR-5400-63700 Introduction and Overview I.

  13. DOE/EV-0005/15 Formerly Utilized MED/AEC Sites Remedial Action Program

    Office of Legacy Management (LM)

    5 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/15 UC-71 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for

  14. DOE/EV-0005/19 Formerly Utilized MED/AEC Sites Remedial Action Program

    Office of Legacy Management (LM)

    9 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 . Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology ~--.. _..-- DOE/EV-0005/19 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiologidal Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980

  15. EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 - 1:14pm Addthis Chemist Kris Pupek and student researcher Thoe Michaelos prepare validation experiments for the synthesis of battery materials at Argonne National Laboratory in Lemont, Illinois. Battery research at Argonne, and other national laboratories like it, are helping plug-in electric

  16. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  17. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  18. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  19. Uranium Oxide as a Highly Reflective Coating from 100-400 eV

    SciTech Connect (OSTI)

    Sandberg, Richard L.; Allred, David D.; Bissell, Luke J.; Johnson, Jed E.; Turley, R. Steven

    2004-05-12

    We present the measured reflectances (Beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium and naturally oxidized nickel thin films from 100-460 eV (2.7 to 11.6 nm) at 5 and 15 degrees grazing incidence. These show that uranium, as UO2, can fulfill its promise as the highest known single surface reflector for this portion of the soft x-ray region, being nearly twice as reflective as nickel in the 124-250 eV (5-10 nm) region. This is due to its large index of refraction coupled with low absorption. Nickel is commonly used in soft x-ray applications in astronomy and synchrotrons. (Its reflectance at 10 deg. exceeds that of Au and Ir for most of this range.) We prepared uranium and nickel thin films via DC-magnetron sputtering of a depleted U target and resistive heating evaporation respectively. Ambient oxidation quickly brought the U sample to UO2 (total thickness about 30 nm). The nickel sample (50 nm) also acquired a thin native oxide coating (<2nm). Though the density of U in UO2 is only half of the metal, its reflectance is high and it is relatively stable against further changes.

  20. Electron-impact excitation of xenon at incident energies between 15 and 80 eV

    SciTech Connect (OSTI)

    Filipovic-acute-accent, D.; Marinkovic-acute-accent, B.; Pejcev, V.; Vuskovic-acute-accent, a.L.

    1988-01-15

    Normalized, absolute differential cross sections (DCS's) have been measured for the 20 lowest electronic states of xenon. Incident electron energies were 15, 20, 30, and 80 eV and the scattering angles ranged from 5/sup 0/ to 150/sup 0/. The energy resolution was 40 meV. Absolute elastic DCS's have been obtained by normalizing the relative values to the recently published absolute elastic DCS's by Register et al. (J. Phys. B 19, 1685 (1986)). Elastic-to-inelastic intensity ratios, at different incident energies for the 6s((3/2)/sub 1/ state were determined. These ratios were utilized as secondary standards to establish the absolute scale for the other inelastic processes in accordance with intensity ratios of lines in energy-loss spectra. The absolute inelastic DCS's were extrapolated to 0/sup 0/ and 180/sup 0/ and integrated to yield the integral cross sections (ICS's). A comparison of the present DCS's with the only available measurements at 20 eV impact energy shows satisfactory agreement in shape but considerable difference in absolute value.

  1. Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

  2. Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

  3. The origin of 0.78 eV line of the dislocation related luminescence in silicon

    SciTech Connect (OSTI)

    Xiang Luelue; Li Dongsheng; Jin Lu; Yang Deren; Pivac, Branko

    2012-09-15

    In this paper, the 0.78 eV line of the dislocation related luminescence in the electron-irradiated silicon has been investigated. It is found that the 0.78 eV line only exists in float zone silicon samples, and its intensity could be largely enhanced by high temperature and long time annealing while no 0.78 eV line was found in Czochralski silicon. The activation energy of 0.78 eV line in floating-zone silicon is {approx}13 meV, indicating a different nature from that of D1/D2 lines which can be ascribed to specific reconstructed dislocations which could be easily affected by point defects and temperature.

  4. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Vehicles: Overview and Constraints John German, ICCT EIA Energy Conference April 26, 2011 Where Does the Energy Go? http://www.fueleconomy.gov/FEG/atv.shtml Friction reduction Cylinder deactivation DI turbo Aero, tires Variable valves weight High efficient gasoline engine Clean diesel HEV expansion Base engine and vehicle improvements Efficiency/CO2 reduction EV/FCV development for future Fleet tests Research for mass production HCCI No single solution - multi-pronged approach

  5. Microsoft Word - EXEC-2015-004395_EV Everywhere Federal Register Announcement FINAL S1 approved.docx

    Energy Savers [EERE]

    This document, concerning the EV Everywhere logo contest is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 2 [6450-01-P] DEPARTMENT OF ENERGY Notice for EV Everywhere Logo

  6. Development of 1.25 eV InGaAsN for triple junction solar cells

    SciTech Connect (OSTI)

    LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

  7. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  8. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  9. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

  10. Dual baseline search for muon neutrino disappearance at 0.5 eV2 2 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahn, K B.M.

    2011-06-01

    The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the &Delta'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

  11. Observation of the suppression of the flux of cosmic rays above 4x10^19eV

    SciTech Connect (OSTI)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Northeastern U. /Lisbon, IST /Lisbon, LIFEP

    2008-06-01

    The energy spectrum of cosmic rays above 2.5 x 10{sup 18} eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index {gamma} of the particle flux, J {proportional_to} E{sup {gamma}}, at energies between 4 x 10{sup 18} eV and 4 x 10{sup 19} eV is 2.69 {+-} 0.02(stat){+-}0.06(syst), steepening to 4.2 {+-} 0.4(stat){+-}0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuzmin.

  12. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  13. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  14. EV-Grid Integration (EVGI) Control and System Implementation - Research Overview (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's

  15. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  16. Production data on 0.55 eV InGaAs thermophotovoltaic cells

    SciTech Connect (OSTI)

    Wojtzuk, S.; Colter, P.; Charache, G.; Campbell, B.

    1996-05-01

    Low bandgap 0.55 eV (2.25 {micro}m cutoff wavelength) indium gallium arsenide (In{sub 0.72}Ga{sub 0.28}As) thermophotovoltaic (TPV) cells use much more of the long wavelength energy emitted from low temperature (< 1,200 C) thermal sources than either Si or GaSb cells. Data are presented on a statistically significant number (2,500) of these TPV cells, indicating the performance obtainable in large numbers of cells. This data should be useful in the design and modeling of TPV system performance. At 1.2 A/cm{sup 2} short-circuit current, an average open-circuit voltage of 283 mV is obtained with a 60% fill factor. The peak external quantum efficiency for uncoated cells is 65% and is over 50% from 1.1 to 2.2 {micro}m. Internal quantum efficiency is over 76% in this range assuming an estimated 34% reflectance loss.

  17. Performance status of 0.55 eV InGaAs thermophotovoltaic cells

    SciTech Connect (OSTI)

    Wojtczuk, S.; Colter, P.; Charache, G.; DePoy, D.

    1998-10-01

    Data on {approximately} 0.55 eV In{sub 0.72}Ga{sub 0.28}As cells with an average open-circuit voltage (Voc) of 298 mV (standard deviation 7 mV) at an average short-circuit current density of 1.16 A/cm{sup 2} (sdev. 0.1 A/cm{sup 2}) and an average fill-factor of 61.6% (sdev. 2.8%) is reported. The absorption coefficient of In{sub 0.72}Ga{sub 0.28}As was measured by a differential transmission technique. The authors use a numerical integration of the absorption data to determine the radiative recombination coefficient for In{sub 0.72}Ga{sub 0.28}As. Using this absorption data and simple one-dimensional analytical formula the above cells are modeled. The models show that the cells may be limited more by Auger recombination rather than Shockley-Read-Hall (SRH) recombination at dislocation centers caused by the 1.3% lattice mismatch of the cell to the host InP wafer.

  18. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  19. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  20. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-01-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  1. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  2. Imaging the heliosphere using neutral atoms from solar wind energy down to 15 eV

    SciTech Connect (OSTI)

    Galli, A.; Wurz, P.; Fuselier, S. A.; McComas, D. J.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Möbius, E.

    2014-11-20

    We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.

  3. Fact #909: January 25, 2016 Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study

  4. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beamtransport1 Simplified drawing of the beam...

  5. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy Robert Kolasinki Permalink Gallery Robert Kolasinski wins DOE Early Career Award Transportation Energy Robert Kolasinski wins DOE Early Career Award By Michael Padilla Robert Kolasinski (8366) has received a $2.5 million, five-year Early Career Research Program award from the Department of Energy's (DOE) Office of Science to support his work on how intense fusion plasmas interact with the interior surfaces of fusion reactors. Robert's research will develop the

  6. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

  7. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. May 3, 2016 NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts On April 25-26, NREL and Argonne National Laboratory (ANL) hosted the 11th United States (U.S.)-China Electric Vehicle and Battery Technology Information Exchange to share insights on battery technology advancements and identify opportunities to collaborate on electric vehicle battery research. The meeting represents the 11th

  8. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    SciTech Connect (OSTI)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  9. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ranković, M. Lj.; Canon, F.; Nahon, L.; Giuliani, A.; Milosavljević, A. R.

    2015-12-29

    We have studied the VUV photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4 and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insights into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. Furthermore, the photodissociation yields appear to bemore » very different for the various observed fragmentation channels, depending both on the type of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.« less

  10. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    SciTech Connect (OSTI)

    Polack, Francois; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Francoise

    2007-01-19

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  11. Experimental search for hidden photon CDM in the eV mass range with a dish antenna

    SciTech Connect (OSTI)

    Suzuki, J.; Horie, T.; Inoue, Y.; Minowa, M.

    2015-09-15

    A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter χ of ∼6×10{sup −12} for the hidden photon mass m{sub γ}=3.1±1.2 eV.

  12. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  13. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  14. Multi-Lab EV Smart Grid Integration Requirements Study. Providing Guidance on Technology Development and Demonstration

    SciTech Connect (OSTI)

    Markel, T.; Meintz, A.; Hardy, K.; Chen, B.; Bohn, T.; Smart, J.; Scoffield, D.; Hovsapian, R.; Saxena, S.; MacDonald, J.; Kiliccote, S.; Kahl, K.; Pratt, R.

    2015-05-28

    The report begins with a discussion of the current state of the energy and transportation systems, followed by a summary of some VGI scenarios and opportunities. The current efforts to create foundational interface standards are detailed, and the requirements for enabling PEVs as a grid resource are presented. Existing technology demonstrations that include vehicle to grid functions are summarized. The report also includes a data-based discussion on the magnitude and variability of PEVs as a grid resource, followed by an overview of existing simulation tools that vi This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. can be used to explore the expansion of VGI to larger grid functions that might offer system and customer value. The document concludes with a summary of the requirements and potential action items that would support greater adoption of VGI.

  15. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  16. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  17. Enhanced High Harmonic Generation from Multiply Ionized Argon above 500 eV through Laser Pulse Self-Compression

    SciTech Connect (OSTI)

    Arpin, P.; Popmintchev, T.; Kapteyn, H. C.; Murnane, M. M.; Wagner, N. L.; Cohen, O.

    2009-10-02

    By combining laser pulse self-compression and high harmonic generation within a single waveguide, we demonstrate high harmonic emission from multiply charged ions for the first time. This approach enhances the laser intensity and counteracts ionization-induced defocusing, extending the cutoff photon energy in argon above 500 eV for the first time, with higher spectral intensity and cutoff energy than He for the same input laser parameters. This Letter demonstrates a pathway for extending high harmonic emission to very high photon energies using large, multiply charged, ions with high ionization potentials.

  18. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  19. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local...

  20. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  1. Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE

    SciTech Connect (OSTI)

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Dippo, Pat; Friedman, Daniel J.; Steiner, Myles A.

    2015-06-14

    AlGaInP solar cells with a bandgap (Eg) of ~2.0 eV are developed for use in next-generation multijunction photovoltaic devices. This material system is of great interest for both space and concentrator photovoltaics due to its high bandgap, which enables the development of high-efficiency five-junction and six-junction devices and is also useful for solar cells operated at elevated temperatures. In this work, we explore the conditions for the Organometallic Vapor Phase Epitaxy (OMVPE) growth of AlGaInP and study their effects on cell performance. A ~2.0 eV AlGaInP solar cell is demonstrated with an open circuit voltage (VOC) of 1.59V, a bandgap-voltage offset (WOC) of 420mV, a fill factor (FF) of 88.0%, and an efficiency of 14.8%. These AlGaInP cells have attained a similar FF, WOC and internal quantum efficiency (IQE) to the best upright GaInP cells grown in our lab to date.

  2. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  3. Compact focusing spectrometer: Visible (1 eV) to hard x-rays (200 keV)

    SciTech Connect (OSTI)

    Baronova, E. O.; Stepanenko, A. M.; Pereira, N. R.

    2014-11-15

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  4. Neutron resonance spectroscopy of {sup 106}Pd and {sup 108}Pd from 20 to 2000 eV

    SciTech Connect (OSTI)

    Crawford, B.E.; Roberson, N.R. [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [Duke University, Durham, North Carolina 27708 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Bowman, J.D.; Knudson, J.N.; Penttilae, S.I.; Seestrom, S.J.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Delheij, P.P. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA)] [TRIUMF, Vancouver, British Columbia, V6T 2A3 (CANADA); Haseyama, T.; Masaike, A.; Matsuda, Y. [Physics Department, Kyoto University, Kyoto 606-01 (Japan)] [Physics Department, Kyoto University, Kyoto 606-01 (Japan); Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L. [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States)] [North Carolina State University, Raleigh, North Carolina 27695-8202 and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308 (United States); Postma, H. [University of Technology, Delft, 2600 GA (The Netherlands)] [University of Technology, Delft, 2600 GA (The Netherlands); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russia)] [Joint Institute for Nuclear Research, 141980 Dubna (Russia)

    1998-08-01

    Parity nonconserving asymmetries have been measured in p-wave resonances of {sup 106}Pd and {sup 108}Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture {gamma}-ray yields were measured for E{sub n}=20{endash}2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in {sup 106}Pd and 32 resonances in {sup 108}Pd were studied. The resonance parameters for {sup 106}Pd are new for all except one resonance. In {sup 108}Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied. {copyright} {ital 1998} {ital The American Physical Society}

  5. Temperature dependent transport characteristics of graphene/n-Si diodes

    SciTech Connect (OSTI)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-12-28

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup ?10}?A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69?eV for the exfoliated graphene and 0.83?eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Gttler.

  6. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  7. Browell-EV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASE Water Vapor, Aerosol, and Cloud Measurements During Recent Field Experiments E. V. Browell, S. Ismail, and R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction An accurate specification of the atmospheric state is required to understand, parameterize, and ultimately improve the modeling of radiative processes in general circulation models (GCMs). Measurements of water vapor are especially important for characterizing the

  8. EV Everywhere Framing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Standards 15 20 25 30 35 40 new combined standard 35.5 mpg by 2016 Projected to reduce oil consumption by about 1.8 billion barrels over the lifetime of vehicles sold in next 5...

  9. EV Everywhere Workshop

    Broader source: Energy.gov (indexed) [DOE]

    David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S. Department of Energy Chicago, Illinois July 26...

  10. EV Everywhere Grand Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completely new drive-train architectures? Novel thermal materials/approaches? New non-rare earth magnet/motor designs

  11. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics and Thermal Management Thermal Management This is the March 2016 issue of the Transportation and Hydrogen Newsletter. March 31, 2016 Photo of a man seated before a microphone and speaking. NREL's Chris Gearhart provides congressional testimony on sustainable transportation. U.S. Senate Hears of Role National Labs Play in Sustainable Transportation Innovation On January 12, 2016, NREL's Chris Gearhart, director of the Transportation and Hydrogen Systems Center, provided

  12. LARGE-SCALE DISTRIBUTION OF ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE 10{sup 18} eV AT THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-15

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

  13. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  14. Career Map: Transportation Worker

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Transportation Worker positions.

  15. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  16. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  17. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers March 2016 Issue Power Electronics and Thermal Management Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives.

  18. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  19. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect (OSTI)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  20. Transportation Efficiency Strategies

    U.S. Energy Information Administration (EIA) Indexed Site

    Advanced Technology Vehicles: Overview and Constraints John German, ICCT EIA Energy Conference April 26, 2011 Where Does the Energy Go? http://www.fueleconomy.gov/FEG/atv.shtml Friction reduction Cylinder deactivation DI turbo Aero, tires Variable valves weight High efficient gasoline engine Clean diesel HEV expansion Base engine and vehicle improvements Efficiency/CO2 reduction EV/FCV development for future Fleet tests Research for mass production HCCI No single solution - multi-pronged

  1. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  2. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    SciTech Connect (OSTI)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  3. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  4. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  5. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  6. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  7. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  8. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  9. Quantum reactive scattering of O({sup 3}P)+H{sub 2} at collision energies up to 4.4 eV

    SciTech Connect (OSTI)

    Gacesa, Marko; Kharchenko, Vasili

    2014-10-28

    We report the results of quantum scattering calculations for the O({sup 3}P)+H{sub 2} reaction for a range of collision energies from 0.4 to 4.4 eV, important for astrophysical and atmospheric processes. The total and state-to-state reactive cross sections are calculated using a fully quantum time-independent coupled-channel approach on recent potential energy surfaces of {sup 3}A{sup ?} and {sup 3}A{sup ?} symmetry. A larger basis set than in the previous studies was used to ensure single-surface convergence at higher energies. Our results agree well with the published data at lower energies and indicate the breakdown of reduced dimensionality approach at collision energies higher than 1.5 eV. Differential cross sections and momentum transfer cross sections are also reported.

  10. Measurement of the cosmic ray spectrum above 4×1018 eV using inclined events detected with the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 4×1018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×1018 eV, the ``ankle'', the flux can be described by a power law E–γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value inmore » the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0–1.2 (sys))×1019 eV.« less

  11. Measurement of the cosmic ray spectrum above 4$\\times$10$^{18}$ eV using inclined events detected with the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander; et al.

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 41018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60 detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.31018 eV, the ``ankle'', the flux can be described by a power law E? with index ?=2.70 0.02 (stat) 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value inmorethe absence of suppression, we find Es=(5.120.25 (stat)+1.01.2 (sys))1019 eV.less

  12. CONSTRAINTS ON THE ORIGIN OF COSMIC RAYS ABOVE 10{sup 18} eV FROM LARGE-SCALE ANISOTROPY SEARCHES IN DATA OF THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2013-01-01

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10{sup 18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

  13. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  14. NREL: Innovation Impact - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Improved transportation technologies are essential for reducing U.S. petroleum dependence. Close The United States consumes roughly 19 million barrels of petroleum per day, but replacing petroleum-based liquid fuels is difficult because of their high energy density, which helps

  15. Natural Gas Transportation Resiliency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Resiliency Anders Johnson Director Pipeline System Design April 29, 2014 ... Pipeline Resiliency Considerations * Climate Weather * Cyber Issues * Physical Impacts * ...

  16. NREL: Transportation Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about sustainable transportation research, development, and deployment. Capabilities Overviews These recent publications highlight some of our capabilities, facilities, and projects: Image of fact sheet cover. Sustainable Transportation This overview fact sheet describes NREL's sustainable transportation

  17. 2016 Sustainable Transportation Summit

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), the first ever Sustainable Transportation Summit will bring together transportation and mobility leaders to discuss the technology, policy, and market innovations that hold the potential to shape the transportation system of the future.

  18. Impact of Wireless Power Transfer in Transportation: Future Transportation Enabler, or Near Term Distraction

    SciTech Connect (OSTI)

    Onar, Omer C; Jones, Perry T

    2014-01-01

    While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to the energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.

  19. Measurement of the cosmic ray spectrum above 4×1018 eV using inclined events detected with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 4×1018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×1018 eV, the ``ankle'', the flux can be described by a power law E–γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0–1.2 (sys))×1019 eV.

  20. Study of Electron Transport and Amplification in Diamond

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan; Muller, Erik

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  1. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  2. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  3. Sustainable Transportation Summit

    Broader source: Energy.gov [DOE]

    On July 11–12, the U.S. Department of Energy will host the first-ever Sustainable Transportation Summit. The summit brings together transportation and mobility leaders to discuss the technology, policy, and market innovations that hold the potential to shape the transportation system of the future. The Sustainable Transportation Summit seeks to engage a diverse stakeholder community whose interests span a broad technology portfolio, from fuel cells and vehicle electrification to the bioenergy supply chain. This year’s summit will highlight progress and achievements in transportation research and development and bring new transportation technologies to market. *Receive 10% off admission when you register for both Bioenergy 2016 and the Sustainable Transportation Summit together!

  4. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  5. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources ... Establish Alternative Fuel Infrastructure. Back to Transportation Policies and Programs.

  6. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-05-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  7. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  8. Transportation Energy Pathways LDRD.

    SciTech Connect (OSTI)

    Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

  9. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory.

  10. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Influencing the future of vehicles, fuels Argonne's transportation research efforts bring together scientists and engineers from many disciplines to find cost-effective solutions to critical issues like foreign-oil dependency and greenhouse gas emissions. As one of the U.S. Department of Energy's lead laboratories for research in hybrid powertrains, batteries, and fuel-efficient technologies, Argonne's transportation program is critical to advancing the development of

  11. Intelligent Transportation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligent Transportation Systems This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The development and deployment of Intelligent Transportation Systems (ITS) in the United States is an effort of national importance. Through the use of advanced computing, control, and communication technologies, ITS promises to greatly improve the efficiency and safety of the existing surface transportation system and reduce the

  12. integrated-transportation-models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Archive Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa Hosted by: The Transportation Research and Analysis Computing Center at Argonne National Laboratory This email address is being protected from spambots. You need JavaScript enabled to view it. The aim of the workshop was to provide an opportunity for researchers and practitioners to discuss recent research results that can support a wider application of integrated transportation models,

  13. Future of Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation In the coming decades, transportation in the U.S. is expected to change radically in response to environmental constraints, fluctuating oil availability and economic factors. Future Decision-Makers The transportation systems that emerge in the 21 st century will be defined largely by the choices, skills and imaginations of today's youth. Future Workforce As scientists and engineers, they will develop new vehicle and fuel technologies. As citizens, they will make decisions

  14. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    N ti l T t ti National Transportation Stakeholders Forum Chicago, IL, May 26, 2010 Ahmad Al-Daouk Date and page number - 1 Director, National Security Department National Nuclear Security Administration Service Center - Albuquerque, NM National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with applicable regulations (e.g. federal, local, tribal) * Great majority of NNSA shipments

  15. Water Transport Exploratory Studies

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on water transport exploratory studies, was given by Rod Borup of Los Alamos National laboratory at a DOE fuel cell meeting in February 2007.

  16. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data ... The initial report on coal transportation rates covered the years 2001 through 2008, ...

  17. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  18. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  19. Transportation Storage Interface

    Office of Environmental Management (EM)

    transportation * High priority technical information needs have * Overall low level of knowledge * Overall high regulatory impact 12 Extended Spent Fuel Storage and...

  20. UZ Colloid Transport Model

    SciTech Connect (OSTI)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  1. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  2. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  3. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  4. An upper limit to the photon fraction in cosmic rays above 10**19-eV from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J.C.; ,

    2006-06-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10{sup 19} eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favored.

  5. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  6. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  7. Transport Version 3

    Energy Science and Technology Software Center (OSTI)

    2008-05-16

    The Transport version 3 (T3) system uses the Network News Transfer Protocol (NNTP) to move data from sources to a Data Reporisoty (DR). Interested recipients subscribe to newsgroups to retrieve data. Data in transport is protected by AES-256 and RSA cryptographic services provided by the external OpenSSL cryptographic libraries.

  8. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Technology Hydrogen and Fuel Cell Technology This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on accelerating the acceptance of hydrogen infrastructure. Photo by John De La Rosa, NREL 33660 New H2FIRST Reports Detail Hydrogen Station Designs, Contaminant Detection Two new reports have been published by NREL and Sandia National Laboratories

  9. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  10. WIPP Transportation (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP TRANSPORTATION SYSTEM Waste Isolation Pilot Plant U.S. Department Of Energy The U.S. Department of Energy (DOE) has established an elaborate system for safely transporting transuranic, or TRU, radioactive waste to the Waste Isolation Pilot Plant (WIPP) for permanent disposal, or between generator sites. The waste is transported in four shipping casks approved for use by the U.S. Nuclear Regulatory Commission (NRC). Three shipping casks, the TRUPACT-II, HalfPACT and TRUPACT-III, are designed

  11. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  12. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies ...

  13. The Geography of Transport Systems-Maritime Transportation |...

    Open Energy Info (EERE)

    report Website: people.hofstra.edugeotransengch3enconc3ench3c4en.html Cost: Free Language: English References: Maritime Transportation1 "Maritime transportation, similar to...

  14. PBA Transportation Websites

    Broader source: Energy.gov [DOE]

    PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  15. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  16. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  17. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  18. Accident resistant transport container

    DOE Patents [OSTI]

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  19. Program Analyst (Transportation Safety)

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a Program Analyst(Transportation Safety) supporting and advising management on safety and health matters for nuclear and non-nuclear activities.

  20. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, ... limit of s &29; 1, RR assumed the electron heat flux to be diffusive, obeying Fourier's ...

  1. NREL: Transportation Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. NREL uses 100% of its considerable transportation research, development, and deployment (RD&D) capabilities to pursue sustainable solutions that deliver

  2. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Illustration of aerodynamic light-, medium, and heavy-duty vehicles. NREL research helps optimize the energy efficiency of a wide range of vehicle technologies and applications. NREL's innovative transportation research, development, and deployment projects accelerate widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. The following NREL transportation projects are propelling

  3. Transportation Data Archiving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Data Archiving This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background Urban and regional transportation planning and operations applications, (e.g. traffic modeling) require a large volume of accurate traffic-related data for a wide range of conditions. Significant real-time data on traffic volumes, highway construction, accidents, weather, airline flights, commuter and rail schedules, etc., are recorded each day by

  4. Transportation Politics and Policy

    U.S. Energy Information Administration (EIA) Indexed Site

    Reducing Greenhouse Gas Emissions from U.S. Transportation Steven Plotkin, Argonne National Laboratory (co-author is David Greene of Oak Ridge) 2011 EIA Energy Conference May 26-27, 2011 Washington, DC Overview  Presentation based on recent report from the Pew Center on Global Climate Change  Task: Assess the potential to substantially reduce transportation's GHG emissions by 2035 & 2050.  Base Case: Annual Energy Outlook 2010 Reference Case, extended to 2050  Three scenarios

  5. Transportation Representation | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Emissions from U.S. Transportation Steven Plotkin, Argonne National Laboratory (co-author is David Greene of Oak Ridge) 2011 EIA Energy Conference May 26-27, 2011 Washington, DC Overview  Presentation based on recent report from the Pew Center on Global Climate Change  Task: Assess the potential to substantially reduce transportation's GHG emissions by 2035 & 2050.  Base Case: Annual Energy Outlook 2010 Reference Case, extended to 2050  Three scenarios with

  6. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  7. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  8. Tape transport mechanism

    DOE Patents [OSTI]

    Groh, Edward F.; McDowell, William; Modjeski, Norbert S.; Keefe, Donald J.; Groer, Peter

    1979-01-01

    A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer.

  9. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  10. Transportation and Program Management Services

    Office of Environmental Management (EM)

    Atlanta, Georgia Transportation and Program Management Services Secured Transportation Services, LLC Founded: December, 2003 ff Staff: 7 Experience: Over 145 years combined experience in Nuclear Transportation, Security, HP & Operations Services Transportation The largest Transportation Coordinators of Spent Nuclear Fuel in North America On-Site, Hands-On Assistance (Before & During both Loading & Transport) P d A i t (W iti d/ R i ) Procedure Assistance (Writing and/or Review)

  11. Defect Interactions and Ionic Transport in Scandia Stabilized Zirconia

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Thevuthasan, Suntharampillai; Gale, Julian D.

    2009-06-24

    Atomistic simulation has been used to study ionic transport in scandia-stabilized zirconia, as well as scandia and yttria-co-doped zirconia, as a function of temperature and composition. The oxygen diffusion coefficient shows a peak at a composition of 6 mole % Sc2O3. Oxygen vacancies prefer to be second nearest neighbours to yttrium ions, but have little preference between first and second neighbour positions with respect to scandium ions. The Sc-O bond length is about 2.17 compared to 2.28 for the Y-O bond. Oxygen migration between cation tetrahedra is impeded less effectively by Sc-Sc edges than by Y-Y edges. A neutral cluster of two scandium ions with an oxygen vacancy in the common first neighbour position has a binding energy of -0.56 eV. The formation of such clusters may contribute to conductivity degradation of stabilized zirconia at elevated temperature.

  12. Badger Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Jump to: navigation, search Name: Badger Transport Place: Clintonville, Wisconsin Zip: 54929 Product: Heavy haul and specialty trucking company active in the US Midwest....

  13. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports:...

  14. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  15. CASL - Radiation Transport Methods Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation...

  16. Energy Intensity Indicators: Transportation Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining ...

  17. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation ...

  18. National Transportation Stakeholders Forum (NTSF) Charter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Waste Management Packaging and Transportation National Transportation Stakeholders Forum National Transportation Stakeholders Forum (NTSF) Charter National ...

  19. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. PDF icon Transportation Storage Interface More Documents & Publications...

  20. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  1. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Transportation Efficiency Resources Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies ...

  2. California Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Jump to: navigation, search Name: California Department of Transportation Place: Sacramento, California References: California Department of Transportation1 This...

  3. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations formore » different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  4. {sup 147}Sm(n,{alpha}) cross section measurements from 3 eV to 500 keV: Implications for explosive nucleosynthesis reaction rates

    SciTech Connect (OSTI)

    Gledenov, Yu. M.; Koehler, P. E.; Andrzejewski, J.; Guber, K. H.; Rauscher, T.

    2000-10-01

    We have measured the {sup 147}Sm(n,{alpha}) cross section from 3 eV to 500 keV. These data were used to test nuclear statistical models which must be relied on to calculate the rates for as yet unmeasurable reactions occurring in explosive nucleosynthesis scenarios. It was found that our data are in reasonably good agreement with the reaction rate predicted by an older model but that the rates predicted by two very recent models are roughly a factor of 3 different from the data (in opposite directions). A detailed analysis indicates the strong dependence on the employed optical {alpha} potentials. These results, together with counting rate estimates for future experiments indicate that (n,{alpha}) measurements will be useful for improving reaction rate predictions across the global range of masses needed for explosive nucleosynthesis calculations.

  5. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect (OSTI)

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  6. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage This is the November 2015 issue of the Transportation and Hydrogen Newsletter. November 6, 2015 Photo of a light blue car with a pump nozzle in front of a fuel dispenser. Hydrogen is pumped into a fuel cell electric vehicle at NREL's new station. Image by Dennis Schroeder/NREL 34598 New H2 Station Launched In fuel cell electric vehicles, energy is stored in hydrogen gas and then converted to electricity in a fuel cell. In October, NREL dedicated a 700-bar

  7. Electrical and optical performance characteristics of 0.74eV p/n InGaAs monolithic interconnected modules

    SciTech Connect (OSTI)

    Wilt, D.M.; Weizer, V.G.; Fatemi, N.S.; Jenkins, P.P.; Hoffman, R.W. Jr.; Jain, R.K.; Murray, C.S.; Riley, D.R.

    1997-06-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 cm{sup 2} device consisting of eight series interconnected cells. MIM devices, produced from 0.74 eV InGaAs, have demonstrated V{sub oc} = 3.2 volts, J{sub sc} = 70 mA/cm{sup 2} and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (> 2 {micro}m) of these devices indicate a reflectivity of > 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  8. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the region’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.« less

  9. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Broader source: Energy.gov (indexed) [DOE]

    within the next 10 years. 8:30-8:35 AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:50 AM WELCOMING...

  10. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    Broader source: Energy.gov (indexed) [DOE]

    same petroleum savings from pure EVs as it does from EVs with range-extending petroleum engines. We make this assumption because the shorter driving distances in the USVI are...

  11. Chapter 17 - Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 18,2005 MEMORANDUM FOR FROM: SUBJECT: Accounting Handbook - Chapter 1 7, Transportation Attached is the final version of Chapter 17, "Transportation," of the Department's Accounting Handbook. A draft version of this chapter was circulated for review and comment in a November 1,2004, memorandum "Request for Review of D r a f t DOE Accounting Handbook Chapter 17." There were no comments on this chapter. We appreciate your assistance in the update of the Accounting

  12. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Registration is OPEN! National Transportation Stakeholders Forum 2015 Annual Meeting May 12-14, 2015 Embassy Suites Albuquerque, New Mexico Online registration is now open for the 2015 Annual Meeting of the National Transportation Stakeholders' Forum (NTSF), to be held in Albuquerque, New Mexico. The meeting will begin at 8:00am on Tuesday, May 12th, and will conclude by 10:00am on Thursday, May 14th. To view a preliminary draft agenda, please visit the NTSF meeting website. DOE will be hosting

  13. EV Everywhere and DOE Priorities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As of Nov 13,, 2014 Workplace Charging Challenge 12 Energy CityCountyState Higher Education HealthPharma Michigan Florida California Oregon Georgia As of Nov 13, 2014 ...

  14. 1999 EV America Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Suppliers shall specify seating capacity (available seat belt positions) for their ... label denoting the location of the device should be affixed to the driver's sun visor. ...

  15. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * ANL * NREL * ORNL Team members - Lixin Tang - Curt Ayers - Randy Wiles - Steven Campbell - Zhenxian Liang - Andy Wereszczak 3 Project Objective and Relevance * Overall ...

  16. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jean Gough Southeast: Cornelius Willingham 18 Level 2 chargers under solar canopy 1 DC Fast Charger, and 2 Level 2 in visitor parking 5 Level 2 chargers in parking garage 2...

  17. EV-Everywhere Grand Challenge

    Broader source: Energy.gov (indexed) [DOE]

    2 years later - Set very aggressive goals for module and BOS costs that have spurred innovation at all companies. Recognized importance of reducing BOS and soft costs. ...

  18. EV Everywhere Grand Challenge Blueprint

    Energy Savers [EERE]

    including Electric Drive Components, Batteries, Consumer Acceptance & Charging ... access to a charger when batteries run low (although this is not an issue with PHEVs). ...

  19. NREL: Transportation Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Transportation Research Home Capabilities Projects

  20. EPAct Transportation Regulatory Activities

    SciTech Connect (OSTI)

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  1. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  2. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  3. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  4. Diffuse gamma rays with energies greater than 1 x 10 to the 14th eV observed in the Southern Hemisphere

    SciTech Connect (OSTI)

    Suga, K.; Toyoda, Y.; Kamata, K.; Murakami, K.; Lapointe, M.

    1988-03-01

    The data of extensive air showers with a low content of muons and hadrons, observed in the period 1964-1966 at Mount Chacaltaya in Bolivia, have been reanalyzed. Arrival directions of those showers selected so as to favor small initiation depths in the atmosphere (to enhance the contribution from gamma-ray-initiated showers) reveal a 3.8 sigma peak above an expected background from the region of alpha = 180-210 deg in the band of delta = 0 to -40 deg. The integral flux of diffuse gamma-rays above 1 x 10 to the 14th eV estimated from this excess is about 6.0 x 10 to the -12th/sq cm per sec per sr. In order to explain this very high flux, the possible contribution of gamma-rays from Loop 1 as well as the inverse Compton photons produced in the 2.7 K photon background as progeny of gamma-rays from Cyg X-3-like sources. 24 references.

  5. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect (OSTI)

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  6. Straight and chopped dc performance data for a General Electric 5BT 2366C10 motor and an EV-1 controller. Final report

    SciTech Connect (OSTI)

    Edie, P.C.

    1981-01-01

    This report is intended to supply the electric vehicle manufacturer with performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 chopper controller. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%. At low duty cycles the motor efficiency may be considerably less than the efficiency for straight dc. Chopper efficiency may be assummed to be 95% under all operating conditions. For equal speeds at a given voltage level, the motor operated in the chopped mode develops slightly more torque than it does in the straight dc mode. System block diagrams are included, along with test setup and procedure information.

  7. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect (OSTI)

    Kajihara, Koichi, E-mail: kkaji@tmu.ac.jp [Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397 (Japan); Skuja, Linards [Institute of Solid State Physics, University of Latvia, Kengaraga iela 8, LV1063 Riga (Latvia); Hosono, Hideo [Materials and Structures Laboratory and Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic ?-quartz and amorphous SiO{sub 2} (a?SiO{sub 2}) exposed to {sup 60}Co ?-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in ?-quartz and a?SiO{sub 2}, and the peak energy is larger for ?-quartz than that for a?SiO{sub 2}. The full width at half maximum for a?SiO{sub 2} is larger by ?40-60% than that for ?-quartz, and it increases with an increase in the disorder of the a?SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a?SiO{sub 2}.

  8. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physical properties of the substance of interest, and (3) transformation rates in soil. Our particular focus is on approaches for constructing soil-transport algorithms and soil-transport parameters for incorporation within multimedia fate models. We show how MTC's can be developed to construct a simple two-compartment air-soil system. We then demonstrate how a multi-layer-box-model approach for soil-mass balance converges to the exact analytical solution for concentration and mass balance. Finally, we demonstrate and evaluate the performance of the algorithms in a model with applications to the specimen chemicals benzene, hexachlorobenzene, lindane gammahexachlorocyclohexane, benzo(a)pyrene, nickel, and copper.

  9. The cost of transportation`s oil dependence

    SciTech Connect (OSTI)

    Greene, D.L.

    1995-05-01

    Transportation is critical to the world`s oil dependence problem because of the large share of world oil it consumes and because of its intense dependence on oil. This paper will focus on the economic costs of transportation`s oil dependence.

  10. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  11. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  12. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  13. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Map of Argonne Site Showing CNM Location A shuttle bus operates between Argonne and the University of Chicago's Hyde Park campus. Northwestern University offers a car pool program to Argonne. From early spring until early fall, Argonne offers a bike-share program that facility users are welcome to join. Before using the bikes, you must take a online bike safety course and sign a liability waiver. On completion of the training and waiver, you will receive an Argonne-issued bike

  14. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    TRANSPORTATION STAKEHOLDERS FORUM Activities and Accomplishments May 16, 2013 Buffalo, New York NTSF RESOURCES  Wiki Site  Private domain / Registration required  Repository of information  Users are allowed editing capabilities  Webinars  Cover a variety of topics (NRC Rulemaking, Section 180(c), BRC Recommendations, Strategy for Management and Disposal of UNF and HLRW, etc.)  Recording are available on the wiki site  Input is needed for future content NTSF Working

  15. Heat transport system

    DOE Patents [OSTI]

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  16. SCIX TRA Final Report Nov2011

    Office of Environmental Management (EM)

    Businesses | Department of Energy

    Expands Access to Contracting Opportunities for Women-Owned Small Businesses SBA Expands Access to Contracting Opportunities for Women-Owned Small Businesses January 22, 2013 - 10:42am Addthis John H. Hale III John H. Hale III Director, Office of Small and Disadvantaged Business Utilization Editor's note: This article was originally published on the Small Business Administration's website. Women-owned small businesses will have greater access to

  17. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  18. Ozone transport commission developments

    SciTech Connect (OSTI)

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  19. the-transportation-research-board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 22-26, 2012 The Transportation Research Board (TRB) 91st Annual Meeting will be held in Washington, D.C. at the Washington Marriott Wardman Park, Omni Shoreham, and Washington Hilton hotels. The information-packed program will attract more than 11,000 transportation professionals from around the world to Washington, D.C., January 22-26, 2012. The Transportation Research and Analysis Computing Center (TRACC) team will showcase current projects at the upcoming Transportation Research Board

  20. transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    transportation Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security Pantex's Calvin Nelson was recently awarded the 2015 Analyst of the Year for Transportation Security by the Department of Energy's Nuclear Materials Information Program. The award, for which Nelson is the first-ever Pantex recipient, recognizes outstanding analytic support to the NMIP. All... Office of Secure Transportation Celebrates 40th Anniversary On Thursday morning, Dec. 17, NNSA's Office

  1. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di#11;usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  2. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  3. Financing Sustainable Urban Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Production Costs of Alternative Transportation Fuels Transport Regulation from Theory to Practice: General...

  4. Ecolane Transport Conultancy | Open Energy Information

    Open Energy Info (EERE)

    Ecolane Transport Conultancy Jump to: navigation, search Name: Ecolane Transport Conultancy Place: Bristol, United Kingdom Zip: BS3 4UB Product: UK-based sustainable transport...

  5. VTPI-Transportation Statistics | Open Energy Information

    Open Energy Info (EERE)

    Area: Transportation Resource Type: Dataset Website: www.vtpi.orgtdmtdm80.htm Cost: Free VTPI-Transportation Statistics Screenshot References: VTPI-Transportation Statistics1...

  6. The World Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes...

  7. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin,...

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  11. Quality Assurance Plan for Transportation Management Division Transportation Training Programs

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The U.S. Department of Transportation (DOT) implemented new rules requiring minimum levels of training for certain key individuals who handle, package, transport, or otherwise prepare hazardous materials for transportation. In response to these rules, the U.S. Department of Energy (DOE), Transportation Management Division (TMD), has developed a transportation safety training program. This program supplies designed instructional methodology and course materials to provide basic levels of DOT training to personnel for whom training has become mandatory. In addition, this program provides advanced hazardous waste and radioactive material packaging and transportation training to help personnel achieve proficiency and/or certification as hazardous waste and radioactive material shippers. This training program does not include site-specific or task-specific training beyond DOT requirements.

  12. Resolving the mystery of transport within internal transport barriers

    SciTech Connect (OSTI)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Kinsey, J. E.; Grierson, B. A.; Chrystal, C.

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by EB velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high EB velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  13. NREL: Transportation Research - Archives for the Transportation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Newsletter Archives for the Transportation and Hydrogen Newsletter To read past issues of the Transportation and Hydrogen Newsletter, select from the list below. March 2016 - Power Electronics & Thermal Management January 2016 - Sustainable Mobility November 2015 - Energy Storage August 2015 - Deployment May 2015 - Hydrogen & Fuel Cell Technology March 2015 - Fuels and Combustion January 2015 - The Future of Sustainable Transportation December 2014 - Marketplace Impact

  14. NREL: Transportation Research - Subscribe to the Transportation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Newsletter Subscribe to the Transportation and Hydrogen Newsletter To subscribe to or unsubscribe from the Transportation and Hydrogen Newsletter, complete one of the forms below. Subscribe To subscribe to the newsletter, submit your email address. Email: Submit Unsubscribe To unsubscribe from the newsletter, submit your email address. Email: Submit Printable Version Transportation Research Home Capabilities Projects Success Stories Facilities Working with Us Publications Data &

  15. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  16. Spring 2014 National Transportation Stakeholder Forum Meeting...

    Energy Savers [EERE]

    Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY 13, ...

  17. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 ...

  18. Westminster Energy Environment Transport Forum | Open Energy...

    Open Energy Info (EERE)

    Westminster Energy Environment Transport Forum Jump to: navigation, search Name: Westminster Energy, Environment & Transport Forum Place: United Kingdom Product: String...

  19. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming...

  20. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop ...

  1. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  2. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  3. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  4. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  5. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  7. Transportation (technology 86)

    SciTech Connect (OSTI)

    Caplan, G.

    1986-01-01

    As railroads strive to cut operating and maintenance costs in an increasingly competitive transportation industry, AC propulsion and microprocessors figure prominently in their plans. New generations of locomotives and cars incorporating AC propulsion and microprocessors entered service last year, and the trend is destined to continue. Electronics is also making possible freight trains that rely on a telemetry unit at the rear to monitor airbrake pressure, instead of a manned caboose. AC is gaining acceptance because it permits simpler motors with fewer parts to wear and replace, and it saves energy by allowing the traction motors to work as generators during braking. Microprocessors are being used in locomotives not only to reduce energy waste through better regulation of traction motor currents and auxiliary devices such as cooling fans, but also to control engine speed, braking, and other functions.

  8. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  9. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  10. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. [Oak Ridge, TN; Simpson, Michael L. [Knoxville, TN; McKnight, Timothy E. [Greenback, TN; Melechko, Anatoli V. [Oak Ridge, TN; Lowndes, Douglas H. [Knoxville, TN; Guillorn, Michael A. [Knoxville, TN; Merkulov, Vladimir I. [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  11. Sustainable Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Sustainable Transportation Bioenergy Bioenergy Read more Hydrogen and Fuel Cells Hydrogen and Fuel Cells Read more Vehicles Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices,

  12. computational-hydraulics-for-transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Workshop Sept. 23-24, 2009 Argonne TRACC Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory will hold a workshop on the use of computational hydraulics for transportation applications. The goals of the workshop are: Bring together people who are using or would benefit from the use of high performance cluster

  13. transportation-system-modeling-webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar Announcement Webinar for the Intelligent Transportation Society of the Midwest (ITS Midwest) May 16, 2011 1:00 PM(CST) Hubert Ley Director, TRACC Argonne National Laboratory Argonne, Illinois High Performance Computing in Transportation Research - High Fidelity Transportation Models and More The Role of High-Performance Computing Because ITS relies on a very diverse collection of technologies, including communication and control technologies, advanced computing, information management

  14. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Transportation Projects Transportation Projects Because highway vehicles account for a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve our energy security and air quality. However, few fuel-cell-powered vehicles are in use today; even fewer are available commercially. A number of fuel cell vehicle demonstrations are currently underway

  15. Minority Transportation Expenditure Allocation Model

    Energy Science and Technology Software Center (OSTI)

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  16. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL helps industry partners develop the next generation of energy efficient, high performance ... Transportation Photographs Hydrogen and Fuel Cells R&D Biomass R&D Energy ...

  17. Transportation Emergency Preparedness Program (TEPP)

    Broader source: Energy.gov [DOE]

    In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly Transportation...

  18. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  19. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  20. Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste Shipment Indiana Department of Homeland...

  1. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  2. Density Functional Theory Calculations of Mass Transport in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.

    2012-06-26

    In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models. Finally, oxidation of UO{sub 2} and the importance of cluster formation for understanding thermodynamic and kinetic properties of UO{sub 2+x} are investigated.

  3. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  4. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  5. Santa Clara Valley Transportation Authority

    Broader source: Energy.gov [DOE]

    Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

  6. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  7. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  8. NREL: Transportation Research - A Vision for Sustainable Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Vision for Sustainable Transportation NREL research, development, and deployment accelerates the process of bringing sustainable transportation technologies to market. Line graph illustrating three pathways to reduce transportation energy use and greenhouse gas (GHG) emissions, with "energy consumption of vehicles" along the y-axis (ranging from 0 to 2.0 kWh/km) and "carbon intensity of energy source" along the x-axis (ranging from 450 to 0 g CO2/kWh). A solid bottom line

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  10. Safeguards Transporter | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home Safeguards Transporter General Davis kicks the tires on a Safeguards Transporter Brigadier General Stephen L. Davis, NNSA's Acting Deputy Administrator for Defense Programs, gets a lesson on how to drive a Safeguards Transporter during a recent visit to the Office of Secure Transportation (OST) headquarters in Albuquerque, New Mexico. OST is responsible for transporting...

  11. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  12. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  13. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  14. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

  15. Pretreatment of coal during transport

    DOE Patents [OSTI]

    Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.

    1977-04-19

    Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

  16. Quantum transport through aromatic molecules

    SciTech Connect (OSTI)

    Ojeda, J. H.; Rey-Gonzlez, R. R.; Laroze, D.

    2013-12-07

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices.

  17. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime

    SciTech Connect (OSTI)

    Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.

    2015-08-04

    We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.

  18. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.

    2015-08-04

    We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based onmore » the Coulomb coupling parameter and one-component plasmas.« less

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  1. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  2. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases. Four case studies are presented: Water and Soil Characterization, Subsurface Stabilization of Uranium and other Toxic Metals, Reductive Precipitation (in situ bioremediation) of Uranium, and Physical Transport of Particle-bound Uranium by Erosion.

  3. DOT Awards University Transportation Centers $63 Million

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation's (DOT) announced approximately $63 million in grants to 33 University Transportation Centers to advance research and education programs that address critical transportation challenges.

  4. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  5. Office of Secure Transportation Activities

    Broader source: Energy.gov [DOE]

    Our MissionTo provide safe and secure ground and air transportation of nuclear weapons, nuclear weapons components, and special nuclear materials and conduct other missions supporting the national...

  6. Transportation Sector Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  7. NREL: Transportation Research - Success Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories NREL understands real-world factors impacting industry and consumer adoption of sustainable transportation solutions, resulting in an impressive record of breaking down barriers to accelerate development and deployment of new transportation technologies. The success stories below provide a snapshot of how NREL research, development, and deployment activities translate into more energy-efficient vehicles and cleaner burning fuels, providing viable options to meet the needs of

  8. Forage Harvest and Transport Costs

    SciTech Connect (OSTI)

    Butler, J.; Downing, M.; Turhollow, A.

    1998-12-01

    An engineering-economic approach is used to calculate harvest, in-field transport, and over-the-road transport costs for hay as bales and modules, silage, and crop residues as bales and modules. Costs included are equipment depreciation interest; fuel, lube, and oil; repairs; insurance, housing, and taxes; and labor. Field preparation, pest control, fertilizer, land, and overhead are excluded from the costs calculated Equipment is constrained by power available, throughput or carrying capacity, and field speed.

  9. Deterministic methods in radiation transport

    SciTech Connect (OSTI)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.

  10. Air Transport Optimization Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACAir Transport Optimization Model content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a network of interconnected nodes and links. Mathematically sound nonlinear optimization techniques can then be applied to these networks to understand their behavior under normal and disrupted situations. Network optimization models are particularly useful for evaluating transportation system

  11. Enhanced transportation of energetic electrons in dual-frequency atmospheric microplasmas

    SciTech Connect (OSTI)

    Kwon, H. C.; Kim, H. Y.; Won, I. H.; Lee, H. Wk.; Shin, H. K.; Lee, J. K.

    2013-02-15

    A comparative study of electron kinetics between single-frequency (SF) microplasmas and their equivalent dual-frequency (DF) microplasmas with matching effective frequencies in atmospheric-pressure helium discharges was performed using particle-in-cell simulation with a Monte Carlo collision. The effective-frequency concept helps in analyzing DF microplasmas in a fashion similar to SF microplasmas with effective parameters. In this study, the plasma characteristics such as the plasma potential, density, and electron energy probability functions of the SF microplasma and its DF counterpart were almost the same. However, the oscillating sheath edge was pushed further into the electrode for a substantial fraction of the time and the sheath width decreased in DF microplasmas. As a result, the transportation of the energetic electrons ({epsilon} > 4 eV) usable for tailoring the surface chemistry in atmospheric microplasmas is enhanced in DF microplasmas as compared to SF microplasmas.

  12. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A.; Cox, Robert

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  13. Transportation scenarios for risk analysis.

    SciTech Connect (OSTI)

    Weiner, Ruth F.

    2010-09-01

    Transportation risk, like any risk, is defined by the risk triplet: what can happen (the scenario), how likely it is (the probability), and the resulting consequences. This paper evaluates the development of transportation scenarios, the associated probabilities, and the consequences. The most likely radioactive materials transportation scenario is routine, incident-free transportation, which has a probability indistinguishable from unity. Accident scenarios in radioactive materials transportation are of three different types: accidents in which there is no impact on the radioactive cargo, accidents in which some gamma shielding may be lost but there is no release of radioactive material, and accident in which radioactive material may potentially be released. Accident frequencies, obtainable from recorded data validated by the U.S. Department of Transportation, are considered equivalent to accident probabilities in this study. Probabilities of different types of accidents are conditional probabilities, conditional on an accident occurring, and are developed from event trees. Development of all of these probabilities and the associated highway and rail accident event trees are discussed in this paper.

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  16. Packaging and Transportation News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging and Transportation News January 14, 2016 Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting ...

  17. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved 2 TABLE OF CONTENTS 1.0 ... Electric Transportation Applications All Rights Reserved 3 1.0 Objective The objective of ...

  18. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives ... Electric Transportation Applications All Rights Reserved 1.0 Objective This procedure ...

  19. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives ... Electric Transportation Applications All Rights Reserved 1.0 Objective The objective of ...

  20. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle ...