Powered by Deep Web Technologies
Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Toyota_RAV4.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1999 Inductive version tested. 1999 Inductive version tested. Test Date: June 1999 / Revised: 10/07/99 1999 TOYOTA RAV4-EV* (NIMH BATTERIES) PERFORMANCE CHARACTERIZATION SUMMARY ELECTRIC TRANSPORTATION DIVISION Urban Range (On Urban Pomona Loop - see other side for map) Payload (lb) 92.8 89.5 84.8 Range Without Aux. loads With Aux. loads Maximum 760 Minimum 160 UR1 UR2 UR3 UR4 68.9 Test UR1 UR2 UR3 UR4 Payload (lb.) 160 160 766 766 AC kWh Recharge 31.80 33.96 32.72 32.22 AC kWh/mi. 0.329 0.394 0.360 0.434 Range (mi.) 92.8 84.8 89.5 68.9 Avg. Ambient Temp. 68.5°F 75.3°F 80.0°F 87.0°F Note: A/C fluctuating and may have impacted A/C tests. UR1 Urban Range Test, Min Payload, No Auxiliary Loads UR2 Urban Range Test, Min Payload, A/C on High, Headlights on Low, Radio On UR3 Urban Range Test, Max Payload, No Auxiliary Loads UR4

2

Toyota RAV 4 Inductive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PERFORMANCE CHARACTERIZATION PERFORMANCE CHARACTERIZATION 2000 NISSAN ALTRA EV Shin-Kobe Li-Ion Battery ELECTRIC TRANSPORTATION DIVISION Ricardo Solares Juan Argueta June 2000 2 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, PRODUCT, PROCESS OR PROCEDURE DISCUSSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II)

3

RAV4_24551_Report_DOE_Final_.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOYOTA RAV4 EV - CONDUCTIVE TOYOTA RAV4 EV - CONDUCTIVE Panasonic NiMH Battery ELECTRIC TRANSPORTATION DIVISION Report prepared by: Alvaro Mendoza Juan Argueta January 2000 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, PRODUCT, PROCESS OR PROCEDURE DISCUSSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE UPON OR INTERFERE WITH RIGHTS OF OTHERS, INCLUDING

4

RAV4 Fleet Report-Final Version.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-00866 0-00866 June 2000 Field Operations Program Toyota RAV4 (NiMH) Fleet Evaluation Final Report J. Francfort B. Sanchez J. Argueta J. Phung M. Wehrey INEEL/EXT-2000-00866 Field Operations Program Toyota RAV4 (NiMH) Fleet Evaluation Final Report J. Francfort 1 B. Sanchez 2 J. Argueta 2 J. Phung 2 M. Wehrey 2 Published June 2000 Idaho National Engineering and Environmental Laboratory Automotive Systems and Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office Contract No. DE-AC07-99ID13727 1 INEEL/Bechtel BWXT Idaho, LLC. 2 Southern California Edison 1 EXECUTIVE SUMMARY The U.S. Department of Energy's Field Operations Program evaluates electric and

5

Toyota | Open Energy Information  

Open Energy Info (EERE)

Toyota Toyota Jump to: navigation, search Name Toyota Address 19001 S. Western Ave. Place Torrance, California Zip 90509 Website http://www.toyota.com Coordinates 33.8585466°, -118.3090046° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8585466,"lon":-118.3090046,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Meeting the New CARB ZEV Mandate Requirements: Grid-Connected Hybrids and City EVs  

E-Print Network [OSTI]

EV designed to meet range and performance requirements SalesEV Energy Powercell Corporation Southern Cahforma Edtson Subaru Superfarad Svenska, AB Toyota Motor Sales

Burke, Andrew

2001-01-01T23:59:59.000Z

7

Gas Mileage of 2013 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Toyota Vehicles 3 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2013 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2013 Toyota 4Runner 2WD 17 City 19 Combined 22 Highway 2013 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2013 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 18 Combined 21 Highway 2013 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2013 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 18 Combined 21 Highway 2013 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6), Regular Gasoline Compare 2013 Toyota Avalon 21 City 24 Combined 31 Highway 2013 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6), Regular Gasoline Compare 2013 Toyota Avalon 21 City 25 Combined 31

8

Gas Mileage of 2002 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Toyota Vehicles 2 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2002 Toyota 4Runner 2WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 18 Highway 2002 Toyota 4Runner 4WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 18 Highway 2002 Toyota Avalon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota Avalon View MPG Estimates Shared By Vehicle Owners 19 City 22 Combined 27 Highway 2002 Toyota Camry 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 2002 Toyota Camry View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2002 Toyota Camry 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline

9

CNG Goes Mainstream  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goes Mainstream Goes Mainstream JOHN DAVIS: Time now for Motor News. So, let's head inside to Yolanda Vazquez for what's new this week. VOLANDA VAZQUEZ: Big news on the EV front with a new all-electric SUV from Toyota. The Japanese automaker unveiled the production version of the 2012 Rav 4 EV at the EVS26 symposium in Los Angeles. It was jointly developed with electric car pioneer Tesla Motors who supplied the battery pack and drive system. Like other current EV's, this Rav 4 has a range of about 100 miles, but with more versatility. Toyota expects a price of nearly $50,000 will likely limit sales to about 2,600 Rav4 EV's over the next 3 years. Rising gasoline prices are also renewing interest in another alt-fuel, compressed natural gas. From taxis to refuse and delivery trucks, more and more fleets are

10

Gas Mileage of 1996 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Toyota Vehicles 6 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1996 Toyota 4Runner 2WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 1996 Toyota 4Runner 2WD 18 City 20 Combined 22 Highway 1996 Toyota 4Runner 2WD 4 cyl, 2.7 L, Manual 5-spd, Regular Gasoline Compare 1996 Toyota 4Runner 2WD 18 City 20 Combined 23 Highway 1996 Toyota 4Runner 2WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1996 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 17 Combined 20 Highway 1996 Toyota 4Runner 4WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 1996 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 1996 Toyota 4Runner 4WD 4 cyl, 2.7 L, Manual 5-spd, Regular Gasoline Compare 1996 Toyota 4Runner 4WD 15 City 17 Combined 20 Highway 1996 Toyota 4Runner 4WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline

11

Gas Mileage of 2014 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Toyota Vehicles 4 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2014 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2014 Toyota 4Runner 2WD 17 City 19 Combined 22 Highway 2014 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2014 Toyota 4Runner 4WD 17 City 18 Combined 21 Highway 2014 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2014 Toyota 4Runner 4WD 17 City 18 Combined 21 Highway 2014 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6), Regular Gasoline Compare 2014 Toyota Avalon 21 City 25 Combined 31 Highway 2014 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6), Regular Gasoline Compare 2014 Toyota Avalon 21 City 24 Combined 31 Highway 2014 Toyota Avalon Hybrid 4 cyl, 2.5 L, Auto(AV-S6), Regular Gasoline

12

Gas Mileage of 1984 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Toyota Vehicles 4 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1984 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1984 Toyota 4Runner 4WD 16 City 17 Combined 19 Highway 1984 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1984 Toyota 4Runner 4WD 16 City 17 Combined 19 Highway 1984 Toyota Cab Chassis 2WD 4 cyl, 2.4 L, Manual 4-spd, Regular Gasoline Compare 1984 Toyota Cab Chassis 2WD 15 City 15 Combined 15 Highway 1984 Toyota Cab Chassis 2WD 4 cyl, 2.4 L, Manual 4-spd, Regular Gasoline Compare 1984 Toyota Cab Chassis 2WD 15 City 15 Combined 15 Highway 1984 Toyota Camry 4 cyl, 1.8 L, Manual 5-spd, Diesel Compare 1984 Toyota Camry 29 City 32 Combined 37 Highway 1984 Toyota Camry 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline

13

Gas Mileage of 1985 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Toyota Vehicles 5 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1985 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1985 Toyota 1-Ton Truck 2WD 20 City 21 Combined 23 Highway 1985 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1985 Toyota 1-Ton Truck 2WD 19 City 21 Combined 24 Highway 1985 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1985 Toyota 4Runner 4WD 18 City 19 Combined 20 Highway 1985 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1985 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 23 Highway 1985 Toyota Cab Chassis 2WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1985 Toyota Cab Chassis 2WD View MPG Estimates Shared By Vehicle Owners

14

Gas Mileage of 1990 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

90 Toyota Vehicles 90 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1990 Toyota 1-Ton Truck 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Toyota 1-Ton Truck 2WD 16 City 19 Combined 22 Highway 1990 Toyota 1-Ton Truck 2WD 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1990 Toyota 1-Ton Truck 2WD 17 City 19 Combined 22 Highway 1990 Toyota 4Runner 2WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1990 Toyota 4Runner 2WD 17 City 18 Combined 19 Highway 1990 Toyota 4Runner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 19 Highway 1990 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1990 Toyota 4Runner 4WD 15 City 16 Combined 18

15

Gas Mileage of 2010 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Toyota Vehicles 0 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2010 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2010 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2010 Toyota 4Runner 2WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 2010 Toyota 4Runner 2WD 18 City 20 Combined 23 Highway 2010 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2010 Toyota 4Runner 4WD 17 City 19 Combined 22 Highway 2010 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2010 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2010 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6), Regular Gasoline Compare 2010 Toyota Avalon View MPG Estimates Shared By Vehicle Owners

16

Gas Mileage of 1989 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

89 Toyota Vehicles 89 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1989 Toyota 1-Ton Truck 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Toyota 1-Ton Truck 2WD 17 City 19 Combined 23 Highway 1989 Toyota 1-Ton Truck 2WD 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1989 Toyota 1-Ton Truck 2WD 17 City 19 Combined 22 Highway 1989 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1989 Toyota 4Runner 4WD 16 City 17 Combined 18 Highway 1989 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1989 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 18 Combined 20 Highway 1989 Toyota 4Runner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Toyota 4Runner 4WD 14 City 15 Combined 17

17

Gas Mileage of 2011 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Toyota Vehicles 1 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2011 Toyota 4Runner 2WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 2011 Toyota 4Runner 2WD 18 City 19 Combined 21 Highway 2011 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2011 Toyota 4Runner 2WD 17 City 19 Combined 23 Highway 2011 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2011 Toyota 4Runner 4WD 17 City 19 Combined 22 Highway 2011 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic (S5), Regular Gasoline Compare 2011 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2011 Toyota Avalon 6 cyl, 3.5 L, Automatic (S6), Regular Gasoline Compare 2011 Toyota Avalon View MPG Estimates Shared By Vehicle Owners 20 City

18

Gas Mileage of 1987 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Toyota Vehicles 7 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1987 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1987 Toyota 1-Ton Truck 2WD 20 City 21 Combined 23 Highway 1987 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1987 Toyota 1-Ton Truck 2WD 21 City 23 Combined 26 Highway 1987 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1987 Toyota 4Runner 4WD 15 City 16 Combined 17 Highway 1987 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1987 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 1987 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1987 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 18 City 19 Combined 22 Highway

19

Gas Mileage of 1986 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Toyota Vehicles 6 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1986 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1986 Toyota 1-Ton Truck 2WD 20 City 21 Combined 23 Highway 1986 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1986 Toyota 1-Ton Truck 2WD 21 City 23 Combined 26 Highway 1986 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1986 Toyota 4Runner 4WD 15 City 16 Combined 17 Highway 1986 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1986 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 1986 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1986 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 18 City 19 Combined 22 Highway

20

Gas Mileage of 1993 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Toyota Vehicles 3 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1993 Toyota 4Runner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Toyota 4Runner 2WD 15 City 17 Combined 19 Highway 1993 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1993 Toyota 4Runner 4WD 16 City 17 Combined 18 Highway 1993 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1993 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 1993 Toyota 4Runner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 12 City 13 Combined 15 Highway 1993 Toyota 4Runner 4WD 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1993 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas Mileage of 1988 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Toyota Vehicles 8 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1988 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1988 Toyota 1-Ton Truck 2WD 19 City 20 Combined 22 Highway 1988 Toyota 1-Ton Truck 2WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1988 Toyota 1-Ton Truck 2WD 17 City 18 Combined 20 Highway 1988 Toyota 4Runner 4WD 4 cyl, 2.4 L, Automatic 4-spd, Regular Gasoline Compare 1988 Toyota 4Runner 4WD 15 City 16 Combined 17 Highway 1988 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1988 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 20 Highway 1988 Toyota 4Runner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1988 Toyota 4Runner 4WD 14 City 15 Combined 17 Highway

22

Gas Mileage of 2007 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Toyota Vehicles 7 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2007 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2007 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 21 Highway 2007 Toyota 4Runner 2WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2007 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 19 Highway 2007 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2007 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 16 City 17 Combined 20 Highway 2007 Toyota 4Runner 4WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2007 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 2007 Toyota Avalon 6 cyl, 3.5 L, Automatic (S5), Regular Gasoline

23

Gas Mileage of 2006 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Toyota Vehicles 6 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2006 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2006 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 20 Highway 2006 Toyota 4Runner 2WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2006 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 18 Highway 2006 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2006 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 19 Highway 2006 Toyota 4Runner 4WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2006 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 2006 Toyota Avalon 6 cyl, 3.5 L, Automatic (S5), Regular Gasoline

24

Gas Mileage of 1995 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Toyota Vehicles 5 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1995 Toyota 4Runner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 19 Highway 1995 Toyota 4Runner 4WD 4 cyl, 2.4 L, Manual 5-spd, Regular Gasoline Compare 1995 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 1995 Toyota 4Runner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 12 City 13 Combined 15 Highway 1995 Toyota 4Runner 4WD 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1995 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 13 City 14 Combined 16 Highway 1995 Toyota Avalon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

25

Gas Mileage of 2000 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Toyota Vehicles 0 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2000 Toyota 4Runner 2WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 2000 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2000 Toyota 4Runner 2WD 4 cyl, 2.7 L, Manual 5-spd, Regular Gasoline Compare 2000 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 21 Highway 2000 Toyota 4Runner 2WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 2000 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 17 Combined 19 Highway 2000 Toyota 4Runner 4WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 2000 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 2000 Toyota 4Runner 4WD 4 cyl, 2.7 L, Manual 5-spd, Regular Gasoline

26

Gas Mileage of 2004 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Toyota Vehicles 4 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2004 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 2004 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 20 Highway 2004 Toyota 4Runner 2WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2004 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 18 Highway 2004 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 2004 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 19 Highway 2004 Toyota 4Runner 4WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2004 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 17 Highway 2004 Toyota Avalon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

27

Gas Mileage of 1998 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Toyota Vehicles 8 Toyota Vehicles EPA MPG MODEL City Comb Hwy 1998 Toyota 4Runner 2WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 1998 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 18 City 19 Combined 22 Highway 1998 Toyota 4Runner 2WD 4 cyl, 2.7 L, Manual 5-spd, Regular Gasoline Compare 1998 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 1998 Toyota 4Runner 2WD 6 cyl, 3.4 L, Automatic 4-spd, Regular Gasoline Compare 1998 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 17 Combined 19 Highway 1998 Toyota 4Runner 4WD 4 cyl, 2.7 L, Automatic 4-spd, Regular Gasoline Compare 1998 Toyota 4Runner 4WD 17 City 18 Combined 20 Highway 1998 Toyota 4Runner 4WD 4 cyl, 2.7 L, Manual 5-spd, Regular Gasoline

28

Gas Mileage of 2005 Vehicles by Toyota  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Toyota Vehicles 5 Toyota Vehicles EPA MPG MODEL City Comb Hwy 2005 Toyota 4Runner 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2005 Toyota 4Runner 2WD View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 20 Highway 2005 Toyota 4Runner 2WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2005 Toyota 4Runner 2WD 15 City 16 Combined 18 Highway 2005 Toyota 4Runner 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2005 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 19 Highway 2005 Toyota 4Runner 4WD 8 cyl, 4.7 L, Automatic 5-spd, Regular Gasoline Compare 2005 Toyota 4Runner 4WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 2005 Toyota Avalon 6 cyl, 3.5 L, Automatic (S5), Regular Gasoline

29

AVTA: Toyota Prius Gen III HEV 2010 Testing Results | Department...  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius Gen III HEV 2010 Testing Results AVTA: Toyota Prius Gen III HEV 2010 Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out...

30

2014 Best and Worst MPG Trucks, Vans and SUVs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

31

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2013 Toyota Prius  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toyota Prius Plug-In Hybrid Toyota Prius Plug-In Hybrid 2013 Toyota Prius front view 2013 Toyota Prius rear view Front View - 2013 Toyota Prius Rear View - 2013 Toyota Prius The model year 2013 Toyota Prius PHV is the first production iteration of Toyota's hybrid system to be produced as a plug in electric vehicle, with a 4.4kWh lithium-ion battery. This vehicle includes a 1.8L Atkinson-cycle engine, two electric machines (one motor, one generator) with a power-split device used to control the blended allocation of energy between the two power paths. The 2013 Toyota Prius PHV was evaluated as part of the Advanced Vehicles Technology Evaluation (AVTE) under the funding and guidance of the U.S. Department of Energy (DOE). Key Technology Third generation power-split configuration with plug-in capability

32

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2012 Toyota Prius  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Toyota Prius 2 Toyota Prius 2012 Toyota Prius front view 2012 Toyota Prius rear view Front View - 2012 Toyota Prius Rear View - 2012 Toyota Prius The MY2012 Toyota Prius PHV is the first production iteration of Toyota's hybrid system to be produced as a plug in electric vehicle, with a 4.4kWh lithium-ion battery. This vehicle includes a 1.8L Atkinson-cycle engine, two electric machines (one motor, one generator) with a power-split device used to control the blended allocation of energy between the two power paths. Key Technology Third generation power-split configuration with plug-in capability 60kW Drive Motor 73kW 1.8L Atkinson cycle engine 207V, 4.4kWh Li-ion Battery Report Testing Summary, 20° F ambient temperature (pdf) Testing Summary, 72° F ambient temperature (pdf)

33

New York: EERE-Funded Project Used on Toyota Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE funding directly resulted in a commercial product now being manufactured with plans to be used in Toyota vehicles.

34

AVTA: Toyota Prius PHEV 2013 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2013_toyota_prius_phev.html). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

35

EV-13  

Office of Legacy Management (LM)

?a71 2.z' 1. lg EV-13 Notification of Xced for So?e Form of Reoedial Action, in Ikyo Ca;op., Los Alanos, New Mexico s. lkycrs, HEI-90 4 EVIXT has dctcrnincd that portions of...

36

EVS24  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 6 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS26 Los Angeles, California, May 6-9, 2012 A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in The EV Project Stephen Schey 1 , Don Scoffield 2 , John Smart 2 1 ECOtality North America, 430 S. 2nd Ave., Phoenix, AZ 85003, sschey@ecotality.com 2 Idaho National Laboratory, 2351 .N Boulevard, Idaho Falls, ID 83415, don.scoffield@inl.gov, john.smart@inl.gov Abstract ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over

37

Watch Energy Secretary Moniz Test Drive the Toyota Mirai  

Broader source: Energy.gov [DOE]

The Energy Department posted a video of ?Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

38

Report on Toyota Prius Motor Thermal Management  

SciTech Connect (OSTI)

In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

Hsu, J.S.

2005-02-11T23:59:59.000Z

39

HEV Fleet Testing - Summary Fact Sheet 2010 Toyota Prius  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius VIN JTDKN3DU2A5010462 Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 885 lbs Features:...

40

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

42

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 274...

43

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 259...

44

Development of Statistical Energy Analysis Tools for Toyota Motor Engineering & Manufacturing  

E-Print Network [OSTI]

Development of Statistical Energy Analysis Tools for Toyota Motor Engineering & Manufacturing Duke University | Bass Connections in Energy IETC | May 21, 2014 Jason Chen, Robert Collins, Gary Gao, Daniel Schaffer, Jill Wu ESL-IE-14...-05-06 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Presentation Agenda ? Project introduction and goals ? Duke teams energy consumption models ? Analysis of Toyotas current consumption model ? Duke vs...

Chen, J; Collins, Ro.; Gao, G.; Schaffer, D.; Wu, J.

2014-01-01T23:59:59.000Z

45

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

46

Utility Grid EV charging  

E-Print Network [OSTI]

Main Utility Grid EV charging PCC Batteries DC Load EV charging Flywheel Interlinking converter PV or large distance interconnected grids, to energy efficient applications in distribution system, energy storage systems and local loads as a local grid, is gaining more interests due to its potential

Chaudhary, Sanjay

47

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charging Infrastructure Charging Infrastructure Enabling Flexible EV Design July 30, 2012 Lee Slezak Technology Manager, Vehicle Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov Outline * Purpose - Establish Vision for Achieving EV Everywhere * Enable Strong Demand for EVs * Supply of Vehicles and Infrastructure * Current Status of Infrastructure and Vehicles * Desired Workshop Outputs * Approach - Design Candidate Infrastructure Strategies for 2022 10/12/2012 2 eere.energy.gov Achieving EV Everywhere - Enable Strong Demand for EVs 10/12/2012 3 EV Everywhere Consumer Acceptance EV Everywhere Consumer Acceptance Electric Vehicles * Safe * Cost Competitive * Utility meets consumer needs * Range

48

SunHydro to run 10 Toyota hybrid \\{FCVs\\} in Connecticut trial  

Science Journals Connector (OSTI)

Connecticut-based SunHydro has announced an agreement with Toyota Motor Sales USA (TMS) to place 10 Toyota Advanced Fuel Cell Hybrid Vehicles (FCHV-adv) in the Connecticut area this fall. The vehicles will refuel at the new SunHydro solar-powered hydrogen fueling station, located at Proton Energy Systems' headquarters in Wallingford. Proton Energy is a world leader in onsite hydrogen generation, and its equipment will be used at the SunHydro station.

2010-01-01T23:59:59.000Z

49

EV Guideline Assessment Templates  

Broader source: Energy.gov (indexed) [DOE]

EV Guideline Assessment Templates EV Guideline Assessment Templates |1. Process: Organization |2. Guideline No: 1|3. Contractor: |4.Contract/project(s): | ||||| ||||| |5. Guideline Statement: Define the authorized work elements for the program. A work breakdown structure (WBS), tailored for effective internal management control, is commonly used in this process. | || |6. Documentation Required: 1) CLINs 2) WBS 3) WBS Dictionary | || || || |7. Instructions: Why this is important: The WBS represents the entire scope of work in the project, a "picture" of the work. The first level is the total system, and it continues down in successively smaller elements until it reaches the level of detail necessary for management action and control. This picture of the work is needed to facilitate traceability, ensure the

50

EV Everywhere Framing Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EV Everywhere Framing Workshop EV Everywhere Framing Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S. Department of Energy Dearborn, Michigan June 21, 2012 2 | U.S. Department of Energy energy.gov Transportation sector depends on oil Transportation sector depends on oil Petroleum 94% Natural Gas < 1% Biofuels 5% U.S. Transportation Fuel Share Gasoline prices are high Current Avg. $3.53 (as of June 18)* High gasoline prices are a burden on American families. *Source: EIA 3 | U.S. Department of Energy energy.gov U.S. oil import bill is almost $1 billion per day U.S. oil import bill is almost $1 billion per day http://www.eia.gov/petroleum/data.cfm#imports 4 | U.S. Department of Energy energy.gov

51

Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRNS-STI-2009-00446 Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions Keith Wipke 1 , Donald Anton 2 , Sam Sprik 1 August 10, 2009 PTS-05 of SRNS CRADA No. CR-04-003 1 National Renewable Energy Laboratory 2 Savannah River National Laboratory Page 1 of 17 SRNS-STI-2009-00446 Objective: The objective of this evaluation was to independently and objectively verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. To accomplish this, participants from both Savannah River National Laboratory (SRNL) and the National Renewable Energy Laboratory (NREL) witnessed and participated in a 2-vehicle evaluation with Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA) over a typical

52

EV Everywhere Grand Challenge- Charging Infrastructure Enabling Flexible EV Design  

Broader source: Energy.gov [DOE]

Presentation given by Vehicle Technologies Office technology manager Lee Slezak at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

53

Benchmarking EV and HEV Technologies  

Energy Savers [EERE]

Benchmarking EV and HEV Technologies Tim Burress Oak Ridge National Laboratory 2014 U.S. DOE Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting June 17 th...

54

Report on Toyota/Prius Motor Torque-Capability, Torque-Property, No-Load Back EMF, and Mechanical Losses  

SciTech Connect (OSTI)

In today's hybrid vehicle market, the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace, Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to test the torque capability of the 2004 Prius motor and to analyze the torque properties relating to the rotor structure. The tested values of no-load back electromotive force (emf) and mechanical losses are also presented.

Hsu, J.S.

2004-09-30T23:59:59.000Z

55

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

56

EV Everywhere Consumer Acceptance and Charging Infrastructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and...

57

EV Everywhere Grand Challenge Blueprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

58

ENVIRONME NTA L R EV  

Broader source: Energy.gov (indexed) [DOE]

ENVIRONME ENVIRONME NTA L R EV IEW for CATEGO RI CAL EXCLUS ION DETE RM INATION Rocky Mountain Region, Western Area Power Ad ministration Alco\'3-Caspc r North I IS-kV Transm ission Line Pole Replace ments Na t ro na Co un ty, Wyo mi ng A. Brief Desc ription of Proposal: Western Area Po\.\cr Administration's (Western) Casper Field Office proposes to replace deteriorating poles on 18 wood II-frame structures along its Alcova-Casper North 115-kV transmission line. The project structures are located on the transmission line bct\.ycen Township 33 North. Range 80 West. Section 12 and Township 30 North, Range 82 West. Section 18, 6 th Principle Meridian ncar Casper. Wyoming. in Natrona County. The land ownership is primarily private with two structures located on Bureau of Land Management administered lands. Western will accomplish

59

Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report  

SciTech Connect (OSTI)

Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

Ayers, C.W.

2004-11-23T23:59:59.000Z

60

Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised  

SciTech Connect (OSTI)

The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

2007-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EV Everywhere Grand Challenge Overview | Department of Energy  

Office of Environmental Management (EM)

2danielsoncaci.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand...

62

EV Everywhere Grand Challenge Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3daviscaci.pdf More Documents & Publications EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned EV...

63

EV Community Readiness projects: Delaware Valley Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

Kansas City; Douglas County; Unified Government of Wyandotte County * EV manufacturer: Smith Electric Vehicles * EV and EVSE dealerships LilyPad EV, Olathe Ford * Technical...

64

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

65

EV Everywhere Grand Challenge Overview Presentation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. 2-danielson.pdf More Documents & Publications EV Everywhere Grand Challenge...

66

Global EV Outlook | Open Energy Information  

Open Energy Info (EERE)

Find Another Tool FIND TRANSPORTATION TOOLS Key takeaways and insights include landscape analysis of electric vehicle (EV) stocksales and charging station deployment....

67

The Impact of System Level Factors on Treatment Timeliness: Utilizing the Toyota Production System to Implement Direct Intake Scheduling in a Semi-rural Community Mental Health Clinic  

Science Journals Connector (OSTI)

This study examined the effect of using the Toyota Production System (TPS) to change intake procedures...F(1,160)?=?4.9; p?=?.03) from an average of 11 to 8days. The pattern of difference on treatment timeliness...

Addie Weaver PhD; Catherine G. Greeno PhD

2013-07-01T23:59:59.000Z

68

Hybrid Electric Vehicle End-of-life Testing on Honda Insights, Honda Gen I Civics, and Toyota Gen I Priuses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

262 262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses TECHNICAL REPORT James Francfort Donald Karner Ryan Harkins Joseph Tardiolo February 2006 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-06-01262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses James Francfort i Donald Karner and Ryan Harkins ii Joseph Tardiolo iii February 2006 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy

69

Hawaii Gets 'EV Ready' | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gets 'EV Ready' Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program By 2030, the Hawaii Clean Energy Initiative will:

70

Hawaii Gets 'EV Ready' | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program

71

Early View (EV): 1-EV High connectivity among habitats precludes the relationship  

E-Print Network [OSTI]

Early View (EV): 1-EV High connectivity among habitats precludes the relationship between dispersal such as currents and larval behaviors (reviewed in Mora and Sale 2002), the use of PLD as a quantitative measure

Roy, Denis

72

EV Everywhere Challenge Kick-Off  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EV Everywhere Challenge Kick-Off Patrick Davis, Vehicle Technologies Program Manager Jacob Ward, Vehicle Technologies Senior Analyst June 21, 2012 Hyatt Regency, Dearborn, Michigan EV Everywhere Workshops * Recruit the best and brightest American scientists, engineers, and businesses to tackle this electric vehicle challenge * Re-evaluate and refine the existing technical goals for increasing performance and cutting costs Topic Date Location Electric Drive Components July 24-25 Chicago, IL Advanced Batteries July 26 Chicago, IL Consumer Behavior and Charging Infrastructure July 31 - Aug 1 Los Angeles, CA Lightweight Vehicles and Structures TBD TBD The EV Everywhere Challenge Involves All of DOE The EV Everywhere Challenge Key Parameters * 5-passenger vehicle suitable for an average American family

73

EV Everywhere - Charge to Breakout Sessions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EV Everywhere EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24, 2012 2 | Program Name or Ancillary Text eere.energy.gov BREAKOUT GROUPS Traction Drive System Power Electronics and Thermal Management Electric Motors and Critical Materials Work Group Focus Questions 3 | Program Name or Ancillary Text eere.energy.gov BREAKOUT SESSION #1 EV EVERYWHERE SCOPE & TECHNICAL TARGETS * Discussion of current state-of-art of the breakout group's focus area. * Are the initially posed EV-Everywhere electric drive system performance and cost targets achievable? * What role can the breakout group's focus area play on achieving these targets? * What are the major barriers?

74

Deployment of EVs in the Federal Fleet  

Broader source: Energy.gov [DOE]

Presentation covers the Deployment of EV's in the Federal Fleet and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

75

EV Everywhere - Charge to Breakout Sessions  

Broader source: Energy.gov (indexed) [DOE]

EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24, 2012 2 | Program Name or Ancillary Text...

76

Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle (EV) Electric Vehicle (EV) Insurance Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Insurance Regulation

77

EV Everywhere EV Everywhere Grand Challenge- Electric Drive (Power Electronics and Electric Machines) Workshop Agenda  

Broader source: Energy.gov [DOE]

Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL

78

EVS-23 Papers, Posters, and Brochure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVS-23 Papers, Posters, and Brochure EVS-23 Papers, Posters, and Brochure Papers The papers that will be presented at EVS-23 and their Argonne authors are: "Advanced lithium-ion batteries for plug-in hybrid-electric vehicles," by Paul Nelson, Khalil Amine, Aymeric Rousseau and EnerDel Corp.'s Hiroyuki Yomoto. (222kb pdf) "In-situ torque measurements in hybrid electric vehicles powertrains," by Theodore Bohn, Michael Duoba and Richard Carlson. (723kb pdf) "Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids," by Linda Gaines, Andrew Burnham, Aymeric Rousseau and Danilo Santini. (471kb pdf) "Plug-in hybrid electric vehicle control strategy parameter optimization," by Aymeric Rousseau, Sylvain Pagerit and Tennessee Tech University's David Gao. (311kb pdf)

79

ChoosEV | Open Energy Information  

Open Energy Info (EERE)

ChoosEV ChoosEV Jump to: navigation, search Name ChoosEV Place Copenhagen, Denmark Zip 1606 Product Denmark based company formed by Sydenergi, Seus-Nve and Sixt. The company will focus on developing simple charging stands linked to the electric grid in Denmark. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Environmental Security and Restoration [EVS Program Area]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Security and Restoration Environmental Security and Restoration EVS focuses on environmental and human health aspects of homeland and national security, as well as restoration of sites contaminated with hazardous materials. Contamination in our environment - in air, water, and soil - contributes to health problems and affects the quality of our lives. The EVS Division confronts this challenge by addressing environmental and human health aspects of homeland and national security and by characterizing and restoring sites contaminated with hazardous materials. We integrate extensive expertise in engineering, health physics, hydrogeology, environmental science, chemistry, spatial analysis, database management, and computer programming to contribute to environmental security and restoration.

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle (EV) Electric Vehicle (EV) Charging Infrastructure Availability to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on AddThis.com... More in this section...

82

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle (EV) Vehicle (EV) Infrastructure Definitions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

83

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

84

Cobasys and Panasonic EV Energy cooperation agreement | Open...  

Open Energy Info (EERE)

and Panasonic EV Energy to share patents and expertise about nickel-metal hydride batteries for hybrid electric vehicles. References: Cobasys and Panasonic EV Energy...

85

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

86

Electric Vehicle (EV) Carsharing in A Senior Adult Community  

E-Print Network [OSTI]

Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan with Nissan Motor Co. to study feasibility of EV carsharing program in senior adult

Kammen, Daniel M.

87

EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework Presentation given at the EV Everywhere...

88

EV Everywhere Workshop: Electric Motors and Critical Materials...  

Broader source: Energy.gov (indexed) [DOE]

Electric Motors and Critical Materials Breakout Group Report EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV...

89

Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge  

Broader source: Energy.gov [DOE]

The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

90

HEV, PHEV, EV Test Standard Development and Validation | Department...  

Broader source: Energy.gov (indexed) [DOE]

HEV, PHEV, EV Test Standard Development and Validation HEV, PHEV, EV Test Standard Development and Validation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

91

EV Community Readiness projects: Center for Transportation and...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: Center for...

92

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

93

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

ACCOMPLISHMENTS NYCLHVCC: Clean Cities 2011 EV Community Readiness DUANE Reade's Smith EV at Plug-In Day in Times Square Clean Cities 2011 Community Readiness & Planning...

94

Panasonic EV Energy Co Ltd PEVE | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Panasonic EV Energy Co., Ltd (PEVE) Place: Kosai, Shizuoka, Japan Zip: 431-0452 Sector: Vehicles Product: Panasonic EV Energy develops, manufactures and...

95

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

96

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Registration Fee The annual registration fee for an EV is $25.00 unless the vehicle is more

97

Alternative Fuels Data Center: Kansas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for EVs The list below contains summaries of all Kansas laws and incentives related to EVs.

98

Alternative Fuels Data Center: Georgia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for EVs The list below contains summaries of all Georgia laws and incentives related to EVs.

99

Alternative Fuels Data Center: Alabama Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for EVs The list below contains summaries of all Alabama laws and incentives related to EVs.

100

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Indiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for EVs The list below contains summaries of all Indiana laws and incentives related to EVs.

102

Alternative Fuels Data Center: Vermont Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for EVs The list below contains summaries of all Vermont laws and incentives related to EVs.

103

Alternative Fuels Data Center: Federal Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for EVs The list below contains summaries of all Federal laws and incentives related to EVs.

104

Alternative Fuels Data Center: Texas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for EVs The list below contains summaries of all Texas laws and incentives related to EVs. State Incentives

105

Alternative Fuels Data Center: Florida Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for EVs The list below contains summaries of all Florida laws and incentives related to EVs.

106

Alternative Fuels Data Center: Nevada Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for EVs The list below contains summaries of all Nevada laws and incentives related to EVs.

107

Alternative Fuels Data Center: Ohio Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for EVs The list below contains summaries of all Ohio laws and incentives related to EVs. State Incentives

108

Alternative Fuels Data Center: Oregon Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for EVs The list below contains summaries of all Oregon laws and incentives related to EVs.

109

Alternative Fuels Data Center: Iowa Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for EVs The list below contains summaries of all Iowa laws and incentives related to EVs. State Incentives

110

Alternative Fuels Data Center: Idaho Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for EVs The list below contains summaries of all Idaho laws and incentives related to EVs. State Incentives

111

Alternative Fuels Data Center: Arizona Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for EVs The list below contains summaries of all Arizona laws and incentives related to EVs.

112

Alternative Fuels Data Center: Utah Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for EVs The list below contains summaries of all Utah laws and incentives related to EVs. State Incentives

113

Vehicle Technologies Office: EV Everywhere Grand Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

114

EV Everywhere Grand Challenge Kick-Off  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

115

EV Solar Products | Open Energy Information  

Open Energy Info (EERE)

Solar Products Solar Products Jump to: navigation, search Logo: EV Solar Products Name EV Solar Products Address 2655 N. Highway 89 Place Chino Valley, Arizona Zip 86323 Sector Solar Product renewable energy products and services Year founded 1991 Phone number (928) 636-2201 Website http://www.evsolar.com/ Coordinates 34.8387989°, -112.4600036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8387989,"lon":-112.4600036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

High Energy Density Li-ion Cells for EVs Based on Novel, High...  

Broader source: Energy.gov (indexed) [DOE]

Storage Systems Vehicle Technologies Annual Merit Review 6182014 1 High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Keith D. Kepler...

117

Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for EVs The list below contains summaries of all Oklahoma laws and incentives

118

Alternative Fuels Data Center: Delaware Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for EVs The list below contains summaries of all Delaware laws and incentives

119

Alternative Fuels Data Center: Virginia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for EVs The list below contains summaries of all Virginia laws and incentives

120

Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for EVs The list below contains summaries of all Wisconsin laws and incentives

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for EVs The list below contains summaries of all Arkansas laws and incentives

122

Alternative Fuels Data Center: Missouri Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for EVs The list below contains summaries of all Missouri laws and incentives

123

Alternative Fuels Data Center: California Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for EVs The list below contains summaries of all California laws and incentives

124

Alternative Fuels Data Center: Maryland Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for EVs The list below contains summaries of all Maryland laws and incentives

125

Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for EVs The list below contains summaries of all Louisiana laws and incentives

126

Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for EVs The list below contains summaries of all Minnesota laws and incentives

127

Alternative Fuels Data Center: Michigan Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for EVs The list below contains summaries of all Michigan laws and incentives

128

Alternative Fuels Data Center: Illinois Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for EVs The list below contains summaries of all Illinois laws and incentives

129

Alternative Fuels Data Center: Washington Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for EVs The list below contains summaries of all Washington laws and incentives

130

Alternative Fuels Data Center: Colorado Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for EVs The list below contains summaries of all Colorado laws and incentives

131

Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for EVs The list below contains summaries of all Mississippi laws and incentives

132

Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for EVs The list below contains summaries of all Connecticut laws and incentives

133

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for EVs The list below contains summaries of all Pennsylvania laws and incentives

134

Alternative Fuels Data Center: EV Charging Stations Spread Through Philly  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EV Charging Stations EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Digg Find More places to share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on AddThis.com... March 3, 2012 EV Charging Stations Spread Through Philly W atch how Philadelphia fuels electric vehicles with a growing network of

135

Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for EVs The list below contains summaries of all Nebraska laws and incentives

136

Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for EVs The list below contains summaries of all Kentucky laws and incentives

137

Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Promotion and Infrastructure Development to someone by E-mail Promotion and Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on AddThis.com...

138

Deployment of EVs in the Federal Fleet  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicles 101 Electric Vehicles 101 eere.energy.gov The Parker Ranch installation in Hawaii Deployment of EVs in the Federal Fleet FUPWG Rapid City, South Dakota October 20 th , 2010 Amanda Sahl Federal Energy Management Program 2 | Electric Vehicles 101 eere.energy.gov FEMP facilitates the Federal Government"s implementation of sound, cost-effective energy management and investment practices to enhance the nation"s energy security and environmental stewardship. 3 | Electric Vehicles 101 eere.energy.gov Agenda * Overview of the Federal Fleet * Infrastructure Requirements * Current implementation and activity * Ongoing barriers and questions 4 | Electric Vehicles 101 eere.energy.gov Federal Fleet Inventory

139

Alternative Fuels Data Center: San Diego Leads in Promoting EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

San Diego Leads in San Diego Leads in Promoting EVs to someone by E-mail Share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Facebook Tweet about Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Twitter Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Google Bookmark Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Delicious Rank Alternative Fuels Data Center: San Diego Leads in Promoting EVs on Digg Find More places to share Alternative Fuels Data Center: San Diego Leads in Promoting EVs on AddThis.com... Sept. 3, 2011 San Diego Leads in Promoting EVs W atch how San Diego is leading the way in promoting electric vehicles. For information about this project, contact San Diego Regional Clean Cities

140

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee Reduction to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

142

EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Electric Vehicles & Batteries EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles EV Everywhere Grand Challenge: DOE's 10-Year Vision for...

143

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

144

AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports...  

Broader source: Energy.gov (indexed) [DOE]

by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. EV Project Electric Vehicle Charging Infrastructure...

145

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

146

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

147

DOE/EV-0005/8  

Office of Legacy Management (LM)

8 8 Au* k.3 dJ o b /< (/),s:x ,' , -1 3 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1978 . - FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20545 -.- _"_" .---_" DOE/EV-0005/8 UC-70 I Formerly Utilized MED/AEC Sites . Remedial Action Program Radiilogical Survey of the E.I. DuPont DeNemours and Co., Deepwater, New Jersey December 1878 FINAL REPORT Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, DC 20543 J UNDER CONTRACT NO. W-7405ENG-26 __-- __.-.

148

DOE/EV-0005/18  

Office of Legacy Management (LM)

8 8 w9-2/ Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmental Control Technology .-_.--l.."-.-.- .- ..I ._--, * "--. . . .__ DOE/EV-0005/18 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological. Survey of the Former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Want, Nichols, Florida January 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview

149

EV Everywhere Charges Up the Workplace | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace January 31, 2013 - 1:45pm Addthis As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S.| Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging

150

Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Retail Electric Retail Electric Vehicle (EV) Charging Regulations to someone by E-mail Share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Facebook Tweet about Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Twitter Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Google Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Delicious Rank Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Digg Find More places to share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

151

EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 7/20/2012 - 7/20/2012 EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next- generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

152

Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Road User Assessment System Pilot to someone by E-mail Road User Assessment System Pilot to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on AddThis.com... More in this section... Federal State Advanced Search

153

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Broader source: Energy.gov (indexed) [DOE]

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

154

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Broader source: Energy.gov (indexed) [DOE]

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

155

Monthly EV Sales Shatter Records | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records September 25, 2013 - 3:51pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist Learn More About Electric Vehicles To find out how much you can save at the pump by switching to an EV, visit our eGallon tool. On September 5, media outlets reported that US monthly electric vehicle (EV) sales shattered the 10,000 unit barrier. Cumulative EV sales for August are estimated at 11,363 -- a 30 percent increase over the previous monthly record and a 75 percent increase since the same time last year.

156

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

157

DGfI Deutsche Gesellschaft fr Immunologie e.V.  

E-Print Network [OSTI]

DGfI Deutsche Gesellschaft für Immunologie e.V. Fritz-und-Ursula-Melchers-Preis Der Preis wird Meltzer Deutsche Gesellschaft für Immunologie e.V. c/o DRFZ, Charitéplatz 1, 10117 Berlin mail@dgfi.org Weitere Informationen www.dgfi.org #12;DGfI Deutsche Gesellschaft für Immunologie e.V. Hans

Groppe, Sven

158

EV Everywhre Grand Challenge - Battery Status and Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

EV Everywhere Grand Challenge Battery Status and Cost Reduction Prospects July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S....

159

EV Project Overview Report - Project to Date through December...  

Broader source: Energy.gov (indexed) [DOE]

December 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

160

EV Everywhere Grand Challenge Road to Success | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

report for EV Everywhere. The report highlights the significant cost reduction in batteries this year, which will enable increased PEV affordability for consumers. Also, the...

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EV Everywhere Batteries Workshop - Pack Design and Optimization...  

Broader source: Energy.gov (indexed) [DOE]

Pack Design and Optimization Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Breakout session presentation for the...

162

EV Everywhere Grand Challenge - Electric Motors and Critical...  

Broader source: Energy.gov (indexed) [DOE]

Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge...

163

EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction  

Broader source: Energy.gov [DOE]

Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

164

EV Everywhere Grand Challenge- Battery Workshop attendees list  

Broader source: Energy.gov [DOE]

Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

165

EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop- Backsplash  

Broader source: Energy.gov [DOE]

Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

166

EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

167

EV Community Readiness projects: American Lung Association of...  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti027kelly2013o.pdf More Documents & Publications EV Community Readiness projects: Center for...

168

EV Everywhere: NASCAR and Sprint Race Forward with Workplace...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric vehicle readiness projects from throughout the country. | Photo by Ken Kelly, National Renewable Energy Laboratory EV Everywhere: 10 Ways Communities Can Pave the...

169

EV Everywhere Grand Challenge Kick-Off | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI framingworkshopagenda062112.pdf More Documents & Publications EV Everywhere Grand...

170

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

171

HEV, PHEV, EV Test Standard Development and Validation  

Broader source: Energy.gov (indexed) [DOE]

EV Test Standard Development and Validation 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 13-17, 2013 Michael Duoba, Henning Lohse-Busch, Kevin...

172

EV Community Readiness projects: Delaware Valley Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

Delaware Valley Regional Planning Commission (PA); Metropolitan Energy Information Center, Inc. (KS, MO) EV Community Readiness projects: Delaware Valley Regional Planning...

173

EV Everywhere Grand Challenge Introduction for Electric Drive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Introduction for Electric Drive Workshop Presentation given by EERE Assistant Secretary David Danielson at...

174

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

period: January 2011 through March 2011 Number of EV Project vehicles in region: 35 Private Publicly Publicly Residential Nonresidential Available Available Charging Unit...

175

EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects  

Broader source: Energy.gov [DOE]

Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

176

Double Planetary Gear (PG) power-split hybrid powertrains have been used in production vehicles from Toyota  

E-Print Network [OSTI]

the challenging fuel economy standards set by the EU and US governments [1]. Hybrid and electric car sales.3% of the market, a significant increase from 2.2% market share in 2011[2]. 90% of the strong hybrid vehicle sales machines [4]. It is also possible to have parallel modes, series modes, pure EV modes and fixed-gear modes

Peng, Huei

177

Deutsch-Amerikanische Gesellschaft Siegerland-Wittgenstein e.V.  

E-Print Network [OSTI]

Deutsch-Amerikanische Gesellschaft Siegerland-Wittgenstein e.V. Vorstand: Jeane Freifrau von. 116 576 0 BLZ 370 700 24 Deutsche Bank Der Amerika Haus e.V. NRW lädt in Kooperation mit der Deutsch Frankfurter Rundschau. Der Vortrag findet auf Deutsch statt. Der Eintritt ist frei. Wir danken der DAG

Siegen, Universität

178

Sliding Mode Control of EV Electric Differential System  

E-Print Network [OSTI]

of an electric differential system for Electric Vehicle (EV) with two induction motor drives (one for each wheel of electric drives to control the generated torque and the introduction of an independent control400 1 Sliding Mode Control of EV Electric Differential System A. Haddoun, M. E. H. Benbouzid, D

Paris-Sud XI, Université de

179

Arizona EV Infrastructure Plans Revealed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Infrastructure Plans Revealed EV Infrastructure Plans Revealed Arizona EV Infrastructure Plans Revealed November 5, 2010 - 3:21pm Addthis An electric vehicle uses a charging station. | Media photo from ECOtality An electric vehicle uses a charging station. | Media photo from ECOtality Joshua DeLung What are the key facts? 180 residential and 230 public charging stations to be installed Blueprints signify clearing of last major hurdle before implementation begins The EV Project has been recognized as one of the top Recovery Act projects Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new project that will help develop electric vehicle infrastructure and gather crucial research data toward ensuring the vitality of EVs for years to come.

180

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect (OSTI)

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOEs FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTAs end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

182

ANSI Summary of US-China Exchange on EV Standardization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANSI Summary of US-China Exchange on EV ANSI Summary of US-China Exchange on EV Standardization Presented by: Jim McCabe Senior Director, Standards Facilitation American National Standards Institute US.-China Electric Vehicles and Battery Technology Workshop August 23, 2012 ANSI EVSP Roadmap | US-China EV and Battery Technology Workshop Background - Why the Need for a U.S. Standardization Roadmap for EVs?  Many U.S. based standards developing organizations (SDOs) produce globally relevant standards following an open, consensus-based process (SAE, UL, NFPA, IEEE, and others)  A standardization roadmap would . . . Maximize coordination among SDOs and provide guidance on standards participation and progress  Enable the U.S. to speak more coherently with international partners

183

EV Everywhere Workshop: Traction Drive Systems Breakout Group Report  

Broader source: Energy.gov [DOE]

Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

184

EV Everywhere Framing Workshop Report Out & Lessons Learned  

Broader source: Energy.gov [DOE]

Presentation given by Vehicle Technologies Office Director Patrick Davis at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

185

Innovative Cell Materials and Designs for 300 Mile Range EVs  

Broader source: Energy.gov (indexed) [DOE]

300 Mile Range EVs Yimin Zhu, PDPI Nanosys, Inc Palo Alto, California May 13 17, 2013 DOE Vehicle Technologies AMR 2013 ES130zhu2013p This presentation does not contain any...

186

EV Everywhere Framing Workshop Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. 1-sandalow.pdf More Documents & Publications EV Everywhere Consumer Acceptance and...

187

AVTA: ARRA EV Project Overview Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the EV...

188

AVTA: ARRA EV Project Electric Grid Impact report | Department...  

Broader source: Energy.gov (indexed) [DOE]

300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. EV Project - A First Look at the Impact of Electric...

189

AVTA: ARRA EV Project Vehicle Placement Maps | Department of...  

Broader source: Energy.gov (indexed) [DOE]

together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700...

190

AVTA: ARRA EV Project Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. EV Project - About the Reports More Documents &...

191

EV Everywhere Grand Challenge Introduction for Electric Drive Workshop  

Broader source: Energy.gov [DOE]

Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

192

EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework  

Broader source: Energy.gov [DOE]

Presentation given by Vehicle Technologies Office analyst Jake Ward at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

193

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework  

Broader source: Energy.gov [DOE]

Presentation given by Vehicle Technologies Office analyst Jacob Ward at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

194

EV Everywhere - Charge to Breakout Sessions | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. 6boyded.pdf More Documents & Publications EV Everywhere Grand Challenge - Charge to the...

195

EV Charging Stations Take Off Across America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

196

EV Technology Accelerates in Colorado | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado January 13, 2012 - 5:09pm Addthis Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? One of 48 advanced battery and electric drive projects across the country funded by Recovery Act. U.S. will have increased capacity to produce electric-drive vehicles batteries from virtually zero in 2008 up to 500,000 per year in 2015. While the North American International Auto Show began this week in

197

EV Charging Stations Take Off Across America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

198

Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact  

SciTech Connect (OSTI)

The fragmentation of CH{sub 4}{sup 2+} dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH{sub 4}{sup 2+} dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH{sub 2}{sup +}, H{sup +}, and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH{sub 4}{sup 2+} dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.

Wei, B.; Zhang, Y.; Wang, X., E-mail: xinchengwang@fudan.edu.cn; Lu, D.; Lu, G. C.; Hutton, R.; Zou, Y. [Applied Ion Beam Physics Laboratory, Fudan University, Key Laboratory of the Ministry of Education, Shanghai 200433 (China) [Applied Ion Beam Physics Laboratory, Fudan University, Key Laboratory of the Ministry of Education, Shanghai 200433 (China); Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Zhang, B. H.; Tang, Y. J. [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

2014-03-28T23:59:59.000Z

199

EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging  

Broader source: Energy.gov [DOE]

Today, Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson welcomed NASCAR and Sprint to the growing list of employers participating in the EV Everywhere Workplace Charging Challenge to help build the nations plug-in electric vehicle charging infrastructure.

200

An Improved Sensorless DTC Scheme for EV Induction Motors  

E-Print Network [OSTI]

to increase the efficiency of a Direct Torque Control (DTC) of an induction motor propelling an Electric is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive; however, they have not yet used the most remarkable advantages of electric motors. Indeed, an electric

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Secure wireless communication platform for EV-to-Grid research  

Science Journals Connector (OSTI)

"Vehicle to Grid" power or V2G will be a new green energy scheme that allows electricity to flow from Electric Vehicles (EVs) to power lines. The objective of this paper is to design and develop a secure wireless communication platform for V2G research, ... Keywords: authentication protocol, electric vehicle, power grid, secure wireless communication

Huaqun Guo; Fan Yu; W. C. Wong; Vivy Suhendra; Y. D. Wu

2010-06-01T23:59:59.000Z

202

Observations from The EV Project in Q4 2013  

SciTech Connect (OSTI)

This is a summary report for The EV Project 4th quarter 2013 reports. It describes electric vehicle driver driving and charging behavior observed in Q4. It is the same report as the previously approved/published Q3 2013 report, only the numbers have been updated. It is for public release and does not have limited distribution.

John Smart

2014-02-01T23:59:59.000Z

203

CTB Ground Strap Size Document Number R ev  

E-Print Network [OSTI]

5 5 4 4 3 3 2 2 1 1 D D C C B B A A CTB Ground Strap Title Size Document Number R ev Date: Sheet o Body 5x"VNTC"#10awgrated33A Actualoperating=11Amax. Belden 83029 #18 awg rated 10 A max. Actual

Llope, William J.

204

EXHIBIT IV DOE/EV-0003/29 ORNL-5734  

Office of Legacy Management (LM)

v EXHIBIT IV - DOE/EV-0003/29 ORNL-5734 Radiological Survey of the Former Kellex Research Facility, Jersey City, New Jersey 6. A. Berven H. W. Dickson W. A. Goldsmith W. M. Johnson W. D. Cottrell R. W. Doane F. F. Haywood M. T. Ryan W. H. Shinpaugh DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W. A. Goldsmith F. F. Haywood W. M. Johnson M. T. Ryan W. H. Shinpaugh Worked performed as part of the Remedial Action Survey and Certification Activities Date Published: February 1982 , OAK RIDGE NATIONAL LABORATORY operated by UNION'CARBIDE CORPORATION for the

205

Radiation and Chemical Risk Management [EVS Program Area]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation and Chemical Risk Management Radiation and Chemical Risk Management EVS helps meet the challenge of protecting human health and the environment through the management of risk associated with radiation and chemicals in the environment. Protecting human health, welfare, and the environment in a world affected by energy production and technology is a global challenge. EVS helps to meet this challenge through research and analysis on the management of risk associated with radiation and chemicals in the environment. To improve the management of risk associated with nuclear and chemical materials and wastes at contaminated sites, we develop information and tools that support decision making related to health, safety, environmental, economic, and social-cultural concerns. Nuclear Materials and Waste Disposition

206

Vehicles - ORNL inverter a boost for EVs . . . | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles - ORNL inverter a boost for EVs . . . Vehicles - ORNL inverter a boost for EVs . . . Less expensive, lighter and more efficient inverters could put hybrid electric vehicles on the highway to improved viability. While batteries receive a lot of attention, Oak Ridge National Laboratory inventor Gui-Jia Su noted that inverters, which convert direct current into alternating current, play an equally important role in powering hybrid electric vehicles. The patent-pending ORNL inverter is more compact, reduces battery losses, improves operating conditions and reliability, and can be operated in high-temperature conditions. The inverter also significantly reduces undesirable motor torque ripples, which increase or decrease output torque as the output shaft rotates. In addition to uses in hybrid electric

207

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

208

A Comparison of US and Chinese EV Battery Testing Protocols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US and Chinese EV US and Chinese EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 US/China Electric Vehicle Initiative Meeting August 23-24, 2012 Boston, MA 1 Argonne National Laboratory 2 Idaho National Laboratory 3 CATARC A Comparison of US and Chinese Battery Testing Protocols  Battery testing is a time-consuming and costly process  There are parallel testing efforts, such as those in the US and China  These efforts may be better leveraged through international collaboration  The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data  In turn, the collaboration may accelerate electric vehicle development and

209

AVTA: ARRA EV Project Nissan Leaf Data Summary Reports  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the 5,700 all-electric Nissan Leafs deployed through the EV Project. It also deployed about 14,000 Level 2 PEV chargers and 300 DC fast chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

210

EV Network integration (Smart Grid Project) (Ireland) | Open Energy  

Open Energy Info (EERE)

EV Network integration EV Network integration Country Ireland Coordinates 53.41291°, -8.24389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.41291,"lon":-8.24389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Observations from The EV Project in Q3 2013  

SciTech Connect (OSTI)

This is a brief report that summarizes results published in numerous other reports. It describes the usage of electric vehicles and charging units in the EV Project over the past 3 months. There is no new data or information provided in this report, only summarizing of information published in other reports (which have all been approved for unlimited distribution publication). This report will be posted to the INL/AVTA website for viewing by the general public.

John Smart

2013-12-01T23:59:59.000Z

212

Intelligent Vehicle Charging Benefits Assessment Using EV Project Data  

SciTech Connect (OSTI)

PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

2013-12-01T23:59:59.000Z

213

Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for EVs The list below contains summaries of all West Virginia laws and incentives

214

Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Carolina Laws and Incentives for EVs The list below contains summaries of all South Carolina laws and incentives

215

Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for EVs The list below contains summaries of all New Jersey laws and incentives

216

Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for EVs The list below contains summaries of all Rhode Island laws and incentives

217

Alternative Fuels Data Center: New York Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for EVs The list below contains summaries of all New York laws and incentives

218

Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives for EVs The list below contains summaries of all North Carolina laws and incentives

219

Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for EVs The list below contains summaries of all North Dakota laws and incentives

220

Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for EVs The list below contains summaries of all New Mexico laws and incentives

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AVTA: ARRA EV Project Residential Charging Infrastructure Maps  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of residential chargers.

222

Junior Event Deutsche Gesellschaft der JSPS-Stipendiaten e.V.  

E-Print Network [OSTI]

Junior Event Deutsche Gesellschaft der JSPS-Stipendiaten e.V. JSPS Bonn Office Seminarraum 4120. Matthias Hofmann / Prof. Dr. Keiichi Kodaira Deutsche Gesellschaft der JSPS-Stipendiaten e.V. / JSPS Bonn

Kemper, Gregor

223

Renewable energy visual impact best management practices [EVS News]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Best practices guide for mitigating visual impacts of utility-scale wind, Best practices guide for mitigating visual impacts of utility-scale wind, solar, and geothermal energy facilities November 1, 2013 Working with the U.S. Department of the Interior’s Bureau of Land Management (BLM), EVS has developed a comprehensive guide to best management practices (BMPs) for mitigating the visual impacts associated with utility-scale wind, solar, and geothermal energy facilities. The guide, titled Best Management Practices for Reducing Visual Impacts of Renewable Energy Facilities on BLM-Administered Lands (PDF, 14 MB), presents 120 BMPs for avoiding or reducing potential visual impacts associated with the siting, design, construction, operation, and decommissioning of utility-scale renewable energy generation facilities - wind, solar, and geothermal.

224

Microsoft PowerPoint - EVS24 INL - AVTA.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STAVANGER STAVANGER NORWAY MAY 13-16 2009 www.evs24.org John Smart Idaho National Laboratory U.S. Department of Energy - Advanced Vehicle Testing Activity: p gy g y Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities AVTA Background and Goals *The Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program *The Idaho National Laboratory (INL) and Electric Transportation y ( ) p Engineering Corporation (ETEC) conduct AVTA. Argonne National Laboratory performs dynamometer testing *AVTA goals: *AVTA goals: *Document potential of new vehicle technology to reduce petroleum consumption * *Provide benchmark data to technology modelers and target setters, research and development programs, and vehicle manufacturers * *Assist fleet managers in making informed vehicle purchase,

225

EV Everywhere Grand Challenge - Charge to the Breakout Groups  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charge to the Charge to the Breakout Groups July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov BREAKOUT GROUPS Breakout Group Room Facilitator Color Code Next-Generation Li-Ion Batteries Othello Room mezzanine Jeff Chamberlain (ANL) green Beyond Li-Ion Batteries Winchester Room mezzanine Frank McClarnon (LBNL) blue Manufacturing and Processing Medallion Room Main floor Claus Daniel (ORNL) yellow Pack Design and Optimization Signature III room main floor Ahmad Pesaran (NREL) red eere.energy.gov SESSION #1 EV EVERYWHERE SCOPE & TECHNICAL TARGETS * Discussion of current state-of-art of the breakout group's focus area.

226

AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts.

227

Atmospheric Science and Climate Research [EVS Program Area]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Science and Climate Research Atmospheric Science and Climate Research EVS research, combined with portable, high-performance climate and weather applications, offers a unique look at the complexities of a dynamic planet. In an ever-changing, dynamic climate, we measure, model, and analyze atmospheric processes that are vital to understanding our planet. Our measurement capabilities range from remote sensing and surface meteorology instruments to instrumentation designed to quantify the land-atmosphere exchange of energy, water, and greenhouse gases. Modeling capabilities begin with regional-scale climate, air quality, and aerosol modeling and extend to global chemical transport models, general circulation models of the atmosphere, models of the biosphere, and coupled Earth system models.

228

Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

All-Electric Vehicle All-Electric Vehicle (EV) Manufacturing Tax Credit to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicle (EV) Manufacturing Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

229

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

230

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

231

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

232

Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low-Speed Electric Low-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

233

Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Medium-Speed Electric Medium-Speed Electric Vehicle (EV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Medium-Speed Electric Vehicle (EV) Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search

234

The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide  

SciTech Connect (OSTI)

The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies shows a peak at 5.3?eV. Thus, it could be concluded that the blue luminescence band at 2.7?eV and HfO{sub x} excitation peak at 5.2?eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.

Perevalov, T. V., E-mail: timson@isp.nsc.ru [A. V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk (Russian Federation); Aliev, V. Sh.; Gritsenko, V. A. [A. V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Saraev, A. A. [Boreskov Institute of Catalysis of SB RAS, 5 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Kaichev, V. V. [Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk (Russian Federation); Boreskov Institute of Catalysis of SB RAS, 5 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Ivanova, E. V.; Zamoryanskaya, M. V. [Ioffe Physicotechnical Institute of RAS, 26 Politechnicheskaya St., 194021 St. Petersburg (Russian Federation)

2014-02-17T23:59:59.000Z

235

ARM facility captures rare tornado data [EVS News]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM facility captures rare tornado data ARM facility captures rare tornado data June 13, 2013 Every spring, tornadoes thunder across five states, from Kansas to Texas, and alerts are common. However, by Monday, May 20, it was clear that this time the alert had a different urgency to it. The turn of events leading up to the EF-5 tornado that wreaked havoc in Moore, Oklahoma, provided a unique opportunity for scientists to sample the environment preceding a severe weather event. Read more about how EVS scientist, Donna Holdridge, supported the ARM program in the full article. Raw data from the additional radiosonde launches preceding the severe weather events of May 20 in Oklahoma. The blue line identifies the temperature, which decreases with increasing altitude. The red line is the dew point, the temperature at which the air is 100% saturated with its water vapor content. Where the dew point approaches the actual temperature, the air is nearing 100% relative humidity near the ground-ideal conditions for tornado events.

236

EV-Everywhere Wants to Hear from All of You! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV-Everywhere Wants to Hear from All of You! EV-Everywhere Wants to Hear from All of You! EV-Everywhere Wants to Hear from All of You! September 19, 2012 - 2:59pm Addthis As part of the EV-Everywhere Grand Challenge, we held a series of workshops to lay out the initiative. The most recent one in Washington, DC, explored ways to reduce energy consumption with improved vehicle design. | Photo courtesy of Roy Feldman. As part of the EV-Everywhere Grand Challenge, we held a series of workshops to lay out the initiative. The most recent one in Washington, DC, explored ways to reduce energy consumption with improved vehicle design. | Photo courtesy of Roy Feldman. David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy How can I participate? We want your ideas on defining what makes an EV affordable for the

237

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at  

Broader source: Energy.gov (indexed) [DOE]

to Deliver Keynote on EV Everywhere Grand Challenge to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30, 2013 - 1:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Thursday, January 31, 2013, Secretary Chu will deliver the government keynote address at the Washington Auto Show's Public Policy Day. His remarks will focus on the Energy Department's EV Everywhere Grand Challenge, including progress to date and a new initiative to strengthen American leadership in this rapidly growing global industry. Launched by President Obama in March 2012, EV-Everywhere is the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV

238

DOE/EV-0005/4 UC-70  

Office of Legacy Management (LM)

I . I . )) ;i ' " .zf DOE/EV-0005/4 UC-70 hbj ;(:> Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Surrey of the Ashland Oil Company (Former Haist Property), Tonawanda, New York May 1878 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 BY Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 * . . - - . 1 - - . . . _ _ - - - - - _ _ P R E F A C E T h i s s e ri e s o f re p o rts re s u l ts fro m a p ro g ra m i n i ti a te d i n 1 9 7 4 b y th e A to m i c E n e rg y C o m m i s s i o n ( A E C ) fo r d e te rm i n a ti o n o f th e c o n d i ti o n o f s i te s fo rm e rl y u ti l i z e d b y th e M a n h a tta n E n g i n e e ri n g D i s tri c t (M E D ) a n d th e A E C fo r w o rk i n v o l v i n g th e h a n d l i n g o f ra

239

EV Everywhere Batteries Workshop- Next Generation Lithium Ion Batteries Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

240

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List  

Broader source: Energy.gov [DOE]

Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

Broader source: Energy.gov [DOE]

Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

242

EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

243

EV Everywhere Batteries Workshop- Materials Processing and Manufacturing Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

244

EV Everywhere Batteries Workshop- Pack Design and Optimization Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

245

Reactive Power Operation Analysis of a Single-Phase EV/PHEV Bidirectional Battery Charger  

E-Print Network [OSTI]

--More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced, charger, electric vehicle, EV, PHEV, reactive power, V2G. I. INTRODUCTION According to the international of the electric grid by supplying ancillary services such as reactive power compensation, voltage regulation

Tolbert, Leon M.

246

A Loss-Minimization DTC Scheme for EV Induction Motors A. Haddoun1  

E-Print Network [OSTI]

of an induction motor propelling and Electric Vehicle (EV). The proposed control strategy, based on a Direct Flux, among EV's motor electric propulsion features; the energy efficiency is a basic characteristic and the performance of the proposed control approach. Index Terms--Electric vehicle, induction motor, DTC, loss

Paris-Sud XI, Université de

247

Modeling and Simulation of the EV Charging in a Residential Distribution Power Grid  

E-Print Network [OSTI]

Ahourai, Irvin Huang, and Mohammad Abdullah Al Faruque Center for Embedded Computer Systems University--There are numerous advantages of using Electric Vehicles (EVs) as an alternative method of transportation of electricity to drive the EV is becoming competitive with the cost of fossil fuel required to drive the same

Al Faruque, Mohammad Abdullah

248

Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites  

SciTech Connect (OSTI)

This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

David Rohrbaugh; John Smart

2014-11-01T23:59:59.000Z

249

President Obama Launches EV-Everywhere Challenge as Part of Energy  

Broader source: Energy.gov (indexed) [DOE]

Launches EV-Everywhere Challenge as Part of Energy Launches EV-Everywhere Challenge as Part of Energy Department's Clean Energy Grand Challenges President Obama Launches EV-Everywhere Challenge as Part of Energy Department's Clean Energy Grand Challenges March 7, 2012 - 5:17pm Addthis Mt. Holly, N.C. - At an event today at the Daimler Truck factory in Mt. Holly, N.C., President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV Everywhere Challenge will bring together America's best and brightest scientists, engineers, and businesses to work collaboratively to make electric vehicles more affordable and convenient to own and drive than today's gasoline-powered vehicles within the next 10 years.

250

EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report  

Broader source: Energy.gov [DOE]

Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

251

EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report  

Broader source: Energy.gov [DOE]

Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

252

Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

253

Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV Technologies  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about benchmarking EV...

254

Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range  

Broader source: Energy.gov [DOE]

Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

255

EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior  

Broader source: Energy.gov [DOE]

Presentation given by Vehicle Technologies Office analyst Jacob Ward at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

256

Analysis of maximizing the Synergy between PHEVs/EVs and PV ...  

Office of Environmental Management (EM)

PV Analysis of maximizing the Synergy between PHEVsEVs and PV 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

257

Neutrino afterglow from Gamma-Ray Bursts: ~10^{18} eV  

E-Print Network [OSTI]

We show that a significant fraction of the energy of a gamma-ray burst(GRB) is probably converted to a burst of 10^{17}-10^{19} eV neutrinos and multiple GeV gammas that follow the GRB by > 10 s . If, as previously suggested, GRB's accelerate protons to ~10^{20} eV, then both the neutrinos and the gammas may be detectable.

Eli Waxman; John Bahcall

2000-05-06T23:59:59.000Z

258

eGallon: Understanding the Cost of Driving EVs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Initiatives » eGallon: Understanding the Cost of Driving EVs Initiatives » eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the eGallon. The eGallon represents the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. For example, if gasoline costs $3.60 a gallon in your state and the eGallon price for your state is $1.20, that means that for $1.20 worth of electricity you can

259

EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin  

Science Journals Connector (OSTI)

Introduction This study aimed to characterize the in vitro effect of EV-077, a compound that antagonises the binding of prostanoids and isoprostanes to the thromboxane receptor (TP) and inhibits the thromboxane synthase (TS), on platelet aggregation of patients with type-2 diabetes and coronary artery disease (CAD) on chronic aspirin treatment. The effect of EV-077 on 8-iso-PGE2-mediated TP receptor contraction of human arteries was also investigated. Materials and Methods Fifty-two type-2 diabetics with CAD on chronic aspirin (100mg) treatment were studied. Arachidonic acid-induced platelet aggregation was measured by impedance aggregometry in platelet-rich plasma (PRP) and whole blood anticoagulated with hirudin, and by light transmission aggregometry in citrate-anticoagulated PRP following 10-min in vitro exposure to EV-077 (100nmol/l) or control. The effect of EV-077 was measured on isometric contraction of 24 human umbilical arteries induced by isoprostane 8-iso-PGE2. Results Arachidonic acid (1mmol/l) induced substantial aggregation in hirudin-anticoagulated whole blood (634AU), which was significantly reduced by in vitro exposure to EV-077 (383AU, PTP mediated contraction of umbilical arteries by 8-iso-PGE2 (PTP receptor-mediated contraction of human arteries induced by isoprostane 8-iso-PGE2 was effectively inhibited by EV-077.

Kjell S. Sakariassen; Eti A. Femia; Federico M. Daray; Gian M. Podda; Cristina Razzari; Mariateresa Pugliano; Andrea E. Errasti; Arnaldo R. Armesto; Wanda Nowak; P?teris Alberts; Jean-Philippe Meyer; Alexandra S. Sorensen; Marco Cattaneo; Rodolfo P. Rothlin

2012-01-01T23:59:59.000Z

260

Effects of V2G Reactive Power Compensation on the Component Selection in an EV or PHEV Bidirectional Charger  

E-Print Network [OSTI]

, electric vehicle, EV, PHEV, reactive power, V2G. I. NOMENCLATURE Vde (t) instantaneous dc link voltage, [V electric vehicles throughout this paper. EV power electronics and related control systems are the system vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are becoming a part of the electric grid day

Tolbert, Leon M.

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities  

SciTech Connect (OSTI)

The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

Mindy Kirkpatrick

2012-05-01T23:59:59.000Z

262

EnerG2 Develops New Approach to EV Energy Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EnerG2 Develops New Approach to EV Energy Storage EnerG2 Develops New Approach to EV Energy Storage EnerG2 Develops New Approach to EV Energy Storage November 16, 2010 - 9:50am Addthis EnerG2 manufactures the black powder-like materials shown here that make up the carbon electrode in an ultracapacitor. | Illustration courtesy of EnerG2 EnerG2 manufactures the black powder-like materials shown here that make up the carbon electrode in an ultracapacitor. | Illustration courtesy of EnerG2 Joshua DeLung To decrease the transportation sector's reliance on gasoline, viable alternatives must be found. Ultracapacitors - energy storage systems with very high energy density - might be a technology that drives Americans into a future free of the pump. Innovative company creates material from scratch To make ultracapacitors, manufacturers need a component called a carbon

263

OE/EV-0005/2 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

OE/EV-0005/2 OE/EV-0005/2 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Hooker Chemical Company Niagara Falls, New York January 1977 Final Report Prepared for U.S. Department of Energy Division of Environmental Control Technology Washington, D.C. 20545 DOE/EV-0005/2 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Hooker Chemical Company Niagara Falls, New York January 1977 Final Report Prepared for U.S. Department of Energy Division of Environmental Control Technology Washing-ton, D.C. 20545 Under Contract No. W-7405-ENE-26 Oak Ridge National Laboratory Oak Ridge, Tennessee 3783C NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United

264

The Ohmic heating of a spheromak to 100 eV  

Science Journals Connector (OSTI)

The first spheromaks with Thomson?scattering?measured electron temperatures of over 100 eV are described. The spheromak is generated by a magnetized coaxial plasma source in a background gas of 30 mTorr of H2 and it is stably confined in an oblate 80 cm diam copper mesh flux conserver. The open mesh design allows rapid impurity transport out of the spheromak. The peak temperature measured using multipoint Thomson scattering is observed to rise from approximately 25 eV to over 100 eV in about 0.2 msec due to Ohmic heating from the decaying magnetic fields. Density (?5101 3 cm? 3) and magnetic fields (approximately 2 kG) are measured using interferometry and magnetic probes.

T. R. Jarboe; Cris W. Barnes; I. Henins; H. W. Hoida; S. O. Knox; R. K. Linford; A. R. Sherwood

1984-01-01T23:59:59.000Z

265

EV-131  

Office of Legacy Management (LM)

31 31 Removal of Gillman iiell, Unfwrsity of California, Ecrkeley, California from the Formerly Utflized Sites Remedial Action Program (FUSRAPj S. Meyers, NE-30 This is in response to your memorandum of March 26, 1980, relative to the removal of Gillman Ball, Univcrs'lty of California, Berkeley, California from the Formerly Utilized Sites Remedial Action Program. As we now undcr- stand the sittlation, SAN has indicated that the site in question is covered under an exfsting license and, consequently, you may decide not to conduct remedial action there at any time in the foreseeable future. In any event, Gillman ttall is a formerly utilized site and as such shouid retain that designation albeit in an inactive status. If you decided not to conduct

266

Excitation spectroscopy on the 0.79-eV (C) line defect in irradiated silicon  

Science Journals Connector (OSTI)

We combine photoluminescence excitation measurements and conventional luminescence spectroscopy to show that the oxygen-related deep defect in irradiated silicon which emits the 0.79-eV (C) no-phonon line possesses local modes of 65.5-, 72.5-, 138.1-, and 145.3-meV quantum energy. These values are close to the vibration energies of interstitial oxygen (Si-Oi-Si), substitutional carbon, or oxygen-carbon complexes as observed in ir absorption. Two groups of electronic excited states centered at photon energies around 0.80 or 0.82 eV, respectively, are also identified.

J. Wagner; K. Thonke; R. Sauer

1984-06-15T23:59:59.000Z

267

tive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and  

E-Print Network [OSTI]

a few sluggish electric vehicles would cause enough traffic slowing that the gasoline- powered fleet Analy- sis article on battery-powered vehicles (Sept. 1996, p. 402A) serves as a useful remindertive emissions from EVs (e.g., power plant NOx) and GPVs (tailpipe and associated NO.,. emissions

Denver, University of

268

How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?  

SciTech Connect (OSTI)

This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

John Smart

2014-05-01T23:59:59.000Z

269

Online Reservation and Deferral of EV Charging Tasks to Reduce Energy Use Variability  

E-Print Network [OSTI]

Grids Muhammad Abdullah Adnan, Balakrishnan Narayanaswamy, and Rajesh K. Gupta University of California and power use. We validate our algorithm on simulated EV workload, collected wind and solar power generation companies to build and maintain larger capacity and more expensive infrastruc- ture, which is under

Gupta, Rajesh

270

Resonances in the Photo-Ionization Continuum of Ne I (20-150 eV)  

Science Journals Connector (OSTI)

The absorption spectrum of neon in the region 20-150 eV has been studied photographically and photoelectrically, using synchrotron light as a background source. Discrete structure has been observed in three distinct energy ranges. The first is between the P?12,322 limits near 22 eV, involving resonances analogous to those observed by Beutler in Ar, Kr, and Xe; the second is the region between 44 and 60 eV, the structure here being classified as due to two types of excitation: (i) the excitation of a subshell 2s electron, (ii) the simultaneous excitation of two outer 2p electrons; the third region is near 80 eV, where two weak resonances are observed, due to the simultaneous excitation of a subshell 2s and a 2p electron. The resonance profiles of the states 2s 2p6 np P?11, where n=3,4,and5, and the two-electron excitation state 2p4 (P3) 3s 3p P?11 have been studied quantitatively and values of q, ?, and ? determined for each.

K. Codling; R. P. Madden; D. L. Ederer

1967-03-05T23:59:59.000Z

271

Real-Time Welfare-Maximizing Regulation Allocation in Dynamic Aggregator-EVs System  

E-Print Network [OSTI]

external energy sources for the aggregator. The algorithm operates in real time and does not require any prevalent in the near future. For example, from one report of the U.S. department of energy [1 of transportation, EVs can also be used as distributed electricity generation/storage devices when plugged-in [2

Liang, Ben

272

Uranium Oxide as a Highly Reflective Coating from 150-350 eV  

E-Print Network [OSTI]

of depleted uranium metal (less than 0.2% U-235). After sputtering, the uranium was allowed to oxidize1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium

Hart, Gus

273

EV3 : Traction drives and generators A: Electric machine design and optimization 1  

E-Print Network [OSTI]

EV3 : Traction drives and generators A: Electric machine design and optimization 1 Influence Electrical Machine Type B. Aslan1 , J. Korecki1 , T. Vigier1 , E. Semail1 bassel.aslan@yahoo.com, korecki according to the electrical angle e (angle between current and back-EMF vector), for different values

Boyer, Edmond

274

On the Variation of Eta with Energy in the 100-1000 ev Region  

DOE R&D Accomplishments [OSTI]

Fluctuations in the fission yield in the 100- to 1000-ev region led to an investigation of the influencing variables. Changes in fission width from level to level and higher angular momentum phenomena are seen as possible explanations. (D.E.B.)

Wigner, E. P.

1949-11-01T23:59:59.000Z

275

Eggs in the Nest The last several years have produced a great deal of ev-  

E-Print Network [OSTI]

Eggs in the Nest The last several years have produced a great deal of ev- idence supporting clusters variously called germ cell nests, germ cell cysts, or germ cell syncytia (5, 7). The utility cell nests persist until a few days after birth in the mouse, when the syncytium breaks down

Mayo, Kelly E.

276

Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage  

SciTech Connect (OSTI)

The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

Castello, Charles C [ORNL; LaClair, Tim J [ORNL; Maxey, L Curt [ORNL

2014-01-01T23:59:59.000Z

277

EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group B Breakout Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

278

EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumer/Charging Workshop: Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior Jacob Ward, Vehicle Technologies Senior Analyst July 30, 2012 LAX Marriot, Los Angeles, California For "EV Everywhere" Analysis, Three Scenarios 1. PHEV40 - reduces battery size while removing range issues, but involves the higher cost of two powertrains 2. AEV100 - minimizes vehicle purchase cost, but introduces range/vehicle use/infrastructure tradeoffs 3. AEV300 - helps to address range issues, but large battery leads to high vehicle cost Vehicle-level analysis provides a starting point for setting EV Everywhere technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled

279

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7/26/2012 7/26/2012 EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Monday, July 30, 2012 - LAX Marriott, Los Angeles, CA Event Objective: DOE aims to obtain stakeholder input on the consumer acceptance and charging infrastructure barriers associated with the EV Everywhere Grand Challenge. This input will help guide the Challenge and the next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles - and to do so within the next 10 years. 8:00-8:30AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

280

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Drive (Power Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next-generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. The EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop was attended by senior officials of the Department of Energy and representatives from the following

282

Multipole character of the proposed 220 eV transition in Pa229  

Science Journals Connector (OSTI)

Internal conversion coefficients (ICCs) have been calculated for protactinium and transition energies between 170 eV and 10 keV. The ICCs for E1 multipolarity show an unusual behavior, which cannot be approximated by an exponential dependence on the transition energy, whereas the ICCs for M1 and E2 multipolarities closely follow such a dependence. Using the newly calculated ICCs the unusually strong enhancement of a possible 220 eV E1 transition in Pa229 proposed earlier is reduced by a factor of ?5, yielding an induced electric dipole moment similar to that observed in the neighboring octupole-deformed isotopes.

O. Dragoun; M. Rysavy; C. Gnther

1993-02-01T23:59:59.000Z

283

Anisotropic etching of polymer films by high energy ,,100s of eV... oxygen atom neutral beams  

E-Print Network [OSTI]

Anisotropic etching of polymer films by high energy ,,?100s of eV... oxygen atom neutral beams to generate an energetic 100s of eV , high flux equivalent of 10s mA/cm2 oxygen atom neutral beam. Positive of the boundary voltage which controls neutral beam energy , and was independent of substrate temperature

Economou, Demetre J.

284

EV Sales Skyrocketing. eGallon Holds Steady. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. July 19, 2013 - 8:45am Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about 3 times less to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 · 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon 0 4 1 7 2 3 3 · 0 4 2 0 4 6 0 8 5 9 1 5 0 Data and Methodology The eGallon price is calculated using the most recently available state by state residential electricity prices. The state gasoline price above is either the statewide average retail price or a multi-state regional average

285

Measurement of the Total Cross Section for Symmetric Charge Exchange in Helium from 400-2000 eV  

Science Journals Connector (OSTI)

The energy dependence of the total cross section for symmetric charge exchange in helium is measured in the range from 400-2000 eV. Beam-attenuation techniques are used, and all measurements are made on the forward-scattered ions and the high-energy neutrals resulting from the charge exchange. Cross-section values are given at 100-eV intervals, and the results show a cross section decreasing as the energy increases, with a value at 1000 eV of 1.04 10-15 cm2. The absolute cross sections are accurate to 12%. Relative cross-section values accurate to 6% are reported.

Stephen W. Nagy, William J. Savola, Jr., and Edward Pollack

1969-01-05T23:59:59.000Z

286

Muons in extensive air showers of energies E 0=1016.61019.8 eV  

Science Journals Connector (OSTI)

Data on muons with the threshold energy E ?...?1.0sec? GeV in extensive air showers of energies E 0?41016...eV measured on the Yakutsk and Akeno arrays are jointly analyzed. The ...

A. V. Glushkov; I. T. Makarov; M. I. Pravdin

2000-02-01T23:59:59.000Z

287

Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?  

SciTech Connect (OSTI)

This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

John Smart; Don Scoffield

2014-03-01T23:59:59.000Z

288

Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?  

SciTech Connect (OSTI)

This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

John Smart; Don Scoffield

2014-03-01T23:59:59.000Z

289

Broadband extreme ultraviolet multilayer mirror for supercontinuum light at a photon energy of 35-65 eV  

Science Journals Connector (OSTI)

We have developed a broadband multilayer mirror for photon energies between 35 and 65 eV. This extreme ultraviolet (EUV) mirror has an almost flat reflectivity profile at normal...

Hatayama, Masatoshi; Takenaka, Hisataka; Gullikson, Eric M; Suda, Akira; Midorikawa, Katsumi

2009-01-01T23:59:59.000Z

290

Development of 1.25 eV InGaAsN for triple junction solar cells  

SciTech Connect (OSTI)

Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

2000-05-16T23:59:59.000Z

291

Project Leader : Kenji Esaki (Toyota Motor Corporation)  

E-Print Network [OSTI]

and Individualized Social Innovation Hub - The "Mobility Society" for the Elderly: Lead to an Active and Joyful

Takahashi, Ryo

292

Deutsches Terahertz-Zentrum e.V. Anschrift: Philipps-Universitt Marburg, Fachbereich Physik, Hans-Meerwein-Str., MZG-C6, 35032 Marburg  

E-Print Network [OSTI]

Deutsches Terahertz-Zentrum e.V. Anschrift: Philipps-Universität Marburg, Fachbereich Physik, Hans Deutsches Terahertz-Zentrum e.V. Anschrift: Philipps-Universität Marburg, Fachbereich Physik, Hans.terahertzcenter.de E-Mail: info@terahertzcenter.de #12;Deutsches Terahertz-Zentrum e.V. Anschrift: Philipps

Schubart, Christoph

293

DOE/EV-0005/10 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

0 0 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohio February 1979 - Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/10 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohii February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS)

294

DOE/EV-0005/19 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

9 9 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 . Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology ~--.. _..-- DOE/EV-0005/19 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiologidal Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Argonne National Laboratory Argonne, Illinois 60439 Under Contract No. W-31-1 09-ENG-38 -- _.. .-___

295

DOE/EV-0005/26 ANL-OHS/HP-82-100  

Office of Legacy Management (LM)

J-L.f!~: J-L.f!~: r*' c;,:i &3&j DOE/EV-0005/26 ANL-OHS/HP-82-100 i$; ' ,\ : -ed - *' J&&&g y FORMERLY UTILIZED MED/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE GEORGE HERBERT JONES CHEMICAL LABORATORY THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS June 1347, 1977 OCCUPATIONAL HEALTH AND SAFETY DIVISION Health Physics Section ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS Prepared for the U. S. DEPARTMENT OF ENERGY under Contract W -31409-Eng=38 The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in

296

DOE/EV-0005/16 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

6 6 Formerly Utilized MED/AEC Sites Remedial Action Program Radic&@cal Survey of the St. Louis Airport Storage Site, St. Louis, Missouri September 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology .__ -. __ ..- -- DOE/EV-0005/16 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the St. Louis Airport Storage Site, St. Louis, Missouri September 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Under Contract No. W-7405-ENG-26 .--__ _ .- _--- _ ~- Available from:

297

MEMORANDUM FOR THE DIRECTOR, OFFICE OF MANAGEMENT, BUDGET EV LUATION/CHIEF FINANCIAL OFFICER  

Broader source: Energy.gov (indexed) [DOE]

ES January 10, 2003 ES January 10, 2003 MEMORANDUM FOR THE DIRECTOR, OFFICE OF MANAGEMENT, BUDGET EV LUATION/CHIEF FINANCIAL OFFICER FROM: / J ti .Maharay FR Assistant Inspector General for Audit Services S Office of Inspector General SUBJECT: Federal Managers' Financial Integrity Act Audit Report Audit Report No.: OAS-L-03-05 We reviewed selected aspects of the Department of Energy's implementation of the Federal Managers' Financial Integrity Act (FMFIA) of 1982. The objective of the FMFIA, and the Department's Management Control Program, is to ensure that controls are working effectively and that programs and administrative functions are performed in an economic and efficient manner consistent with applicable laws. In addition to our audit work in this area, we also recently issued our annual report on

298

DOE/EV-0005/11 Formerly Utilized M.ED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

1 1 Formerly Utilized M.ED/AEC Sites Remedial Action Program Radidogical Survey of the Seneca Army Depot Romulus, New York February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology : E 1 bOE/EV-0005/11 UC-70 Formerly Utilized MEDIAEC Sites Remedial Action Program Radidogical Survey of the Seneca Army Depot Romulus, New York February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS) U.S. Department of Comrqerce

299

DOE/EV-0005/15 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

5 5 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/15 UC-71 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545 Under Contract No. W-7405-ENG-36 Available from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

300

Theory of Multiphoton Multielectron Ionization of Xenon under Strong 93-eV Radiation  

Science Journals Connector (OSTI)

We present a theoretical interpretation of recent experimental results on multiphoton multiple ionization of xenon by soft-x-ray radiation of photon energy ?93??eV and intensity up to 1016??W/cm2 [A.?A Sorokin et al., Phys. Rev. Lett. 99, 213002 (2007)]. The data are interpreted within multiphoton perturbation theory, taking into account the spatiotemporal distribution of the radiation. Multiphoton cross sections have been obtained through a technique of scaling, with occasional adjustment to the data, provided the two prove to be compatible. Whatever discrepancies between theory and experiment persist can be reasonably attributed to some uncertainty in the experimental conditions and possibly to the value of some cross sections, without, however, any evidence for nonperturbative behavior.

M. G. Makris; P. Lambropoulos; A. Miheli?

2009-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Study of the chemical composition of high energy cosmic rays using the muon LDF of EAS between $10^{17.25}$ eV and $10^{17.75}$ eV  

E-Print Network [OSTI]

We explore the feasibility of estimating primary cosmic ray composition at high energies from the study of two parameters of Extensive Air Showers (EAS) at ground and underground level with Monte Carlo simulations using the new EPOS and QGSJETII hadronic models tuned with LHC data. Namely, the slope and density at a given distance of the muon lateral distribution function are analysed in this work. The power to discriminate primary masses is quantified in terms of merit factor for each parameter. The analysis considers three different primary particles (proton, iron and gamma), four different zenith angles (0$^{\\circ}$, 15$^{\\circ}$, 30$^{\\circ}$ and 45$^{\\circ}$) and primary energies of $10^{17.25}$ eV, $10^{17.50}$ eV and $10^{17.75}$ eV.

Tapia, A; Snchez, F; Croce, A Sedoski; Figueira, J M; Garca, B; Gonzlez, N; Josebachuili, M; Ravignani, D; Wundheiler, B; Etchegoyen, A

2015-01-01T23:59:59.000Z

302

Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation  

Science Journals Connector (OSTI)

Abstract With the increasing penetration of renewable energy, automatic generation control (AGC) capacity requirements will increase dramatically, becoming a challenging task that must be addressed. The rapid growth of electric vehicles (EVs) provides new approaches for the stable operation of power systems. Vehicle-to-grid (V2G) technology has the potential to provide frequency regulation (FR) services. Fully taking into account the advantages of \\{EVs\\} and battery energy storage stations (BESSs), i.e. rapid response and large instantaneous power, this paper presents a coordinated control strategy for large-scale EVs, \\{BESSs\\} and traditional FR resources involved in AGC. Response priorities and control strategies for the FR resources vary with different operating states. To verify the effectiveness of the proposed control strategy, dynamic simulations for EV/BESS to participate in AGC of a two-area interconnected power system are performed in the Matlab/Simulink program. The simulation results show that the proposed method can not only fully utilize the advantages of EV/BESS, but also achieve the coordination among different FR resources, thus improving the frequency stability and facilitating the integration of renewable energy.

Jin Zhong; Lina He; Canbing Li; Yijia Cao; Jianhui Wang; Baling Fang; Long Zeng; Guoxuan Xiao

2014-01-01T23:59:59.000Z

303

Dual baseline search for muon neutrino disappearance at 0.5 eV2 2 2  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The SciBooNE and MiniBooNE collaborations report the results of a ?? disappearance search in the &Delta'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on ?? disappearance in the 0.5-40 eV2 ?m2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

Mahn, K B.M. [Columbia U.; Nakajima, Y [Kyoto U.; Aguilar-Arevalo, A A [Mexico U., CEN; Alcaraz-Aunion, J L [Barcelona, IFAE; Anderson, C E [Yale U.; Bazarko, A O [Princeton U.; Brice, S J [Fermilab; Brown, B C [Fermilab; Bugel, L [MIT; Cao, J [Michigan U.; Catala-Perez, J [Valencia U.; Columbia U.

2011-06-01T23:59:59.000Z

304

Elastic electron scattering and vibrational excitation of isoxazole molecules in the energy range from 2 to 20 eV  

Science Journals Connector (OSTI)

Differential cross sections for elastic electron scattering and the excitation of the C-H vibrational modes of isoxazole molecules were measured in the energy range from 2 to 20 eV and over the scattering angle range from 10 to 180. The cross sections at the scattering angles of and above 90 were accessible with the use of a magnetic angle changer. The differential cross sections were integrated to yield integral and momentum transfer cross sections. The negative ion resonances in the elastic scattering at 2.7 eV and in the vibrational excitation of isoxazole at 5.5 and 10 eV were observed. The present cross sections for elastic scattering are compared with the corresponding results in furan.

Ireneusz Linert and Mariusz Zubek

2012-08-14T23:59:59.000Z

305

Coordinated EV Adoption: Double-Digit Reductions in Emissions and Fuel Use for $40/Vehicle-Year  

Science Journals Connector (OSTI)

The Eastern Interconnection comprises six regions, each of which are modeled separately in this study: Florida Reliability Coordinating Council (FRCC), Southeast Electric Reliability Council (SERC), Reliability First Corporation (RFC), Southwest Power Pool (SPP), and United States portions of Midwest Reliability Organization (MRO) and Northeast Power Coordinating Council (NPCC). ... The linking of CV fuel efficiency standards with EV adoption rates does provide flexibility in meeting the standard and may also support development and adoption of EV technologies. ... using COPERT software: 167112 TJ of fossil fuel energy, 12213 kton of CO2 emission and 141 kton of CO, 20 kton of HC, 46 kton of NOx and 3 kton of PM. ...

Dong Gu Choi; Frank Kreikebaum; Valerie M. Thomas; Deepak Divan

2013-07-22T23:59:59.000Z

306

More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the devices efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphis GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

None

2010-02-01T23:59:59.000Z

307

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology  

SciTech Connect (OSTI)

Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {approx}0.85 W/cm{sup 2} could be attained under the above operating temperatures.

MW Dashiell; JF Beausang; G Nichols; DM Depoy; LR Danielson; H Ehsani; KD Rahner; J Azarkevich; P Talamo; E Brown; S Burger; P Fourspring; W Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Marinelli; D Donetski; S Anikeev; G Belenky; S Luryi; DR Taylor; J Hazel

2004-06-09T23:59:59.000Z

308

Performance status of 0.55 eV InGaAs thermophotovoltaic cells  

SciTech Connect (OSTI)

Data on {approximately} 0.55 eV In{sub 0.72}Ga{sub 0.28}As cells with an average open-circuit voltage (Voc) of 298 mV (standard deviation 7 mV) at an average short-circuit current density of 1.16 A/cm{sup 2} (sdev. 0.1 A/cm{sup 2}) and an average fill-factor of 61.6% (sdev. 2.8%) is reported. The absorption coefficient of In{sub 0.72}Ga{sub 0.28}As was measured by a differential transmission technique. The authors use a numerical integration of the absorption data to determine the radiative recombination coefficient for In{sub 0.72}Ga{sub 0.28}As. Using this absorption data and simple one-dimensional analytical formula the above cells are modeled. The models show that the cells may be limited more by Auger recombination rather than Shockley-Read-Hall (SRH) recombination at dislocation centers caused by the 1.3% lattice mismatch of the cell to the host InP wafer.

Wojtczuk, S.; Colter, P. [Spire Corp., Bedford, MA (United States); Charache, G.; DePoy, D. [Lockheed Martin Inc., Schenectady, NY (United States)

1998-10-01T23:59:59.000Z

309

Production data on 0.55 eV InGaAs thermophotovoltaic cells  

SciTech Connect (OSTI)

Low bandgap 0.55 eV (2.25 {micro}m cutoff wavelength) indium gallium arsenide (In{sub 0.72}Ga{sub 0.28}As) thermophotovoltaic (TPV) cells use much more of the long wavelength energy emitted from low temperature (< 1,200 C) thermal sources than either Si or GaSb cells. Data are presented on a statistically significant number (2,500) of these TPV cells, indicating the performance obtainable in large numbers of cells. This data should be useful in the design and modeling of TPV system performance. At 1.2 A/cm{sup 2} short-circuit current, an average open-circuit voltage of 283 mV is obtained with a 60% fill factor. The peak external quantum efficiency for uncoated cells is 65% and is over 50% from 1.1 to 2.2 {micro}m. Internal quantum efficiency is over 76% in this range assuming an estimated 34% reflectance loss.

Wojtzuk, S.; Colter, P. [Spire Corp., Bedford, MA (United States); Charache, G.; Campbell, B. [Lockheed Martin, Inc., Schenectady, NY (United States)

1996-05-01T23:59:59.000Z

310

0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell  

SciTech Connect (OSTI)

We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

2006-01-01T23:59:59.000Z

311

Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons  

E-Print Network [OSTI]

Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons Xiaohua Fang,1 of the ionization rate in the Earth's atmosphere due to precipitating energetic electrons. Precipitating electrons the atmosphere. In this study, two electron transport models (whose validity has been verified by observations

Jackman, Charles H.

312

ZEBRA plus ultracapacitors: A good match for energy efficient EVs Juan Dixon, Micah Ortzar, Eduardo Arcos and Ian Nakashima.  

E-Print Network [OSTI]

be useful for pure electric vehicles that use batteries with low specific power (W/kg). Those kinds Introduction Ultra capacitors [1] are a very good solution for hybrid electric vehicles. However, they can also between the most common secondary batteries for EVs. #12;2 Description of the System The electric vehicle

Catholic University of Chile (Universidad Católica de Chile)

313

Abstract--We consider the management of electric vehicle (EV) loads within a market-based Electric Power System  

E-Print Network [OSTI]

battery charging while engaging in energy and reserve capacity transactions in the wholesale power market day-ahead and real-time power market framework similar to that used in the major USA power pools (PJMAbstract--We consider the management of electric vehicle (EV) loads within a market-based Electric

Caramanis, Michael

314

Logistics Network Models Instructor: Dr. Ali Akgunduz, Office: EV 4.217, Tel: 514-848-2424 ext 3179  

E-Print Network [OSTI]

1 INDU 498 Logistics Network Models Instructor: Dr. Ali Akgunduz, Office: EV 4.217, Tel: 514-848-2424 ext 3179 Text Book: 1. Introduction to Logistics Systems Planning and Control, G. Ghiani, G. Laporte networks Ground carriers Logistic issues for companies 2 SUPPLY CHAIN MODELS Demand chains Demand

Akgunduz, Ali

315

Imaging the Heliosphere Using Neutral Atoms from Solar Wind Energy Down to 15 eV  

Science Journals Connector (OSTI)

We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbona 20 wide region of high ENA intensitiesis most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Ly? observations.

A. Galli; P. Wurz; S. A. Fuselier; D. J. McComas; M. Bzowski; J. M. Sok?; M. A. Kubiak; E. Mbius

2014-01-01T23:59:59.000Z

316

Constraints on the flux of primary cosmic-ray photons at energies E > 10^18 eV from Yakutsk muon data  

E-Print Network [OSTI]

Comparing the signals measured by the surface and underground scintillator detectors of the Yakutsk Extensive Air Shower Array, we place upper limits on the integral flux and the fraction of primary cosmic-ray photons with energies E > 10^18 eV, E > 2*10^18 eV and E > 4*10^18 eV. The large collected statistics of the showers measured by large-area muon detectors provides a sensitivity to photon fractions energies.

A. V. Glushkov; I. T. Makarov; M. I. Pravdin; I. E. Sleptsov; D. S. Gorbunov; G. I. Rubtsov; S. V. Troitsky

2009-07-02T23:59:59.000Z

317

Neutron induced fission of Pu240,242 from 1 eV to 200 MeV  

Science Journals Connector (OSTI)

The neutron induced fission cross sections of Pu240,242 have been measured as a function of incident neutron energy from 1 eV to 200 MeV. This is part of an effort to reduce experimental uncertainties of nuclear data in support of next generation nuclear reactors and transmutation technology. These two plutonium isotopes are nonfissile, and the available data are limited below reaction threshold. The present data demonstrate the presence of a 2.67 eV resonance in the Pu242 fission cross section, which is missing in the ENDF/B-VII evaluation, and resolve discrepancies in the keV region. The measured cross sections are also compared with statistical model calculations made with the nuclear reaction code GNASH.

F. Tovesson; T. S. Hill; M. Mocko; J. D. Baker; C. A. McGrath

2009-01-29T23:59:59.000Z

318

Neutrinos from Gamma-Ray Bursts in Pulsar Wind Bubbles: \\sim 10^{16} eV  

E-Print Network [OSTI]

The supranova model for Gamma-Ray Bursts (GRBs) is becoming increasingly more popular. In this scenario the GRB occurs weeks to years after a supernova explosion, and is located inside a pulsar wind bubble (PWB). Protons accelerated in the internal shocks that emit the GRB may interact with the external PWB photons producing pions which decay into \\sim 10^{16} eV neutrinos. A km^2 neutrino detector would observe several events per year correlated with the GRBs.

Dafne Guetta; Jonathan Granot

2002-12-02T23:59:59.000Z

319

Conformal Gauge Mediation and Light Gravitino of Mass m_{3/2} < O(10) eV  

SciTech Connect (OSTI)

We discuss a class of gauge mediated supersymmetry breaking models with conformal invariance above the messenger mass scale (conformal gauge mediation). The spectrum of the supersymmetric particles including the gravitino is uniquely determined by the messenger mass. When the conformal fixed point is strongly interacting, it predicts a light gravitino of mass m{sub 3/2} < O(10) eV, which is attractive since such a light gravitino causes no problem in cosmology.

Ibe, M.; /SLAC; Nakayama, Y.; /UC, Berkeley; Yanagida, T.T.; /Tokyo U.

2008-04-08T23:59:59.000Z

320

Optical constants of magnetron sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV  

SciTech Connect (OSTI)

This work discusses the experimental determination of the optical constants (refractive index) of DC-magnetron-sputtered boron carbide films in the 30-770 eV photon energy range. Transmittance measurements of three boron carbide films with thicknesses of 54.2, 79.0 and 112.5 nm were performed for this purpose. These are the first published experimental data for the refractive index of boron carbide films in the photon energy range above 160 eV, and for the near-edge x-ray absorption fine structure (NEXAFS) regions around the boron K (188 eV), carbon K (284.2 eV) and oxygen K (543.1 eV) absorption edges. The density, composition, surface chemistry and morphology of the films in this manuscript were also investigated using Rutherford Backscattering (RBS), X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and extreme ultraviolet (EUV) reflectance measurements.

Soufli, R; Aquila, A L; Salmassi, F; Fernandez-Perea, M; Gullikson, E M

2008-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

322

A calculation of the number of muons at sea-level in a photon-electron cascade initiated by a primary photon of energy 1014eV  

Science Journals Connector (OSTI)

The muon component in a photon-electron cascade initiated...14...eV has been estimated for sea-level in the longitudinal development of the electromagnetic cascade. Two distinct possible processes of muon product...

N. Mishra

1966-01-11T23:59:59.000Z

323

As telecommunications products and services have become an essential part of ev-eryday life, consumers have at the same time grown intimately familiar with the  

E-Print Network [OSTI]

Preface As telecommunications products and services have become an essential part of ev- eryday. The potential audience includes: network designers and planners, and engineering and sales managers at Internet

324

On EAS spectrum with extremely low content of hadrons in the primary-energy range ?1014?1015 eV  

Science Journals Connector (OSTI)

The distribution of energy fluxes of the hadron component of extensive air showers through an ion-ization calorimeter in the primary-energy range ?3 1013?1016 eV is considered. Extensive air showers with zero a...

T. T. Barnaveli; T. T. Barnaveli Jr.

2007-04-01T23:59:59.000Z

325

Cosmic Rays around $10^{18} $eV: Implications of Contemporary Measurements on the Origin of the Ankle Feature  

E-Print Network [OSTI]

The impressive power-law decay of the energy spectrum of cosmic rays over more than thirty orders of magnitude in intensity and for energies ranging over eleven decades between $\\simeq 10^9 $eV and $\\simeq 10^{20} $eV is actually dotted with small irregularities. These irregularities are highly valuable for uncovering and understanding the modes of production and propagation of cosmic rays. They manifest themselves through changes in the spectral index characterising the observed power laws. One of these irregularities, known as the \\textit{ankle}, is subject to conflicting interpretations for many years. If contemporary observations characterising it have shed new lights, they are still far from being able to deliver all the story. The purpose of this contribution is to give an overview of the physics of cosmic rays in the energy range where the transition between Galactic and extragalactic cosmic rays is expected to occur, and to deliver several lines of thought about the origin of the ankle.

Deligny, Olivier

2014-01-01T23:59:59.000Z

326

A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV  

SciTech Connect (OSTI)

We report on the design and construction of a higher energy Scanning Transmission X-ray Microscope on a new bend magnet beam line at the Advanced Light Source. Previously we have operated such an instrument on a bend magnet for C, N and O 1s NEXAFS spectroscopy. The new instrument will have similar performance at higher energies up to and including the S 1s edge at 2472eV. A new microscope configuration is planned. A more open geometry will allow a fluorescence detector to count emitted photons from the front surface of the sample. There will be a capability for zone plate scanning in addition to the more conventional sample scanning mode. This will add the capability for imaging a massive sample at high resolution over a limited field of view, so that heavy reaction cells may be used to study processes in-situ, exploiting the longer photon attenuation length and the longer zone plate working distances available at higher photon energy. The energy range will extend down to include the C1s edge at 300eV, to allow high energy NEXAFS microscopic studies to correlate with the imaging of organics in the same sample region of interest.

Kilcoyne, David; Ade, Harald; Attwood, David; Hitchcock, Adam; McKean, Pat; Mitchell, Gary; Monteiro, Paulo; Tyliszczak, Tolek; Warwick, Tony

2010-01-31T23:59:59.000Z

327

CATHODOLUMINESCENCE STUDIES OF THE 1.4 eV BANDS IN CdTe (*) C. B. NORRIS and C. E. BARNES  

E-Print Network [OSTI]

219 CATHODOLUMINESCENCE STUDIES OF THE 1.4 eV BANDS IN CdTe (*) C. B. NORRIS and C. E. BARNESV luminescence bands in nominally undoped, nominally stoichiometric CdTe and in donor-compensated, Te-rich CdTe.4 eV transitions in CdTe arose from the fact that this transition is of a more complex nature than

Paris-Sud XI, Université de

328

Europium resonance parameters from neutron capture and transmission measurements in the energy range 0.01200eV  

Science Journals Connector (OSTI)

Abstract Europium is a good absorber of neutrons suitable for use as a nuclear reactor control material. It is also a fission product in the low-yield tail at the high end of the fission fragment mass distribution. Measurements have been made of the stable isotopes with natural and enriched samples. The linear electron accelerator center (LINAC) at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with europium in the energy region from 0.01 to 200eV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Two transmission measurements were performed at flight paths of 15 and 25m with 6Li glass scintillation detectors. The neutron capture measurements were performed at a flight path of 25m with a 16-segment sodium iodide multiplicity detector. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. To prevent air oxidation metal samples were sealed in airtight aluminum cans in an inert environment. Metal samples of natural europium, 47.8atom% 151Eu, 52.2atom% 153Eu, as well as metal samples enriched to 98.77atom% 153Eu were measured. The measured neutron capture resonance integral for 153Eu is (9.90.4)% larger than ENDF/B-VII.1. The capture resonance integral for 151Eu is (71)% larger than ENDF/B-VII.1. Another significant finding from these measurements was a significant increase in thermal total cross section for 151Eu, up (93)% from ENDF/B-VII.1. The thermal total cross section for 153Eu is down (83)% from ENDF/B-VII.1, but it is larger than that of ENDF/B-VII.0. The resolved resonance region has been extended from 100eV to 200eV for both naturally-occurring isotopes. Uncertainties in resonance parameters have been propagated from a number of experimental quantities using a Bayesian analysis. Uncertainties have also been estimated from fitting each Eu sample measurement individually.

G. Leinweber; D.P. Barry; J.A. Burke; M.J. Rapp; R.C. Block; Y. Danon; J.A. Geuther; F.J. Saglime III

2014-01-01T23:59:59.000Z

329

Large transverse momenta in nuclear interaction at E{sub 0} > 10{sup 16} eV detected in stratosphere  

SciTech Connect (OSTI)

A gamma-hadron superfamily of cosmic-rays created by a primary cosmic-ray particle with energy above 10{sup 16} eV was detected at an altitude of 30 km by a stratospheric balloon-borne emulsion chamber. Being of superhigh energy, this event is the unique example in the world statistics of practically pure nuclear interactions in the energy range unattainable for modern accelerators. The present analysis allowed one to estimate the interaction height above the chamber and transverse momenta of the secondaries produced in the interaction. The mean value of transverse momenta appears to be very large ( > 2.5 GeV/c)

Managadze, A. K., E-mail: mng@dec1.sinp.msu.ru; Osedlo, V. I.; Roganova, T. M.; Sveshnikova, L. G. [Moscow State University, Institute of Nuclear Physics (Russian Federation); Galkin, V. I.; Rakobolskaya, I. V. [Moscow State University, Faculty of Physics (Russian Federation); Goncharova, L. A.; Kotelnikov, K. A.; Polukhina, N. G. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation)

2007-01-15T23:59:59.000Z

330

Study of CS/sub 2/ in the 3--10 eV energy range by electron energy loss spectroscopy  

SciTech Connect (OSTI)

Electron impact energy loss spectra are obtained in CS/sub 2/ in the energy loss range of 3--10 eV with high and medium energy resolution. Measurements have been performed at various incident electron energies (approx.10--100eV) and scattering angles (4/sup 0/--90/sup 0/). The high energy resolution (approx.25 meV) has made possible the detailed analysis of the vibrational progressions and Rydberg series, and some identifications are supported by the plots of the differential cross sections of the studied transitions. New bands are evidenced in the region of the low-lying states 3--5 eV and classifications are proposed. The features appearing between 6.5 and 10 eV are classified into ten Rydberg series converging to the X /sup 2/Pi/sub g/ ground state of CS/sup +//sub 2/, and assignments are proposed for most of them. New triplet features are also evidenced around 6.6 eV, while the triplet character proposed by Greening and King for some transitions is not confirmed.

Hubin-Franskin, M.; Delwiche, J.; Poulin, A.; Leclerc, B.; Roy, P.; Roy, D.

1983-02-01T23:59:59.000Z

331

Muons with E_th >= 1 Gev and Mass Composition in the Energy Range 10^{18}-10^{20} ev Observed by Yakutsk Eas Array  

E-Print Network [OSTI]

The ratio of the muon flux density to charged particle flux density at distances of 300 and 600 m from the shower axis ($\\rhom(300)/\\rhos(300)$ and $\\rhom(600)/\\rhos(600)$) is measured. In addition, the energy dependence of $\\rhom(1000)$ is analysed for showers with energies above $10^{18}$ eV. A comparison between the experimental data and calculations performed with the QGSJET model is given for the cases of primary proton, iron nucleus and gamma- ray. We conclude that the showers with $\\E\\ge3\\times10^{18}$ eV can be formed by light nuclei with a pronounced fraction of protons and helium nuclei. It is not excluded however that a small part of showers with energies above $10^{19}$ eV could be initiated by primary gamma-rays.

S. P. Knurenko; V. A. Kolosov; I. T. Makarov; I. Ye. Sleptsov; V. R. Sleptsova; G. G. Struchkov

2004-11-25T23:59:59.000Z

332

LARGE-SCALE DISTRIBUTION OF ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE 10{sup 18} eV AT THE PIERRE AUGER OBSERVATORY  

SciTech Connect (OSTI)

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Facultad Regional Buenos Aires, Universidad Tecnologica Nacional, Buenos Aires (Argentina); Alvarez Castillo, J. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [IFGW, Universidade Estadual de Campinas, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli 'Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici'c, T. [Rudjer Boskovi'c Institute, 10000 Zagreb (Croatia); Arganda, E. [IFLP, Universidad Nacional de La Plata and CONICET, La Plata (Argentina); Collaboration: Pierre Auger Collaboration; and others

2012-12-15T23:59:59.000Z

333

EV Technical Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 2000 December 2000 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR02 Electric Vehicle Technical Center Prepared by: Ricardo Solares Juan C. Argueta Southern California Edison December 20, 2000 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the use of any information, product, process or procedure discussed in this report, including

334

EV Charging Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charging Infrastructure Charging Infrastructure JOHN DAVIS: Virtually anywhere in the U.S. you can bring light to a room with the flick of a finger. We take it for granted, but creating the national electric grid to make that possible took decades to accomplish. Now, in just a few years, we've seen the birth of a new infrastructure that allows electric vehicles to quickly recharge their batteries at home, work, or wherever they may roam. But this rapid growth has come with a few growing pains. Starting with less than 500 in 2009, there are now over 19,000 public-access charging outlets available to electric vehicles owners at commuter lots, parking garages, airports, retail areas and thousands of

335

EV Technical Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carrier Route Vehicles Carrier Route Vehicles Quarterly Report, June 2001 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR04 Electric Vehicle Technical Center An ISO 9001 Certified Facility Prepared by: Michel Wehrey Juan C. Argueta Julie M. Phung Southern California Edison June 15, 2001 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the

336

EV Guideline Assessment Templates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

work packages, identify the far term effort in larger planning packages for budget and scheduling purposes. | || || || || |6. Documentation Required: 1) Control Account Plans 2)...

337

EV Everywhere Grand Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Completely new drive-train architectures? Novel thermal materialsapproaches? New non-rare earth magnetmotor designs...

338

EV Everywhere Workshop  

Broader source: Energy.gov (indexed) [DOE]

Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S. Department of Energy Chicago, Illinois July 26...

339

EV Everywhere Framing Workshop  

Broader source: Energy.gov (indexed) [DOE]

energy.gov 9 | U.S. Department of Energy energy.gov Drive Johnson Controls Lebanon,OR Saft America Inc. Jacksonville, FL Exide Tech. Bristol, TN Columbus, GA Novolyte Tech. Inc....

340

Photoionization of neon between 100 and 2000 eV: Single and multiple processes, angular distributions, and subshell cross sections  

Science Journals Connector (OSTI)

All aspects of photoionization in the soft-x-ray region are taken into account, and a complete partitioning of the photoionization cross section of neon is given in terms of single-electron processes in 2p, 2s, and 1s subshells and multiple-electron processes involving these subshells. The various processes, including their angular dependences, are identified and studied by the technique of photoelectron spectrometry. The partition relies solely on experimental evidence. Absolute subshell cross sections for the emission of a single electron are compared with current theoretical predictions: The single-particle, frozen-structure model (Cooper, 1962) that uses the Herman-Skillman potential overestimated ?2p by up to 15%, ?2s by (25-35)%, and ?1s by about 20%; the random-phase-approximation-with-exchange model (Amusia, 1972) that includes multielectron correlation and uses Hartree-Fock wave functions predictions correctly ?2s at 110130 eV, ?l,n?l? transitions are found to be most probable in which the continuum electron changes its angular momentum, ?l=1, and the excited electron retains its momentum, ?l=0, namely 2p6?2p4?d,n p. Anisotropy parameters ? for 2p electrons agree well with theoretical results; however an unexplained maximum near ?=0? at h?>1 keV is found for the angular distributions of 2p photoelectrons.

F. Wuilleumier and M. O. Krause

1974-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Scattering of 64 eV to 3 keV Neutrons from Polyethylene and Graphite and the Coherence Length Problem  

E-Print Network [OSTI]

Scattering of 64 eV to 3 keV Neutrons from Polyethylene and Graphite and the Coherence Length 12180, USA (Received 31 August 2005; published 8 February 2006) We measured the neutron scattering by the neutron coherence length. The scattered intensity ratios were found to conform to conventional

Danon, Yaron

342

An ultra-low energy (30-200 eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum  

SciTech Connect (OSTI)

The paper describes the design and construction of an ion-atomic beam source with an optimized generation of ions for ion-beam-assisted deposition under ultrahigh vacuum (UHV) conditions. The source combines an effusion cell and an electron impact ion source and produces ion beams with ultra-low energies in the range from 30 eV to 200 eV. Decreasing ion beam energy to hyperthermal values ({approx_equal}10{sup 1} eV) without loosing optimum ionization conditions has been mainly achieved by the incorporation of an ionization chamber with a grid transparent enough for electron and ion beams. In this way the energy and current density of nitrogen ion beams in the order of 10{sup 1} eV and 10{sup 1} nA/cm{sup 2}, respectively, have been achieved. The source is capable of growing ultrathin layers or nanostructures at ultra-low energies with a growth rate of several MLs/h. The ion-atomic beam source will be preferentially applied for the synthesis of GaN under UHV conditions.

Mach, Jindrich; Kolibal, Miroslav; Sikola, Tomas [Institute of Physical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic); CEITEC BUT, Brno University of Technology, Technicka 10, 61669 Brno (Czech Republic); Samoril, Tomas; Voborny, Stanislav; Zlamal, Jakub; Spousta, Jiri; Dittrichova, Libuse [Institute of Physical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)

2011-08-15T23:59:59.000Z

343

Pitch processing is shared between language and music Tyler Perrachione1, Ev Fedorenko1, Louis Vinke2, Edward Gibson1 & Laura Dilley3  

E-Print Network [OSTI]

Pitch processing is shared between language and music Tyler Perrachione1, Ev Fedorenko1, Louis features, including reliance on pitch. Pitch in language: helps disambiguate syntactic structures (e, 1978; Breen et al., 2010). Pitch in music: melodies are encoded through the patterns of discrete

Gabrieli, John

344

Measurement of spin-exchange effects in electron-hydrogen collisions: 90/sup 0/ elastic scattering from 4 to 30 eV  

SciTech Connect (OSTI)

With use of a Fano-effect polarized electron source and a state selected thermally dissociated hydrogen beam, the interference was measured between the direct and exchange scattering amplitudes for 90/sup 0/ elastic scattering of electrons from atomic hydrogen for energies between 4 and 30 eV.

Fletcher, G.D.; Alguard, M.J.; Gay, T.J.; Hughes, V.W.; Tu, C.W.; Wainwright, P.F.; Lubell, M.S.; Raith, W.; Tang, F.C.

1982-06-14T23:59:59.000Z

345

NREL researchers develop a new tool that confirms the stability of the IMM solar cell's 1-eV metamorphic junction.  

E-Print Network [OSTI]

NREL researchers develop a new tool that confirms the stability of the IMM solar cell's 1-eV metamorphic junction. To test the robustness of NREL's inverted metamorphic multijunction (IMM) solar-cost power production using this device. One of NREL's industry partners, RF Micro Devices, demonstrated III

346

The conquest of the nano-cosmos is occurring simultaneously in almost ev-ery field with a strong interdisciplinary and an increasing transdisciplinary  

E-Print Network [OSTI]

Preface The conquest of the nano-cosmos is occurring simultaneously in almost ev- ery field, optical, magnetic, and (bio)chemical properties of materials are beginning to be mastered on a nano-scale. This enables the fabrication of devices that rely on effects on the nano-scale. For the creation

Grundmann, Marius

347

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network [OSTI]

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

348

Y-12 team garners efficiency best practices at Toyota's Kentucky...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an hour in the parking lot brainstorming ideas and future actions - everything from ergonomics and quality to organization and communication. No matter the outcome or future...

349

PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010  

E-Print Network [OSTI]

on the environment. Generally classified as sustainable mobility or green transport, these approaches include walking and cycling, transitoriented development, innovative vehicles with propulsion and fuel systems with low and zero carbon emissions, and building transport systems that are fuelefficient, spacesaving

Bertini, Robert L.

350

HEV Fleet Testing - Summary Fact Sheet for 2010 Toyota Prius  

Broader source: Energy.gov (indexed) [DOE]

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt...

351

Toyota Collaborates with the ALS and Molecular Foundry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.3.1 to help them gain insight into the chemistry of electrolytes for use in magnesium-ion batteries. The hope is that the research eventually leads to a fully developed...

352

Maintenance Records for 2010 Toyota Prius vin#0462  

Broader source: Energy.gov (indexed) [DOE]

DU2A5010462 Date Mileage Description Cost 11232009 5,935 Changed oil and filter, rotated tires, and inspected brakes 31.75 12182009 13,330 Changed oil and filter and inspected...

353

CONSTRAINTS ON THE ORIGIN OF COSMIC RAYS ABOVE 10{sup 18} eV FROM LARGE-SCALE ANISOTROPY SEARCHES IN DATA OF THE PIERRE AUGER OBSERVATORY  

SciTech Connect (OSTI)

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10{sup 18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Universidad Tecnologica Nacional - Facultad Regional Buenos Aires, Buenos Aires (Argentina); Castillo, J. Alvarez [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [Universidade Estadual de Campinas, IFGW, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli 'Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici'c, T. [Rudjer Boskovi'c Institute, 10000 Zagreb (Croatia); Arganda, E. [IFLP, Universidad Nacional de La Plata and CONICET, La Plata (Argentina); Collaboration: Pierre Auger Collaboration; and others

2013-01-01T23:59:59.000Z

354

Electron Emission from Aligned Superexcited O* Atoms Produced in Photodissociation of O2 in the 22.2022.36 eV Region  

Science Journals Connector (OSTI)

Photoelectron photoion coincidence and threshold photoelectron photoion coincidence time of flight spectra for O2 molecules in the 22.2022.36 eV region have been measured to investigate anisotropy in dissociative photoionization processes. Some of the O+ ions were produced in a particular photodissociation process in which the molecule fragments into an O(P3) atom and an excited O*[Po2 3d??] atom, which autoionizes to produce O+(Do2)+e-(0.16 eV). The O+ spectra present a nonisotropic profile which is interpreted as the result of a photodissociation process producing aligned O* atoms followed by ejection of an electron along the axis of the dissociating molecule.

P. M. Guyon; A. V. Golovin; C. J. K. Quayle; M. Vervloet; M. Richard-Viard

1996-01-22T23:59:59.000Z

355

Differential elastic electron-scattering cross sections of pyrimidine in the energy range between 20 eV and 1 keV  

Science Journals Connector (OSTI)

Differential elastic electron-scattering cross sections of pyrimidine were absolutely measured for electron energies from 20 eV to 1 keV in the angular range between 5 and 135. The present results agree with the data of other groups within the experimental uncertainties at scattering angles below 75 while considerable differences among the data were found at higher scattering angles. The experimental values were compared to theoretical values calculated using the modified independent-atom model. The theoretical values reproduce the angular dependence of the experimental differential elastic scattering cross sections qualitatively well for electron energies above 60 eV. The sum of the integral elastic scattering cross sections, obtained by the integration of the differential elastic scattering cross sections, and ionization cross sections predicted by the binary-encounter-Bethe model agree with the previously measured total electron-scattering cross sections of pyrimidine to within 8%.

W. Y. Baek; M. U. Bug; H. Rabus

2014-06-24T23:59:59.000Z

356

Electronic spectrum of Bi2Sr2CaCu2O8 near the fermi level from results of numerical calculations and ultraviolet (8.43 eV) photoelectron spectroscopy  

Science Journals Connector (OSTI)

The structure of the spectrum of the partial density of filled states of Bi2Sr2CaCu2O8 in the range E b<4 eV, obtained by ultraviolet (hv=8.43 eV) photoelectron spectroscopy was compared with that...

A. M. Aprelev; A. A. Lisachenko

1998-02-01T23:59:59.000Z

357

0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint  

SciTech Connect (OSTI)

We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

2006-05-01T23:59:59.000Z

358

The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron  

SciTech Connect (OSTI)

The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

Cowie, B. C. C.; Tadich, A.; Thomsen, L. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria (Australia)

2010-06-23T23:59:59.000Z

359

Facilities and techniques for x-ray diagnostic calibration in the 100-eV to 100-keV energy range  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

Gaines, J.L.; Wittmayer, F.J.

1986-06-01T23:59:59.000Z

360

Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV  

E-Print Network [OSTI]

The neutron capture cross section of 204Pb has been measured at the CERN n_TOF installation with high resolution in the energy range from 1 eV to 440 keV. An R-matrix analysis of the resolved resonance region, between 1 eV and 100 keV, was carried out using the SAMMY code. In the interval between 100 keV and 440 keV we report the average capture cross section. The background in the entire neutron energy range could be reliably determined from the measurement of a 208Pb sample. Other systematic effects in this measurement could be investigated and precisely corrected by means of detailed Monte Carlo simulations. We obtain a Maxwellian average capture cross section for 204Pb at kT=30 keV of 79(3) mb, in agreement with previous experiments. However our cross section at kT=5 keV is about 35% larger than the values reported so far. The implications of the new cross section for the s-process abundance contributions in the Pb/Bi region are discussed.

C. Domingo-Pardo

2006-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Analysis of Carrier Recombination Processes in 0.6 eV InGaAs Epitaxial Materials for Thermophotovoltaic Devices  

SciTech Connect (OSTI)

Minority carrier lifetime was measured by time-resolved photoluminescence (TRPL) method in sets of p-type and n-type InGaAs double heterostructures (DH) moderately doped with Zn and Te, respectively. Contributions of the radiative and non-radiative recombination terms were separated by fitting experimental data to temperature dependences of the radiative term. The latter was modeled with measured fundamental absorption spectrum and the temperature dependence of the photon recycling effect was taken into account. Different temperature dependences of radiative terms for electron and hole materials were obtained. It was concluded that in 0.6 eV Te-doped InGaAs structures the radiative recombination controls the hole lifetime at liquid nitrogen temperatures, while Auger recombination dominates at room and above room temperatures. In similar 0.6 eV InGaAs with Zn-doped active regions Shockley-Read-Hall (SRH) recombination was found dominant in a wide temperature range from liquid nitrogen to above-room temperatures. Rapid decrease of electron lifetime with decrease of excess carrier concentration was observed and attributed to recombination through partially-ionized deep donor centers. The obtained data allows for more adequate modeling of the performance and design optimization of narrow-gap photonic devices based on InGaAs Indium-rich compounds.

D Donetsky; F Newman; M Dashiell

2006-10-30T23:59:59.000Z

362

Synthesis and properties of layered synthetic microstructure (LSM) dispersion elements for 62 eV (200A) to 1. 24 keV (10A) radiation. Final report  

SciTech Connect (OSTI)

The opportunities offered by engineered synthetic multilayer dispersion elements for x-rays have been recognized since the earliest days of x-ray diffraction analysis. In this paper, application of sputter deposition technology to the synthesis of Layered Synthetic Microstructure (LSMs) of sufficient quality for use as x-ray dispersion elements is discussed. It will be shown that high efficiency, controllable bandwidth dispersion elements, with d spacings varying from 15 A to 180 A, may be synthesized onto both mechanically stiff and flexible substrates. Multilayer component materials include tungsten, niobium, molybdenum, titanium, vanadium, and silicon layers separated by carbon layers. Experimental observations of peak reflectivity in first order, integrated reflectivity in first order, and diffraction performance at selected photon energies in the range, 100 to 15,000 eV, will be reported and compared to theory.

Barbee, T.W. Jr.

1981-08-01T23:59:59.000Z

363

Energy transfer from rare gases to surfaces: Collisions with gold and platinum in the range 14000 eV  

Science Journals Connector (OSTI)

We have measured the energy transferred to a gold surface by impinging He+, Ar+, and Xe+ ions with kinetic energies in the range 54000 eV. This same quantity has been determined for He, Ar, and Xe atoms colliding with a Pt(111) surface. The ion studies employed a novel highly sensitive pyroelectric calorimeter together with a carefully designed compact ion gun. Pulses of nearly monoenergetic ions from the gun were directed at a gold film evaporated directly onto a pyroelectric material that develops a voltage proportional to the energy deposited. The atomic studies were made with supersonic beam techniques, whereby energy transfer is inferred from time-of-flight distributions of the incident and scattered species. The results from these very different experiments are in good agreement and give a fairly complete picture of energy transfer from incident rare-gas atoms and ions to these heavy-metal surfaces. For energies above about 10 eV, the ions transfer at least 60% of their energy, with Xe transferring the most and He the least. For lower incident energies, the energy transfer decreases, approaching zero-energy intercepts of ?60%, 20%, and 5% for Xe, Ar, and He, respectively. The implications of these experimental results for the effective-mass concept, the binary-collision model, low-energy stopping powers, lattice penetration, and the theory of physical sputtering are considered, and we address the relevance of these findings to the technologically important processes of plasma etching and deposition of sputtered thin films and to particle-spacecraft interactions and controlled thermonuclear fusion.

Harold F. Winters; H. Coufal; C. T. Rettner; D. S. Bethune

1990-04-01T23:59:59.000Z

364

EV Everywhere EV Everywhere Grand Challenge - Electric Drive...  

Broader source: Energy.gov (indexed) [DOE]

to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as...

365

EV America Skid Test Procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Revision 1 Effective June 2008 Battery Capacity and Depth of Discharge Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GTP003 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2 Purpose........................................................................................................................ 3 3 Documentation............................................................................................................

366

EV America Skid Test Procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Revision 1 Effective June 2008 Traction System Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GTP002 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2 Purpose........................................................................................................................ 3 3 Documentation............................................................................................................

367

EV America Skid Test Procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Revision 2 Effective October 1, 2007 Braking Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: _________ Roberta Brayer Approved by: _________________________________________________ Date: _______________ Donald Karner Procedure ETA-HTP06 Revision 2 i TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation 1 4. Initial Conditions and Prerequisites 1 5. Testing Activity Requirements 3 5.3 Dry Controlled Test 4 6. Glossary 5 7. References 7 Appendices Appendix A - Handling Pad Test Data Sheet 8

368

EV America Skid Test Procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Revision 1 Effective June 2008 Electromagnetic Interference and Susceptibility Test Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GTP004 Revision 1 2 Table of Contents 1 Objective ..................................................................................................................... 3 2 Purpose........................................................................................................................ 3 3 Documentation............................................................................................................

369

EV-Everywhere Grand Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

"Big Hairy Audacious Goal" Enable U.S. companies to produce plug-in electric vehicles that are as affordable and convenient for the average American family as today's gas-...

370

Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range  

SciTech Connect (OSTI)

National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTecs starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

2011-02-08T23:59:59.000Z

371

Optical and magneto-optical properties of Co-doped CeO{sub 2??} films in the 0.5 to 4?eV range  

SciTech Connect (OSTI)

Magnetically doped Ce{sub 1?x}Co{sub x}O{sub 2??} (nominal x?=?0.05 and 0.10) films were systematically studied by spectroscopic ellipsometry and magneto-optical spectroscopy. The samples were prepared by pulsed laser deposition on MgO(100) substrates and grew as textured polycrystalline films with thickness between 200 and 750?nm. They exhibited room temperature ferromagnetism and an out-of-plane easy axis attributed to magnetoelastic effects from the in-plane compressive strain. The dispersion of dielectric function of Ce{sub 1?x}Co{sub x}O{sub 2??} films was parametrized by the sum of Tauc-Lorentz and damped Lorentz oscillators and adjusted numerically. Deduced optical band gaps were similar to those of pure CeO{sub 2}, but the Co doping increased the optical absorption. The magneto-optical spectroscopy was carried out in both Faraday and Kerr configurations in the photon energy range from 0.5 to 4?eV, showing a strong dependence of the magneto-optical effect on the Co content near the optical band edge.

Veis, M., E-mail: veis@karlov.mff.cuni.cz; Kucera, M.; Zahradnik, M.; Antos, R. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 12116 Prague (Czech Republic); Mistrik, J. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Bi, Lei; Kim, Hyun-Suk; Dionne, G. F.; Ross, C. A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-05-07T23:59:59.000Z

372

Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV  

Science Journals Connector (OSTI)

We construct a multiphase equation of state (EoS) of hydrogen in the range 0.2 to 5 g/cc and up to 10eV based on ab initio electronic structure calculations. In the molecular solid, cold curve and phonon spectra calculations are performed for various structures, proposed in the literature, to cover the stability field up to 500 GPa. A weak structural dependence is observed, and the solid EoS is averaged over these data. In the dissociating molecular fluid and in the dense plasma, calculations are made to complete the abundant data set in the literature. Two physical models are used to fit these calculations: a double-Debye model for the solid phase and a one-component plasma model with a mass action law for dissociation to implicitly access the molecular phase in the fluid state. The output of the calculations; energy, pressure, temperature, and density are perfectly reproduced with thermodynamical consistency. This model also allows us to access to the total free energy. The ionic quantum zero-point contribution is taken into account. The present hydrogen EoS is shown to reproduce most of the existing experimental data very well: the solid compression curve, the Hugoniot curve, the sound velocity in the molecular fluid, and the melting curve. The usefulness of this EoS is illustrated by the computation of an interesting isotopic shift on the melting curve and of an isentropic compression path reaching temperatures lower than 1000 K in the terapascal range.

L. Caillabet, S. Mazevet, and P. Loubeyre

2011-03-02T23:59:59.000Z

373

High-Performance, 0.6-eV, GA0.32In0.68As/In0.32P0.68 Thermophotovoltaic Converters and Monolithically Interconnected Modules  

SciTech Connect (OSTI)

Recent progress in the development of high-performance, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 thermophotovoltaic (TPV) converters and monolithically interconnected modules (MIMs) is described. The converter structure design is based on using a lattice-matched InAs0.32P0.68/Ga0.32In0.68As/InAs0.32P0.68 double-heterostructure (DH) device, which is grown lattice-mismatched on an InP substrate, with an intervening compositionally step-graded region of InAsyP1-y. The Ga0.32In0.68As alloy has a room-temperature band gap of {approx}0.6 eV and contains a p/n junction. The InAs0.32P0.68 layers have a room-temperature band gap of {approx}0.96 eV and serve as passivation/confinement layers for the Ga0.32In0.68As p/n junction. InAsyP1-y step grades have yielded DH converters with superior electronic quality and performance characteristics. Details of the microstructure of the converters are presented. Converters prepared for this work were grown by atmospheric-pressure metalorganic vapor-phase epitaxy (APMO VPE) and were processed using a combination of photolithography, wet-chemical etching, and conventional metal and insulator deposition techniques. Excellent performance characteristics have been demonstrated for the 0.6-eV TPV converters. Additionally, the implementation of MIM technology in these converters has been highly successful.

Wanlass, M. W.; Carapella, J. J.; Duda, A.; Emery, K.; Gedvilas, L.; Moriarty, T.; Ward, S.; Webb, J.; Wu, X. (National Renewable Energy Laboratory); Murray, C. S. (Bettis Atomic Power Laboratory)

1998-12-15T23:59:59.000Z

374

07/14/2005 03:15 PMEBSCOhost Page 1 of 9https://sslvpn.pitt.edu/DeliveryPrintSave.asp,DanaInfo=weblinks2.ep...a&ev=CA&fd=&fi=aph_4562569_AN&del_submit=Print&est=&ft=on&ff=s&df=2  

E-Print Network [OSTI]

.pitt.edu/DeliveryPrintSave.asp,DanaInfo=weblinks2.ep...a&ev=CA&fd=&fi=aph_4562569_AN&del_submit=Print&est=&ft=on&ff=s&df=2 11 page://sslvpn.pitt.edu/DeliveryPrintSave.asp,DanaInfo=weblinks2.ep...a&ev=CA&fd=&fi=aph_4562569_AN

Spirtes, Peter

375

Performance and application of a double-crystal monochromator in the energy region 800 less than or equal to h. nu. less than or equal to 4500 eV  

SciTech Connect (OSTI)

The performance and application of an ultra-high-vacuum compatible constant-deviation double-crystal monochromator (JUMBO) in operation at SSRL is demonstrated. The monochromator can be operated with any of four pairs of crystals interchangeable in situ. An electronic-maximum-search feedback loop optimizes the intensity of the spatially fixed outgoing beam as the photon energy is scanned. The monochromatic beam is focussed (approx. 1.5 mm x 5 mm) onto the sample by a toroidal mirror. Monochromator crystals of beryl(10 anti 10), InSb(111) and Ge(111) have been tested in the energy regions 800 to 1540 eV, 1690 to 4000 eV and 1930 to 4500 eV, respectively. The performance of these crystals with regard to the resolution, the intensity, the level of scattered light, and the contribution of higher orders have been determined. Various effects arising from a radiation-induced temperature gradient in the monochromator crystals are discussed.

Hussain, Z.; Umbach, E.; Shirley, D.A.; Stoehr, V.; Feldhaus, J.

1981-07-01T23:59:59.000Z

376

Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100  

SciTech Connect (OSTI)

Energy-dependent evaluated electron interaction cross sections and related parameters are presented for elements H through Fm (Z = 1 to 100). Data are given over the energy range from 10 eV to 100 GeV. Cross sections and average energy deposits are presented in tabulated and graphic form. In addition, ionization cross sections and average energy deposits for each shell are presented in graphic form. This information is derived from the Livermore Evaluated Electron Data Library (EEDL) as of July, 1991.

Perkins, S.T.; Cullen, D.E. (Lawrence Livermore National Lab., CA (United States)); Seltzer, S.M. (National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Center for Radiation Research)

1991-11-12T23:59:59.000Z

377

Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE  

SciTech Connect (OSTI)

A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

Ullmann, John L [Los Alamos National Laboratory; Couture, A J [Los Alamos National Laboratory; Keksis, A L [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; O' Donnell, J M [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Haight, R C [Los Alamos National Laboratory; Rundberg, R S [Los Alamos National Laboratory; Kawano, T [Los Alamos National Laboratory; Chyzh, A [NORTH CAROLINA STATE UNIV; Baramsai, B [NORTH CAROLINA STATE UNIV; Wu, C Y [LLNL; Mitchell, G E [NORTH CAROLINA STATE UNIV; Becker, J A [LLNL; Krticka, M [CHARLES UNIV

2010-01-01T23:59:59.000Z

378

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicles Forum Electric Vehicles Forum Beijing, China Economics of EV Market/Future of EV Industry Brian P. Wynne President September 29, 2009 Officers: RP Associates EDTA Board of Directors The Future of Electrified Transportation ● Vehicles and fuels need to develop in parallel. ● Vehicle electrification is well underway. Vehicle Perspective Plug-in Hybrid Vehicles: 2009 Fisker Karma S Plug-in Hybrid 2009 Toyota Plug-in Hybrid 2011 BYD F3DM Plug-in Hybrid 2012 Bright Automotive IDEA Plug-in Hybrid 2012 Ford Plug-in Hybrid 2012 Volvo Plug-in Hybrid Hybrid Electric Vehicles: 2010 Mercedes S400 Hybrid 2010 Ford Fusion Hybrid 2010 Honda Insight Hybrid 2010 Hyundai-Kia Hybrid 2010 Lexus HS 250h 2010 Mercedes E Class Hybrid 2010 Porsche Cayenne S Hybrid 2010 Toyota Camry Hybrid 2010 Toyota Prius Hybrid

379

Searches for Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of $10^{19}$ eV at the Pierre Auger Observatory and the Telescope Array  

SciTech Connect (OSTI)

Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant deviation from isotropic expectations is found throughout the analyses performed. Upper limits on the amplitudes of the dipole and quadrupole moments are derived as a function of the direction in the sky, varying between 7% and 13% for the dipole and between 7% and 10% for a symmetric quadrupole.

Aab, Alexander; et al,

2014-10-07T23:59:59.000Z

380

Optical absorption band at 5.8 eV associated with the E{sub {gamma}}{sup '} centers in amorphous silicon dioxide: Optical absorption and EPR measurements  

SciTech Connect (OSTI)

Line shape modifications induced by thermal treatment in the optical absorption and electron paramagnetic resonance (EPR) signals associated with the E{sub {gamma}}{sup '} center are experimentally investigated in various types of {gamma}-irradiated amorphous silicon dioxide (a-SiO{sub 2}). The g values of the EPR main resonance line of the E{sub {gamma}}{sup '} center show a shift correlated with the peak energy variation of the absorption band at about 5.8 eV associated with this defect. These spectroscopic changes are proposed to originate from structural modifications of the defect environment. The correlation is theoretically explained considering that the spin-orbit interaction couples the g-tensor's elements and the electronic energy level distribution of the defect. Our results suggest that the optical band at 5.8 eV is due to an intracenter electron promotion from the Si-O bonding states to the dangling bond of the O{identical_to}Si moiety.

Agnello, S.; Buscarino, G.; Gelardi, F. M.; Boscaino, R. [Department of Physical and Astronomical Sciences, University of Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

INFRASTRUCTURE FOR ALTERNATIVE FUELS  

E-Print Network [OSTI]

· Mostly free. Good for awareness, sales · Free charging is quickly congested · Inconsistent coverage · One retention · Corporate responsibility · Increase sales at retail stores · Make money on the sale Chargers Needed Per 100 Vehicles Based on Survey Toyota Plug-In Prius Chevy Volt Nissan Leaf #12;EV

California at Davis, University of

382

Commitment is a Two-Way Street: Toyota, California and NUMMI  

E-Print Network [OSTI]

than doubled the risk of heart attack and stroke among olderPlant, Ordeal Included Heart Attacks, New York Times, Feb.Plant, Ordeal Included Heart Attacks, front page. Tom

Shaiken, Harley

2010-01-01T23:59:59.000Z

383

Dynamical steering in an electron transfer surface reaction: Oriented NO(v = 3, 0.08 < E{sub i} < 0.89 eV) relaxation in collisions with a Au(111) surface  

SciTech Connect (OSTI)

We report measurements of the incidence translational energy dependence of steric effects in collisions of NO(v = 3) molecules with a Au(111) surface using a recently developed technique to orient beams of vibrationally excited NO molecules at incidence energies of translation between 0.08 and 0.89 eV. Incidence orientation dependent vibrational state distributions of scattered molecules are detected by means of resonance enhanced multiphoton ionization spectroscopy. Molecules oriented with the N-end towards the surface exhibit a higher vibrational relaxation probability than those oriented with the O-end towards the surface. This strong orientation dependence arises from the orientation dependence of the underlying electron transfer reaction responsible for the vibrational relaxation. At reduced incidence translational energy, we observe a reduced steric effect. This reflects dynamical steering and re-orientation of the NO molecule upon its approach to the surface.

Bartels, Nils; Golibrzuch, Kai; Bartels, Christof; Schfer, Tim, E-mail: tschaef4@gwdg.de [Institute of Physical Chemistry, Georg-August University of Gttingen, Tammannstrae 6, 37077 Gttingen (Germany)] [Institute of Physical Chemistry, Georg-August University of Gttingen, Tammannstrae 6, 37077 Gttingen (Germany); Chen, Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Faberg 11, 37077 Gttingen (Germany)] [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Faberg 11, 37077 Gttingen (Germany); Auerbach, Daniel J.; Wodtke, Alec M. [Institute of Physical Chemistry, Georg-August University of Gttingen, Tammannstrae 6, 37077 Gttingen (Germany) [Institute of Physical Chemistry, Georg-August University of Gttingen, Tammannstrae 6, 37077 Gttingen (Germany); Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Faberg 11, 37077 Gttingen (Germany)

2014-02-07T23:59:59.000Z

384

Comment on "Violation of the Greisen-Zatsepin-Kuzmin Cutoff A Tempest in a (Magnetic) Teapot? Why Cosmic Ray Energies above $10^{20}$ eV May Not Require New Physics"  

E-Print Network [OSTI]

In a recent letter [1] with the same title, Farrar and Piran offered an explanation for the near isotropy of the arrival directions [2] of ultrahigh energy cosmic rays (UHECRs) and the apparent absence [3] of the so called `GZK cutoff' in their spectrum around $10^{20}$ eV due to pion photoproduction on the cosmic background radiation (CMB) that was predicted independently by Greisen [4] and by Zatsepin and Kuz'min [5]. They suggested that the extragalactic magnetic fields near the Milky Way are strong enough to deflect and isotropise the arrival directions of the UHECRs from a few nearby sources for which their travel time to Earth is shorter than their attenuation time by pion photoproduction on the CMB. They also estimated that this allows active galactic nuclei (AGNs) or gamma ray bursts (GRBs) to be the source of the UHECRs. However, these suggestions are inconsistent with various observations

Dar, Arnon

2000-01-01T23:59:59.000Z

385

Comment on ``Violation of the Greisen-Zatsepin-Kuzmin Cutoff: A Tempest in a (Magnetic) Teapot? Why Cosmic Ray Energies above $10^{20}$ eV May Not Require New Physics''  

E-Print Network [OSTI]

In a recent letter [1] with the same title, Farrar and Piran offered an explanation for the near isotropy of the arrival directions [2] of ultrahigh energy cosmic rays (UHECRs) and the apparent absence [3] of the so called `GZK cutoff' in their spectrum around $10^{20}$ eV due to pion photoproduction on the cosmic background radiation (CMB) that was predicted independently by Greisen [4] and by Zatsepin and Kuz'min [5]. They suggested that the extragalactic magnetic fields near the Milky Way are strong enough to deflect and isotropise the arrival directions of the UHECRs from a few nearby sources for which their travel time to Earth is shorter than their attenuation time by pion photoproduction on the CMB. They also estimated that this allows active galactic nuclei (AGNs) or gamma ray bursts (GRBs) to be the source of the UHECRs. However, these suggestions are inconsistent with various observations

Arnon Dar

2000-06-01T23:59:59.000Z

386

DOE/EV-0005/13  

Office of Legacy Management (LM)

3 3 \L.O3-I Formerly Utilized MEDIAEC Sites Remedial Action Program Radiological Survey of the Museum of Science and Industry, 57th Street and Lake Shore Drive, Chicago, Illinois February 1979 Final Repo; - Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology -. .- DOEIEV-0005113 UC-70 Formerly Utilized MEDIAEC Sites Remedial Action Program Radiological Survey of the museum of Science and Industry, !Vth Street and Lake Shore Drive, Chicago, Illinois February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-31-109-ENG-38 By the Argonne National Laboratory

387

DOE/EV-0005/27  

Office of Legacy Management (LM)

7 7 ORNL-57 15 Radiological Survey of the Mallinckrodt Chemical Works, St. Louis, Missouri W. A. Goldsmith M. T. Ryan 0. L. Anderson R. W. Leggett P. T. Perdue J. E. Burden F. F. Haywood M. E. Owens R. W. Doane W. 0. Cottrell H. W. Dickson B. S. Ellis 0. J. Crawford J. L. Danek R. E. Hamilton W. H. Shinpaugh ___. .--.- - _______. - .-' ~-~ Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A10 Microfiche A(,Il This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. Neither theUnitedStatesGovernment nor any agency thereof, nor any of their employees, makes any

388

file:///E|/ev/test/evbc.shtml  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chargers Chargers A constant voltage is applied and the current flows into the battery (high current when the battery is discharged, low current when the battery is nearly charged.) A constant current is applied until the battery voltage reaches a set value. The charge cycle starts with a high constant current until the voltage reaches a set value, then changes to a constant voltage control. A series of very high current and voltage pulses are applied until the battery voltage reaches a set value. Battery chargers replenish the energy used by an electric vehicle much like a gasoline pump refills a gas tank. One significant difference is that an electric vehicle operator can fully charge the vehicle overnight, at home, rather than refueling at a gasoline station. The battery charger is a device which

389

file:///E|/ev/test/evasc.shtml  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Auxiliary Systems Impacts Auxiliary Systems Impacts As with gasoline-powered vehicles, electric vehicles have a number of auxiliary systems. Some systems, such as the radio/tape player, lights, and horn, operate the same way as they do on a gasoline- powered vehicle. Other systems, such as the power steering and power brakes, require an additional small electric motor and have minor impact on the vehicle range. However, the air conditioning and heating systems on electric vehicles are different and can have a dramatic impact on the range. Federal safety standards require all vehicles to have adequate heating and defrosting systems. The heater/defroster system is easily operated in a conventional gasoline-powered vehicle because a supply of heated water from the engine cooling system is readily available. Electric vehicles do not have this

390

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 Vehicle Usage Overall fuel economy (mpg) 136 Overall electrical energy consumption (AC Whmi) 222 Number of trips 286,682 Total distance traveled (mi) 2,392,509 Avg...

391

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

December 2011 Vehicle Usage Overall fuel economy (mpg) 131 Overall electrical energy consumption (AC Whmi) 271 Number of trips 13,819 Total distance traveled (mi) 108,115 Avg trip...

392

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

42 Overall electrical energy consumption (AC Whmi) 231 Number of trips 676,414 Total distance traveled (mi) 5,753,009 Avg trip distance (mi) 8.3 Avg distance traveled per day...

393

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

March 2012 Vehicle Usage Overall fuel economy (mpg) 139 Overall electrical energy consumption (AC Whmi) 293 Number of trips 76,425 Total distance traveled (mi) 609,737 Avg...

394

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

fuel economy (mpg) 155 Overall electrical energy consumption (AC Whmi) 242 Number of trips 147,886 Total distance traveled (mi) 1,184,265 Avg trip distance (mi) 8.0 Avg distance...

395

EVs and PHEVs for Smart Grid Applications  

Science Journals Connector (OSTI)

The challenge for the next few years is to reduce greenhouse gas (GHG) emissions from vehicles for global warming curtailment. GHG emissions are mainly due to internal combustion engines (ICE) used in transpor...

Sheldon S. Williamson

2013-01-01T23:59:59.000Z

396

DOE/EV-0005/17  

Office of Legacy Management (LM)

--z-f guidelines recommend the following gradei -::ior: levels for --M action in terms of external gamma radiatir: level (EGR) &anti -:.:- - - - daughter concentration...

397

Vehicle Technologies Office: EV Everywhere Grand Challenge |...  

Energy Savers [EERE]

electric vehicles or adopt them in your fleet. Workforce Development activities help train college students and those in the workforce on development, maintenance, and emergency...

398

Standards for PHEV/EV Communications Protocol  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

399

EV Everywhere Grand Challenge Kick-Off  

Broader source: Energy.gov (indexed) [DOE]

to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as...

400

Vehicle Technologies Office: EV Everywhere Workplace Charging...  

Broader source: Energy.gov (indexed) [DOE]

States are parked at overnight locations with access to plugs, providing a great foundation for the country's plug-in electric vehicle (PEV) charging infrastructure. However,...

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Join the EV Everywhere Workplace Charging Challenge  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Workplace Charging Challenge is open to employers of all sizes and industry types in the United States. Taking the Challenge offers benefits to employers who are...

402

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2011 through March 2011 Vehicle Usage Number of trips 3,364 Total distance traveled (mi) 21,706 Avg trip distance (mi) 5.8 Avg distance traveled per day when the vehicle was...

403

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through September 2012 Vehicle Usage Number of trips 813,430 Total distance traveled (mi) 5,837,173 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

404

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 through June 2012 Vehicle Usage Number of trips 787,895 Total distance traveled (mi) 5,666,469 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

405

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through December 2012 Vehicle Usage Number of trips 969,853 Total distance traveled (mi) 6,724,952 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

406

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 through March 2012 Vehicle Usage Number of trips 773,602 Total distance traveled (mi) 5,558,155 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

407

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through December 2011 Vehicle Usage Number of trips 707,330 Total distance traveled (mi) 4,878,735 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

408

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2011 through June 2011 Vehicle Usage Number of trips 160,588 Total distance traveled (mi) 1,077,931 Avg trip distance (mi) 6.7 Avg distance traveled per day when the vehicle was...

409

EV Everywhere Workplace Charging Challenge: Resources | Department...  

Office of Environmental Management (EM)

Best Practices for Workplace Charging report. Expanding Commuter Options and Reducing GHG Emissions with Workplace Plug-in Electric Vehicle Charging - This webcast, hosted by...

410

EV Everywhere Workplace Charging Challenge: Ambassadors | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Work initiative, which brings the PEV marketplace to a corporate campus for a day of test drives and information exchange about clean, electric transportation. Plug In America also...

411

EV-Smart Grid Research & Interoperability Activities  

Broader source: Energy.gov (indexed) [DOE]

53 Poster Session Test procedures and tools SAE J2953 compatibilityinteroperability SAE J1772 connector force measurement SAE J2954 wireless charging test fixture...

412

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

40 Reporting period: January 2013 through March 2013 Vehicle Usage Number of trips 1,075,251 Total distance traveled (mi) 7,563,354 Avg trip distance (mi) 7.0 Avg distance...

413

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

414

Microsoft Word - makienko-ev.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

when the intensity of such events dramatically increases. A large amount of aerosols and heat is produced during forest fires. Also, thermal sublimation processes of volatile...

415

EV Everywhere Challenge Kick-Off  

Broader source: Energy.gov (indexed) [DOE]

for these vehicles. BEV100 BEV300 Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Levelized cost of...

416

EV Everywhere Grand Challenge Road to Success  

Broader source: Energy.gov (indexed) [DOE]

market continues to grow, electric vehicles will play a key role in our effort to reduce air pollution and slow the effects of climate change. " - Secretary of Energy Dr. Ernest...

417

EV Everywhere Workplace Charging Challenge Partners | Department...  

Energy Savers [EERE]

Challenge Partners 200 Market Associates 3M ABB Inc. Advanced Micro Devices Advocate Health Care AeroVironment, Inc. Alameda County, CA Arkansas Power Electronics Inc. Atlanta...

418

A Study of Contacts and Back-Surface Reflectors for 0.6eV Ga0.32In0.68As/InAs0.32P0.68 Thermophotovoltaic Monolithically Interconnected Modules  

SciTech Connect (OSTI)

Thermophotovoltaic (TPV) systems have recently rekindled a high level of interest for a number of applications. In order to meet the requirement of low-temperature ({approx}1000 C) TPV systems, 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV monolithically interconnected modules (MIMs) have been developed at the National Renewable energy Laboratory (NREL)[1]. The successful fabrication of Ga0.32In0.68As/InAs0.32P0.68 MIMs depends on developing and optimizing of several key processes. Some results regarding the chemical vapor deposition (CVD)-SiO2 insulating layer, selective chemical etch via sidewall profiles, double-layer antireflection coatings, and metallization via interconnects have previously been given elsewhere [2]. In this paper, we report on the study of contacts and back-surface reflectors. In the first part of this paper, Ti/Pd/Ag and Cr/Pd/Ag contact to n-InAs0.32P0.68and p-Ga0.32In0.68As are investigated. The transfer length method (TLM) was used for measuring of specific contact resistance Rc. The dependence of Rc on different doping levels and different pre-treatment of the two semiconductors will be reported. Also, the adhesion and the thermal stability of Ti/Pd/Ag and Cr/Pd/Ag contacts to n-InAs0.32P0.68and p-Ga0.32In0.68As will be presented. In the second part of this paper, we discuss an optimum back-surface reflector (BSR) that has been developed for 0.6-eV Ga0.32In0.68As/InAs0.32P0.68 TPV MIM devices. The optimum BSR consists of three layers: {approx}1300{angstrom} MgF2 (or {approx}1300{angstrom} CVD SiO2) dielectric layer, {approx}25{angstrom} Ti adhesion layer, and {approx}1500{angstrom} Au reflection layer. This optimum BSR has high reflectance, good adhesion, and excellent thermal stability.

Wu, X.; Duda, A.; Carapella, J. J.; Ward, J. S.; Webb, J. D.; Wanlass, M. W.

1998-12-23T23:59:59.000Z

419

Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure  

SciTech Connect (OSTI)

ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5{degree} off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

Huff, W.R.A. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States)

1996-02-01T23:59:59.000Z

420

Early View (EV): 1-EV Do stream fish track climate change? Assessing distribution shifts  

E-Print Network [OSTI]

not as much as needed to cope with future climate modifications. One of the main challenges for biodiversity

Grenouillet, Gael

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LYAKllOVSKY. v .. ILeIlEv. A.. anJ AGNON. A. jI,tmklling "f JUl1lug~ and in.'tabilili~s ill rock mass by In~"ns of a nun-lin,Jj'I<'s-RaSiM5. South African tnsuunc of Mining and Mctalturgv. 200 I.  

E-Print Network [OSTI]

rock mass by In~"ns of a nun-linmrS/.\\' ",,,1 S"ismi,:iry in t;p , LYAKllOVSKY. v .. ILeIlEv. A.. anJ AGNON. A. jI,·tmklling "f JUl1lug~ and in.'tabilili~s ill' *(jeological Surrey of Israel, l erusatem Israel f/SS lntemauonat Limited, l,VelkOIl1, South A/rim i

Lyakhovsky, Vladimir

422

Traveling the Road to Redemption: Toyota Motor Corporation's Rhetoric of Atonement As Response to the 2010 Recall Crisis  

E-Print Network [OSTI]

of environmental concern may be perceived as hypocritical by an audience when the same company downplays the negative environmental effects of an oil leak. The effect of a crisis then is that it demands responses that go beyond those used to maintain a favorable...

Jones, Virginia Bauer

2012-08-31T23:59:59.000Z

423

High-performance, 0.6-eV, Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} thermophotovoltaic converters and monolithically interconnected modules  

SciTech Connect (OSTI)

Recent progress in the development of high-performance, 0.6-eV Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} thermophotovoltaic (TPV) converters and monolithically interconnected modules (MIMs) is described. The converter structure design is based on using a lattice-matched InAs{sub 0.32}P{sub 0.68}/Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} double-heterostructure (DH) device, which is grown lattice-mismatched on an InP substrate, with an intervening compositionally step-graded region of InAs{sub y}P{sub 1{minus}y}. The Ga{sub 0.32}In{sub 0.68}As alloy has a room-temperature band gap of {approximately}0.6 eV and contains a p/n junction. The InAs{sub 0.32}P{sub 0.68} layers have a room-temperature band gap of {approximately}0.96 eV and serve as passivation/confinement layers for the Ga{sub 0.32}In{sub 0.68}As p/n junction. InAs{sub y}P{sub 1{minus}y} step grades have yielded DH converters with superior electronic quality and performance characteristics. Details of the microstructure of the converters are presented. Converters prepared for this work were grown by atmospheric-pressure metalorganic vapor-phase epitaxy (APMOVPE) and were processed using a combination of photolithography, wet-chemical etching, and conventional metal and insulator deposition techniques. Excellent performance characteristics have been demonstrated for the 0.6-eV TPV converters. Additionally, the implementation of MIM technology in these converters has been highly successful. {copyright} {ital 1999 American Institute of Physics.}

Wanlass, M.W.; Carapella, J.J.; Duda, A.; Emery, K.; Gedvilas, L.; Moriarty, T.; Ward, S.; Webb, J.D.; Wu, X. [National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, Colorado, 80401 (United States); Murray, C.S. [Bettis Atomic Power Laboratory, P.O. Box 79/ZAP08D, West Mifflin, Pennsylvania, 15122 (United States)

1999-03-01T23:59:59.000Z

424

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

425

Smart Solar Energy for the Smart Grid [EVS Event]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Smart Solar Energy for the Smart Grid Smart Solar Energy for the Smart Grid November 20, 2013 Speaker: Prof. Brad Lehman, Ph.D. Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts Date: Wednesday, November 20, 2013 Time: 11:00 a.m. - 12 noon Location: Argonne National Laboratory TCS Building 240 Room 4301 Solar photovoltaic (PV) installations traditionally are stand-alone systems without integrated computation. However, it is possible to use real-time processes to adaptively reconfigure solar PV installations while sensing and computing environmental factors. This talk will introduce new concepts that enable solar installations to adapt their performance to environmental conditions. For example, a smart PV panel has been built that can self-heal and self-optimize to produce higher power. Specialized solar fuses can even

426

EV-141 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO  

Office of Legacy Management (LM)

41 41 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO This office 1s conducting an lnvestlgatfon Into the.operation of the Makepa Dfvlslon of Englshard Industries to determlne the type and extent of actlvi conducted'for the Westinghouse. Bettls Fleld Operations around July 1956. Makepeace Dlvlslon was designated an accountability station by the former Ato Energy Conrmlsslon'o Chicago Operatfons Office under the Pittsburgh Area Offlce. Please provlde any records that can be obtalned In regard to the actlvltfes of the Makepeace Ofvlslon, especially during the 1956 tlme frame. I am enclosing a surmnary of the lnformatlon we have been able to accumulate so far. . . . . . . Original siped by: . . . . Wlllfam E. Mott. blrector Envlronmental and Safety

427

file:///E|/ev/test/evh1.shtml  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of Electric Cars History of Electric Cars The Early Years (1890 - 1930) The electric vehicle is not a recent development. In fact, the electric vehicle has been around for over 100 years, and it has an interesting history of development that continues to the present. France and England were the first nations to develop the electric vehicle in the late 1800s. It was not until 1895 that Americans began to devote attention to electric vehicles. Many innovations followed and interest in motor vehicles increased greatly in the late 1890s and early 1900s. In 1897 the first commercial application was established as a fleet of New York City taxis. The early electric vehicles, such as the 1902 Wood's Phaeton, were little more than electrified horseless carriages and surreys. The Phaeton had a range of 18 miles, a top speed of 14 mph and cost $2,000.

428

PATTERN: Advantages of High Resolution Weather Radar Networks [EVS Event]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PATTERN: Advantages of High Resolution Weather Radar Networks PATTERN: Advantages of High Resolution Weather Radar Networks September 30, 2013 Speaker: Dr. Katharina Lengfeld Meteorological Institute, University of Hamburg, Germany Date: Monday, September 30, 2013 Time: 11 am - 12 noon Location: Argonne National Laboratory TCS Building 240 Room 4301 Precipitation observations with radars operating in the X-band frequency range are essential for meeting present and future requirements for flood forecasting, water management, and other hydro-meteorological applications. Besides having higher resolution, these systems are cost-effective compared to S- or C-band radars because of smaller antenna size. Disadvantages of single X-band radars are the large influence of attenuation by liquid water and a relatively short range.

429

DOE/EV-0005/21 ORNL-5714  

Office of Legacy Management (LM)

1 1 ORNL-5714 Radiological Survey of the Former Uranium Recovery Pilot and Process Sites, Gardinier, Incorporated, Tampa, Florida F. F. Haywood W. A. Goldsmith R. W. Leggett R. W. Doane W. F. Fox W. H. Shinpaugh D. R. Stone D. J. Crawford Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A07 Microfiche A01 This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment.NeithertheUnitedStatesGovernmentnoranyagency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibllrty for the accuracy, completeness, or

430

EV Network integration (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

integration integration Country Ireland Headquarters Location Dublin, Ireland Coordinates 53.344105°, -6.267494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.344105,"lon":-6.267494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

University of Osnabrck c/o ASSIST e.V.  

E-Print Network [OSTI]

and house number Postcode, Town, Country Telephone number Date of Birth, Place of Birth Nationality 1.) ________________ ________________________________________________________________________________ Name of town and country where certificates were attained.) __________________________ ________________________________________________________________________________ Please enclose officially authenticated photocopies of school and university certificates (incl

Steinhoff, Heinz-Jürgen

432

University of Osnabrck c/o ASSIST e.V.  

E-Print Network [OSTI]

address Street and house number Postcode, Town, Country Telephone number Date of Birth, Place of Birth.) ________________ ________________________________________________________________________________ Name of town and country where certificates were attained.) __________________________ ________________________________________________________________________________ Please enclose officially authenticated photocopies of school and university certificates (incl

Kallenrode, May-Britt

433

EV Everywhere Framing Workshop Report Out & Lessons Learned  

Broader source: Energy.gov (indexed) [DOE]

Opportunities * Moderator: John McElroy * Dennis Beal, FedEx * Andrew Brown, Delphi Automotive * Robbie Diamond, The Electrification Coalition * Bart Riley, A123 Systems *...

434

Aggregated Purchasing and Workplace Charging Can Drive EV Market...  

Energy Savers [EERE]

Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain Class 5 bucket truck at the White House event on November 18, 2014. The...

435

Aggregated Purchasing and Workplace Charging Can Drive EV Market...  

Energy Savers [EERE]

including the boom. On Tuesday, November 18, Energy Secretary Moniz joined Senior Advisor to the President John Podesta, Edison Electric Institute (EEI) President Tom Kuhn,...

436

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicles more affordable and convenient to own and drive than today's gasoline-powered vehicles within the next 10 years. WHAT U.S. Energy Secretary Steven Chu to deliver...

437

EV Everywhere Grand Challenge Blueprint | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as todays gasoline-powered...

438

EV Everywhere Grand Challenge: Consumer Acceptance and Charging...  

Broader source: Energy.gov (indexed) [DOE]

to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as...

439

EV Everywhere Grand Challenge - Electric Drive (Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as...

440

EV Everywhere Framing Workshop Report Out & Lessons Learned  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Behavior and Charging Infrastructure July 31 - Aug 1 Los Angeles, CA Lightweight Vehicles and Structures TBD TBD * 5 workshops this summer * Framing document * Draft:...

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PH&EV Research Center Dr. Tom Turrentine Director  

E-Print Network [OSTI]

,078 · Climate & energy independence goals ­ California - 1.5 million ZEVs by 2025 (5% of CA fleet) ­ USA: Obama Garas Center Program Director Dr. Gil Tal PEV Market studies #12;2 PEV market: glass half empty or half full? · Stated annual USA PEV sales goals of car makers ­ Volt 2012 goals 45,000 - actual 2012 sales 23

California at Davis, University of

442

DOE/EV-0005/31 ORNL-5799  

Office of Legacy Management (LM)

new' systems or substantial alterations to the following utilities: 0 Pcwer or natural gas? 0 Communications systems? 0 Water? 0 Sewer or septic tanks? 0 Storm water drainage? 0...

443

public EvEnts APRIL to JuLy 2011  

E-Print Network [OSTI]

Ey (bEc (socsc) '01) Head of Sustainability and Responsible Investment at Colonial First State When 14 Hans C Freeman lecture 15 Sydney Science Forums 16 Architecture, Design and Planning 18 university sustainability. NB: this lecture commences at 5.30pm. sydney.edu.au/china_studies_centre tuesday 29 March Theatre

Du, Jie

444

EV Community Readiness projects: South Florida Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

2011 - End: June 2013 - 90% Complete * BUDGET - Total Project Funding: 500,000 * DOE: 500,000 * Cost Share: 0 - 371,666 spent (74%) (as of 32213) * BARRIERS ADDRESSED...

445

EV Community Readiness projects: American Lung Association of...  

Broader source: Energy.gov (indexed) [DOE]

2011 - End: June 2013 - 98% Complete * BUDGET - Total Project Funding: 500,000 * DOE: 500,000 * Cost Share: 0 - Funded w FY11 & FY12 funds - 498,997 spent as of 2113...

446

EV-Smart Grid Research & Interoperability Activities 2014 DOE...  

Broader source: Energy.gov (indexed) [DOE]

to establish interoperability centers - Q1, FY 2012 Official Argonne launch - Q4, FY 2013 2 Budget* FY2012 - 1180 K FY2013 - 2200 K FY2014 - 1550 K Barriers...

447

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

Broader source: Energy.gov (indexed) [DOE]

through September 2011 Vehicle Usage Number of trips 536,548 Total distance traveled (mi) 3,718,272 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

448

Innovative Cell Materials and Designs for 300 Mile Range EVs  

Broader source: Energy.gov (indexed) [DOE]

length for electronic transport Short diffusion length for ionic transport within bulk particles and hence high rate capability Hard to be mass-produced Industrial...

449

NO. ~EV. NO. Failure Modes and Effects Analysis -LRRR  

E-Print Network [OSTI]

of the Failure Modes and Effects Analysis (FMEA) is to discover critical failure areas in the LRRR experiment for the critical failure areas. A TM 868 contains the results of a final FMEA for the LRRR experiment. 2. 0 SUMMARY Since an LRRR was successfully deployed on the moon as a part of the Apollo 11 mission, this FMEA

Rathbun, Julie A.

450

EV Community Readiness projects: SCAQMD (CA); University of Hawaii  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

451

EV Community Readiness projects: Center for the Commercialization...  

Broader source: Energy.gov (indexed) [DOE]

a petroleum reduction of over 2.5 billion gallons per year through voluntary adoption of alternative fuel vehicles and infrastructure. * To ease market introduction of alternative...

452

EV Community Readiness projects: Center for Transportation and...  

Broader source: Energy.gov (indexed) [DOE]

a petroleum reduction of over 2.5 billion gallons per year through voluntary adoption of alternative fuel vehicles and infrastructure. * To ease market introduction of alternative...

453

Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth  

Broader source: Energy.gov [DOE]

On Tuesday, November 18, Energy Secretary Moniz joined Senior Advisor to the President John Podesta, Edison Electric Institute (EEI) President Tom Kuhn, and Pacific Gas and Electric (PG&E) CEO Tony Earley for a special event at the White House to announce several new developments in advancing the use of electric vehicles. These developments included the Energy Department announcing a Notice of Intent for a potential funding opportunity announcement for aggregated purchasing of alternative fuel and advanced technology vehicles 70 EEI members committing 5% of their annual fleet budgets to plug-in electric vehicles, 150 members of the Workplace Charging Challenge, and a new plug-in hybrid electric bucket truck.

454

EV Project Overview Report - Project to Date through September...  

Broader source: Energy.gov (indexed) [DOE]

Area 204 14,240 89.96 Tucson, AZ Metropolitan Area 65 4,414 26.10 Los Angeles, CA Metropolitan Area 254 14,686 105.56 San Diego, CA Metropolitan Area 535 41,549 316.48...

455

EV drivetrain inverter with V/HZ optimization  

DOE Patents [OSTI]

An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

Gritter, David J. (Southfield, MI); O'Neil, Walter K. (Birmingham, MI)

1986-01-01T23:59:59.000Z

456

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Max electricity demand across all days Min electricity demand across all days Electricity demand on single calendar day with highest peak Charging Unit Usage Residential Level 2...

457

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

78 1,988 54 6,939 Number of charging events 341,828 1,699 36,990 8,089 388,606 Electricity consumed (AC MWh) 2,827.92 14.83 311.16 58.39 3,212.30 Percent of time with a...

458

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

units 2,413 0 170 0 2,583 Number of charging events 118,239 0 2,258 0 120,497 Electricity consumed (AC MWh) 852.17 0.00 14.15 0.00 866.31 Percent of time with a vehicle...

459

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

all days Percentage of charging units connected on single calendar day with peak electricity demand Charging Demand: Range of Aggregate Electricity Demand versus Time of Day...

460

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

251 2,675 87 9,154 Number of charging events 490,327 11,948 50,729 26,911 579,915 Electricity consumed (AC MWh) 3,808.41 143.89 437.69 222.52 4,612.51 Percent of time with a...

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EV Project Electric Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

units 3,338 0 1,483 0 4,821 Number of charging events 223,930 0 27,023 0 250,953 Electricity consumed (AC MWh) 1,885.86 0.00 208.63 0.00 2,094.49 Percent of time with a vehicle...

462

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework  

Broader source: Energy.gov (indexed) [DOE]

technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Analysis Assumptions:...

463

EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...  

Broader source: Energy.gov (indexed) [DOE]

technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Analysis Assumptions:...

464

Vehicle Technologies Office Merit Review 2014: Benchmarking EV...  

Energy Savers [EERE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

465

Innovative Cell Materials and Designs for 300 Mile Range EVs  

Broader source: Energy.gov (indexed) [DOE]

Multiple On track Test Cell Multiple On track Delivered year 2013 high energy density cells on 11014 On track Systems Integration Design 93112 On track Test Reports...

466

EV Community Readiness projects: Clean Energy Coalition (MI...  

Broader source: Energy.gov (indexed) [DOE]

link the Michigan PEV Community Readiness Plan to relevant websites and other appropriate media outlets; incorporate the Plan into the PEV Taskforce website. Clean Cities Recovery...

467

A study of contacts and back-surface reflectors for 0.6-eV Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} thermophotovoltaic monolithically interconnected modules  

SciTech Connect (OSTI)

Thermophotovoltaic (TPV) systems have recently rekindled a high level of interest for a number of applications. In order to meet the requirement of low-temperature ({approximately}1000&hthinsp;{degree}C) TPV systems, 0.6-eV Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} TPV monolithically interconnected modules (MIMs) have been developed at the National Renewable energy Laboratory (NREL) [1]. The successful fabrication of Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} MIMs depends on developing and optimizing of several key processes. Some results regarding the chemical vapor deposition (CVD)-SiO{sub 2} insulating layer, selective chemical etch via sidewall profiles, double-layer antireflection coatings, and metallization via interconnects have previously been given elsewhere [2]. In this paper, we report on the study of contacts and back-surface reflectors. In the first part of this paper, Ti/Pd/Ag and Cr/Pd/Ag contact to n-InAs{sub 0.32}P{sub 0.68} and p-Ga{sub 0.32}In{sub 0.68}As are investigated. The transfer length method (TLM) was used for measuring of specific contact resistance R{sub c}. The dependence of R{sub c} on different doping levels and different pre-treatment of the two semiconductors will be reported. Also, the adhesion and the thermal stability of Ti/Pd/Ag and Cr/Pd/Ag contacts to n-InAs{sub 0.32}P{sub 0.68} and p-Ga{sub 0.32}In{sub 0.68}As will be presented. In the second part of this paper, we discuss an optimum back-surface reflector (BSR) that has been developed for 0.6-eV Ga{sub 0.32}In{sub 0.68}As/InAs{sub 0.32}P{sub 0.68} TPV MIM devices. The optimum BSR consists of three layers: {approximately}1300 {Angstrom} MgF{sub 2} (or {approximately}1300 {Angstrom} CVD SiO{sub 2}) dielectric layer, {approximately}25 {Angstrom} Ti adhesion layer, and {approximately}1500 {Angstrom} Au reflection layer. This optimum BSR has high reflectance, good adhesion, and excellent thermal stability. {copyright} {ital 1999 American Institute of Physics.}

Wu, X.; Duda, A.; Carapella, J.J.; Ward, J.S.; Webb, J.D.; Wanlass, M.W. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

1999-03-01T23:59:59.000Z

468

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

469

Enlaces Vehículos Todo Eléctrico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enlaces Vehículos Todo Eléctrico Enlaces Vehículos Todo Eléctrico Salga de Ahorremosgasolina.org Los enlaces que a continuación se proporcionan no son parte del sitio de ahorremosgasolina.gov. Le ofrecemos estos enlaces externos para que a su conveniencia pueda acceder a información adicional que sea útil o de interés para usted. Vehículos y Fabricantes Audi e-tron Auto deportivo de alto rendimiento, de dos plazas con sistema puramente eléctrico. Chevrolet Spark EV Sitio oficial del Chevrolet Spark EV Fiat 500e Sitio oficial del Fiat 500e Ford Focus EV Sitio oficial del Ford Focus EV Honda Fit EV Sitio oficial del Honda Fit EV Mitsubishi i-MiEV Sitio oficial del Vehículo innovador Eléctrico Mitsubishi (MiEV) Nissan LEAF Sitio oficial del Nissan LEAF Scion iQ Comunicado de Prensa acerca del Scion iQ de la Toyota

470

K. Toyota et al.: 3-D modeling of boundary-layer bromine and ozone in the Arctic (Supplement) 1 Supplement to "Analysis of reactive bromine production and ozone  

E-Print Network [OSTI]

Science and Engineering, York University, Toronto, Ontario, Canada 2 Air Quality Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada 3 Institute of Environmental of Technology, Pasadena, California, USA 5 School of Earth and Environment, University of Leeds, Leeds, UK Now

Meskhidze, Nicholas

471

K. Toyota et al.: Photochemistry of VOCs and halogens in the MBL (Supplement) 1 A supplement to "A box model study on photochemical interactions  

E-Print Network [OSTI]

J/mol and of negligible importance at atmospheric temperatures (Kaiser and Wallington, 1996a): Cl + C2H4 HCl + C2H3. (2 occurring in the reaction chamber, Wallington et al. (1990) de- rived the rate constant for Reaction (4

Meskhidze, Nicholas

472

Engineering Structurally Configurable Models with Model Transformation  

E-Print Network [OSTI]

: Agilent, Bosch, HSBC, Lockheed-Martin, National Instruments, and Toyota. #12;Engineering Structurally

473

Testing the Role of Source Credibility on Memory for Inferences  

E-Print Network [OSTI]

affected vehicle sales. In January 2010, automobile manufacturer Toyota announced a recall on eight of their popular models due to faulty gas pedals. According to NPR (http://www.npr.org) after the recall was lifted, Toyota sales dropped 16%, even... on vehicles that were not affected by the recall. Some of Toyotas most faithful customers started purchasing Ford, General Motors, and Nissan vehicles, as can be seen by their increase in sales following the Toyota recall. There are other everyday...

Guillory, Jimmeka Joy

2012-10-19T23:59:59.000Z

474

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EVs Based on Novel, High Voltage Cathode Material Systems  

Broader source: Energy.gov [DOE]

Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

475

Dual baseline search for muon antineutrino disappearance at 0.1 eV^2 < {\\Delta}m^2 < 100 eV^2  

E-Print Network [OSTI]

The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of \\bar{{\

MiniBooNE,; Aguilar-Arevalo, A A; Alcaraz-Aunion, J L; Brice, S J; Brown, B C; Bugel, L; Catala-Perez, J; Church, E D; Conrad, J M; Dharmapalan, R; Djurcic, Z; Dore, U; Finley, D A; Ford, R; Franke, A J; Garcia, F G; Garvey, G T; Giganti, C; Gomez-Cadenas, J J; Grange, J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Ignarra, C; Imlay, R; Johnson, R A; Jones, B J P; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Marsh, W; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mirabal, J; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Mousseau, J; Nakajima, Y; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Osmanov, B; Otani, M; Pavlovic, Z; Perevalov, D; Polly, C C; Ray, H; Roe, B P; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Spitz, J; Stancu, I; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R G; Walding, J J; Wascko, M O; White, D H; White, H B; Wickremasinghe, D A; Yokoyama, M; Zeller, G P; Zimmerman, E D

2012-01-01T23:59:59.000Z

476

Interactive Web-based mapping tool for energy zone planning launched [EVS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Web-based mapping tool for energy zone planning launched Interactive Web-based mapping tool for energy zone planning launched April 25, 2013 Argonne has launched a new, interactive, web-based tool, available at http://eispctools.anl.gov, for planning energy zones in the eastern United States as part of an Energy Zones Study for the Eastern Interconnection States' Planning Council (EISPC). The scope of the project includes the U.S. portion of the Eastern Interconnection, the electrical transmission grid covering 39 states in the eastern United States. The tool includes an extensive mapping library of energy resource and related information, interactive models to locate areas with high suitability for clean power generation, a variety of reports that can be run for user-specified regions, and a policy and incentives database.

477

Aircraft Observations of Convective Systems in the Indian Ocean [EVS Event]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aircraft Observations of Convective Systems in the Indian Ocean Aircraft Observations of Convective Systems in the Indian Ocean August 23, 2013 Speaker: Bradley Nicholas Guy National Research Council Postdoctoral Fellow NOAA National Severe Storms Laboratory Date: Friday, August 23, 2013 Time: 11:00 a.m. Location: Argonne National Laboratory TCS Building 240 Room 4301 In the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment, a large number of measurement platforms were deployed to study environmental and convective cloud system characteristics of the Madden-Julian Oscillation (MJO) initiation region in the Indian Ocean. A mobile platform, the NOAA P-3 instrumented aircraft, sampled intense convective cloud systems, along with the surrounding environment. This presentation will explore the characteristics of mesoscale convective

478

Nationwide: National Fire Protection Association Provides Training to First Responders on EVs/PEVs  

Office of Energy Efficiency and Renewable Energy (EERE)

DOE is helping develop a strong workforce to support the adoption of plug-in electric vehicles, including first responders.

479

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

480

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov (indexed) [DOE]

calculation method and provide insights for the next step research of advanced additives. 5 Pristine Lithium uptake Lithium removal Lithium anodes - Instantaneous...

Note: This page contains sample records for the topic "toyota rav4 ev" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov (indexed) [DOE]

O O O O O As a continuation of FY10's work, this year we have investigated the following additives: 3-oxabicyclo3.1.0hexane-2,4-dione: Disubstituted maleic anhydride:...

482

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

483

EV Everywhere: Americas Plug-In Electric Vehicle Market Charges Forward  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

484

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles  

Broader source: Energy.gov [DOE]

Find out how the Energy Department, in partnership with industry and national laboratories, is helping to improve the efficiency and affordability of plug-in electric vehicles through battery research.

485

EV Everywhere Grand Challenge- Electric Drive (Power Electronics and Electric Machines) Workshop  

Broader source: Energy.gov [DOE]

List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL

486

Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain  

E-Print Network [OSTI]

presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle mechanism (transition strategy) at sensor fault occurrence. Index Terms--Electric vehicle, induction motor-tolerant AC motor drives in industrial applications [9-10- 41]. II. ELECTRIC VEHICLE POWERTRAIN COMPONENTS

Brest, Université de

487

A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications  

SciTech Connect (OSTI)

This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

488

Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and a conductive polymer, while the solid electrolyte - based on cross-linked polyethylene oxide - forms a stable but ion-conducting barrier separating the liquid sodium...

489

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

490

Journal of Environmental Management (1998) 53, 309321 Article No. ev980217  

E-Print Network [OSTI]

in temperature variability from the stream to the upland, measured by coefficient of variation (CV), were watersheds 1998). It is generally believed that water of the Pacific North-west, there exists more quality oftemperature, filtering surface erosional in- of steam and riparian ecosystems in both Washington, Seattle, WA

Chen, Jiquan

491

EV Everywhere: 10 Ways Communities Can Pave the Way for PEVs  

Office of Energy Efficiency and Renewable Energy (EERE)

Is your community interested in making it easier and more affordable to drive a plug-in electric vehicle? Here are 10 things local groups can do to improve PEV community readiness, including offering incentives, forming partnerships, and engaging the public.

492

RESONANCE AND THRESHOLD EFFECTS IN PHOTOEMISSION UP TO 3500 eV  

E-Print Network [OSTI]

the molecules CO, C02, OCS, CF4, N2 and NO. Both the ~ and 0shell in CO, C02, OCS, and CF4, the O(ls) shell in CO andshell in CO, C02, OCS, and CF4 clearly demonstrates that the

Shirley, D.A.

2008-01-01T23:59:59.000Z

493

EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles  

Broader source: Energy.gov [DOE]

Learn about the Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

494

EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

495

Life-Cycle GHG Emissions From Conventional IC Engine Vehicles and EVs: A Comparative Assessment  

Science Journals Connector (OSTI)

In the USA, the federal fuel economy standards are set to get tougher by 35 % over the next five years. In July 2009, leaders of the European Union and G8 announced an objective to reduce greenhouse gas (GHG) emi...

Arghya Sardar; Suresh Babu Muttana

2012-12-01T23:59:59.000Z

496

How much on electric? Looking at PHEV driver's EV driving experience (e VMT) and  

E-Print Network [OSTI]

as the primary power source ­ The energy use, impacts and range are similar to a hybrid vehicle in this mode it might change with CD range and charging infrastructure Jamie Davies, Mike Nicholas, Ken S. Kurani Company logo hereCompany logo here PHEVs use gasoline and grid electricity Charge Depleting (CD) mode Grid

California at Davis, University of

497

Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs  

Broader source: Energy.gov [DOE]

Presentation given by OneD Material, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative cell materials...

498

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...  

Broader source: Energy.gov (indexed) [DOE]

December 2012 Washington State 893 Leafs 98 Volts Oregon 549 Leafs 94 Volts 30 Smart Electric Drives San Francisco 1730 Lea fs Los Angeles 497 Lea fs 165 Vo lts Chicago 29...

499

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project...  

Broader source: Energy.gov (indexed) [DOE]

898 Leafs 164 Volts Oregon 541 Leafs 133 Volts 30 Smart Electric Drives San Francisco 1708 Leafs Los Angeles 424 Leafs 338 Volts Chicago 26 Leafs 129 Volts Atlanta 153 Leafs 75...

500

Nissan Leafs and Chevrolet Volts Reporting Data in The EV Project  

Broader source: Energy.gov (indexed) [DOE]

Knoxville 88 Leafs 17 Volts DC 7 Leafs 177 Volts San Diego 657 Leafs 153 Volts 300 Smart Electric Drives Tucson 79 Leafs 7 Volts Chattanooga 50 Leafs 11 Volts Copyright: 2009...