Sample records for toyota prius hybrid

  1. Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...

    Broader source: Energy.gov (indexed) [DOE]

    HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

  2. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  3. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  4. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H [ORNL; Ayers, Curtis William [ORNL; Chiasson, J. N. [University of Tennessee, Knoxville (UTK); Burress, Timothy A [ORNL; Marlino, Laura D [ORNL

    2006-05-01T23:59:59.000Z

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  5. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N. (U Tennessee-Knoxville); Burress, B.A. (ORISE); Marlino, L.D.

    2006-05-01T23:59:59.000Z

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  6. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01T23:59:59.000Z

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  7. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23T23:59:59.000Z

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  8. AVTA: Toyota Prius Gen III HEV 2010 Testing Results | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. The baseline performance testing provides a point of comparison...

  9. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    SciTech Connect (OSTI)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

    2007-07-31T23:59:59.000Z

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  10. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  11. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  12. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database...

    Energy Savers [EERE]

    Toyota Prius PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced...

  13. Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses

    SciTech Connect (OSTI)

    James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

    2006-02-01T23:59:59.000Z

    This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

  14. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  15. AVTA: 2013 Toyota Prius PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  16. AVTA: 2010 Toyota Prius Gen III HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  17. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01T23:59:59.000Z

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  18. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01T23:59:59.000Z

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  19. Battery Usage and Thermal Performance of the Toyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures: Preprint

    SciTech Connect (OSTI)

    Kelly, K. J.; Mihalic, M.; Zolot, M.

    2001-11-20T23:59:59.000Z

    This study describes the results from the National Renewable Energy Laboratory's (NREL) chassis dynamometer testing of a 2000 model year Honda Insight and 2001 model year Toyota Prius. The tests were conducted for the purpose of evaluating the battery thermal performance, assessing the impact of air conditioning on fuel economy and emissions, and providing information for NREL's Advanced Vehicle Simulator (ADVISOR).

  20. Model year 2010 (Gen 3) Toyota Prius level 1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

    2010-06-24T23:59:59.000Z

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

  1. Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

    SciTech Connect (OSTI)

    Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

    2003-11-01T23:59:59.000Z

    Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

  2. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01T23:59:59.000Z

    as the Toyota Prius and Honda Civic Hybrid. The objectiveof performance HEVs (such as the Honda Accord Hybrid) andin the HEV. For this owner, the Honda Accord Hybrid offered

  3. A study in hybrid vehicle architectures : comparing efficiency and performance

    E-Print Network [OSTI]

    Cotter, Gavin M

    2009-01-01T23:59:59.000Z

    This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

  4. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric...

  5. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  6. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  8. Symbolism in California’s Early Market for Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    that includes the Toyota Prius and Honda Civic Hybrid.The Honda Insight, which Tony deems ‘‘wimpy, ugly, Fig. 2.25 households that purchased a Honda Insight, Honda Civic

  9. The inverter in a hybrid or fully

    E-Print Network [OSTI]

    Davies, Christopher

    The inverter in a hybrid or fully electric vehicle, such as the Toyota Prius, supplies power from Semiconductor (MOS), IGBT and diode devices, for applications in hybrid vehicles and portable power supplies of renewable energy systems, sustainable transport and many other applications. The area of power electronics

  10. AVTA: Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 Ford Fusion Energi2013 Ford C-Max Energi Fleet2013 Ford C-Max Energi2012 Chevrolet Volt2012 Toyota Prius2013 Toyota Prius2013 Chevrolet Volt2011 Chrysler Town & Country2010 Quantum...

  11. Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System

    SciTech Connect (OSTI)

    Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P.

    2008-04-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  12. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  13. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  14. Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report

    SciTech Connect (OSTI)

    Marlino, Laura D [ORNL

    2007-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  15. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  16. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  17. Maintenance Records for 2010 Toyota Prius vin#0462

    Broader source: Energy.gov (indexed) [DOE]

    DU2A5010462 Date Mileage Description Cost 11232009 5,935 Changed oil and filter, rotated tires, and inspected brakes 31.75 12182009 13,330 Changed oil and filter and inspected...

  18. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  19. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  20. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Period

  1. New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliott William

    2009-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Oct-05

  2. Evaluation of Range Estimates for Toyota FCHV-adv Under Open...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. Evaluation of Range...

  3. Evaluation of Range Estimates for Toyota FCHV-adv Under Open...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. To accomplish this,...

  4. PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010

    E-Print Network [OSTI]

    Bertini, Robert L.

    PSU ­ TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010 Purpose: The University State University ­ Toyota Electric Vehicle Program under which Toyota Motor Sales, U.S.A., Inc. (Toyota Agreement PSU ­ Toyota Electric Vehicle Program Procedures Manual for Individual Users Duration

  5. Energy, Appliances and Utilities Energy&Environment * EnergySTAR * Toyota PRIUS Myths, Facts, and Hype ...

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    below) Typical furnace: 1 therm/hr = 100000 BTU/hr = 29.3 kW(h) heating power Typical A/C unit: 3.5 ton therm = 100000 BTU = 29.307 kWhr 1 tonR = 12000 BTU/hr = 3.516 kW(c) cooling rate 1 SEER = (1 BTU)/Whr(e) = 1000 BTU/kWhr = 0.293 kWhr(c)/kWhr(e), i.e., (cooling)/(electrical) ratio What is SEER? How does

  6. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  7. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    , such as the Toyota Prius, plug-in hybrid cars run on electric power with a gasoline (or biofuel) engine backup

  8. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  9. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01T23:59:59.000Z

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicle’s fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energy’s Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  10. Advanced Vehicle Benchmarking of HEVs and PHEVs

    Broader source: Energy.gov (indexed) [DOE]

    Qtr 2008 - 2010 Honda Insight: 3 rd Qtr 2009 - 2010 Toyota Prius: 4 th Qtr 2009 - 2010 Fusion Hybrid: 4 th Qtr 2009 - 2010 Saturn Vue Hybrid: 4 th Qtr 2009 PHEV Benchmarking -...

  11. ENVIRONMENT: UCR studying merits of cleaner construction equipment

    E-Print Network [OSTI]

    of hybrid cars such as the Toyota Prius, introducing them is a slow process but can catch on, Johnson said to track its emissions compared to conventional diesel machinery. The hybrid bulldozers use a diesel-electric

  12. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  13. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Broader source: Energy.gov [DOE]

    The Energy Department posted a video of ?Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  14. Plug-In Demo Charges up Clean Cities Coalitions | Department...

    Broader source: Energy.gov (indexed) [DOE]

    show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius,...

  15. EVALUATION OF RANGE ESTIMATES FOR TOYOTA FCHV-ADV UNDER OPEN ROAD DRIVING CONDITIONS

    SciTech Connect (OSTI)

    Anton, D.; Wipke, K.; Sprik, S.

    2009-07-10T23:59:59.000Z

    The objective of this evaluation was to independently and objectively verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. To accomplish this, participants from both Savannah River National Laboratory (SRNL) and the National Renewable Energy Laboratory (NREL) witnessed and participated in a 2-vehicle evaluation with Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA) over a typical open road route for over 11 hours in one day with all relevant data recorded. SRNL and TEMA first entered into discussions of verifying the range of the advanced Toyota Fuel Cell Hybrid Vehicle (FCHV-adv) in August 2008 resulting from reported 400+ mile range by Toyota. After extended negotiations, a CRADA agreement, SRNS CRADA No. CR-04-003, was signed on May 6, 2009. Subsequently, on June 30, 2009 SRNL and NREL participated in an all-day evaluation of the FCHV-adv with TEMA to determine the real-world driving range of this vehicle through on-road driving on an extended round-trip drive between Torrance and San Diego, California. SRNL and NREL observed the vehicles being refueled at Toyota's headquarters the day before the evaluation in Torrance, CA on June 29. At 8:00 AM on June 30, the vehicles departed Torrance north toward downtown Los Angeles, then west to the Pacific Coast Highway, and down to San Diego. After lunch the vehicles retraced their route back to Torrance. The traffic encountered was much heavier than anticipated, causing the vehicles to not return to Torrance until 9 PM. Each vehicle was driven by the same Toyota driver all day, with one SRNL/NREL observer in each vehicle the entire route. Data was logged by Toyota and analyzed by NREL. The maximum range of the FCHV-adv vehicles was calculated to be 431 miles under these driving conditions. This distance was calculated from the actual range of 331.5 miles during over 11 hours driving, plus 99.5 miles of additional range calculated from the average fuel economy from the day times the remaining usable hydrogen. Driving range results were independently calculated for each vehicle, and these results averaged together to achieve the final 431-mile range estimate. The uncertainty on these results is relatively low due to eight independent measurements of distance and six separate measurements of hydrogen usage, with a resulting uncertainty of {+-} 7 miles ({+-} 1.7%) based on spread between the low and high values from all of the multiple measurements. The average fuel economy resulting from the day's driving was 68.3 miles/kg and the total hydrogen stored on-board at 70 MPa was calculated to be 6.31 kg. The speed profiles were analyzed and compared to standard driving cycles, and were determined to be of moderate aggressiveness. The city segments of the route had average speeds slightly greater than the UDDS cycle and the highway segments were close to the HWFET & US06 cycles. The average acceleration for the highway driving was very close to the HWFET cycle, and the city portions had average accelerations lower than the UDDS and US06 cycles. We feel that the route accurately reflects realistic driving behaviors in southern California on a typical weekday, and is an appropriate benchmark to use in the verification of a fuel cell vehicle's range.

  16. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    their halo effect on Toyota and Honda have spurred a contesteconomy by a few percent. The Honda Civic Hybrid is a “mild”performance” HEVs, like the Honda Accord, focus as much on

  17. | | English | | | RSS | www.sciencenet.cn 2007-9-11 23:28:9

    E-Print Network [OSTI]

    Zare, Richard N.

    ] "Do you go to office by bike or bus, or by hybrid car?" the reporter from SCIENCENET was the first and his wife Susan drive their hybrid car Prius when really needed. The so-called hybrid car means the car worldwide hybrid car produced by Toyota in Japan. Indeed, Prof. Zare has a high expectation on hybrid cars

  18. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect (OSTI)

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01T23:59:59.000Z

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  19. Toyota Chairman vs. a Mathematician Chairman of the Board,

    E-Print Network [OSTI]

    Kobayashi, Toshiyuki

    and "Kaizen" C: After graduating from the university, I started working for Toyota. Six years later, I was told to do "Kaizen" (improvement of production processes), although what I had majored in was law, not engineering. Kaizen is an engineering person's job, I thought. I was embarrassed and tried to persuade my boss

  20. Transforming commercial aerospace supply chain management practices by utilizing Toyota production system principles, practices, and methodologies

    E-Print Network [OSTI]

    Patneaude, Steven M

    2008-01-01T23:59:59.000Z

    This thesis examines The Toyota Motor Corporation's core precepts, management principles, supply chain architecture, product development methods, leveraged practice of supplier partnerships and procurement practices, all ...

  1. Toyota Collaborates with the ALS and Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » TopTours Sign InTowardsToyota

  2. Type Toyota Management Systems (MSTT) of small and medium-sized enterprises in mechanical and electrical

    E-Print Network [OSTI]

    Boyer, Edmond

    of a study, dealing with the topic of Type Toyota Management Systems. In the survey SMEs in mechanicalType Toyota Management Systems (MSTT) of small and medium-sized enterprises in mechanical; Institute of Industrial Manufacturing and Management (IFF), University of Stuttgart, Nobelstr. 12, D-70569

  3. NOT EVERY HYBRID BECOMES ANOT EVERY HYBRID BECOMES A PRIUS: THE CASE AGAINST THEPRIUS: THE CASE AGAINST THE

    E-Print Network [OSTI]

    for the expansion of nuclear energyof nuclear energy ·· Waste ManagementWaste Management ·· Fuel Resource ManagementFuel-dateto-date ·· Large quantities of spent fuel stored at reactor sites (noLarge quantities of spent fuel stored solutions to the waste management and fuel resource issues. #12;1111 Status Of Fusion as an Energy

  4. Microsoft Word - TM-2010-253 - 2010 Prius Report - 26 - Tim ...

    Office of Scientific and Technical Information (OSTI)

    use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles. 1.2 RESEARCH FACILITIES Subsystem-level evaluations are...

  5. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 1,310 Porsche Panamera S E-Hybrid 0 0 0 51 879 Ford Fusion Energi 0 0 0 6,089 11,550 Honda Accord 0 0 0 526 449 Ford C-Max Energi 0 0 2,374 7,154 8,433 Toyota Prius PHEV 0 0...

  6. NC Mobile CARE Awards April 18, 2007

    E-Print Network [OSTI]

    : CITY OF CONOVER Fleet Category: COCA COLA BOTTLING CO. CONSOLIDATED Marketing Category: RAY THOMAS Beattie, and Bo Calloway with one of the many Coca-Cola Bottling Co. Toyota Prius. AFV101, David has. Currently retired from teaching, Dave is now involved with plug-in hybrid conversions. FLEET : Coca Cola

  7. Visit to Toyota July 31, 1991 My host was Mr Y. Kuranaga, head of Development Div 1 of Information

    E-Print Network [OSTI]

    Whitney, Daniel

    with several companies such as Nihon Unisys to support and sell its CAD software to Toyota's vendors programming, and machining process planning. Toyota last made a clay model as primary design data input three-view sketches, converting them to 3D models and refining these, and making a 1/5th scale clay

  8. 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National Software Tools

  9. Symbolism and the Adoption of Fuel-Cell Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2007-01-01T23:59:59.000Z

    owner, who traded in his BMW for a Toyota Prius, struggledthan he used to drive his BMW – during his first few months

  10. Reliable GPS Integer Ambiguity Resolution

    E-Print Network [OSTI]

    Chen, Anning

    2011-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Period

  11. Fact #812: January 13, 2014 The Number of Models Achieving 40...

    Broader source: Energy.gov (indexed) [DOE]

    Combined MPG or MPG(e) Class Combined MPG or MPG(e) Class Combined MPG or MPG(e) Class BMW Active E 102 Subcompact Toyota Prius 46 Midsize 50 Midsize 50 Midsize Honda Civic...

  12. Toyota | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTown Hall Meeting JulyTownToyola

  13. Sudbury: Nickel Smelting and Refining Nickel Production

    E-Print Network [OSTI]

    Toohey, Darin W.

    Sudbury: Nickel Smelting and Refining Nickel Production o Toyota buys most of its nickel from Sudbury to produce its nickel- metal hydride batteries Used in cars such as the Toyota Prius SO2 Emissions o The smelting of nickel = large amount of SO2 released as byproduct 4 metric tons of SO2 per

  14. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1. Comparison of operating and incremental costs of battery electric vehicles and conventional gasoline vehicles Characteristics Hybrid electric vehicle (Prius) Plug-in hybrid...

  15. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL; Miller, John M [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  16. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect (OSTI)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08T23:59:59.000Z

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  17. Hybrid Mesons

    E-Print Network [OSTI]

    C. A. Meyer; E. S. Swanson

    2015-03-04T23:59:59.000Z

    A review of the theoretical and experimental status of hybrid hadrons is presented. The states $\\pi_1(1400)$, $\\pi_1(1600)$, and $\\pi_1(2015)$ are thoroughly reviewed, along with experimental results from GAMS, VES, Obelix, COMPASS, KEK, CLEO, Crystal Barrel, CLAS, and BNL. Theoretical lattice results on the gluelump spectrum, adiabatic potentials, heavy and light hybrids, and transition matrix elements are discussed. These are compared with bag, string, flux tube, and constituent gluon models. Strong and electromagnetic decay models are described and compared to lattice gauge theory results. We conclude that while good evidence for the existence of a light isovector exotic meson exists, its confirmation as a hybrid meson awaits discovery of its iso-partners. We also conclude that lattice gauge theory rules out a number of hybrid models and provides a reference to judge the success of others.

  18. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18T23:59:59.000Z

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  19. UNITED STATES PATENT AND TRADEMARK OFFICE PATENT-PENDING INVENTION, APPLICATION NO. 61/297,958 OF 25 JAN 2010

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    by Hybrid Water Heaters and Hybrid Prius car where existing power and storage technologies are integrated by Hybrid Water Heaters and Hybrid Prius car where existing power and storage technologies are integrated and cooling by integrating heat-pump and refrigeration cyclic machines, called here Thermal Transformer (TT

  20. toyota | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAPZinccellranking oftoyota

  1. OpenEI Community - toyota

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)5/0 en Global8/0

  2. Essays in Behavioral Economics and Environmental Policy

    E-Print Network [OSTI]

    Sexton, Steven E.

    2012-01-01T23:59:59.000Z

    flex-fuel fleet), and hybrid cars (like the Prius, the HondaStates; 48% of the 290,271 hybrid cars sold in the U.S. indescribed by Khan, with hybrid cars enjoying greater market

  3. Few people were left unaffected by the soaring oil prices of summer 2008. Motorists were the hardest hit

    E-Print Network [OSTI]

    Andelman, David

    is possible with a 130kg, 300litre tank that can hold 6kg of hydro- gen. In comparison, a lithium-ion battery vehicles, such as the Toyota Prius, where the battery is used in tandem with a small, economic combustion- not store much energy; the batteries can only operate over a narrow temperature range; the vehicle cannot

  4. School of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research Team

    E-Print Network [OSTI]

    Craft, Christopher B.

    outlet and using electricity to charge a battery pack, but does not have a gasoline engine that works have a gasoline motor that serves as a back-up or works together with the electric motor. A Chevy Volt, such as the Toyota Prius, which uses both gasoline and battery power, but does not plug into the electrical grid

  5. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

    2006-09-01T23:59:59.000Z

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

  6. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30T23:59:59.000Z

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

  7. Routing in hybrid networks

    E-Print Network [OSTI]

    Gupta, Avinash

    2001-01-01T23:59:59.000Z

    Hybrid networks are networks that have wired as well as wireless components. Several routing protocols exist for traditional wired networks and mobile ad-hoc networks. However, there are very few routing protocols designed for hybrid networks...

  8. Formula Hybrid International Competition

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    torque at low speeds than do internal combustion engines, a hybrid could offer competitive advantages with a traditional combustion engine into a hybrid vehicle, overcoming numerous technical challenges along the way

  9. Mesoscale hybrid calibration artifact

    SciTech Connect (OSTI)

    Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

    2010-09-07T23:59:59.000Z

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  10. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid and Management Trials 2007 Virginia Corn & Small Grain Management #12;VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS IN 2007 Coordinators of Virginia Corn Hybrid Trials in 2007 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  11. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid Management and Trials 2006 Virginia Corn & Small Grain Management #12;#12;Virginia Corn Hybrid and Management Trials 2006 Coordinators of Virginia Corn Hybrid Trials in 2006 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  12. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02T23:59:59.000Z

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  13. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

    1993-01-01T23:59:59.000Z

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  14. Corn Hybrids for Texas.

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01T23:59:59.000Z

    hybrid, was superior to all othey hybrids in freedom from root lodging. Watsrr 124, Keystone 222, Texas 24, Funk G711 an( Texas 30 were superior to other yellow hybrid\\ in resistance to root lodging. Texas 15W agair Angleton Lake Charles clay... degrees of damage. hybrids in resistance to stalk breakage. Ic.\\db L4, Texas 30 and Watson 124 were the I :ellow hybrids most resistant to stalk breakage. 3nk G711 and Keystone 222 were especially ' :u~eeptible to stalk breakage. a Growers who plan...

  15. Hybrid Solar Lighting

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights.

  16. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; Bockholt, A. J.; Collier, J. W.

    1957-01-01T23:59:59.000Z

    - Corn Hybrid$ for . ;mE Tgmt 4.College Sta. 9Sulphw Spgr. @.Holland l9.GreenviUe 24Stephmville 5.Kibyvilb IO.(;brkrvilb B.Tanpb 20Mm 25.Chilkothe TEXAS AGRICULTURAL EXPERIMENT STATIC R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST... - . Corn hybrids were planted on 81 percent of the Texas corn acreage in 1956. Most of this acreage was devoted to hybrids developed and released by the Texas Agricultural Experiment Station. These hybrids usually outyield open-pollinated varieties by 20...

  17. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H. (Energy Systems)

    2007-01-01T23:59:59.000Z

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  18. Honey, Did You Plug in the Prius? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist,theA12345Savings |BetterHoney

  19. Honey, Did You Plug in the Prius? | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,AssessmentInteractive GraphicExcel sheet for7,

  20. Hybrid baryons [alpha].

    SciTech Connect (OSTI)

    Page, P. R. (Philip R.)

    2002-01-01T23:59:59.000Z

    The authors review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modeled by both the bag and flux tube models. The low lying hybrid baryon is N 1/2{sup +} with a mass of 1.5 - 1.8 GeV. Hybrid baryons can be produced in the glue rich processes of diffractive {gamma}N and {pi}N production, {Psi} decays and p{bar p} annihilation. We review the current status of research on three quarks with a gluonic excitation, called a hybrid baryon. The excitation is not an orbital or radial excitation between the quarks. Hybrid baryons have also been reviewed elsewhere. The Mercedes-Benz logl in Figure 1 indicates two possible views of the confining interaction of three quarks, an essential issue in the study of hybrid baryons. In the logo the three points where the Y shape meets the boundary circle should be identified with the three quarks. There are two possibilities fo rthe interaction of the quarks: (1) a pairwise interaction of the quarks represented by the circle, or (2) a Y shaped interaction between the quarks, represented by the Y-shape in the logo.

  1. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15T23:59:59.000Z

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  2. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01T23:59:59.000Z

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Save with Hybrid Refrigeration 

    E-Print Network [OSTI]

    Chung, C. W.

    1985-01-01T23:59:59.000Z

    ) unit, is presented in this article. This paper will briefly describe process configuration, advantages and utility consumption, equipment cost and direct field cost comparisons of such a hybrid refrigeration unit over its counterpart, a cascading MCR...

  4. Introduction Hybrid ICNs

    E-Print Network [OSTI]

    Schenato, Luca

    analysis Experimental results Conclusion Real-Time Networks and Protocols for Industrial Automation Lucia-Time Networks & Protocols for Industrial Automation Hybrid ICNs Modeling of real wireless components IEEE 802 Simulative analysis Experimental results Conclusion Industrial Communication Networks Nowadays Industrial

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  6. Hybridization and the Typological Paradigm 

    E-Print Network [OSTI]

    Carlson, Charles

    2012-02-14T23:59:59.000Z

    of hybridization events, which also have a significant role in ecological adaptation. One explanation of increased hybridization in some areas and not others is that stress from parasites results in selection for an increase of novel genotypes. Two swordtail...

  7. Elgersburg School 2014 Hybrid Systems

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Elgersburg School 2014 Hybrid Systems Worksheet 2 Problem 1. Consider the hybrid system given by C) Is V1(x) = 1 2 x2 2 + x1 (which represents the total energy of the ball) a Lyapunov function verifying

  8. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01T23:59:59.000Z

    Corn Hybrids for Terns ST LOCATIONS AREA I AREA II ARE4 Ill AREA IV 2Prdrie View 7.Tylw lZ.Lockhart 17.Waxahachie 22San Antonio 3.Cleveland 8.Mt. Pbctont I3Brsnha B.Garland 23Lamposas 4.Colbqe Sta. 9Sulphw Spp. 14Holland l9.0reenvilb 24...Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea...

  9. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  10. ANNUAL REPORT FOUNDATIONS OF HYBRID

    E-Print Network [OSTI]

    California at Irvine, University of

    Online Hierarchical Fault-Adaptive Control 39 Development of engine models for combustion engine 15 A Deterministic Operational Semantics for Hybrid System Simulations 15 Building Efficient Simulations from Hybrid Bond Graph Models 16 Going Beyond Zeno 18 2.1.1.d. Stochastic Hybrid Systems 18

  11. Hybrid Transmission Corridor study

    SciTech Connect (OSTI)

    Clairmont, B.A.; Johnson, G.B.; Zaffanella, L.E. (General Electric Co., Lenox, MA (United States))

    1992-06-01T23:59:59.000Z

    Hybrid Transmission Corridors are areas where High Voltage Alternating Current (HVAC) transmission lines and High Voltage Direct Current (HVDC) transmission lines exist in close proximity of each other. Because of the acceptance of HVDC as a means of transporting electric power over long distances and the difficulties associated with obtaining new right-of-ways, HVDC lines may have to share the same transmission corridor with HVAC lines. The interactions between conductors energized with different types of voltages causes changes in the electrical stresses applied to the conductors and insulators. As a result, corona phenomena, field effects and insulation performance can be affected. This report presents the results of an investigation of the HVAC-HVDC interaction and its effect on corona and AC and DC electric field phenomena. The method of investigation was based on calculation methods developed at the EPRI High Voltage Transmission Research Center (HVTRC) and supported by the results of full and reduced-scale line tests. Also, a survey of existing hybrid corridors is given along with the results of measurements made at one of those corridors. A number of examples in which an existing AC corridor may be transformed into a hybrid corridor are discussed. The main result of the research is an analytical/empirical model for predicting the electrical/environmental performance of hybrid corridors, a definition of ACDC interaction and a set of criteria for specifying when the interaction becomes significant, and a set of design rules.

  12. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  13. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E. (Manteca, CA)

    1998-01-01T23:59:59.000Z

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  14. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03T23:59:59.000Z

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  15. Hybrid electroluminescent devices

    SciTech Connect (OSTI)

    Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

    2010-08-03T23:59:59.000Z

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  16. Save with Hybrid Refrigeration

    E-Print Network [OSTI]

    Chung, C. W.

    SAVE WITH HYBRID REFRIGERATION Cheng-Wen (Wayne) Chung, P.E. Fluor Engineers, Inc. Irvine, California ABSTRACT Two level demand makes it possible to use two systems for refrigeration and save energy and money. An example of this type... of refrigeration, consisting of an ammonia absorption refrigeration (AAR) unit and a mechanical compression refrigera tion (MCR) unit, is presented in this article. This paper will briefly describe process configur ation, advantages and utility consumption...

  17. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05T23:59:59.000Z

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  18. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2007-06-12T23:59:59.000Z

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  19. Hybrid X-pinches

    SciTech Connect (OSTI)

    Shelkovenko, T. A.; Pikuz, S. A.; Mishin, S. A.; Mingaleev, A. R. [Russian Academy of Sciences, P.N. Lebedev Physical Institute (Russian Federation); Tilikin, I. N. [Moscow Institute of Physics and Technology (Russian Federation); Knapp, P. F.; Cahill, A. D.; Hoyt, C. L.; Hammer, D. A. [Cornell University (United States)

    2012-05-15T23:59:59.000Z

    Results from experimental studies of a hybrid X-pinch with an initial configuration in the form of a high-current diode with conical tungsten electrodes spaced by 1-2 mm and connected to one another with 20- to 100-{mu}m-diameter wires are presented. The experiments were carried out at four facilities with a current amplitude from 200 to 1000 kA and front duration from 45 to 200 ns. It is shown that, in spite of their simpler configuration, hybrid X-pinches with a short rise time of the current pulse (50-100 ns) are highly competitive with standard X-pinches in the generated soft X-ray power and the formation of a single hot spot in them is much more stable, while hard X-ray emission is almost absent. The possibility of using hybrid X-pinches as soft X-ray sources for point projection X-ray imaging of plasma objects is considered.

  20. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including device integration and assembly, chemical and biological sensing, and photocatalysis. For example, a hybrid nanostructure consisting of a semiconductor rod with a...

  1. Microsoft Word - ORNL-TM-2008-185.doc

    Office of Scientific and Technical Information (OSTI)

    R&D research and development rms root mean square rpm revolutions per minute SEM scanning electron microscopy Si silicon SP specific power TC thermocouple THS Toyota Hybrid...

  2. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    secrets, but the price of hybrid cars and trucks are betweenCosts of hybrid vehicles Depending on whether a car companydiesel-hybrid prototypes that attained 70 MPG (Green Car

  3. Issue 5: High Interest in Hybrid Cars

    E-Print Network [OSTI]

    Ong, Paul M.; Haselhoff, Kim

    2005-01-01T23:59:59.000Z

    2005). “High Interest in Hybrid Cars. ” SCS Fact Sheet, Vol.May 2005 High Interest in Hybrid Cars I NTRODUCTION PublicThe unique features of a hybrid car mean that it is more

  4. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

  5. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30T23:59:59.000Z

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  7. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  8. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  9. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  10. Programming Hybrid HPC Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35InformationProgramming Hybrid HPC Systems

  11. Essays On Hybrid Bundle Pricing 

    E-Print Network [OSTI]

    Meyer, Jeffrey Dean

    2011-10-21T23:59:59.000Z

    Increasingly, firms are offering hybrid bundles — products that combine both good(s) and service(s). Some hybrid bundles, such as TiVo that combines a DVR and recording management are more visible, while some, such as GE‘s Powerplant System...

  12. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. (London, TN) [London, TN; Dress, William B. (Camas, WA) [Camas, WA

    2010-02-09T23:59:59.000Z

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  13. Tough, bio-inspired hybrid materials

    E-Print Network [OSTI]

    Munch, Etienne

    2009-01-01T23:59:59.000Z

    hybrid materials are an order of magnitude higher than standard hot-pressed homogeneous nanocomposites

  14. Hybrid powertrain controller

    DOE Patents [OSTI]

    Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

    2000-12-26T23:59:59.000Z

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  15. Hybrid dark energy

    E-Print Network [OSTI]

    J. S. Alcaniz; R. Silva; F. C. Carvalho; Zong-Hong Zhu

    2008-07-16T23:59:59.000Z

    Extending previous results [Phys. Rev. Lett. 97, 081301 (2006)], we explore the cosmological implications of a new quintessence scenario driven by a slow rolling homogeneous scalar field whose equation of state behaved as freezing over the entire cosmic evolution, is approaching -1 today, but will become thawing in the near future, thereby driving the Universe to an eternal deceleration. We argue that such a mixed behavior, named \\emph{hybrid}, may reconcile the slight preference of current observational data for freezing potentials with the impossibility of defining observables in the String/M-theory context due to the existence of a cosmological event horizon in asymptotically de Sitter universes as, e.g., pure freezing scenarios.

  16. Hybrid powertrain system

    DOE Patents [OSTI]

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20T23:59:59.000Z

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  17. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01T23:59:59.000Z

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  18. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31T23:59:59.000Z

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  19. Global optimization of hybrid systems

    E-Print Network [OSTI]

    Lee, Cha Kun

    2006-01-01T23:59:59.000Z

    Systems that exhibit both discrete state and continuous state dynamics are called hybrid systems. In most nontrivial cases, these two aspects of system behavior interact to such a significant extent that they cannot be ...

  20. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    The parallel hybrid passenger car (VW Golf) combined an EDLCpassenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbon

  1. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

  2. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01T23:59:59.000Z

    Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

  3. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  4. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  5. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

  6. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  7. Hybrid power source

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2012-06-05T23:59:59.000Z

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  8. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  9. CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS

    E-Print Network [OSTI]

    Collins, Gary S.

    CONDUCTIVE POLYCARBONATE NANOCOMPOSITES with HYBRID NANOFILLERS Catherine Smith, Brooks Lively, Wei of polymers. Emerging technologies have demonstrated the crucial need for highly conductive polymer combination between polycarbonate (PC) and hybrid concentrations of CNT and GNP nanofillers was investigated

  10. Conditions when hybridization might predispose populations

    E-Print Network [OSTI]

    COMMENTARY Conditions when hybridization might predispose populations for adaptive radiation O (Sch- warzer et al., 2012), perhaps just as a consequence of many young species in geographical et al., 2011; Genner & Turner, 2012). Whether these species radiations happen despite hybridization

  11. Hybrid Membranes for Light Gas Separations

    E-Print Network [OSTI]

    Liu, Ting

    2012-07-16T23:59:59.000Z

    separations, especially olefin/paraffin separations. This thesis focuses on the designing dendrimer-based hybrid membranes on mesoporous alumina for reverse-selective separations, synthesizing Cu(I)-dendrimer hybrid membrane to facilitate olefin...

  12. Hybrid vehicle-centric route guidance

    E-Print Network [OSTI]

    Farver, Jennifer M. (Jennifer Margaret), 1976-

    2005-01-01T23:59:59.000Z

    This thesis proposes a hybrid route guidance system in which predictive guidance is generated in a centralized layer and revised in a reactive, decentralized layer that resides on-board the vehicle. This hybrid approach ...

  13. Musa hybrid cv. Blue Java (Cultivated) 3 

    E-Print Network [OSTI]

    James R. Manhart

    2011-08-10T23:59:59.000Z

    Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness-related traits. Additionally, investing the structure of hybrid zones can provide valuable insight in the ecology...

  14. METAHEURISTIC HYBRIDIZATION WITH GRASP 1. Introduction ...

    E-Print Network [OSTI]

    2008-04-14T23:59:59.000Z

    Apr 14, 2008 ... Combinatorial optimization can be defined by a finite ground set E = {1,...,n}, ... shipping), energy (electrical power, petroleum, natural gas), and ... Hybrid construction schemes are considered in Section 3 and hybrid local.

  15. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01T23:59:59.000Z

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  16. Modeling and Analysis ofModeling and Analysis of Hybrid Control SystemsHybrid Control Systems

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    control systems, MOVEP, Bordeaux, 2006 Automatic gear boxAutomatic gear box #12;Karl H. Johansson, HybridModeling and Analysis ofModeling and Analysis of Hybrid Control SystemsHybrid Control Systems Karl.kth.se/~kallej MOVEP 2006, Bordeaux, France Karl H. Johansson, Hybrid control systems, MOVEP, Bordeaux

  17. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    General Motors’ Silverado truck is a “light“ hybrid. It replaces the normal flywheel of a gasoline engine

  18. Hybrid Silicon Photonic Integrated Circuit Technology

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    of Hewlett Packard; A. Yariv of Caltech; D. Dai of ZhejiangA. Scherer, and A. Yariv, “Electrically pumped hybrid

  19. Module 8: Fuel Cell Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    This course covers hybrid electric vehicles, electric motors, auxiliary power units, generators, energy storage systems, regenerative braking, control systems

  20. hybridTalk1.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67Hybrid and VehicleHybrid

  1. Distributed Theorem Proving for Distributed Hybrid Systems

    E-Print Network [OSTI]

    Platzer, André

    system with a varying number of arbitrarily many cars. 1 Introduction Hybrid systems with joint discrete a multi-agent system, e.g., distributed car control systems. Such systems form distributed hybrid systemsDistributed Theorem Proving for Distributed Hybrid Systems David W. Renshaw, Sarah M. Loos

  2. Copyright 2013 Gaia Geothermal, LLC 1Hybrid Design Slide 1.1 -Hybrid Design with the New GLD

    E-Print Network [OSTI]

    Copyright © 2013 ­ Gaia Geothermal, LLC 1Hybrid Design ­ Slide 1.1 - Hybrid Design Geothermal, LLC 2Hybrid Design ­ Slide 1.1 - The new hybrid design tool in GLD provides: · Precision peak;Copyright © 2013 ­ Gaia Geothermal, LLC 3Hybrid Design ­ Slide 1.1 - In previous versions of GLD, the hybrid

  3. EVOLUTION OF L HYBRID WAVES

    E-Print Network [OSTI]

    Karney, Charles

    is an envelope solitary wave. These solitary waves are not solitons. The occurrence of the constant phase pulses-state propagation of one of the two lower hybrid rays in a homogeneous considering the balance between thermal break up into two types of solitary waves, constant phase pulses or envelope pulses. e examine

  4. Hybrid chirped pulse amplification system

    DOE Patents [OSTI]

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29T23:59:59.000Z

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  5. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  6. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01T23:59:59.000Z

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  7. Hybrid extragradient proximal algorithm coupled with parametric ...

    E-Print Network [OSTI]

    Primary: 90C25, 65K05; Secondary: 49M30, 90C51. Key words and phrases. Parametric approximation; diagonal iteration; proximal point; hybrid method; global ...

  8. A verification framework for hybrid systems

    E-Print Network [OSTI]

    Mitra, Sayan

    2007-01-01T23:59:59.000Z

    Combining; discrete state transitions with differential equations, Hybrid system models provide an expressive formalism for describing software systems that interact with a physical environment. Automatically checking ...

  9. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  10. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    THAT MIGHT REDUCE HYBRID IMPACT ON OIL CONSUMPTION AND GHGhave been reduced, oil consumption continues to create2010, United States VMT Oil consumption GHG 2010, California

  11. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08T23:59:59.000Z

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  12. Probing Compositional Variation within Hybrid Nanostructures

    E-Print Network [OSTI]

    Yuhas, Benjamin D.

    2010-01-01T23:59:59.000Z

    Charge Retention and Photocatalysis with Hybrid CdSe?Ausensing, 14,15 and photocatalysis. 16?23 In particular, the

  13. SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1997. Companies Participating in the 1997 Corn Hybrid Trials

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    1 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1997. Companies Participating in the 1997 Corn Hybrid COLUMBIA PLAINVIEW TX 79072 NORTHRUP KING CO. NORTHRUP KING PO BOX 959 MINNEAPOLIS MN 55440 PIONEER HI, INC. WILSON PO BOX 391 HARLAN IA 51537 VIRGINIA CORN HYBRID TRIALS IN 1997 Coordinated by H. Behl, E

  14. Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage

  15. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  16. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

  17. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  18. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

  19. The impact of hybridization on morphological variation on Xiphophorus fishes 

    E-Print Network [OSTI]

    Macedo, Danielle Carter de

    2013-02-04T23:59:59.000Z

    Hybridization can produce novel phenotypic variation which may allow hybrid populations to evolve in novel directions relative to parentals. Hybridization can produce intermediate as well as extreme phenotypes with respect to the parent species...

  20. Predictive energy management for hybrid electric vehicles -Prediction horizon and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Predictive energy management for hybrid electric vehicles - Prediction horizon and battery capacity of a combined hybrid electric vehicle. Keywords: Hybrid vehicles, Energy Management, Predictive control, Optimal predictive energy management realistic. This energy management strategy uses a dynamic programming algorithm

  1. Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains

    E-Print Network [OSTI]

    Victoria, University of

    Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains By Jeffrey of the author. #12;ii Modelling, Simulation, Testing and Optimization of Advanced Hybrid Vehicle Powertrains supplant conventional ICEs as the dominant technology, most notably electric and hybrid powertrains

  2. The impact of hybridization on morphological variation on Xiphophorus fishes

    E-Print Network [OSTI]

    Macedo, Danielle Carter de

    2013-02-04T23:59:59.000Z

    Hybridization can produce novel phenotypic variation which may allow hybrid populations to evolve in novel directions relative to parentals. Hybridization can produce intermediate as well as extreme phenotypes with respect to the parent species...

  3. Hybrid Ventilation Optimization and Control Research and Development...

    Energy Savers [EERE]

    Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Lead Performer: Massachusetts Institute of...

  4. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

  5. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  6. acid hybridization assay: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the equilibrium degree of the hybridization to the bulk composition. The hybridization isotherm emerges as a Langmuir isotherm modified for electrostatic interactions within the...

  7. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  8. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  9. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on...

  10. Vehicle Technologies Office: Materials for Hybrid and Electric...

    Energy Savers [EERE]

    Materials for Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to...

  11. Development of Nanofluids for Cooling Power Electronics for Hybrid...

    Broader source: Energy.gov (indexed) [DOE]

    for Hybrid Electric Vehicles Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  12. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  13. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  14. advanced hybrid imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems with Applications in Advanced Hybrid Electric Vehicles and Wind Farms with Battery Storage. Open Access Theses and Dissertations Summary: ??Modern hybrid electric vehicles...

  15. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Efficiency From Hybrid Cesium HalideCopper Photocathode. Enhanced Quantum Efficiency From Hybrid Cesium HalideCopper Photocathode. Abstract: The quantum efficiency of Cu...

  16. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  17. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  18. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Energy Savers [EERE]

    AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results The Vehicle...

  19. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) 42407.pdf More Documents &...

  20. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  1. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  2. Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses Emissions and fuel economy data were...

  3. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  4. Advanced Methods Approach to Hybrid Powertrain Systems Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus...

  5. Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ratings. However, in recent years, hybrid vehicle technology has expanded throughout the automotive industry and now the list is dominated by hybrid vehicles, many of which are...

  6. Making a Hybrid Microfluidic Platform Compatible for In Situ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Hybrid Microfluidic Platform Compatible for In Situ Imaging by Vacuum-Based Techniques. Making a Hybrid Microfluidic Platform Compatible for In Situ Imaging by Vacuum-Based...

  7. acid hybrid system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Because the discrete part of a hybrid system 107 Series Parallel Hybrid VSC-LCC for HVdc Transmission Systems. Open Access Theses and Dissertations Summary: ??This thesis...

  8. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  9. Development of Design and Simulation Tool for Hybrid Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System This project will...

  10. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by...

    Energy Savers [EERE]

    - Dataset Fact 875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Excel file and dataset for Hybrid Electric Vehicle Penetration by State, 2014...

  11. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  12. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. (London, TN); Dress, William B. (Camas, WA)

    2010-02-02T23:59:59.000Z

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  13. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010Compositional Variation Within Hybrid

  14. LANL debuts hybrid garbage truck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointedKyungmin Ham,work underHybrid garbage

  15. Hybrids Plus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergy Systems IncCarHybrids Plus

  16. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in front of NREL

  17. NREL: Water Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in front of

  18. NREL: Wind Research - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in front ofAwards

  19. NREL: Wind Research - Boise State University Wins Collegiate Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in front

  20. NREL: Wind Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in frontData and

  1. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in frontData

  2. NREL: Wind Research - Get to Know a Wind Energy Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in frontDataGet to

  3. NREL: Wind Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in frontDataGet

  4. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in

  5. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThe National Wind

  6. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThe National

  7. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThe

  8. NREL: Wind Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven inThePublications

  9. NREL: Wind Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven

  10. NREL: Wind Research - Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenand Development A

  11. NREL: Wind Research - Small and Distributed Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenand Development

  12. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenand

  13. NREL: Wind Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmaster Please

  14. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmaster

  15. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmasterWind

  16. NREL: Wind Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being

  17. NREL: Wind-Wildlife Impacts Literature Database (WILD) Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL - National Renewable

  18. NREL: Workforce Development and Education Programs - About Workforce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL - National

  19. NREL: Workforce Development and Education Programs - Educational Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL - NationalEducational

  20. NREL: Workforce Development and Education Programs - Email Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL -

  1. NREL: Workforce Development and Education Programs - Graduate Student

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL -Research Program

  2. NREL: Workforce Development and Education Programs - Junior Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL -Research

  3. NREL: Workforce Development and Education Programs - National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL -ResearchHigh

  4. NREL: Workforce Development and Education Programs - National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL -ResearchHighMiddle

  5. NREL: Workforce Development and Education Programs - Science Undergraduate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNREL

  6. NREL: Workforce Development and Education Programs - Students Grade 4-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudents Grade 4-12

  7. NREL: Workforce Development and Education Programs - Teacher Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudents Grade

  8. NREL: Workforce Development and Education Programs - Workforce Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudents Gradeand

  9. NREL: Workforce Development and Education Programs - Workforce Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudents Gradeandand

  10. NRELs e-Ca Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudents

  11. NSA Atqasuk Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudentsInactive NSA

  12. NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius beingNRELStudentsInactive

  13. NSAC Subcommittee 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius

  14. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval Pease

  15. NSSPI Students and Faculty Take Part in Nuclear Security and Safeguards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval

  16. NSTX-U | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number RetrievalNSTX-U

  17. NSTec | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number RetrievalNSTX-U|

  18. NUG 2011-2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number RetrievalNSTX-U|

  19. NUG 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number RetrievalNSTX-U|

  20. NUG 2013 Business Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number RetrievalNSTX-U|

  1. NUG 2013 User Day: Trends and Innovation in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number

  2. NUG 2013: Training - Getting Started at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGetting Started at

  3. NUG 2013: Training -- Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGetting Started

  4. NUG 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGetting Started NUG

  5. NUG 2014 Business Day Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGetting Started

  6. NUG 2014 Science and Technology Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGetting

  7. NUG 2014 Training Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGettingTraining

  8. NUG 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGettingTraining NUG

  9. NUG 2015 Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGettingTraining

  10. NUG 2015 Business Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key NumberGettingTrainingNUG

  11. NUG 2015 Hack-a-Thon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key

  12. NUG 2015 is Feb. 23-26

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb. 23-26 NUG

  13. NUG Annual Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb. 23-26

  14. NUG Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb. 23-26

  15. NUG Teleconference April 11, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.

  16. NUG Teleconference Dec. 11, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.1, 2014

  17. NUG Teleconference Dec. 12, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.1, 20142,

  18. NUG Teleconference Dec. 4, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.1,

  19. NUG Teleconference Dec. 4, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.1,10, 2012

  20. NUG Teleconference Jan. 15, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.1,10,

  1. NUG Teleconference Jan. 9, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is Feb.1,10,9,

  2. NUG Teleconference July 10, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 is

  3. NUG Teleconference June 5, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJune 5, 2014

  4. NUG Teleconference June 6, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJune 5,

  5. NUG Teleconference March 7, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJune 5,March 7,

  6. NUG Teleconference May 1, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJune 5,March

  7. NUG Teleconference May 14, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJune 5,March4,

  8. NUG Teleconference May 2, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJune

  9. NUG Teleconference Nov. 13, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJuneNov. 13,

  10. NUG Teleconference Nov. 7, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJuneNov. 13,7,

  11. NUG Teleconference Nov. 8, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJuneNov.

  12. NUG Teleconference Oct. 2, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJuneNov.Oct 2,

  13. NUG Teleconference Oct. 4, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJuneNov.Oct

  14. NUG Teleconference Sep. 11, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 isJuneNov.OctSep

  15. NUG Teleconference Sep. 6, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015

  16. NUG Training 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 NUG Training 2012

  17. NUG-Byelaws-DRAFT_rpd_JSW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 NUG Training

  18. NUGEX 2014 Meeting Planning Subcommittee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 NUG Training2014

  19. NUGEX Elections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 NUG Training2014

  20. NUGEX Queue Subcommittee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 NUG

  1. NW Energy XP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015 NUGNW-Energy-XP

  2. NWChem at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG 2015

  3. NWEC honors BPA for building a cleaner energy future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG

  4. NWI_BrandStandards_Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEAR WORKFORCE

  5. NWP Fee Payments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEAR WORKFORCE

  6. NWP Small Business Status through June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEAR WORKFORCESmall

  7. NWPA-830G U.S. DEPARTMENT OF ENERGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEAR

  8. NWPA-830G U.S. DEPARTMENT OF ENERGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEAR

  9. NX FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX » NX FAQ NX

  10. NYMEX Coal Futures - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX » NX FAQ

  11. NYMEX Futures Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX » NX

  12. NYU's Center for Urban Science and Progress announces partnerships with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX » NXfour

  13. Nageswara Rao | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX »

  14. Name

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX »Name

  15. Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX »NameSauer

  16. Nancy Mitman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX

  17. Nano-photonic phenomena in van der Waals heterostructures | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNXCenter for

  18. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNXCenter

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUGNanoscale Chemical

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUGNanoscale

  2. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUGNanoscaleNanotechnology

  3. Nanoscale Pore Network and Pore Fluid Characterization from Neutron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR

  4. Nanoscale engineering boosts performance of quantum dot light emitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodes Quantum dot light

  5. Nanoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodes Quantum dot

  6. Nanoscientist Ayesha Arefin has heart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodes Quantum

  7. Nanostructured Materials | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodes

  8. Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience Museum

  9. Nanotextured Anti-Icing Surfaces | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience

  10. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1 April 2011

  11. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1 April

  12. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1 April10

  13. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1 April102

  14. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1 April1023

  15. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1 April10234

  16. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1

  17. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August 2009

  18. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August 20090

  19. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August

  20. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August2

  1. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August23

  2. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August234

  3. Narrative Summary - February 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSRdiodesScience1August23409

  4. Discrete and Hybrid Nonholonomy Antonio Bicchi1

    E-Print Network [OSTI]

    Piccoli, Benedetto

    Discrete and Hybrid Nonholonomy Antonio Bicchi1 , Alessia Marigo2 , and Benedetto Piccoli3 1 Centro such as cars, trucks with trailers, rolling 3D objects, underactuated mechanisms, satellites, etc., has made of systems, allowing for discrete and hybrid (mixed continuous and discrete) configurations and transi- tions

  5. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  6. Hybrid Modeling of Communication Networks Using Modelica

    E-Print Network [OSTI]

    Hespanha, João Pedro

    Hybrid Modeling of Communication Networks Using Modelica Daniel F¨arnqvist, Katrin Strandemar, Karl is to describe initial work on modeling packet-switched communication network us- ing Modelica [1], [8], which that the hybrid model is suitable for Modelica. More- over, we show that the model can then be efficiently simu

  7. Exotic hybrid mesons with light quarks

    E-Print Network [OSTI]

    Claude Bernard; Tom Blum; Thomas A. DeGrand; Carleton DeTar; Steven Gottlieb; Urs. M. Heller; Jim Hetrick; Craig McNeile; Kari Rummukainen; Bob Sugar; Doug Toussaint; Matt Wingate

    1996-07-12T23:59:59.000Z

    Hybrid mesons, made from a quark, an antiquark and gluons, can have quantum numbers inaccessible to conventional quark-antiquark states. Confirmation of such states would give information on the role of "dynamical" color in low energy QCD. We present preliminary results for hybrid meson masses using light Wilson valence quarks.

  8. Implementation Hybrid Trace Verifier (HTV) implements our

    E-Print Network [OSTI]

    Liberzon, Daniel

    to larger problems. References [1] S. Mitra. A Verification Framework for Hybrid Systems. PhD thesis. [3] A. Fehnker and F. Ivaneie. Benchmarks for hybrid systems verification. HSCC, 2993, 2004. A satellite maneuver system. 3. A version of room heating benchmark. 4. An engine control system

  9. NETL's Hybrid Performance, or Hyper, facility

    SciTech Connect (OSTI)

    None

    2013-06-12T23:59:59.000Z

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  10. Microsoft Word - TM-2010-253 - 2010 Prius Report - 26 - Tim - edited 2-16-2011

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspen Aerogels, Inc. DE-June

  11. Space and power efficient hybrid counters array

    DOE Patents [OSTI]

    Gara, Alan G. (Mount Kisco, NY); Salapura, Valentina (Chappaqua, NY)

    2010-03-30T23:59:59.000Z

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  12. Named Models in Coalgebraic Hybrid Logic

    E-Print Network [OSTI]

    Schroeder, Lutz

    2010-01-01T23:59:59.000Z

    Hybrid logic extends modal logic with support for reasoning about individual states, designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specifically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended hybrid language with local binding on the other. We instantiate our framework with a number of examples. Notably, we prove completeness of graded hybrid logic with local binding.

  13. Space and power efficient hybrid counters array

    DOE Patents [OSTI]

    Gara, Alan G. (Mount Kisco, NY); Salapura, Valentina (Chappaqua, NY)

    2009-05-12T23:59:59.000Z

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  14. Ultra-thin microporous/hybrid materials

    DOE Patents [OSTI]

    Jiang, Ying-Bing (Albuquerque, NM); Cecchi, Joseph L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM)

    2012-05-29T23:59:59.000Z

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  15. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect (OSTI)

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29T23:59:59.000Z

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to single spots to release hybridized DNA. This work leverages LLNL expertise in optics, microfluids, and bioinformatics.

  16. SRNSSTI200900446 Evaluation of Range Estimates for Toyota FCHVadv

    E-Print Network [OSTI]

    Renewable Energy Laboratory 2 Savannah River National Laboratory Page 1 of 17 #12) utilizing 70 MPa compressed hydrogen. To accomplish this, participants from both Savannah River National Laboratory (SRNL) and the National Renewable Energy Laboratory (NREL) witnessed and participated in a 2

  17. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Prius - Focus seemed to be placed on mass in the 2010 Prius packaging - 2010 Prius motor versus Camry motor * Volume comparable - power density roughly proportional to power...

  18. Observability Criteria and Estimator Design for Stochastic Linear Hybrid Systems

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    . Alessandri and Coletta [5] proposed a Luenberger observer design methodology for deterministic linear hybrid

  19. Strategies for Energy Efficient Resource Management of Hybrid Programming Models

    E-Print Network [OSTI]

    1 Strategies for Energy Efficient Resource Management of Hybrid Programming Models Dong Li Member, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid hybrid programming models that use both message-passing and shared- memory, due to the increasing

  20. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  1. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  2. Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles

    E-Print Network [OSTI]

    Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

    2009-01-01T23:59:59.000Z

    D R.L. Polk & Co. , 2006. Hybrid Vehicle Registrations Morecapital cost of the hybrid vehicle, subsidy providedfor the hybrid vehicle, horsepower of the hybrid vehicle,

  3. Control system for a hybrid powertrain system

    DOE Patents [OSTI]

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09T23:59:59.000Z

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  4. IT Licentiate theses Scientific Computing on Hybrid

    E-Print Network [OSTI]

    Flener, Pierre

    IT Licentiate theses 2013-002 Scientific Computing on Hybrid Architectures MARCUS HOLM UPPSALA of Licentiate of Philosophy in Scientific Computing c Marcus Holm 2013 ISSN 1404-5117 Printed by the Department

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

  6. HYBRID MODELING OF COMMUNICATION NETWORKS USING MODELICA

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    HYBRID MODELING OF COMMUNICATION NETWORKS USING MODELICA Daniel F¨arnqvist Katrin Strandemar and simulation of communication networks using the modeling language Modelica are discussed. Congestion control model, that Modelica provides an efficient platform for the analysis of communication networks

  7. Sensitivity analysis of oscillating hybrid systems

    E-Print Network [OSTI]

    Saxena, Vibhu Prakash

    2010-01-01T23:59:59.000Z

    Many models of physical systems oscillate periodically and exhibit both discrete-state and continuous-state dynamics. These systems are called oscillating hybrid systems and find applications in diverse areas of science ...

  8. Rational design of hybrid organic solar cells

    E-Print Network [OSTI]

    Lentz, Levi (Levi Carl)

    2014-01-01T23:59:59.000Z

    In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

  9. Stochastic Ion Heating by Lower Hybrid Turbulence

    E-Print Network [OSTI]

    Candy, J.

    2010-01-01T23:59:59.000Z

    of Tur b ulent S jpectrum Heating S imulations. Run 1A 2A 3ADivision Stochastic Ion Heating by Lower Hybrid Turbulenceweb development in this heating process is also discussed. I

  10. Parallel hybrid textures of lepton mass matrices

    E-Print Network [OSTI]

    S. Dev; Shivani Gupta; Radha Raman Gautam

    2010-09-28T23:59:59.000Z

    We analyse the parallel hybrid texture structures in the charged lepton and the neutrino sector. These parallel hybrid texture structures have physical implications as they cannot be obtained from arbitrary lepton mass matrices through weak basis transformations. The total sixty parallel hybrid texture structures can be grouped into twelve classes, and all the hybrid textures in the same class have identical physical implications. We examine all the twelve classes under the assumption of non-factorizable phases in the neutrino mass matrix. Five out of the total twelve classes are found to be phenomenologically disallowed. We study the phenomenological implications of the allowed classes for 1-3 mixing angle, Majorana and Dirac-type $CP$ violating phases. Interesting constraints on effective Majorana mass are obtained for all the allowed classes.

  11. Parallel hybrid textures of lepton mass matrices

    SciTech Connect (OSTI)

    Dev, S.; Gupta, Shivani; Gautam, Radha Raman [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2010-10-01T23:59:59.000Z

    We analyze the parallel hybrid texture structures in the charged lepton and the neutrino sector. These parallel hybrid texture structures have physical implications as they cannot be obtained from arbitrary lepton mass matrices through weak basis transformations. The total 60 parallel hybrid texture structures can be grouped into 12 classes, and all the hybrid textures in the same class have identical physical implications. We examine all 12 classes under the assumption of nonfactorizable phases in the neutrino mass matrix. Five out of the total 12 classes are found to be phenomenologically disallowed. We study the phenomenological implications of the allowed classes for 1-3 mixing angle, Majorana and Dirac-type CP violating phases. Interesting constraints on effective Majorana mass are obtained for all the allowed classes.

  12. Parallel hybrid textures of lepton mass matrices

    E-Print Network [OSTI]

    Dev, S; Gautam, Radha Raman

    2010-01-01T23:59:59.000Z

    We analyse the parallel hybrid texture structures in the charged lepton and the neutrino sector. These parallel hybrid texture structures have physical implications as they cannot be obtained from arbitrary lepton mass matrices through weak basis transformations. The total sixty parallel hybrid texture structures can be grouped into twelve classes, and all the hybrid textures in the same class have identical physical implications. We examine all the twelve classes under the assumption of non-factorizable phases in the neutrino mass matrix. Five out of the total twelve classes are found to be phenomenologically disallowed. We study the phenomenological implications of the allowed classes for 1-3 mixing angle, Majorana and Dirac-type $CP$ violating phases. Interesting constraints on effective Majorana mass are obtained for all the allowed classes.

  13. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  14. Hybrid air foil bearing with external pressurization

    E-Print Network [OSTI]

    Park, Soongook

    2009-05-15T23:59:59.000Z

    used in applications including turbo generators, aircraft air cycle machines[1], automobiles, fuel cell micro-gas turbine(MGT) hybrid systems[2], turbochargers and turbo compressors, etc. One of the critical technical issues related to reliability...

  15. Hierarchical Hybrid Power Supply Networks Farinaz Koushanfar

    E-Print Network [OSTI]

    management, hybrid power supply, supercapacitors 1. INTRODUCTION AND MOTIVATION Historically, almost all in a hierarchical power sup- ply network would include batteries, supercapacitors, ionic supercapacitors, and future cycle, supercapacitors are advantageous rel- ative to the standard che

  16. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01T23:59:59.000Z

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  17. Fertility Relationships in Maize-Teosinte Hybrids

    E-Print Network [OSTI]

    Rogers, John S. (John Sinclair)

    1950-01-01T23:59:59.000Z

    Fertility Relationships in Maize-Teosinte Hybrids JOHN S. ROGERS Department of Agronomy LIBRARY n & M. COLLEGE OF TEXAS Digest This bulletin reports the degree of fertility found in crosses of maize with several different varieties... of teosinte. The teosintes used were the Mexican varieties Durango, Chalco, Nobogame and New, and the Guatemalan varieties Huixta and Florida. Hybrids of the Mexican teosinte varieties with maize exhibit approximaiely normal fertility, although...

  18. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01T23:59:59.000Z

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  19. Hybrid ECAL: Optimization and Related Developments

    E-Print Network [OSTI]

    Suehara, T; Sumida, H; Ueno, H; Sudo, Y; Yoshioka, T; Kawagoe, K

    2015-01-01T23:59:59.000Z

    Hybrid ECAL is a cost-conscious option of electromagnetic calorimeter (ECAL) for particle flow calorimetry to be used in a detector of International Linear Collider (ILC). It is a combination of silicon-tungsten ECAL, which realizes high granularity and robust measurement of electromagnetic shower, and scintillator-tungsten ECAL, which gives affordable cost with similar performance to silicon. Optimization and a data acquisition trial in a test bench for the hybrid ECAL are described in this article.

  20. Hybrid ECAL: Optimization and Related Developments

    E-Print Network [OSTI]

    T. Suehara; H. Hirai; H. Sumida; H. Ueno; Y. Sudo; T. Yoshioka; K. Kawagoe

    2015-03-30T23:59:59.000Z

    Hybrid ECAL is a cost-conscious option of electromagnetic calorimeter (ECAL) for particle flow calorimetry to be used in a detector of International Linear Collider (ILC). It is a combination of silicon-tungsten ECAL, which realizes high granularity and robust measurement of electromagnetic shower, and scintillator-tungsten ECAL, which gives affordable cost with similar performance to silicon. Optimization and a data acquisition trial in a test bench for the hybrid ECAL are described in this article.

  1. Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

    2001-01-01T23:59:59.000Z

    In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

  2. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

  3. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01T23:59:59.000Z

    Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

  4. Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

  5. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

  6. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    passive and hybrid space heating systems. Space Cooling Aand hybrid solar heating and cooling systems. Experimentspassive, and hybrid systems for heating, cooling, and

  7. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

    2008-08-26T23:59:59.000Z

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  8. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31T23:59:59.000Z

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  9. Optimal design of hybrid and non-hybrid fuel cell vehicles

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

  10. Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Tolbert, Leon M.

    of battery bank can be reduced for optimum design. Keywords -- Silicon carbide (SiC), inverter, hybrid -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV has rapidly expanded. The application of SiC devices (as battery interface, motor controller, etc

  11. Lyapunov-Like Conditions for the Existence of Zeno Behavior in Hybrid and Lagrangian Hybrid Systems

    E-Print Network [OSTI]

    Ames, Aaron

    Lyapunov-Like Conditions for the Existence of Zeno Behavior in Hybrid and Lagrangian Hybrid Systems Andrew Lamperski and Aaron D. Ames Abstract-- Lyapunov-like conditions that utilize generaliza- tions configuration space, we utilize our Lyapunov-like conditions to obtain easily verifiable necessary

  12. 1 | Fuel Cell Technologies Program Source: US DOE 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview

    E-Print Network [OSTI]

    Cell Patents Geographic Distribution 2002-2010 Top 10 companies: Honda, GM, Toyota, UTC Power, Samsung Reduced Oil Use Reduced Air Pollution Fuel Flexibility · 40 - 60% (electrical) · > 70% (electrical, hybrid

  13. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31T23:59:59.000Z

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  14. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    Common Passive and Hybrid Heating Cooling Systems Michael].THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

  15. The Public, the Private and the Hybrid: Mapping the Governance...

    Open Energy Info (EERE)

    The Public, the Private and the Hybrid: Mapping the Governance of Energy Finance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Public, the Private and the Hybrid:...

  16. Electron-State Hybridization in Heavy-Fermion Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron-State Hybridization in Heavy-Fermion Systems Electron-State Hybridization in Heavy-Fermion Systems Print Wednesday, 27 September 2006 00:00 Heavy-fermion systems are...

  17. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  18. Bachelor Thesis Detection of Zeno Sets in Hybrid Systems

    E-Print Network [OSTI]

    Bachelor Thesis Detection of Zeno Sets in Hybrid Systems to Validate Modelica Simulations Marcel . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Example: Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Modelica 9 3.1 OpenModelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Hybrid Automata

  19. Hybrid user interfaces : design guidelines and implementation examples

    E-Print Network [OSTI]

    Ahn, Sehyun

    2006-01-01T23:59:59.000Z

    A hybrid user interface is a new type of computer user interface that achieves high usability by combining features of graphical user interfaces and command line interfaces. The main goal of a hybrid user interface is to ...

  20. Hybrid vehicle design using global optimisation Wenzhong Gao

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    systems, power system modelling and simulation, alternative power systems, renewable energy and electric electronics, hybrid electric vehicles, electric machines, and renewable energy systems. He). A hybrid powertrain is comprised of electric motors with power electronic converters, energy storage

  1. Influence of Mild Hybridization on Performance and emission in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Influence of Mild Hybridization on Performance and emission in a 4-Cylinder, In-Line Common Rail Diesel Engine Influence of Mild Hybridization on Performance and emission in a...

  2. A summary of EPRI's fusion-fission hybrid evaluation activities

    SciTech Connect (OSTI)

    Amherd, N.A.

    1982-10-01T23:59:59.000Z

    A summary is given of recently completed and planned fusion-fission hybrid projects. Electricty supply/demand projections and estimates of future uranium requirements for several different combinations of nuclear systems, including hybrids, are discussed.

  3. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

  4. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...

    Broader source: Energy.gov (indexed) [DOE]

    For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due...

  5. Rotordynamic evaluation of a roughened-land hybrid bearing

    E-Print Network [OSTI]

    Fayolle, Patrice Gerard

    1997-01-01T23:59:59.000Z

    " seals. This thesis presents experimental as well as theoretical static and dynamic results for a five-pocket orifice-compensated hole-pattern-land hybrid bearing. Experimental data show a significant improvement in stability compared to a smooth hybrid...

  6. Hybrid & electric vehicle technology and its market feasibility

    E-Print Network [OSTI]

    Jeon, Sang Yeob

    2010-01-01T23:59:59.000Z

    In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

  7. Project Sponsors:ADVANCED POWER & ENERGY www.apep.uci.edu

    E-Print Network [OSTI]

    Mease, Kenneth D.

    . It combines high-output lithium-ion batteries with HSD technology to offer an expanded fully electric driving electrical outlet or one and a half hours with a 220V connection. The Prius Plug-in Hybrid's lithium-ion Battery Battery Type: Lithium-ion Maximum EV Cruising Range: Approximately 13 miles HV Battery Recharging

  8. Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint

    SciTech Connect (OSTI)

    Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

    2008-07-01T23:59:59.000Z

    Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

  9. Verifying Hybrid Systems Modeled as Timed Automata: A Case Study?

    E-Print Network [OSTI]

    -Vaandrager timed automata model, of the Steam Boiler Controller problem, a hybrid systems benchmark. This pa- per

  10. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01T23:59:59.000Z

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  11. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

  12. Expansion effects on solar wind hybrid simulations

    SciTech Connect (OSTI)

    Parashar, Tulasi N.; Velli, Marco; Goldstein, Bruce E. [NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-06-13T23:59:59.000Z

    Ion kinetic simulations of the solar wind using hybrid codes can model local wave input, heating and instabilities, but generally do not include long term evolution effects in the expanding solar wind. We further develop the expanding box model used in earlier studies to include the mirror force effects and study their role in the evolution of the proton distribution functions in the outer corona and inner heliosphere. The mirror force, significant in the acceleration region of the solar wind, is required for consistency with the conservation of magnetic moment of particles in the expanding wind. We present preliminary results from the modified 1D expanding box hybrid (EBHM) simulations.

  13. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrective Action PlanHybridHybrid

  14. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football HighdefaultSandy-Nor'easterInnovationHybridHybrid

  15. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  16. Optimal Power Train Design of a Hybrid Refuse Collector Vehicle

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Power Train Design of a Hybrid Refuse Collector Vehicle Tobias Knoke, Joachim Böcker 5251 60 2212 Abstract-- Due to the stop-and-go drive cycle of refuse collector vehicles, hybrid power), optimization, refuse collector vehicle I. INTRODUCTION Today, hybrid electric vehicles are accepted as a step

  17. HIERARCHICAL CONTROL FOR A CLASS OF UNCERTAIN PIECEWISE LINEAR HYBRID

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    HIERARCHICAL CONTROL FOR A CLASS OF UNCERTAIN PIECEWISE LINEAR HYBRID DYNAMICAL SYSTEMS Hai Lin ,1 for illustration. Keywords: Hybrid Systems, Piecewise Linear Systems, Hierarchical Control, Uncertainty 1 of the appropriate controller. In this paper we consider uncertain piecewise linear hybrid dynamical systems

  18. Nonlinear evolution of lower hybrid waves Charles F. F. Karney

    E-Print Network [OSTI]

    Karney, Charles

    problem. With typical fields for lower hybrid heating of a tokamak, it is found that large reflections can occur close to the edge of the plasma. I. INTRODUCTION In typical lower hybrid heating schemes, lower hy, and determine the consequences of our results for lower hybrid heating. The plan of this paper i s a s follows

  19. Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified

    E-Print Network [OSTI]

    is that faithful models of distributed car control have both distributed systems and hybrid systems dynamics dynamics. Distributed car control follows a hybrid dynamics, because cars move continuously alongAdaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified Sarah M. Loos, Andr

  20. OPTIMAL SYNTHESIS, DESIGN AND OPERATION OF HYBRID SEPARATION PROCESSES

    E-Print Network [OSTI]

    Blandford, Ann

    or low relative volatilities. In a hybrid process where a distillation column unit and a pervaporation was to study the optimal configuration, design and operation of hybrid distillation/ membrane processes takingOPTIMAL SYNTHESIS, DESIGN AND OPERATION OF HYBRID SEPARATION PROCESSES Taj*alasfiaM. M. Barakat

  1. Production of highly unidirectional lower-hybrid waves

    SciTech Connect (OSTI)

    McWilliams, R.; Okubo, M.; Platt, R.C.; Sheehan, D.P.

    1985-01-01T23:59:59.000Z

    The development of a highly unidirectional lower-hybrid wave source would improve the electron current drive efficiency in tokamaks. Lower-hybrid waves launched from a phased wave array are shown to be reflected from a grid placed in a cold, low-density plasma. The antenna--grid combination results in highly unidirectional lower-hybrid waves.

  2. Optimal Control of Switched Hybrid Systems: A Brief Survey

    E-Print Network [OSTI]

    Antsaklis, Panos

    Optimal Control of Switched Hybrid Systems: A Brief Survey Technical Report of the ISIS Group FengZhu and Panos J. Antsaklis, "Optimal Control of Switched Hybrid Systems: a Brief Survey," ISIS Technical Report ISIS-2013-007, July 2013. #12;1 Optimal Control of Switched Hybrid Systems: A Brief Survey

  3. Optimal Control of Switched Hybrid Systems: A Brief Survey

    E-Print Network [OSTI]

    Antsaklis, Panos

    Optimal Control of Switched Hybrid Systems: A Brief Survey Technical Report of the ISIS Group;1 Optimal Control of Switched Hybrid Systems: A Brief Survey Abstract This paper surveys recent results in the field of optimal control of hybrid and switched systems. We summarize recent results that use different

  4. Optimal Control of Switched Hybrid Systems: A Brief Survey

    E-Print Network [OSTI]

    Antsaklis, Panos

    Optimal Control of Switched Hybrid Systems: A Brief Survey Technical Report of the ISIS Group;1 Optimal Control of Switched Hybrid Systems: A Brief Survey Feng Zhu and Panos J. Antsaklis Department a few. The problem of determining optimal control laws for hybrid systems and in particular for switched

  5. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

  6. 2010 Plug-In Hybrid and Electric Vehicle Research

    E-Print Network [OSTI]

    2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

  7. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

  8. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions Government or any agency thereof. #12;ORNL/TM-2008/056 Plug-in Hybrid Electric Vehicle Value Proposition-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007

  9. Quadratic Control of Stochastic Hybrid Systems with Renewal Transitions

    E-Print Network [OSTI]

    Hespanha, João Pedro

    Quadratic Control of Stochastic Hybrid Systems with Renewal Transitions Farshad R. Pour Safaei a, semi-Markov processes, optimal control, stochastic hybrid systems, renewal transitions 1 Introduction probability distributions other than the exponential. We consider a Stochastic Hybrid System with renewal

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  11. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  12. DESIGN OF AN EXPERIMENTAL FACILITY FOR HYBRID GROUND SOURCE HEAT

    E-Print Network [OSTI]

    DESIGN OF AN EXPERIMENTAL FACILITY FOR HYBRID GROUND SOURCE HEAT PUMP SYSTEMS By SHAWN ALEX HERN.1 HYBRID GROUND SOURCE HEAT PUMP SYSTEM DESIGN........................................2-3 2.1.1 Design...............................................................................2-5 2.2 HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION................................2-9 3

  13. The Hybridization of a Formula Race Car K. W. Benson

    E-Print Network [OSTI]

    The Hybridization of a Formula Race Car K. W. Benson D. A. Fraser S. L. Hatridge C. A. Monaco R. J works must be obtained from the IEEE. #12;The Hybridization of a Formula Race Car Keith W. Benson.R.Sullivan@dartmouth.edu Abstract--Hybrid electric vehicles are advantageous under formula racing rules, when allowed. A series

  14. A Complete Axiomatization of Differential Game Logic for Hybrid Games

    E-Print Network [OSTI]

    15213 This report is an updated version superseding the earlier report CMU-CS-12-105 [Pla12b from hybrid systems. Finally, dGL is proved to be strictly more expressive than the corresponding logic of hybrid systems. #12;#12;Andr´e Platzer1 Introduction Hybrid systems [NK92, ACH+ 95, Hen96, BBM98, DN00

  15. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    E-Print Network [OSTI]

    Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities by Adam C. Baylin-Stern B.A. & Sc in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog-Stern Degree: Project No.: Master of Resource Management 535 Title of Thesis: Hybrid Simulation Modeling

  16. Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

    Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren energy reduction becomes crucial for many embed- ded systems designers. In this paper, we propose Hybrid to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation

  17. Continuous flow Systems and Control Methodology Using Hybrid Petri nets

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    modeling tool of positive systems, while Hybrid Automata are a powerful tool giving formally the reachable is based on the control of a hybrid system modelled by a D-elementary hybrid Petri Net. The control is maximally permissive. 1. INTRODUCTION Modelling and control of physical systems are crucial issues

  18. Static Analysis of Sandwich Plates by Hybrid Finite Elements

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Static Analysis of Sandwich Plates by Hybrid Finite Elements V. Manet and W.-S. Han Materials analysis tool. The subject of the present work concerns the development of hybrid sandwich finite elements into acount. The present work concerns the development of hybrid sandwich finite elements mod- elling

  19. Row Buffer Locality Aware Caching Policies for Hybrid Memories

    E-Print Network [OSTI]

    strengths · A hybrid memory system (DRAM-PCM) aims for best of both · Problem: How to place data between static energy (no refresh) 6 DRAM PCM CPU MC MC #12;Hybrid Memory · Design direction: DRAM as a cache memory devices? 8 DRAM PCM CPU MC MC #12;Outline · Background: Hybrid Memory Systems · Motivation: Row

  20. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  1. INDEX TO VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS 1998 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1998.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    INDEX TO VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS 1998 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1998. Companies participating in the 1998 Corn Hybrid Trials 2 1998 Virginia Corn Hybird Plot, and 1998. 36 SECTION II. EVALUATION OF DOUBLECROP CORN UNDER IRRIGATION IN EASTERN VIRGINIA. Table 27

  2. Modeling and Analysis of Hybrid Systems Hybrid systems and their modeling

    E-Print Network [OSTI]

    Ábrahám, Erika

    17 22 23 t on off Hybrid Ábrahám - Hybrid Systems 6 / 41 #12;Example: Water tank system two a heater on and off x is regulated by a thermostat: 17 x 18 "heater on" 22 x 23 "heater off" t x 20 18 constantly leaking tanks v1 and v2 hose w refills exactly one tank at one point in time w can switch between

  3. Formal Verification of Hybrid Systems Rajeev Alur

    E-Print Network [OSTI]

    Alur, Rajeev

    -1-4503-0714-7/11/10 ...$5.00. mathematical model for design of embedded control systems is hybrid systems that combines for dynamical systems. Such models can capture both the controller -- the system under design, and the plant@cis.upenn.edu ABSTRACT In formal verification, a designer first constructs a model, with mathematically precise semantics

  4. Hysteresis effects in hybrid building ventilation

    E-Print Network [OSTI]

    Flynn, Morris R.

    = Heating, ventilation & air conditioning Buildings and energy consumption #12;· Notwithstanding this energy-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filledHysteresis effects in hybrid building ventilation Morris R. Flynn Dept. of Mechanical & Aerospace

  5. Charmonium meson and hybrid radiative transitions

    SciTech Connect (OSTI)

    Guo, Peng [Indiana U., JLAB; Yépez-Martínez, Tochtli [Indiana U.; Szczepaniak, Adam P. [Indiana U., JLAB

    2014-06-01T23:59:59.000Z

    We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.

  6. Requirements for Hybrid Cosimulation David Broman

    E-Print Network [OSTI]

    components designed using distinct modeling and simulation tools [16]. The standard consists of a C API standards, and specifically provides guidance for development of a hybrid cosimulation version of the Functional Mockup Interface (FMI) standard. A cosimulation standard defines interfaces that enable diverse

  7. Hybrid switch for resonant power converters

    DOE Patents [OSTI]

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09T23:59:59.000Z

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  8. Platform for Hybrid Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Platform for Hybrid Cloud Technical White Paper Published: September 2013 (updated) Applies to: SQL Server and Windows Azure Summary: Cloud computing brings a new paradigm shift in computing in the cloud with greater scale and flexibility. Microsoft SQL Server runs very well in the cloud environment

  9. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

    2014-04-01T23:59:59.000Z

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  10. Hybrid wave model and its applications

    E-Print Network [OSTI]

    Yang, Jun

    1998-01-01T23:59:59.000Z

    A nonlinear hybrid wave model (HWM) is developed. It uses the conventional mode-coupling method (MCM) and the phase modulation method (PMM) to address the nonlinear interactions between free-wave components in an ocean wave field. The PMM is a...

  11. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19T23:59:59.000Z

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  12. Hybrid Heat Pump Design and Application 

    E-Print Network [OSTI]

    Wagner, J. R.; Koebberman, W. F.

    1985-01-01T23:59:59.000Z

    The Hybrid Heat Pump (HHP) converts industrial waste heat into process steam. Waste heat at temperatures as low as approximately 200°F can be used. Steam output covers a range between 12,000 Ib/h and 50,000 Ib/h, depending on the application...

  13. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

  14. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  15. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  16. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

  17. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

  18. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

  19. Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs

    E-Print Network [OSTI]

    Burke, Andrew F

    1995-01-01T23:59:59.000Z

    5. Burke, A.F. , Electric/Hybrid Vehicle Super Car Designsin Electric and Hybrid Vehicles, SAE Paper No. 951951,for Electric and Hybrid Vehicles - A Technology Update,

  20. New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliott William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

  1. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  2. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M.

    2004-03-23T23:59:59.000Z

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  3. A hybrid Eulerian-Lagrangian flow solver

    E-Print Network [OSTI]

    Palha, Artur; Ferreira, Carlos Simao; van Bussel, Gerard

    2015-01-01T23:59:59.000Z

    Currently, Eulerian flow solvers are very efficient in accurately resolving flow structures near solid boundaries. On the other hand, they tend to be diffusive and to dampen high-intensity vortical structures after a short distance away from solid boundaries. The use of high order methods and fine grids, although alleviating this problem, gives rise to large systems of equations that are expensive to solve. Lagrangian solvers, as the regularized vortex particle method, have shown to eliminate (in practice) the diffusion in the wake. As a drawback, the modelling of solid boundaries is less accurate, more complex and costly than with Eulerian solvers (due to the isotropy of its computational elements). Given the drawbacks and advantages of both Eulerian and Lagrangian solvers the combination of both methods, giving rise to a hybrid solver, is advantageous. The main idea behind the hybrid solver presented is the following. In a region close to solid boundaries the flow is solved with an Eulerian solver, where th...

  4. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01T23:59:59.000Z

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  5. Model Validation with Hybrid Dynamic Simulation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

    2006-06-18T23:59:59.000Z

    Abstract—Model validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation.

  6. System for controlling a hybrid energy system

    DOE Patents [OSTI]

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29T23:59:59.000Z

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  7. Fuelcell-Hybrid Mine loader (LHD)

    SciTech Connect (OSTI)

    James L Dippo; Tim Erikson; Kris Hess

    2009-07-10T23:59:59.000Z

    The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantages (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.

  8. AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  9. AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  10. Fertility Relationships in Maize-Teosinte Hybrids.

    E-Print Network [OSTI]

    Rogers, John S. (John Sinclair)

    1950-01-01T23:59:59.000Z

    variety reveals that the maize parent has a pronounced effect on the degree of sterility, and that a definite linkage exists between sterility and marker genes on chromosome 4. These results indicate that some factor or factors on the fourth chromosome... hybrids were backcrossed to recessive maize stocks. In this manner, by classification of the backcross progenies, any linkage of pollen sterility with marker genes on particular chromosomes might be determined. All chromosomes, with the exception...

  11. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect (OSTI)

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01T23:59:59.000Z

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  12. Evaluation of the acoustical performance and behaviour of a hybrid truck in urban use

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    engine truck, hybrid truck under hybrid use, hybrid truck under electrical use). Noise emission laws of the noise emission of the hybrid and the reference engine trucks over a wide range of real drivingEvaluation of the acoustical performance and behaviour of a hybrid truck in urban use M.-A. Pallas

  13. The Photoproduction of Hybrid Mesons from Cebaf to HERA

    E-Print Network [OSTI]

    F. E. Close; P. R. Page

    1994-12-15T23:59:59.000Z

    Decay widths, branching ratios and production dynamics of some recently discovered $J^{PC} = 1^{-+}, 0^{-+}$,$1^{--}$ and $2^{-+}$ mesons are found to be in remarkable agreement with the predicted properties of hybrid mesons. We propose tests for this new dynamics, emphasise the critical role of $\\pi b_1$ or $\\pi h_1$ decay channels in discriminating hybrids from conventional states, and suggest that photoproduction may offer special opportunities for isolation and confirmation of hybrids.

  14. Electron-State Hybridization in Heavy-Fermion Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron-State Hybridization in Heavy-Fermion Systems Print Heavy-fermion systems are characterized by electrons with extremely large effective masses. The corresponding...

  15. A novel particle swarm optimizer hybridized with extremal optimization

    E-Print Network [OSTI]

    2008-05-26T23:59:59.000Z

    systems. EO successively updates extremely undesirable variables of a single sub- ..... optimal control of a class of hybrid systems, Applied Soft Computing 8.

  16. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Energy Savers [EERE]

    (1 slide) Project Objective Develop and demonstrate advanced hybrid industrial water treatment system that will... Cost-effectively enable at least 50% water reuse...

  17. Case Study: Ebus Hybrid Electric Buses and Trolleys

    SciTech Connect (OSTI)

    Barnitt, R.

    2006-07-01T23:59:59.000Z

    Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

  18. Hybrid MPI/OpenMP parallel support vector machine training

    E-Print Network [OSTI]

    2009-01-12T23:59:59.000Z

    Jan 6, 2009 ... the most efficient technique. Most high performance computing systems are now clusters of SMP nodes. On such hybrid systems, a combination ...

  19. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    system, the power consumption of the hydrogen EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicleelectric vehicles, uninterruptible power sources, distributed power generation systems,

  20. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  1. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  2. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  3. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Ultracapacitor vs. a High Power Battery for Hybrid Vehiclevarious ranges and motor power Battery 200 Wh/kg 100 Wh/kg

  4. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01T23:59:59.000Z

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  5. 2008 DOE Annual Merit Review Hybrid and Electric Systems and...

    Energy Savers [EERE]

    Materials Technologies Plenary Session Overview 2008 DOE Annual Merit Review Hybrid and Electric Systems and Materials Technologies Plenary Session Overview Presentation from the...

  6. advanced hybrid particulate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Consumers University of California eScholarship Repository Summary: vehicle called a hybrid (1), and this vehicle type symbolized high efficiency andvehicles distinct...

  7. 2011 Hyundai Sonata Hybrid - vin 4932 Advanced Vehicle Testing...

    Broader source: Energy.gov (indexed) [DOE]

    Powertrain Type: Full Parallel Peak Electric Drive Power: 30 kW 2011 Hyundai Sonata Hybrid - VIN 4932 Advanced Vehicle Testing - Baseline Testing Results VEHICLE TECHNOLOGIES...

  8. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01T23:59:59.000Z

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  9. Marine Hybrid Propulsion Market Revenue is anticipated to Reach...

    Open Energy Info (EERE)

    In terms of configuration, the market has been segmented into three categories as diesel-electric, parallel, and serial hybrid systems. Diesel-electric systems are the most...

  10. auslegung von hybrid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of quantized systems on classical systems except for the highly idealized system-detector interaction. To resolve this formal issue, a certain 'hybrid dynamics' can be...

  11. Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

  12. Optimization Online - A Non-Parametric Structural Hybrid Modeling ...

    E-Print Network [OSTI]

    Somayeh Moazeni

    2014-06-30T23:59:59.000Z

    Jun 30, 2014 ... A Non-Parametric Structural Hybrid Modeling Approach for Electricity Prices ... Keywords: Electricity market; Electricity price modeling; Energy ...

  13. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Broader source: Energy.gov (indexed) [DOE]

    2013 Annual Merit Review Results Report 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Introduction...

  14. 2011 Annual Merit Review Results Report - Hybrid and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    01.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Introduction 2012...

  15. Methods for Reachability-based Hybrid Controller Design

    E-Print Network [OSTI]

    Ding, Jerry

    2012-01-01T23:59:59.000Z

    to hybrid systems. IEEE Transactions on Automatic Controlhybrid systems. IEEE Transactions on Automatic Control 45(linear systems. IEEE Transactions on Automatic Control

  16. Graphene and its Hybrid Nanostructures for Nanoelectronics and Energy Applications

    E-Print Network [OSTI]

    LIN, JIAN

    2011-01-01T23:59:59.000Z

    and their role in supercapacitors. Journal of Power Sources,Hybrid Films for Supercapacitors. Journal of PhysicalDu, C. S. and N. Pan. Supercapacitors using carbon nanotubes

  17. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

  18. Hybrid Solar Cells via UV Polymerization of Polymer Precursor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells via UV Polymerization of Polymer Precursor Technology available for licensing: A method to create improved hybrid solar cells through the ultraviolet (UV)...

  19. Oligo and Poly-thiophene/Zno Hybrid Nanowire Solar Cells

    E-Print Network [OSTI]

    Briseno, Alejandro L.

    2010-01-01T23:59:59.000Z

    ZnO Hybrid Nanowire Solar Cells Alejandro L. Briseno, Thomashybrid single nanowire solar cell. End-functionalized oligo-Individual nanowire solar cell devices exhibited well-

  20. Development of Design and Simulation Tool for Hybrid Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    * Estimated funding for FY10 is 225,000 - Barriers * Lack of sufficient design and energy analysis tool for hybrid ground source heat pump (HGSHP) systems - Partners * James...