National Library of Energy BETA

Sample records for toyota rav4 nimh

  1. Test Driving the Toyota Mirai

    Broader source: Energy.gov [DOE]

    Watch a video of Energy Secretary Ernest Moniz test driving the Toyota Mirai, the first fuel cell electric vehicle available for sale.

  2. Toyota Collaborates with the ALS and Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toyota Collaborates with the ALS and Molecular Foundry Toyota Collaborates with the ALS and Molecular Foundry Print Friday, 18 July 2014 10:41 Toyota has been conducting research...

  3. NREL: Energy Systems Integration - Toyota

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial AnalysisPartnerships WatchToyota One of

  4. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Broader source: Energy.gov [DOE]

    The Energy Department posted a video of ?Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  5. COMPARATIVE LIFE CYCLE ASSESSMENT OF ALCALINE CELLS AND NI-MH RECHARGEABLE BATTERIES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1 COMPARATIVE LIFE CYCLE ASSESSMENT OF ALCALINE CELLS AND NI-MH RECHARGEABLE BATTERIES Jean by applying the LCA methodology to evaluate the environmental footprint of alkaline cells and Ni-MH batteries phase. Besides, the emphasis on rechargeable batteries is only justified from an environmental point

  6. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  7. AVTA: 2013 Toyota Prius PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  8. Report on Toyota Prius Motor Thermal Management

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  9. Development of Statistical Energy Analysis Tools for Toyota Motor Engineering & Manufacturing 

    E-Print Network [OSTI]

    Chen, J; Collins, Ro.; Gao, G.; Schaffer, D.; Wu, J.

    2014-01-01

    ? Recommendations ESL-IE-14-05-06 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Duke Team Project Overview ? Client: Tim Hertel, Toyota Energy Engineer and Energy Manager ? Visited Kentucky plant to learn...-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Presentation Agenda ? Project introduction and goals ? Duke team’s energy consumption models ? Analysis of Toyota’s current consumption model ? Duke vs. Toyota’s model ? Results...

  10. 1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries

    E-Print Network [OSTI]

    Lehman, Brad

    1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries Florent Boico, Brad Lehman, Member, IEEE, and Khalil Shujaee Abstract--This paper proposes new solar battery chargers for NiMH batteries. First, it is shown that existing charge

  11. Transforming commercial aerospace supply chain management practices by utilizing Toyota production system principles, practices, and methodologies

    E-Print Network [OSTI]

    Patneaude, Steven M

    2008-01-01

    This thesis examines The Toyota Motor Corporation's core precepts, management principles, supply chain architecture, product development methods, leveraged practice of supplier partnerships and procurement practices, all ...

  12. Evaluation of Range Estimates for Toyota FCHV-adv Under Open...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Toyota FCHV-adv Under Open Road Driving Conditions More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap National Fuel Cell Electric Vehicle Learning...

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    designed for public battery EV charging could be used, andthe charging hardware from the 1998 Toyota RAV4-EV or abattery EV. Indeed, “On-board conductive charging allows V2G

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    designed for public battery EV charging could be used, andthe charging hardware from the 1998 Toyota RAV4-EV or abattery EV. Indeed, “On-board conductive charging allows V2G

  15. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    designed for public battery EV charging could be used, andthe charging hardware from the 1998 Toyota RAV4-EV or abattery EV. Indeed, “On-board conductive charging allows V2G

  16. Applying the Toyota Production System to a Hospital Pharmacy Durward K. Sobek, II

    E-Print Network [OSTI]

    Sobek II, Durward K.

    . Keywords: Toyota Production System, health care, lean manufacturing 1. Introduction The Toyota Production it has became known as the "Japanese approach" to manufacturing, later dubbed lean manufacturing because and around the world with such success that "lean" is rapidly becoming the dominant manufacturing paradigm

  17. Toyota Collaborates with the ALS and Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA's Today8TopoTowards a DesignToyota

  18. AVTA: 2010 Toyota Prius Gen III HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  19. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, Timothy A; Campbell, Steven L; Coomer, Chester; Ayers, Curtis William; Wereszczak, Andrew A; Cunningham, Joseph Philip; Marlino, Laura D; Seiber, Larry Eugene; Lin, Hua-Tay

    2011-03-01

    Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  20. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  1. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  2. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  3. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  4. Commitment is a Two-Way Street: Toyota, California and NUMMI

    E-Print Network [OSTI]

    Shaiken, Harley

    2010-01-01

    Room D. “Toyota moving Tacoma production to San Antonio,”NUMMI today—the Corolla and Tacoma compact pickup—will rollMoving Corolla and some Tacoma production offshore would

  5. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  6. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  7. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  8. Double Planetary Gear (PG) power-split hybrid powertrains have been used in production vehicles from Toyota

    E-Print Network [OSTI]

    Peng, Huei

    ABSTRACT Double Planetary Gear (PG) power-split hybrid powertrains have been used in production are power-split type [3], which utilizes one or more planetary gears as the transmission device. Toyota Prius, Ford Fusion and Chevrolet Volt are all power-split hybrid vehicles. The planetary gears

  9. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  11. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  12. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    SciTech Connect (OSTI)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

    2007-07-31

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  13. Model year 2010 (Gen 3) Toyota Prius level 1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

    2010-06-24

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

  14. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  15. Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report

    SciTech Connect (OSTI)

    Marlino, Laura D [ORNL

    2007-09-01

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  16. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  17. Toyota | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown of Skiatook, OklahomaInformationToyola

  18. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  19. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  20. OpenEI Community - toyota

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  1. toyota | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBRZAPgftIDmirai Homerankingtoyota

  2. Letter from Tom Insel, MD Director, NIMH

    E-Print Network [OSTI]

    Kroll, Kristen L.

    (Biobehavioral Research Awards for Innovative New Scientists) to ensure that ESIs can pursue high risk ideas. We to the Institute's mission, in order to continue to build and balance the pipeline of potential new investigators

  3. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  4. Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P

    2008-04-15

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  5. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  6. LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells

    DOE Patents [OSTI]

    Bugga, Ratnakumar V. (Arcadia, CA); Fultz, Brent (Pasadena, CA); Bowman, Robert (La Mesa, CA); Surampudi, Subra Rao (Glendora, CA); Witham, Charles K. (Pasadena, CA); Hightower, Adrian (Pasadena, CA)

    1999-01-01

    An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  7. Commitment is a Two-Way Street: Toyota, California and NUMMI

    E-Print Network [OSTI]

    Shaiken, Harley

    2010-01-01

    www.autonews.com/section/datacenter Ward’s Motor Vehiclewww.autonews.com/section/datacenter California New Carwww.autonews.com/section/datacenter U.S. Census Bureau, U.S.

  8. Commitment is a Two-Way Street: Toyota, California and NUMMI

    E-Print Network [OSTI]

    Shaiken, Harley

    2010-01-01

    California’s Automotive Industry: Maintaining AutomotiveCalifornia’s Automotive Industry. ” “This region includesCalifornia’s Automotive Industry: Maintaining Automotive

  9. Commitment is a Two-Way Street: Toyota, California and NUMMI

    E-Print Network [OSTI]

    Shaiken, Harley

    2010-01-01

    $465 Million Loan to Tesla Motors,” press release, Jan. 21,$465 Million Loan to Tesla Motors,” press release, Jan. 21,

  10. Y-12 team garners efficiency best practices at Toyota's Kentucky plant |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named MineralogicalComplex hostsY-12 National Security

  11. 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9) Jump to: navigation,7GroupsOpenEI

  12. Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new| Department of

  13. New York: EERE-Funded Project Used on Toyota Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind Career Map Navigates Industry

  14. Inside the Castle Gates: How Foreign Corporations Nagivate Japan's Policymaking Processes

    E-Print Network [OSTI]

    Kushida, Kenji Erik

    2010-01-01

    Industry : Technology and Management at Nissan and Toyota.Industry : Technology and Management at Nissan and Toyota (Industry : Technology and Management at Nissan and Toyota,

  15. Traveling the Road to Redemption: Toyota Motor Corporation's Rhetoric of Atonement As Response to the 2010 Recall Crisis

    E-Print Network [OSTI]

    Jones, Virginia Bauer

    2012-08-31

    of environmental concern may be perceived as hypocritical by an audience when the same company downplays the negative environmental effects of an oil leak. The effect of a crisis then is that it demands responses that go beyond those used to maintain a favorable...

  16. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo

    2006-01-01

    Senator Rosenthal Toyota Volkswagen The first cluster found96 Dynasty Motorcar O1 Volkswagen 90 EDF 96 WSPA 90 EMA 901 Toyota Toyota 1 1 l l Volkswagen Volkswagen 1 Mazda Mazda

  17. End of the Line: Reassembling the Legacy of NUMMI, The American Middle Class in the Era of Globalization and Recession

    E-Print Network [OSTI]

    Troncoso, Joshua Nathan

    2012-01-01

    NUMMI: Here’ s how lean manufacturing improved this Toyota-NUMMI: Here’s how lean manufacturing improved this Toyota-NUMMI: Here’s how lean manufacturing improved this Toyota-

  18. Voter competency, information, and campaign effects in representative and direct democracy

    E-Print Network [OSTI]

    Burnett, Craig Michael

    2010-01-01

    2) True or False: A Toyota Tacoma has a higher EPA estimatedgallon rating than the Toyota Tacoma (20 mpg city, 25 mpgestimates. For the Toyota Tacoma, I chose the two-wheel

  19. Smart Parking Management Pilot Project: A Bay Area Rapid Transit (BART) District Parking Demonstration

    E-Print Network [OSTI]

    Shaheen, Susan; Rodier, Caroline; Eaken, Amanda M.

    2005-01-01

    201. Ferguson, E. (2000). Parking management and commuterand Okuda, T. (1996). Smart parking in Toyota’s Motown. ITS:development of an advanced parking information system plan.

  20. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    and Impacts of Hybrid Electric Vehicle Options for Compactand Impacts of Hybrid Electric Vehicle Options. (EPRI: PaloEvaluation of Hybrid Electric Vehicles: Toyota’s Prius vs.

  1. Does Management Matter? Evidence from India

    E-Print Network [OSTI]

    Bloom, Nicholas; Eifert, Benn; Mahajan, Aprajit; McKenzie, David; Roberts, John

    2012-01-01

    of Toyota’s “lean manufacturing,” including quality controlkey element of the lean manufacturing system of production,the Japanese-inspired lean manufacturing revolution and are

  2. Fine Structure Due to DonorAcceptor Pair Luminescence in Compensated Si Michio Tajima, Takaaki Iwai, Hiroyuki Toyota, Simona Binetti1

    E-Print Network [OSTI]

    Science/JAXA, Sagamihara 252-5210, Japan 1 CNISM and Department of Material Science, University of Milano materials, called ``solar- grade Si (SOG-Si)'', has been urgently needed for the mass production of solar A fine structure on the higher energy side of donor­acceptor (DA) pair luminescence at 4.2 K has been

  3. Smart Parking Management Pilot Project: A Bay Area Rapid Transit (BART) District Parking Demonstration

    E-Print Network [OSTI]

    Shaheen, Susan; Rodier, Caroline J.; Eaken, Amanda M.

    2005-01-01

    and Okuda, T. (1996). Smart parking in Toyota’s Motown. ITS:development of an advanced parking information system plan.Ideal Mates For University Parking Programs. The Parking

  4. Transit-Based Smart Parking: Early Field Test Results

    E-Print Network [OSTI]

    Rodier, Caroline J.; Shaheen, Susan

    2005-01-01

    and J.C. Kopp. Real-time parking management systems forA. and J. Polak. Effect of parking information on travelers’T. and Okuda, T. Smart parking in Toyota’s Motown. ITS:

  5. Transit-Based Smart Parking in the San Francisco Bay Area: an Assessment of User Demand and Behavioral Effects

    E-Print Network [OSTI]

    Rodier, Caroline J.; Shaheen, Susan A.; Eaken, Amanda M.

    2004-01-01

    J.C. Kopp (2000). Real-time parking management systems formanagement: more than just parking. Traffic Technologyand Okuda, T. (1996). Smart parking in Toyota’s Motown. ITS:

  6. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2006-01-01

    Senator Rosenthal Toyota Volkswagen Cluster Pro ZEV Mandate90 UCS 01 UCS 03 UCS 96 Volkswagen 90 WSPA 90 Pro PublicBenz Nissan EMA Toyota Volkswagen Mazda CAMCDA AAM Ass’n of

  7. Smart Parking Linked to Transit: Lessons Learned from the San Francisco Bay Area Field Test

    E-Print Network [OSTI]

    Shaheen, Susan; Kemmerer, Charlene

    2007-01-01

    C.J. Rodier, and A.M. Eaken. Smart Parking Management FieldT. Sugimoto, and T. Okuda. Smart Parking in Toyota’s Motown.S.A. Shaheen. Transit-Based Smart Parking: An Evaluation of

  8. A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility

    E-Print Network [OSTI]

    Dibb, Gregory David, 1974-

    2004-01-01

    Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

  9. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric...

  10. Overcoming obstacles to lean in a repair operation

    E-Print Network [OSTI]

    Christensen, Daniel D. (Daniel David)

    2012-01-01

    Over the last three decades, manufacturing companies have come to recognize the value of institutionalizing continuous improvement efforts. Most of them look to Toyota as a leader in this area and have taken Toyota's model ...

  11. Lean Production Using Modular Construction: Study of the Ministry of Education's Projects in Saudi Arabia

    E-Print Network [OSTI]

    Alshayeb, Mohammed Jawad

    2011-12-16

    Implementation of lean production theory into the construction industry represents a tremendous opportunity to improve productivity in construction and reduce waste. Lean production, first applied in Toyota’s manufacturing process, is based...

  12. Algebraic and Slide Attacks on KeeLoq Nicolas T. Courtois1

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    , Honda, Jaguar, Toyota, Volvo, Volkswagen, etc [6, 7, 23, 24]. KeeLoq is very sim- ple in implementation

  13. Cryptanalysis of KeeLoq code-hopping using a Single FPGA

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    , Daewoo, Fiat, GM, Honda, Jaguar, Toyota, Volvo, Volkswagen, etc. adopted KeeLoq for their cars security

  14. Regularization Techniques for Learning with Matrices Sham M. Kakade

    E-Print Network [OSTI]

    Tewari, Ambuj

    of Jerusalem shais@cs.huji.ac.il Ambuj Tewari Toyota Tech. Institute at Chicago tewari@ttic.edu Abstract

  15. Recycling Programs | Department of Energy

    Energy Savers [EERE]

    Germantown Paperclips Supply Stores. Batteries accepted for recycling are: Alkaline, Lithium Ion, Nickel Cadmium (Ni-Cd), Nickel-Iron, and Nickel Metal Hydride (NiMH). Toner...

  16. Quality Improvement Practices in Academic Emergency Medicine: Perspectives from the Chairs

    E-Print Network [OSTI]

    DelliFraine, Jami L; Langabeer, James; King, Brent

    2010-01-01

    in outcomes, given that Six Sigma, Lean, and TQM proposetype of QI training (Six Sigma, Lean, TQM, PDCA) receivedprogram: Lean/Toyota Production System Six Sigma PDCA Total

  17. EHRS Impact on Engine Warm-up and Fuel Economy

    Broader source: Energy.gov [DOE]

    Presents an investigation performed on a Toyota Prius III with the objective to quantify and demonstrate the benefits of current exhaust heat recovery technologies

  18. Analytical Development and Support Presentation for BETO 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Bt-D. Pretreatment Processing Timeline Budget Barriers * Rapid prediction models and analytical work facilitated partnerships with: * INL * Shell * Toyota * DuPont *...

  19. STU: October 2014 | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with wide bandgap devices. Plus, researchers use neutrons to image the spray inside fuel injectors, and ORNL partners with Toyota on wireless charging for electric vehicles...

  20. Sustainable Transportation Update | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrons to image the spray inside fuel injectors, and ORNL partners with Toyota on wireless charging for electric vehicles. July 2014 July 2014 ORNL partners with automakers to...

  1. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    standard city and highway drive cycles can be computed totime history for the drive cycles depends on the mass, dragrepeating the vehicle drive cycle simulations for a Toyota

  2. National Parks Clean Up with Alternative Fuels | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel vehicles and infrastructure (including biodiesel, compressed natural gas, E85-ethanol, and propane). As a result of industry partnerships, Toyota donated 23 Prius...

  3. Efficient Bandit Algorithms for Online Multiclass Prediction Sham M. Kakade sham@tti-c.org

    E-Print Network [OSTI]

    Ray, Soumya

    Shalev-Shwartz shai@tti-c.org Ambuj Tewari tewari@tti-c.org Toyota Technological Institute, 1427 East 60

  4. A3 Reports: Tool for Process Improvement Durward K. Sobek, II

    E-Print Network [OSTI]

    Sobek II, Durward K.

    : Toyota, health care, lean manufacturing, process improvement, problem-solving tool 1. Introduction Few Corporation. Toyota is perhaps best known for its highly effective production system, dubbed "lean manufacturing" by an MIT study in the 1980's [1]. But interestingly, history's most efficient method

  5. A Test of the Design Rules in Health Care Manimay Ghosh and Durward K. Sobek, II

    E-Print Network [OSTI]

    Sobek II, Durward K.

    philosophy, lean manufacturing, also called Toyota Production System (TPS) has been gaining popularity care's systemic issues. Keywords Toyota, lean health care, process improvement 1. Introduction Today, or lean, is widely accepted in the management literature as the most efficient production system developed

  6. A3 Reports: Tool for Organizational Transformation Durward K. Sobek, II

    E-Print Network [OSTI]

    Sobek II, Durward K.

    by Western researchers in the 1980's and labeled "lean manufacturing" by an MIT study [5]. Toyota also excels and Industrial Engineering Montana State University Bozeman, MT 59717-3800 Cindy Jimmerson Lean Healthcare West implemented, and its potential for wide-spread organizational transformation. Keywords: Toyota, lean

  7. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY13 Fourth Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-12-02

    This quarterly report summarizes the status of the project planning to obtain all the approvals required for a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). The final CRADA documents processed by PNNL’s Legal Services were submitted to all the parties for signatures.

  8. Lean Six Sigma Lean Six Sigma

    E-Print Network [OSTI]

    McGraw, Kevin J.

    Lean Six Sigma Lean Six Sigma Lean Six Sigma is a fundamental and comprehensive approach to solve at Toyota, and companies in other sectors that have followed Toyota's example, while Six Sigma evolved from, among others. This program will allow individuals with little or no knowledge of the Six Sigma or Lean

  9. Testing the Role of Source Credibility on Memory for Inferences 

    E-Print Network [OSTI]

    Guillory, Jimmeka Joy

    2012-10-19

    affected vehicle sales. In January 2010, automobile manufacturer Toyota announced a recall on eight of their popular models due to faulty gas pedals. According to NPR (http://www.npr.org) after the recall was lifted, Toyota sales dropped 16%, even...

  10. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Bahrami, Majid

    Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC V3T 0A3, Canada h replacing nickelemetal hydride (NiMH) batteries. More recently, the strategy of electrifying vehicles

  11. A. M. Sastry B. E. Layton

    E-Print Network [OSTI]

    Sastry, Ann Marie

    X. Cheng A. M. Sastry B. E. Layton Department of Mechanical Engineering and Applied Mechanics for production of posi- tive electrodes for NiMH nickel-metal hydride batteries are comprised of two or more

  12. Curriculum Vitae Christopher S. Monk

    E-Print Network [OSTI]

    Lustig, Cindy

    : Monk) 06/05/14 ­ 05/31/19 1.5 acad / 2 sum months NIH/NIMH $3,050,851 Total Effects of Poverty understand how poverty affects biology during development and contributes to increased risk

  13. Martin Paulus, MD -1 Curriculum Vitae 9/26/2013

    E-Print Network [OSTI]

    Squire, Larry R.

    of Psychiatry and Neurology, valid March 2009 ­ December 2019 LICENSE: California A University of California San Diego Jul, 2009 ­ Present HONORS AND AWARDS 1996 NIMH Outstanding Resident Award 1997 Lewis Judd Resident Research Award 1997

  14. Technological assessment and evaluation of high power batteries and their commercial values

    E-Print Network [OSTI]

    Teo, Seh Kiat

    2006-01-01

    Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

  15. PLEASE USE THESE CODES TO FILL OUT PERMIT APPLICATION VEHICLE MAKE ALPHA ROMEO ALFA

    E-Print Network [OSTI]

    Pace, Norman

    GRA PLYMOUTH PLYM GREEN GRE PONTIAC PONT ORANGE ORA PORSCHE PORS PINK PIN RENAULT RENA A & S STAS CONTINUING ED SCED TAN TAN SUZUKI SUZU EDUCATION SEDU TEAL TEA TOYOTA TOYO ENGINEERING SENG WHITE WHI TRIUMPH

  16. Optimizing the selection and implementation of assembly line equipment at a large automobile original equipment manufacturer

    E-Print Network [OSTI]

    Holman, Cale M. (Cale Matthew)

    2005-01-01

    Toyota Motor Manufacturing North America (TMMNA) is continuing to face an increasingly competitive automobile market. To meet these evolving market conditions, TMMNA has experienced rapid growth in demand for its automobiles ...

  17. Recent advances in III-V on Si integration for high-efficiency,

    E-Print Network [OSTI]

    Firestone, Jeremy

    ) · Funding sources - NSF CAREER award - DARPAYFA program - Australian Solar Institute - Toyota Motor Department of Electrical Engineering Yale University Solar Workshop: Terawatt Challenge!!? UD Energy solar · Two major challenges - Polar/non-polar growth - Lattice mismatch - Threading dislocations

  18. SAVE A NAPKIN SAVE A TREE: THE ROLE OF METAPHORS IN PRODUCT DESIGN TO CHANGE BEHAVIOR

    E-Print Network [OSTI]

    Papalambros, Panos

    dispenser and study the effect on napkin consumption rate in an actual retail location. Before presenting environmental impact. For example, in the Prius automobile from Toyota Motor Company, an instantaneous fuel

  19. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01

    SUBARU SUZUKI TOYOTA VOLKSWAGEN VOLVO Grand Total Table 2.3:FORD CHEVROLET FIAT MINI VOLVO VOLKSWAGEN SMART KIA HYUNDAIUK US US US Makes SMART VOLKSWAGEN FIAT SUZUKI HONDA NISSAN

  20. Plug-In Demo Charges up Clean Cities Coalitions

    Broader source: Energy.gov [DOE]

    Clean Cities Coordinators across the country highlight the benefits of plug-in hybrids and help collect valuable usage data as part of a demonstration project for the upcoming plug-in hybrid model of the Toyota Prius.

  1. Enabling waste elimination, learning, and continuous improvement through standardization

    E-Print Network [OSTI]

    Stover, Mark E. (Mark Eugene)

    2005-01-01

    Many manufacturing companies have developed their own operating system, usually based upon the Toyota Production System, in an effort to improve productivity, quality, and profitability. Continuous improvement is a central ...

  2. Fact #871: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013

    Broader source: Energy.gov [DOE]

    At the end of the 2013 model year (MY), Toyota, which neither bought nor sold credits between 2010 and 2013, had by far the highest balance of Corporate Average Fuel Economy (CAFE) credits at more...

  3. Handling Globalization: Labor, Capital, and Class in the Globalized Warehouse and Distribution Center

    E-Print Network [OSTI]

    Struna, Jason Young

    2015-01-01

    Management, Lean Production, Six Sigma, Toyotaism, to name aRemember that the term “Six Sigma” associated with qualitystandard form. While the six-sigma ideal may be a stretch to

  4. Quality Improvement Practices in Academic Emergency Medicine: Perspectives from the Chairs

    E-Print Network [OSTI]

    DelliFraine, Jami L; Langabeer, James; King, Brent

    2010-01-01

    Lean/Toyota Production System Six Sigma PDCA Total QualityIs health care ready for Six Sigma quality? Milbank Q. DeanHarry M, Schroeder R. Six Sigma 2000; New York: Doubleday

  5. Day 2 at the 2014 ARPA-E Innovation Summit | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014-02-25 13:33 8 of 14 As part of a demonstration project with Toyota, Arkansas Power Electronics International, Inc. (APEI) displays its on-board electric vehicle charger...

  6. Implementation of lean processes at a high-mix low-volume aerospace manufacturing facility in France

    E-Print Network [OSTI]

    Hurd, A.-P. (Annie-Pierre), 1974-

    2004-01-01

    The theories of the Toyota Production System have been operational touchstones now for over twenty years in North America and Western Europe. In spite of this many companies, particularly those in high-mix low-volume ...

  7. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 billion in 2020, an average annual growth rate of roughly 25 percent. Earlier this year, the Toyota Prius became the third best-selling vehicle in the world. Virtually every...

  8. Reducing Heavy-Haul Railcar Maintenance Costs and Improving Terminal Performance Using Technology: A Lean Production Approach

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    or Six Sigma)" [3,4]. The current research focuses on the concept of lean production, as applied in 1990 in a study that found Toyota production techniques to be superior to other automotive

  9. Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling light truck. The F-Series...

  10. Numeric Bounds Analysis with Conflict-Driven Learning

    E-Print Network [OSTI]

    Kröning, Daniel

    and significantly outperforms floating- point decision procedures. 1 Introduction Automotive and avionic control analysis that embeds an abstract domain inside the Conflict Driven Clause Supported by the Toyota Motor

  11. Interpolation-Based Verification of Floating-Point Programs with Abstract CDCL

    E-Print Network [OSTI]

    Kröning, Daniel

    - motive, avionic, medical, public transportation and other safety critical systems. The IEEE 754 standard with floating-point variables. Supported by the Toyota Motor Corporation, ERC project 280053, EPSRC project EP

  12. Mixed Abstractions for Floating-Point Arithmetic Angelo Brillout

    E-Print Network [OSTI]

    Kröning, Daniel

    --Floating-point arithmetic is essential for many em- bedded and safety-critical systems, such as in the avionics industry by the the Toyota Motor Corporation, by the Semiconductor Research Corporation (SRC) under contract no. 2006-TJ-1539

  13. Fact #815: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sales overall and led among plug-in hybrid vehicles with sales of about 25,000. As a proportion of sales, the Nissan Leaf and Toyota Prius Plug-in hybrid had the most even...

  14. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 were the Nissan Leaf, Chevrolet Volt, Tesla Model S, Toyota Prius PHEV, and Ford Fusion Energi. From the first plug-in vehicle sales in 2011 to 2014 about 287 million...

  15. Lean Product Development: Making Waste Transparent

    E-Print Network [OSTI]

    Bauch, Christoph

    2004-01-15

    Lean manufacturing developed by Toyota is a production philosophy that focuses on streamlining of value added activities and eliminating waste within the process with the goal to better meet customer demand. It constitutes ...

  16. Electromobility in Qubec: strengths and interests

    E-Print Network [OSTI]

    California at Davis, University of

    , cars and special-purpose- vehicles, charging infrastructure, battery technology Looking Forward #12 institutes/ technology transfer centers Québec's expertise: vehicle components, engine systems, battery, Tesla, Toyota Substantial rebates for buying electric cars · « Roulez électrique »: up to $8

  17. A study in hybrid vehicle architectures : comparing efficiency and performance

    E-Print Network [OSTI]

    Cotter, Gavin M

    2009-01-01

    This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

  18. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    ,500 for full battery electric vehicle (BEV) and $5,000 for plug- in hybrid electric vehicle (PHEV) · Financial 39 Tesla 39 BMW 26 Toyota 7 Honda 3 Cadillac 3 Mitsubishi 2 #12;Department of Public Utilities · DPU

  19. 2008-01-0709 Modeling Design Concepts under Risk and Uncertainty using

    E-Print Network [OSTI]

    of Toyota Motor Company and its suppliers, that improvements in early-phase decision making can lead to considerable risk. In this paper, we investigate an alternative to approaches that rely on explicit design

  20. Reuse of hybrid car power systems

    E-Print Network [OSTI]

    Kirkby, Nicholas (Nicholas J.)

    2015-01-01

    Used hybrid car power systems are inexpensive and capable of tens of kilowatts of power throughput. This paper documents a process for using the second generation Toyota Prius inverter module to drive a three phase permanent ...

  1. 1 | Fuel Cell Technologies Program Source: US DOE 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview

    E-Print Network [OSTI]

    Cell Patents Geographic Distribution 2002-2010 Top 10 companies: Honda, GM, Toyota, UTC Power, Samsung Reduced Oil Use Reduced Air Pollution Fuel Flexibility · 40 - 60% (electrical) · > 70% (electrical, hybrid

  2. INTERNATIONAL CONFERENCE ON EXOTIC FORMS OF SILICON

    E-Print Network [OSTI]

    ` e INTERNATIONAL CONFERENCE ON EXOTIC FORMS OF SILICON Renewable Energy Materials Research Science Laboratory TOYOTA Central R&D Labs., Inc. Japan George S. Nolas Department of Physics University of South

  3. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rack on the G-1. More blinky lights than a Toyota at midnight From Manaus, Amazonia, Brazil, to Pasco, Washington, to Long Island, New York, in 4 days, a day in the life of a...

  4. The production planning and inventory management of finished goods for a pharmaceutical company

    E-Print Network [OSTI]

    Gupta, Sumit, M. Eng. Massachusetts Institute of Technology

    2007-01-01

    This thesis is the result of a three month internship at TCG Pharmaceuticals, Singapore. With the worldwide initiative of lean in TCG, it has implemented the TCG Production System which finds its roots in the famous Toyota ...

  5. Quality and Quantity Modeling of a Production Line

    E-Print Network [OSTI]

    Kim, Jongyoon

    During the past three decades, the success of the Toyota Production System has spurred research in the area of manufacturing systems engineering. Two research fields, productivity and quality, have been extensively studied ...

  6. Summary of Inventory Pilot Project March 1993 - December 1994

    E-Print Network [OSTI]

    Ling, James

    The Lean Aircraft Initiative began in the summer of 1992 as a “quick look” into the feasibility of applying manufacturing principles that had been pioneered in the automobile industry, most notably the Toyota Production ...

  7. On the Finite Time Convergence of Cyclic Coordinate Descent Department of Computer Science

    E-Print Network [OSTI]

    Tewari, Ambuj

    of Computer Science University of Chicago ankans@cs.uchicago.edu Ambuj Tewari Toyota Technological Institute Chicago, USA tewari@ttic.edu Abstract Cyclic coordinate descent is a classic optimization method that has

  8. Newsletters | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use neutrons to image the spray inside fuel injectors, and ORNL partners with Toyota on wireless charging for electric vehicles. <12345> BUILDING TECHNOLOGIES UPDATE 1-3 of 4...

  9. Framework for Understanding the Relationship between Lean and Safety in Construction 

    E-Print Network [OSTI]

    Prakash, Ramya

    2011-08-08

    Lean construction borrows concepts from lean manufacturing and Toyota Production System in order to eliminate waste and add value to the construction process. Manufacturing processes utilizing lean principles have matured ...

  10. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY13 Third Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-08-06

    This quarterly report summarizes the status for the project planning to obtain all the approvals required for a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). The CRADA documents have been processed by PNNL Legal Services that is also coordinating the revision effort with the industrial parties to address DOE’s comments.

  11. A Novel Routing Metric for Environmentally-Powered Sensors With Hybrid

    E-Print Network [OSTI]

    Ingram, Mary Ann

    Aravind Kailas and Mary Ann Ingram School of Electrical and Computer Engineering, Georgia Institute of Electrical and Computer Engineering, Georgia Institute of Technology, Savannah, Georgia 31407-3039, USA Email, depending on is type (e.g. Nickel Metal Hydride (NiMH) or Lithium Ion Polymer) can have cycle life ranging

  12. 3/21/11 1:37 PMUntitled Page 1 of 3

    E-Print Network [OSTI]

    Braun, Paul

    -like power with battery-like energy," said Braun, a professor of materials science and engineering. "Most both." The performance of typical lithium-ion (Li-ion) or nickel metal hydride (NiMH) rechargeable think of this the same way you do an internal combustion engine. You would just pull up to a charging

  13. Portable SD Recorder Product Overview

    E-Print Network [OSTI]

    storage is matched by six hours recording time from four AA Alkaline / Ni-MH batteries. Drag and drop file file transfer ­ 4 x AA Batteries, providing six hours recording (w/Alkaline 1450mAh batteries Speaker Standard level 450 mW/8 ohms General Power consumption Recording/Playback 4.2 W (DC) Battery life

  14. ARTICLE IN PRESS 3 Mapping cortical change in Alzheimer's disease, brain development,

    E-Print Network [OSTI]

    Thompson, Paul

    's disease, schizo- 19 phrenia, normal aging, and abnormal brain development based on 20 imaging data, not seen in individual brain scans, often emerge when 45population-based brain data are averaged School of Medicine, Los Angeles, CA 90095-1769, United States 9 b Child Psychiatry Branch, NIMH, Bethesda

  15. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    in performance · Practical NiMH batteries did not yet exist · Production hybrid cars did not yet exist · Andy · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel Research (IMR) · Intelligent Transportation Systems (ITS) ­ Smart cars, smart parking, goods movement

  16. [1] Ginz HF, Iaizzo PA, Urwyler A, Pargger H (2008). Use of non-invasive-stimulated muscle force assessment in long-term critically ill patients: a future standard in the

    E-Print Network [OSTI]

    Durfee, William K.

    2008-01-01

    Biceps BrachiiTibialis Anterior Images: www.rad.washington.edu/academics/academic-sections/msk/muscle-atlas Rectus Femoris FOOT PLATE REACTION BAR SUPPORT YOKE LOAD CELL SHORT DAC MCP4821 SPI BATTERY 14.4 V NIMH CONDIT DATA AQ USB1408FS USB USB SHORT BATTERY SGNL CONDITSWITCH 8-BIT ADC AD7822 PICMICRO 16F1936

  17. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    -Cadmium (Ni-Cd) Nickel Metal Hydride (Ni-MH) Lithium Ion (Li-ion) Large or Small sealed lead acid (Pb) MercuryPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  18. Curriculum Vita: Lilyan A. Brudner-White Personal Data

    E-Print Network [OSTI]

    White, Douglas R.

    of Specialization 1. Economic development and Social Change: research in Mexico and Austria on rural communities 2, Economic Development and Social Change in Rural Communities 1967-1969 N.I.M.H. Research Award, Economic Development and Social Change in Rural Austria. Professional Participation 1978-1979 Advisory Panel on Grants

  19. LOUISE LENNIHAN Interim Provost

    E-Print Network [OSTI]

    Dennehy, John

    is Interim Provost and Senior Vice President for Academic Affairs at the Graduate Center. In her role, she and Effectiveness, the Mina Rees Library, Student Affairs, and Research and Sponsored Programs, as well from the Social Science Research Council, the National Science Foundation, NIMH, and Fulbright

  20. BRAIN ATLASES AND REGISTRATION Arthur W. Toga and Paul Thompson

    E-Print Network [OSTI]

    Thompson, Paul

    1 BRAIN ATLASES AND REGISTRATION Arthur W. Toga and Paul Thompson Laboratory of Neuro Imaging, Dept. of Neurology, Division of Brain Mapping, UCLA School of Medicine, Los Angeles, CA A Book Chapter for: Handbook and Stroke and the National Institute of Mental Health (NINDS/NIMH NS38753), and by a Human Brain Project

  1. Director's Report to the National Advisory Mental Health Council

    E-Print Network [OSTI]

    Baker, Chris I.

    the authority for implementing the IACC and the Strategic Plan to NIMH. #12;2 NIH-Wide Update NIH Roadmap ­ Selected Updates The NIH Roadmap is a trans-NIH effort to support innovative science, stimulate by nominees from interested Institutes are developing initiatives for "Roadmap 1.5." The five initiatives

  2. 1998 John Wiley & Sons, Inc. CCC 0012-1630/98/020107-17 Mark S. Blumberg

    E-Print Network [OSTI]

    for Correspondence to: M. S. Blumberg Contract grant sponsor: NIMH Contract grant number: MH 50701 protecting, young emerge from their thermally se- cure environments into a world where heat loss is a constant "successful" thermoregulation. In part, our expectations arise from the idea that there exists a single core

  3. ME Senior Practicum Projects Overview -2008-09/10

    E-Print Network [OSTI]

    Connors, Daniel A.

    -stroke internal combustion engine The accumulator system is made up of NiMh battery modules donated by DenverGrid Photovoltaic Simulator (7) D. Zimmerle · John Deere Straight Vegetable Oil D. Olsen Engine Development (8) #12Sat Fiberoptic Mass Gauging A. Yalin System (9) · SAE Aero Competition (10) H. Sakurai · Neonatal Transport

  4. Top Articles http://ieeexplore.ieee.org/Xplore/toparticles.jsp 1 of 11 3/29/2005 1:30 PM

    E-Print Network [OSTI]

    Yang, Liuqing

    Area Networks-specific Requirements-part 11: Wireless Lan Medium Access Control (MAC) And Physical. Performance evaluation of 32 kbits/s real-time and dual-directionvideo communication system for wireless universal battery charger for NiCd, NiMH, Li-ion and Li-polymer Lima, F.; Ramalho, J.N.; Tavares, D.; Duarte

  5. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-04-04

    This quarterly report summarizes the status for the project planning to initiate all the legal and contract documents required for establishing the subcontracts needed and a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). During the first quarter (10/1/2012 to 12/31/2012), the statements of work (SOW) for the subcontracts to Purdue University, University of Illinois, and PlastiComp, Inc. were completed. A draft of the CRADA SOW was sent to Autodesk, Toyota, and Magna for technical and legal reviews. PNNL Legal Services contacted project partners’ Legal counterparts for preparing legal documents for the project. A non-disclosure agreement was drafted and sent to all the parties for reviews.

  6. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Simmons, Kevin L.

    2013-05-30

    This quarterly report summarizes the status for the project planning to complete all the legal and contract documents required for establishing the subcontracts needed and a Cooperative Research and Development Agreement (CRADA) with Autodesk, Inc., Toyota Motor Engineering and Manufacturing North America (Toyota), and Magna Exterior and Interiors Corporation (Magna). During the second quarter (1/1/2013 to 3/31/2013), all the technical and legal documents for the subcontracts to Purdue University, University of Illinois, and PlastiComp, Inc. were completed. The revised CRADA documents were sent to DOE, Autodesk, Toyota, and Magna for technical and legal reviews. PNNL Legal Services contacted project partners’ Legal counterparts for completing legal documents for the project. A non-disclosure agreement was revised and sent to all the parties for reviews.

  7. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  8. Fiscal Year 2007 | 1 FISCAL YEAR

    E-Print Network [OSTI]

    Napp, Nils

    Entertainment Cabot Creamery Cooperative Inc. Cargill Cleveland Clinic Constellation Energy Fox Searchlight Association Bantam Dell/Random House Bose Brown-Forman Buena Vista Home Entertainment Cartridge World Elsevier Geographic Society Nature Conservancy, The Paramount Pictures PBS Scotts Tuition Plan Consortium Toyota Trend

  9. A Language Model Approach to Keyphrase Extraction Takashi Tomokiyo and Matthew Hurst

    E-Print Network [OSTI]

    of hybrid cars may harvest messages from online fo- rums. They may then want to rapidly construct a hi car example, the result of this pro- cess is a set of phrases like that shown in Figure 1. 1 civic hybrid 2 honda civic hybrid 3 toyota prius 4 electric motor 5 honda civic 6 fuel cell 7 hybrid cars 8

  10. ZEV Ac'onable Science Webinar Series Presenta-on 1

    E-Print Network [OSTI]

    California at Davis, University of

    valuable than increasing the size of the battery pack Franke, et al, August 2011 #12;PHEVs only complicate-fuel options: n Gasoline vs. electric consumption n When will driver recharge the vehicle? 13 #12;The Prius-depleting range o EV, "Blended" & CS operation modes 14 Photo: Toyota ESQ #12;Electricity consumption varies

  11. Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration

    E-Print Network [OSTI]

    Boyer, Edmond

    , coming into force in September 2014, set a 56 % reduction of NOx emissions compared to Euro stage V (80 trap technology, also called NOx Storage and Reduction (NSR), was first developed by Toyota in 199411 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration

  12. Mini-consortium members Power Management Consortium (PMC)

    E-Print Network [OSTI]

    Ha, Dong S.

    Nissan Motor Co., Ltd. Rolls-Royce Sumitomo Electric Industries, Ltd. Texas Instruments Toyota Motor) Renewable Energy & Nanogrids (REN) ABB, Inc. ALSTOM Transport Crane Aerospace & Electronics Delta Electronics, Inc. Dowa Metaltech Co., Ltd. GE Global Research General Motors Groupe SAFRAN Huawei Technologies

  13. Response Surface Methodology Its application to automotive

    E-Print Network [OSTI]

    Awtar, Shorya

    . Introduction & Basis of RSM 1. History of RSM 2. What's RSM 3. Why is RSM 4. Least square method 5. Design Of Experiment (DOE) II. Its application to automotive suspension designs 1. Size optimization for beam stiffens and Basis of Response surface Methodology (RSM) #12;Toyota Central R&D Labs., Inc 4 History of RSM 1951 Box

  14. Rapid Traffic Information Dissemination Using Named Data Los Angeles, CA, USA

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Rapid Traffic Information Dissemination Using Named Data Lucas Wang UCLA Los Angeles, CA, USA lucas@us.toyota-itc.com Lixia Zhang UCLA Los Angeles, CA, USA lixia@cs.ucla.edu ABSTRACT This paper applies the Named Data traffic information dissemination application based on the data naming design from our previ- ous work

  15. High Concentrated Photovoltaic (CPV) Masafumi Yamaguchi

    E-Print Network [OSTI]

    Canet, Léonie

    High Concentrated Photovoltaic (CPV) Masafumi Yamaguchi Toyota Technological Institute, Nagoya, 468,, other partners #12;Outline 1. Importance of High Performance, Low Cost and Highly Reliable Photovoltaics on Concentrator Photovoltaics (CPV) ; NG-CPV 4. Future Prospects of PV and Summary #12;1. Importance of High

  16. Abstract--In the design of hybrid vehicles, it is important to identify proper component sizes. When the search space of the

    E-Print Network [OSTI]

    Peng, Huei

    in this paper. This method is applied to design an input-split hybrid vehicle utilizing a single planetary gear and Toyota Highlander Hybrid, use two planetary gears. There are also hybrid designs in combat vehicles [4-planetary gear configurations are design candidates, we explore the full search space of configuration

  17. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    manufacturers to focus on high fuel-economy cars. And Toyota Prius and Honda Civic Hybrid are wonderful, or oil resources. Nor would the anticipated 40 mpg Ford Escape hybrid in the "small SUV" class Cycle (UDC) for representative cars and light trucks.1 The horizontal axis shows measured emissions

  18. Vol.2 No.2 February 2006 www.nature.com/naturephysics nature physics | VOL 2 | FEBRUARY 2006 | www.nature.com/naturephysics 63

    E-Print Network [OSTI]

    Loss, Daniel

    the Far East, growing reliance on insecure energy sources and mounting evidence of the impact of climate is anything to go by, the outlook is bleak. With the final two appropriations bills of the previous budgetary over. Toyota is overtaking General Motors as the world's largest car manufacturer. IBM's personal

  19. First Draft of the act Programming Language Eleftherios Matsikoudis

    E-Print Network [OSTI]

    First Draft of the act Programming Language Eleftherios Matsikoudis Christos Stergiou Electrical, National Instruments, and Toyota. #12;First Draft of the act Programming Language Eleftherios Matsikoudis at the design of a high-level programming language for timed systems called act. We define the lexical grammar

  20. Tiragem: 14985 Pas: Portugal

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    a cidade", dado que dispõe de um motor de combustão auxiliado por um motor eléctrico. Apesar das vantagens, a Toyota Motor Europe arrancou com um teste a nível europeu, onde Portugal esteve incluído. O projecto de Ins- tituto Superior Técnico chegou à conclusão que, em termos de energia, quando comparado com um

  1. Not Just-In-Time: Structural Steel Supply and Construction Processes Proceedings IGLC-7 109

    E-Print Network [OSTI]

    Tommelein, Iris D.

    principles that were developed as part of Toyota's lean production philosophy. To illustrate the point construction sector. The use of symbols from manufacturing is investigated to map key production steps as well in these two construction sectors vary significantly. Neither one is lean. This paper reports on a preliminary

  2. The Dark Side of Lean Construction: Exploitation and Ideology Proceedings IGLC-7 21

    E-Print Network [OSTI]

    Tommelein, Iris D.

    . The ideas of `lean production'are widely associated with the Toyota manufacturing system as originally manufacturers. They have also neglected the growing critical literature that relates lean methodsThe Dark Side of Lean Construction: Exploitation and Ideology Proceedings IGLC-7 21 THE DARK SIDE

  3. 32 Jahresbericht Max-Planck-Gesellschaft 2014 Annual Report Max Planck Society 2014

    E-Print Network [OSTI]

    Falge, Eva

    are a possible solution, and automotive companies like Honda and Toyota have invested billions in a potential new industrial sector. Today, some 15 years down the line, the challenge of "age- ing societies" has not changed industrial robots. Toy ro- bots, robots that can provide emotional support and miniature robots able to carry

  4. 267 Employers International

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    &T AVG. GRADUATE STARTING SALARY S&T AVG. UNDERGRAD STARTING SALARY ARILKSTX Career GE Aviation Mo. Dept. of Conservation Toyota Motor Engineering S&T AVG. UNDERGRAD MONTHLY SALARY S&T AVG. GRADUATE MONTHLY SALARY S&T AVG. UNDERGRAD MONTHLY SALARY S&T AVG. GRADUATE MONTHLY SALARY

  5. ---Home Yahoo! Help My Yahoo! http://asia.news.yahoo.com/041111/kyodo/d869foe00.html

    E-Print Network [OSTI]

    of Toyota Motor Corp., said he supports Japan's nuclear energy policy. "All possible energy options should at Cadarache in France. A final decision on the location is expected in December. Okuda, also chairman be ready and nuclear energy is the most suitable at present," he said. Japan has been cooperating

  6. 912 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 47, NO. 2, MARCH/APRIL 2011 Impact of SiC Devices on Hybrid Electric and

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , Senior Member, IEEE, and Burak Ozpineci, Senior Member, IEEE Abstract--The application of silicon carbide and weight and the vehicle's fuel economy. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV carbide (SiC). I. INTRODUCTION AS THE issues of natural resource depletion and en- vironmental impacts

  7. PEV Infrastructure Needs UC Davis Policy Institute

    E-Print Network [OSTI]

    California at Davis, University of

    ,000 sales in 2012, ramp up to 20,000/yr in 2013 2012 Honda Fit EV 2012 Tesla Model S Infrastructure needs vary PEVs Available in 2012 Increasing Battery size, PHEV - BEV #12;5 PEV Charging Infrastructure · Tesla · Toyota Regional Government · CAPCOA, Sonoma · BAAQMD · SCAQMD Utilities · LADWP · PG&E · SCE

  8. Environmental Technology Vol. 30, No. 6, May 2009, 621627

    E-Print Network [OSTI]

    Environmental Technology Vol. 30, No. 6, May 2009, 621­627 ISSN 0959-3330 print/ISSN 1479-487X,b , Toshihiro Hattorib and Marc A. Deshussesa,c * a Department of Chemical and Environmental Engineering, Toyota City, Aichi, Japan; c Department of Civil and Environmental Engineering, Box 90287, Duke

  9. Software Quality, Dependability and Safety in Embedded Systems (Invited Talk)

    E-Print Network [OSTI]

    Koopman, Philip

    over the throttle position as well as fuel and spark. There are practical scenarios in which a fully of millions of deployed vehicles. While there are dual redundant analog signals from the accel- erator pedal, they do not form a proper dual path system. While Toyota did have some coding rules, developers did

  10. Atmos. Chem. Phys., 6, 53395346, 2006 www.atmos-chem-phys.net/6/5339/2006/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    - ning FTP-75 and typical driving cycles for the Mexico City Metropolitan Area (MCMA) on a Toyota Prius in car technology to en- ter the market is the gas-electric hybrid car. It has become a realistic way: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car

  11. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percent 2003 Toyota Camry 17.24 18.51 1.26 7% 2007 Buick Lucerne 13.77 15.45 1.68 11% 2006 Dodge Charger 10.23 10.84 0.61 6% * Wide-open throttle. Source: Kevin Norman,...

  12. Nature or nurture of coplanar Tatooines: the aligned circumbinary Kuiper belt analogue around HD 131511

    E-Print Network [OSTI]

    Kennedy, Grant M.

    2014-12-18

    F. C., Hall D. S., 1995, AJ, 110, 2926 Jancart S., Jorissen A., Babusiaux C., Pourbaix D., 2005, A&A, 442, 365 Kamper K. W., Lyons R. W., 1981, J. R. Astron. Soc. Can., 75, 56 Katoh N., Itoh Y., Toyota E., Sato B., 2013, AJ, 145, 41 Kennedy G. M. et...

  13. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity fall by at least a factor of two, or gasoline prices double, the present value of fuel savings companies now offer to convert HEVs (such as the Toyota Prius and Ford Escape models) into PHEVs and plan

  14. KaushikRajashekara TheUniversityofTexasatDallas

    E-Print Network [OSTI]

    California at Davis, University of

    of a EV Power-train 13 14 #12;15 Vehicle range per battery charge under various driving conditions Fuel/DOETargets Batteries ElectricMachines PowerElectronics Futurepowertrains Conclusions 2 #12;GeneralMotorsEV1 * Engine: 1.3 liter, 4 cylinder * Battery: 100.8V DC (NiMH battery), 5.75 Ah * Motor/Generator: 13 KW @1500

  15. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  16. Recycling of Advanced Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  17. 8CEN.ACS.ORG APRIL 20, 2015 COVER STORY

    E-Print Network [OSTI]

    .Filter,the"dudeofbrews"atRenegadeBrewingCo.,sportsa gnarlybrownbeardanddrivesadustyblackToyota4Runner. Villa's SandLot brewery sits just past right field in the 50,000-seat Coors Field a velvety imperial stout inside his brewery, surrounded by palettes of empty cans. "Yeast make the beer," he millions of years, chemists and craft brewers congregated a few miles north of the brewery at the ACS

  18. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  19. Held Hostage: America and Its Allies Confront OPEC, 1973 - 1981 

    E-Print Network [OSTI]

    Barr, Kathleen

    2012-07-16

    , Honda, and Toyota forced American companies to make cars that could contend with the high gas mileage of the imports. American Motors Corporation bought the exclusive rights to a new two- liter engine from the German company Volkswagen to be installed... with the first Earth Day, and by 1976 ecologists in the United States, Western Europe, and Japan were making their voices heard about issues like the building of the Alaska pipeline and the development of nuclear power. It was within this framework...

  20. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.; Mathur, Raj N.; Sangid, Michael D.; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-02-19

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussed to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.

  1. (Fuel Cells)(Fuel Cells) William Grove

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    Fuel Cell #12; H2 O2 Power CH4 H2 Toyota H2 H2 #12; H2 ~253 #12; 2. 3. : 1. #12; #12;Fuel Cell #12; (Fuel Cells)(Fuel Cells) 1839 William Grove A H2O2 H2O2 2H; Fuel Cell #12;!! PEMFC DMFC SOFC (60~200) (60~100) (600~1000) #12; Proton

  2. Method Of Charging Maintenance-Free Nickel Metal Hydride Storage Cells

    DOE Patents [OSTI]

    Berlureau, Thierry (Bordeaux, FR); Liska, Jean-Louis (Bordeaux, FR)

    1999-11-16

    A method of charging an industrial maintenance-free Ni-MH storage cell, the method comprising in combination a first stage at a constant current I.sub.1 lying in the range I.sub.c /10 to I.sub.c /2, and a second stage at a constant current I.sub.2 lying in the range I.sub.c /50 to I.sub.c /10, the changeover from the first stage to the second stage taking place when the time derivative of the temperature reaches a threshold value which varies as a function of the temperature at the time of the changeover.

  3. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  4. CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl; Schmidt, Frederick; Frerichs, A.E.; Ament, Katherine A.

    2013-05-01

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  5. Effect of Side Permanent Magnets for Reluctance Interior Permanent Magnet Reluctance Machines

    SciTech Connect (OSTI)

    Hsu, John S; Lee, Seong T; Wiles, Randy H; Coomer, Chester; Lowe, Kirk T

    2007-01-01

    A traditional electric machine uses two dimensional magnetic flux paths in its rotor. This paper presents the development work on the utilization of the third dimension of a rotor. As an example, the air gap flux of a radial gap interior permanent magnet motor can be significantly enhanced by additional permanent magnets (PM) mounted at the sides of the rotor. A prototype motor built with this concept provided higher efficiency and required a shorter stator core length for the same power output as the Toyota/Prius traction drive motor.

  6. Demand Response Initiatives at CPS Energy 

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01

    stream_source_info ESL-KT-13-12-53.pdf.txt stream_content_type text/plain stream_size 4780 Content-Encoding UTF-8 stream_name ESL-KT-13-12-53.pdf.txt Content-Type text/plain; charset=UTF-8 Demand Response Initiatives... and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168,572 ESL-KT-13-12-53 CATEE 2013...

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThree Foundry ScientistsBright4 Toyota's Battery

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThree Foundry ScientistsBright4 Toyota's

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThree Foundry ScientistsBright4 Toyota'sShaping the

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThree Foundry ScientistsBright4 Toyota'sShaping

  11. NREL: Energy Systems Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial AnalysisPartnerships WatchToyota One

  12. NREL: Energy Systems Integration - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial AnalysisPartnerships WatchToyota

  13. NREL: Energy Systems Integration Facility - Increasing the Value of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial AnalysisPartnerships WatchToyotaMicrogrids

  14. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota Prius being

  15. NREL: Water Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota Prius

  16. NREL: Wind Research - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota PriusAwards

  17. NREL: Wind Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota

  18. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver ToyotaFacilities

  19. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  20. JV Task 112-Optimal Ethanol Blend-Level Investigation

    SciTech Connect (OSTI)

    Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

    2008-01-31

    Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

  1. Key results of battery performance and life tests at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1991-01-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R D programs, compare battery technologies, and provide basic data for modeling and continuing R D to battery users, developers, and program managers.

  2. Key results of battery performance and life tests at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1991-12-31

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory`s & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  3. Introduction to energy storage with market analysis and outlook

    SciTech Connect (OSTI)

    Schmid, Robert; Pillot, Christophe

    2014-06-16

    At first, the rechargeable battery market in 2012 will be described by technology - lead acid, NiCd, NiMH, lithium ion - and application - portable electronics, power tools, e-bikes, automotive, energy storage. This will be followed by details of the lithium ion battery market value chain from the raw material to the final application. The lithium ion battery market of 2012 will be analyzed and split by applications, form factors and suppliers. There is also a focus on the cathode, anode, electrolyte and separator market included. This report will also give a forecast for the main trends and the market in 2020, 2025. To conclude, a forecast for the rechargeable battery market by application for 2025 will be presented. Since energy storage plays an important role for the growing Electric Vehicle (EV) market, this EV issue is closely considered throughout this analysis.

  4. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Wang, Jin; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-08-15

    This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66 (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to support part molding. 12) Toyota and Magna discussed with PNNL on tool modification for molding the complex part. Toyota sent the CAD files of the complex part to PNNL to build ASMI models of the part for mold filling analysis to provide guidance to tooling and part molding.

  5. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C; Miller, John M; Campbell, Steven L; Coomer, Chester; White, Cliff P; Seiber, Larry Eugene

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  6. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Vlahinos, A.; Kim, G.-H.

    2005-01-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid vehicles. Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry. To illustrate the process, we simulated the thermal performance of two generations of Panasonic prismatic nickel-metal-hydride modules used in the Toyota Prius. The model showed why the new generation of Panasonic modules had better thermal performance. Thermal images from two battery modules under constant current discharge indicate that the model predicts the experimental trend reasonably well.

  7. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  8. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  9. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  10. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  11. Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonger, J.

    2014-01-01

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

  12. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Second FY 2015 Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Kijewski, Seth A.; Sangid, Michael D.; Wang, Jin; Costa, Franco; Tucker, III, Charles L.; Mathur, Raj N.; Gandhi, Umesh N.; Mori, Steven

    2015-05-19

    During the second quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk reviewed 3D fiber orientation distribution (FOD) comparisons and provided support on improving accuracy. 2) Autodesk reviewed fiber length distribution (FLD) data comparisons and provided suggestions, assisted PNNL in FOD and FLD parameter settings optimization, and advised PNNL on appropriate through thickness thermal conductivity for improved frozen layer effect on FOD predictions. Autodesk also participated in project review meetings including preparations and discussions towards passing the go/no-go decision point. 3) Autodesk implemented an improved FOD inlet profile specification method through the part thickness for 3D meshes and provided an updated ASMI research version to PNNL. 4) The University of Illinois (Prof. C.L. Tucker) provided Autodesk with ideas to improve fiber orientation modeling 5) Purdue University re-measured fiber orientation for the fast-fill 50wt% LCF/PA66 edge-gated plaque, and delivered the fiber orientation data for this plaque at the selected locations (named A, B, and C, Figure 1) to PNNL. Purdue also re-measured fiber orientation for locations A on the fast-fill 30wt% LCF/PP and 50wt% LCF/PA66 center-gated plaques, which exhibited anomalous fiber orientation behavior. 6) Purdue University conducted fiber length measurements and delivered the length data to PNNL for the purge materials (slow-fill 30wt% LCF/PP and 30wt% LCF/PA66 purge materials) and PlastiComp plaques selected on the go/no-go list for fiber length model validation (i.e., slow-fill edge-gated 30wt% LCF/PP and 30wt% LCF/PA66 plaques, Locations A, B, and C). 7) PNNL developed a method to recover intact carbon fibers from LCF/PA66 materials. Isolated fibers were shipped to Purdue for length distribution analysis. 8) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber orientation (FO) model validation and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 9) PNNL completed ASMI mid-plane analyses for all the PlastiComp plaques defined on the go/no-go list for fiber length distribution (FLD) model validation and compared the predicted length distributions with the measured data provided by Purdue at Locations A, B, and C on these plaques. The 15% accuracy criterion based on evaluation of tensile and bending stiffness was used to assess the accuracy in fiber orientation predictions. 10) PNNL tested the new ASMI version received from Autodesk in March 2015, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 11) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corporation (Magna) participated in discussions with team members on the go/no-go plan. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.

  13. Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report

    SciTech Connect (OSTI)

    Jelen, Deborah; Odom, Sara

    2015-04-30

    Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requested were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratory’s National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring America’s security and prosperity by documenting progress in addressing energy and environmental challenges. Information from this project will be used by the hydrogen and vehicle industries to help advance the introduction of FCEVs and associated hydrogen infrastructure.

  14. Sustaining knowledge in the neutron generator community and benchmarking study. Phase II.

    SciTech Connect (OSTI)

    Huff, Tameka B.; Stubblefield, William Anthony; Cole, Benjamin Holland, II; Baldonado, Esther

    2010-08-01

    This report documents the second phase of work under the Sustainable Knowledge Management (SKM) project for the Neutron Generator organization at Sandia National Laboratories. Previous work under this project is documented in SAND2008-1777, Sustaining Knowledge in the Neutron Generator Community and Benchmarking Study. Knowledge management (KM) systems are necessary to preserve critical knowledge within organizations. A successful KM program should focus on people and the process for sharing, capturing, and applying knowledge. The Neutron Generator organization is developing KM systems to ensure knowledge is not lost. A benchmarking study involving site visits to outside industry plus additional resource research was conducted during this phase of the SKM project. The findings presented in this report are recommendations for making an SKM program successful. The recommendations are activities that promote sharing, capturing, and applying knowledge. The benchmarking effort, including the site visits to Toyota and Halliburton, provided valuable information on how the SEA KM team could incorporate a KM solution for not just the neutron generators (NG) community but the entire laboratory. The laboratory needs a KM program that allows members of the workforce to access, share, analyze, manage, and apply knowledge. KM activities, such as communities of practice (COP) and sharing best practices, provide a solution towards creating an enabling environment for KM. As more and more people leave organizations through retirement and job transfer, the need to preserve knowledge is essential. Creating an environment for the effective use of knowledge is vital to achieving the laboratory's mission.

  15. (Tribology conferences and forums)

    SciTech Connect (OSTI)

    Yust, C.S.

    1990-11-30

    The principal meeting attended during this trip was the Japan International Tribology Conference Nagoya 1990. The conference encompassed a wide range of topics, including the tribology of ceramics, the tribology in high-performance automobiles, and many aspects of lubrication technology. Associated forums were also held on the tribology of advanced ceramics, on solid lubrication, and on automotive lubricants. Presentations made during the latter forum discussed anticipated trends in engine development and anticipated improvements in lubricants required for the next generation of engines. In addition to meetings, site visits were made to five industrial organizations to discuss ceramic tribology. Nippon Steel Corporation and Toshiba Corporation are both very active in the ceramic area, Nippon Steel from their interest in research on new materials and Toshiba from both an interest in new materials and in support of their work in electronic devices. Two engine manufacturers were also visited, Toyota Motor Corporation, and Nissan Motor Co., Ltd. These companies were somewhat reserved in their discussion of progress in the utilization of ceramics in automobile engines.

  16. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  17. Predictive engineering tools for injection-molded long-carbon-fiber thermoplastic composites - FY 2015 third quarterly report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Mori, Steven; Gandhi, Umesh N.; Wang, Jin; Costa, Franco; Wollan, Eric J.; Tucker, III, Charles L.

    2015-07-01

    During the third quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Magna oversaw the tool build and prepared the molding plan for the complex part of Phase II. 2) PlastiComp hosted a visit by Magna and Toyota on April 23rd to finalize the molding scope and schedule. The plan for molding trials including selection of molding parameters for both LFT and D-LFT for the U-shape complex part was established. 3) Toyota shipped the U-shape complex part tool to Magna on May 28th, 2015. 4) Plasticomp provided 30wt% LCF/PP and 30wt% LCF/PA66 compounded pellets to Magna for molding the complex part. 5) Magna performed preliminary molding trials on June 2nd, 2015 to validate wall thickness, fill profile, tool temperature and shot size requirements for the complex part. 6) Magna performed the first complex part run on June 16th and 17th, 2015 at Magna’s Composite Centre of Excellence in Concord, ON, Canada. Dale Roland of Plasticomp, and Umesh Gandhi of Toyota also attended the molding. 7) Magna discussed and finalized the plan with PNNL and the team for cutting samples from molded parts at selected locations for fiber orientation and length measurements. 8) Magna provided the computer-aided design (CAD) files of the complex parts with and without ribs to PNNL and Autodesk to build the corresponding ASMI models for injection molding simulations. Magna also provided the actual parameters used. 9) Plasticomp’s provided knowledge and experience of molding LCF materials essential to the successful molding of the parts including optimization of fill speed, tool temperatures, and plasticizing conditions for the 30wt% LCF/PP and 30wt% LCF/PA66 materials in both rib and non-rib versions. 10) Magna molded additional parts for evaluation of mechanical property testing including torsional stiffness on June 29th and 30th, 2015 at Magna’s Composite Center of Excellence. 11) Toyota began preparation for the torsion test of the specimens. Preparation of a computer-aided engineering (CAE) model to predict the performance is in progress. 12) Autodesk fixed an error in the implementation of the proper orthogonal decomposition (POD) calculation of fiber length that had caused the ASMI solution to crash and provided an updated build of ASMI containing the fix. 13)Autodesk reviewed and provided feedback for the complex part molding and measurement locations. 14) Autodesk provided support to set up the workflow for ASMI-ABAQUS® analysis, and provided a fix and workaround for a bug in the ASMI-ABAQUS® output command. 15) Autodesk helped build ASMI analysis models for the complex parts with and without ribs. 16) Autodesk worked on improving the orientation prediction accuracy in the shearing layer for 3D meshes based on comparison to measured data of the plaque moldings. 17) PNNL installed a new ASMI version received from Autodesk and performed comparative analyses to assess mid-plane versus 3D fiber length predictions using the full fiber length model and the reduced-order model (ROM) using POD. 18) PNNL presented the project scope, accomplishments, significant results and future plans to DOE and the USCAR Materials Tech Team on June 3rd, 2015. 19) PNNL discussed the cutting of samples from molded parts and finalized a plan with Magna and the team suggesting the sample size, locations and number of samples per location. 20) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, and preliminary analyses of the part with ribs were conducted using the actual molding parameters received from Magna. 21) PNNL worked on a procedure to extract fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS model. This procedure is essential to import ASMI fiber orientation and length to a 3D ABAQUS model of the part allowing future part structural analysis for weight reduction study.

  18. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    SciTech Connect (OSTI)

    Gang Li

    2003-12-12

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

  19. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    SciTech Connect (OSTI)

    Lamichhane, Ranjan [University of Arkansas; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; BRITTONJr., CHARLES L. [Oak Ridge National Laboratory (ORNL); Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas; Podar, Mircea [ORNL; Perez, M [University of Arkansas; Mcnutt, Tyler [APEI, Inc.; Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz to 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.

  20. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

  1. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  2. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  3. Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.

    SciTech Connect (OSTI)

    NONE

    2004-05-27

    Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

  4. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  5. Close Look at Hybrid Vehicle Loyalty and Ownership

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Chin, Shih-Miao; Wilson, Daniel W; Oliveira Neto, Francisco Moraes; Taylor, Rob D

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk initially released their findings. In this brief review, the team has looked at factors that might contribute to a consumer choosing to not purchase a hybrid; including the increase in manufacture s overall vehicle mpg and the percentage of the vehicle market owned by hybrids.

  6. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon) -- and electrochemical double-layer capacitors.

  7. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

  8. Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives

    SciTech Connect (OSTI)

    Bailey, J.M.

    2005-10-24

    High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

  9. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    SciTech Connect (OSTI)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

  10. The California greenhouse gas initiative and its implications to the automotive industry

    SciTech Connect (OSTI)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering

  11. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.